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SUMMARY
Ankylosing spondylitis (AS) is a common, highly heritable inflammatory arthritis characterized by enthesitis of
the spine and sacroiliac joints. Genome-wide association studies (GWASs) have revealed more than 100 ge-
netic associations whose functional effects remain largely unresolved. Here, we present a comprehensive
transcriptomic and epigenomic map of disease-relevant blood immune cell subsets from AS patients and
healthy controls. We find that, while CD14+ monocytes and CD4+ and CD8+ T cells show disease-specific dif-
ferences at the RNA level, epigenomic differences are only apparent upon multi-omics integration. The latter
reveals enrichment at disease-associated loci in monocytes. We link putative functional SNPs to genes using
high-resolution Capture-C at 10 loci, including PTGER4 and ETS1, and show how disease-specific functional
genomic data can be integrated with GWASs to enhance therapeutic target discovery. This study combines
epigenetic and transcriptional analysis with GWASs to identify disease-relevant cell types and gene regula-
tion of likely pathogenic relevance and prioritize drug targets.
INTRODUCTION

Ankylosing spondylitis (AS) is a common inflammatory arthritis

characterized by inflammation of the sacroiliac joints and spinal

entheses, which causes extensive new bone formation and

vertebral fusion, resulting in pain, loss of movement, and

disability.1,2 Combined with other systemic manifestations of

the disease, such as inflammation of the gut, skin, and eyes,

this leads to significant morbidity and disease burden.3,4 Twin

and other family studies indicate that AS is highly heritable (ls
This is an open access article und
�50) with broad-sense heritability greater than 90%.5,6 This in-

volves strong association with the major histocompatibility com-

plex (MHC) allele HLA-B277,8 and more than 100 other loci iden-

tified through genome-wide association studies (GWASs).9–13

Several of these associations implicate genes involved in inter-

leukin-23 (IL-23)-driven inflammation and Th17 responses; these

include IL23R (encoding the IL-23 receptor), IL6R (IL-6 receptor),

TYK2 (tyrosine kinase 2 receptor), and IL27R.9 In a few cases,

such as ERAP1 (endoplasmic reticulum aminopeptidase 1)

and IL23R, functional non-synonymous single-nucleotide
Cell Genomics 3, 100306, June 14, 2023 ª 2023 The Author(s). 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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polymorphisms (SNPs) have been described.9,13,14 However,

most AS associations involve non-coding SNPs, which may be

regulatory in nature and act in a cell-specificmanner to modulate

a variety of epigenetic, transcriptional, and post-transcriptional

mechanisms.15–18 Recently we demonstrated how AS-associ-

ated SNPs at RUNX3 modulate the binding of transcription fac-

tors (TFs) and regulatory complexes in T cells and mono-

cytes,15–18 but for other associated loci, the causal genes and

pathways remain largely unresolved.19 The expression and co-

ordination of regulatory mechanisms for genes involved in the

disease pathophysiology are likely to be cell type specific.

Here we focus on CD4+ and CD8+ T cells and monocytes from

patients with active AS and healthy controls (HC) because these

cell types have been implicated previously in the pathogenesis of

AS,20–26 and previous studies have largely sampled whole pe-

ripheral blood mononuclear cells (PBMCs).27–30

The outlook for patients with more severe forms of AS has

been greatly improved in recent years by the introduction of

new biologic treatments inhibiting the inflammatory cytokines tu-

mor necrosis factor alpha (TNF-a) and IL-17A. Nevertheless,

fewer than half are likely to achieve sustained remission even

with these targeted therapies,31 highlighting the need for patient

stratification of potential responders and new therapeutic targets

in AS. Human genetic evidence supporting the identification of

therapeutic targets strongly increases the likelihood of success

in late-stage clinical trials.32 We and others have shown that

GWASs, in combination with functional genomic evidence and

knowledge of network connectivity, can be used to prioritize

target genes and pathways through, for example, the priority in-

dex (Pi) algorithm.33,34 Logistical and technical challenges have

limited the number of studies generating omics data from patient

samples to date, and it remains unresolved how best to maxi-

mize the value of such data through integration across assay

modalities, including genetics.35

Here, we present a comprehensive map of the epigenomic

landscape of AS defining the global transcriptome, chromatin

accessibility, and enhancer- and promoter-associated histone

modifications in disease-relevant subsets of immune cells from

patients andHCs.We identify global changes in chromatin archi-

tecture in the AS disease state in monocytes and characterize

specific GWAS loci to identify interactions between lead SNPs

in enhancers and cognate genes, including prostaglandin E

receptor 4 (PTGER4) and ETS proto-oncogene 1 (ETS1). Further-

more, we show how functional genomic evidence can be
Figure 1. Gene expression levels consistently delineate cell type and s

(A) Workflow of the study.

(B) PCA of RNA-seq data in CD4+ T cells, CD8+ T cells, and monocytes from AS

(C) Volcano plot showing differentially expressed genes calculated using DEseq

T cells, and monocytes. Genes in AS-associated GWAS regions are purple. Red g

122 differentially expressed genes, CD8+ T cells 299 genes, and monocytes 300

(D) Cell type specificity of differentially expressed genes; numbers of differential

(E) Examples of differential gene expression at CD83 and TNFSF14; **padj < 0.0

(F) Enriched pathways in the Reactome database (FDR < 0.01 from XGR outp

represents percentages of genes represented in that pathway, and colors repres

(G) CXC subfamily of the Kyoto Encyclopedia of Genes andGenomes (KEGG) ‘‘cyt

FC. Significantly differentially expressed genes are marked by asterisks. The p va

calculated by chi-squared test with Yates’ correction.

See also Figure S1 and Table S3.
integrated with GWAS data through Pi to identify candidate

therapeutic targets for future study.

Design
Patient and control cohorts and experimental overview

To generate a comprehensive functional genomic and epige-

nomic atlas of the immune response in peripheral blood of AS

patients, we recruited 20 adult patients with active disease

who were naive to biologic therapy and fulfilled diagnostic

criteria for AS and 35 HCs recruited locally or from the Oxford

Biobank (Table S1; Table S2; STAR Methods). Cell populations

of interest (CD4+ and CD8+ T cells and CD14+ monocytes)

were freshly isolated from peripheral blood by positive selection

using immunomagnetic cell separation with more than 98%

purity (Figure S1; STAR Methods). Each cell type was then

processed immediately for total RNA sequencing (RNA-seq),

chromatin accessibility (assay for transposase-accessible

chromatin with next-generation sequencing [ATAC-seq]), infor-

mative histone modifications for promoter (histone H3 lysine 4

trimethylation [H3K4me3]) and enhancer (histone H3 lysine 4 tri-

methylation [H3K27ac]) activity (ChIPmentation), and high-reso-

lution chromosomal conformation capture (Capture-C) (Fig-

ure 1A; Table S2; STAR Methods).

RESULTS

Differential gene expression in active AS is cell type
specific
We first investigated the nature of differential gene expression

between AS patients and HCs for specific immune cell types.

We focused on three major immune cell types previously impli-

cated in AS (CD4+ and CD8+ T cells and CD14+monocytes).20–26

Analysis of gene expression by RNA-seq comparing the three

cell types for each individual showed that gene expression

segregated by cell type more strongly than by disease state

(Figures 1B and S1B). However, for each cell type, we found hun-

dreds of differentially expressed genes between AS patients and

HC (CD4+ T cells, 122 genes; CD8+ T cells, 299 genes; mono-

cytes, 300 genes; padj (adjusted p value) < 0.05, fold change

[FC] > 1.5) (STAR Methods; Figures 1C and S1C; Table S3).

Themajority of differentially expressed genes were cell type spe-

cific (Figure 1D), and where differentially expressed genes

involved more than one cell type, the direction of effect was

the same in the majority of cases. For example, CD83 (encoding
how differences between AS patients and HCs

patients and HCs.

2 (padj < 0.05, FC > 1.5) between AS patients and HCs in CD4+ T cells, CD8+

enes are upregulated and blue downregulated in AS patients. CD4+ T cells had

genes.

ly expressed genes are given.

1, ***padj < 10�7 (from DEseq2).

ut) from significant differentially expressed genes in each cell type. Dot size

ent cell types.

okine-cytokine reception interaction’’ pathway colored by gene expression log2
lue of CXC family subset over-representation is shown below for each cell type,
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Figure 2. Individual epigenomic mapping methods in immune cell subsets have limited capacity to differentiate AS patients and HCs

(A) PCA of genome-wide distribution of ATAC-seq, ChIPm H3K4me3, ChIPm H3K27ac, and eRNA peaks in CD4+ T cells, CD8+ T cells, and monocytes from AS

patients and HCs.

(B) Enriched Reactome pathways (FDR < 0.01 from XGR output) within genes associated with the top 200 differentially expressed peaks in each cell type. Note

that each modality is plotted with different x and y scales to maximize clarity. Dot size represents percentages of genes represented in that pathway, and colors

represent cell types. Numbers of significant differential peaks (padj < 0.05, FC > 1.5) are shown at the top left for each modality, colored by cell type.

See also Figure S2 and Tables S4–S7.
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CD83, a cell-surface glycoprotein involved in regulation of anti-

gen presentation) has significantly higher expression only in AS

patient monocytes, TNFSF14 (encoding TNF superfamily mem-

ber 14) has significantly lower expression in AS patients in all

three cell types (Figure 1E), and SCAMP5 is an example of a

gene upregulated in CD8+ T cells and downregulated in CD4+

T cells. We defined disease-enriched pathways from differen-

tially expressed genes using eXploring Genomic Relations

(XGR)36 (STAR Methods). All cell types showed enrichment of

immune-related pathways and G protein-coupled receptor

(GPCR) signaling pathways in AS (Figure 1F). We identified sig-

nificant upregulation of the CXC subfamily of chemokine recep-

tors in CD4+ and CD8+ T cells (Figures 1G and S1D), which links

to the important role of IL-17-producing cells in AS pathogen-

esis. We investigated cell subset composition by deconvolution

of RNA-seq data using CIBERSORTx37 and found no difference

in abundance of the three cell types or major cell subsets within

these when comparing AS patients and HCs (Figure S1E).

Cell-type-specific epigenomic marks show limited
differences between AS patients and controls
We then resolved genomic regulatory features in CD4+ T cells,

CD8+ T cells, andmonocytes fromASpatients. To do this, we as-

sayed open chromatin with ATAC-seq and enrichment of

H3K4me3 and H3K27ac histone modifications using

ChIPmentation (ChIPm) and identified non-coding enhancer

RNAs (eRNAs) within ATAC peaks outside of coding genes
4 Cell Genomics 3, 100306, June 14, 2023
(STAR Methods; Figures S2A and S2B). Each omics modality

showed cell type specificity on principal-component analysis

(PCA) that outweighed the effect of disease state (Figure 2A).

Only a very small number of significant differential signals

were observed between AS patients and HCs (Figure 2B;

Tables S4–S6), and disease state could not be clearly distin-

guished on PCA (Figure S2C). The transcription start site (TSS)

score for ATACand chromatin immunoprecipitation (ChIP) corre-

lated with expression levels of their corresponding gene (Fig-

ure S2D). We assigned differential ATAC, ChIPm, and eRNA sig-

nals to genes by proximity or overlap with promoter capture Hi-C

(PCHi-C) looping interactions identified in relevant cell types38

(STAR Methods). Pathway enrichment analysis of genes linked

to the top 200 differential regions between AS patients and HCs

for each modality implicated immunological pathways and

GPCR signaling along with transcriptional pathways and

NOTCH signaling across cell types and modalities, consistent

with our analysis of differentially expressed genes (Figure 2B).

Disease-specific regulatory chromatin states are found
in monocytes from patients with AS
Wefurther investigatedwhether thereweredisease-specificdiffer-

ences in the chromatin landscape by maximizing the informative-

nessofdifferent sourcesofomics informationusingChromHMM39

(Figure 3A), a machine learning algorithm that enables definition

of chromatin conformational states based on combinationsof reg-

ulatory features. The derived emission model consisted of 14
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chromatin states (Figure 3B) in four functional categories:

promoter (states 1–4), transcribed (states 5–7), enhancer (states

8–11), and quiescent (states 12–14). Multiple correspondence

analysis (MCA) on global ChromHMM data revealed major differ-

ences between cell types, albeit with considerable variation be-

tween individuals (Figure S3A). Within each cell type, we identified

thousands of 200-bp segments that were assigned to different

chromatin states in AS patients and HCs (Table S7). We found

that differential segments in two promoter states (1 and 3), three

enhancer states (9, 10, and 11), and two quiescent states (12

and 14) were significantly over-represented in ASmonocytes (Fig-

ure 3C), as determined by permutation analysis (Figure S3B).

Consistent with this, MCA comparison of AS patients and HCs

showed separation on dimension (dim) 1 in monocytes but not

CD4+ and CD8+ T cells (Figure 3D). Within monocytes, all states

except state 14 (quiescent) showed separation of AS patients

and HCs on dim 1 or dim 2 (Figure S3C). In contrast, only three

states showed separation in CD8+ T cells (states 7, 8, and 11),

and none in CD4+ T cells. Comparative state transitions between

patients andHCs revealed a complex pattern of differential states,

including enrichment of enhancer state 10 (EnhA) in AS patients

corresponding to promoter state 1 (TssA) in HCs (Figure S3D).

Overall, this analysis demonstrates significant changes in the epi-

genomic landscape of active AS disease, notably in monocytes.

We next sought to determine whichmolecular pathwaysmight

be altered by these global changes inmonocyte chromatin archi-

tecture. We assigned the differential ChromHMM fragments to

genes based on proximity or PCHi-C looping events38 (STAR

Methods; Table S7) and performed pathway enrichment analysis

(Figure 3E). The highest number of enriched pathways contained

genes linked to promoter state, followed by those linked to

enhancer state. Only two pathways were enriched in genes

linked to transcribed states and none with quiescent states.

Six of 15 enriched pathways from promoter and enhancer states

related to NOTCH signaling (Figure 3E), further implicating this

pathway in monocytes in AS. To aid interpretation of these

findings, we further defined by flow cytometry which monocyte

subpopulations were represented in our sorted monocyte popu-

lation, showing that these are 80% CD14+ CD16+ classical

monocytes with the remainder intermediate and non-classical

monocytes (Figure S3E).
Figure 3. Disease-specific regulatory regions are found in monocytes

(A) Workflow of the ChromHMM analysis.

(B) ChromHMM emission model showing 14 states annotated according to state

assigned according to predicted function, aligned to The Encyclopedia of DNA E

TssFlnk, flanking promoter; FlnkU, upstream of TSS; FlnkD, downstream of TSS

TxWk, weak transcription. Enhancer states: EnhG1, strongly transcribed, weak en

weak intronic enhancer. Quiescent (Quiesc) states: Wk, low/weak enhancer; Int,

(C) Significance of disease-specific ChromHMM segment frequency for each sta

Only monocytes contained significantly over-represented states.

(D) MCA showing overall distribution of ChromHMMstates within each cell type co

AS and HC samples.

(E) Enriched pathways in the Reactome database (FDR < 0.01, XGR output) perfor

like states in monocytes. Dot size represents percentage of genes represented i

(F) Visualization of differential ChromHMM regions (vertical arrows) at (i) the prom

differential enhancer. ChromHMMstates in AS patients and HCs are colored as in

ChromHMM segments in red.

See also Figure S3 and Table S8.
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To illustrate our results, we show two examples where differen-

tial ChromHMM segments correlate with alterations in gene

expression (Figure 3F). ELOVL3 (encoding elongation of very-

long-chain fatty acids) is involved in fatty acid metabolism and

downregulated in psoriasis,40 a common extra-articular manifes-

tation of AS.41 The ELOVL3 promoter is marked by state 1 (TssA,

promoter-like) in AS patients and HCs, but this mark spans a

shorter genomic interval in AS patients (Figure 3F). Consistent

with this, expression of ELOVL3 is lower in AS patients (padj =

0.0003). TLE3 (encoding transducin-like enhancer family member

3) is a transcriptional co-repressor involved in the NOTCH

signaling pathway. We identified up- and downstream enhancers

that form looping interactions with the TLE3 promoter (Figure 3F).

The enhancers are defined by ChromHMM state 10 (enhancer)

containing punctate regions of state 1 (promoter) that correspond

with non-coding eRNA transcription. In two segments these pro-

moter elements are narrower in AS patients compared with HC,

which may contribute to the observed reduction in TLE3 expres-

sion in AS patients (padj = 0.045).

Regulatory chromatin signatures are enriched at AS
GWAS regions
Having generated comprehensive epigenomic maps in three cell

types fromASpatients andHCs, we next addressedwhether this

could inform the functional basis of observed genetic associa-

tions in AS from GWASs, specifically seeking evidence to impli-

cate/delineate the gene(s) responsible for the genetic associa-

tion. We identified 35 differentially expressed genes located

within GWAS regions (<500 kb from the lead SNP), of which 31

were cell type specific (Figure 1C; STAR Methods). We found

that regulatory ChromHMM states are over-represented in or

near AS GWAS regions, and this is independent of the

HLA-B27 association (Figures 4A and S4). Enhancer state 10 is

enriched near GWAS regions in all three cell types, while in

monocytes, states 2, 6, 10, 11, 12, 13, and 14 are all enriched

in GWAS regions. We also found significant enrichment of

ATAC, H3K4me3, and H3K27ac signals and eRNAs at GWAS

loci in all cell types (Figure 4B).

The chr3p21.31 locus illustrates the intersection between an

AS genetic association (rs100100710) and disease-specific chro-

matin state in monocytes (Figure 4C). This intergenic SNP is
and implicate NOTCH signaling in AS pathogenesis

emissions, genomic annotations, and TSS neighborhood. State names were

lements (ENCODE) labels where possible. Promoter states: TssA, active TSS;

. Transcribed (Txn) states: Tx, transcription; TxNC, non-coding transcription;

hancer; EnhG2, weakly transcribed, strong enhancer; EnhA, enhancer; EnhWk,

introns; Quies, quiescent.

te in each cell type, calculated using permutation analysis (ns, not significant).

mparing AS patients and HCs. Themonocyte plot dotted line at x = 0 delineates

med on genes linked to promoter-like states, transcribed regions, or enhancer-

n that pathway.

oter of ELOVL3 and (ii) enhancer of TLE3, with (iii) magnified region of the TLE3

(B). PCHiC looping interactions38 are shown, with loops intersecting differential
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located between CCR5 and CCRL2, but this locus has not been

fine mapped to establish a functional variant and modulated

gene in AS. Consequently, we interrogated the whole mono-

cyte-specific topologically associating domain (TAD) and

discovered several regions with disease-specific chromatin sig-

natures. We found evidence of an intergenic region between

XCR1 and CCR1 that has an enhancer-like profile (ChromHMM

state 10, EnhA) in AS patients with a promoter-like profile

(ChromHMM state 3, FlnkU) in HCs, consistent with observed

differences in eRNA and H3K27ac between cases and controls.

Analysis of chromatin interaction data shows that this region is

involved in DNA looping to CCR1, CCR2, CCR5, and CCRL2

but not with CCR3. Looping events correlate with expression

of the cognate genes in monocytes. These findings indicate

complex regulation of the CCR gene cluster in monocytes with

epigenetic changes specific to AS.

Chromosome looping interactions from AS-associated
SNPs in enhancers implicate disease-relevant genes
To further substantiate the relationship between disease-associ-

ated SNPs and likelymodulated genes, wemapped chromosome

looping events at GWAS loci in patient samples at high resolution

(compared with PCHi-C). We performed Capture-C on CD4+

T cells, CD8+ T cells, and monocytes from AS patients and con-

trols (STARMethods). Baits were designed at promoters of genes

with known immune roleswithin ASGWAS regions.We found that

18 of 44 promoter viewpoints assayed demonstrated chromatin

interactions in at least one cell type, although no differences

were found between AS patients and HCs. Follow-up Capture-C

experiments were performed with baits at AS-associated SNPs

to demonstrate reciprocal interactions between SNPs and pro-

moters. Overall, nine reciprocal interactions were found between

promoters and regions containing GWAS SNPs, nine of which

were marked as enhancers (state 10 or 11) in our ChromHMM

analysis in the same cell type (Table 1; Figures 5 and S5–S14).

These loci also contained differential ATAC, H3K4me3,

H3K27ac, or eRNA peaks, and five overlapped expression quan-

titative trait loci (eQTLs) in the same cell types43 (Figure 5A).

Two loci illustrate SNP-promoter interactions. ETS1 encodes

ETSproto-oncogene 1, a TFwith numerous roles in immune cells,

including regulation of cytokine and chemokine gene expres-

sion.46 Our ChromHMManalysis showed enhancer regions flank-

ing the ETS1 gene, and Capture-C analysis showed looping

events between the enhancer overlapping the AS-associated

lead SNP rs793343310 and ETS1 promoter in CD4+ and CD8+

T cells but notmonocytes (Figures5BandS11).PTGER4encodes

prostaglandin receptor E4, a GPCR whose expression is associ-
Figure 4. Differential chromatin regions are enriched at GWAS loci

(A) Enrichment of differential ChromHMMdifferential regions at AS-associatedGW

T cells, and monocytes. ***p < 0.001, **p < 0.01, *p < 0.05. OR, odds ratio.

(B) Enrichment of ATAC, H3K4me3, H3K27ac, and eRNA peaks at AS-associated

value thresholds are indicated. Error bars represent 95% confidence interval of t

(C) Visualization of multiple epigenomic datasets at chr3p21 (top, chr3:45890000

intersect regions of differential chromatin are indicated in red. Selected gene tran

patients and 4 HCs with colors as in Figure 3B. The lead AS-associated SNP r

(RPKM) and total RNA tracks (log2 count) are shown for AS patients (orange) an

shown in red (upregulated in AS) or blue (downregulated in AS).

See also Figure S4.
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atedwith disease severity inAS.47Weobserved an interactionbe-

tween the promoter of PTGER4 and the enhancer overlapping

rs1992661 (AS GWAS lead SNP10) in all cell types (Figures 5C

andS9).Wedetectedan interactionbetweenanenhancerencom-

passing the known functional SNP rs928375348 and the PTGER4

promoter specifically in monocytes and only with the promoter

bait (Figures 5C and S9). There was no detectable interaction be-

tween the lead SNP rs12186979 and PTGER4 gene in any of the

cell types. These results support a model where associated

SNPs lying in an enhancer region interact with a distal gene pro-

moter via a chromatin looping event. This, combined with addi-

tional local disease-context-specific epigenomic modifications,

may lead to alterations in cognate gene expression.

We were interested to explore whether the genotypes of indi-

vidual SNPs were associated with alterations in chromatin struc-

ture. The study was underpowered to perform such an analysis

genomewide, but wewere able to analyze the effect of individual

lead AS-associated SNPs. In doing so, we identified an associa-

tion between rs4672505 and ATAC-seq peak chr2:62559366–

62561099, where the A risk allele correlates with a reduced

ATAC-seq signal in CD8+ T cells (Figure 5D). Analysis of next-

generation sequencing (NGS) reads from the 16 heterozygous

individuals with at least 5 mapping reads showed that 99.4%

of ATAC peak reads encoded the G allele, strongly suggesting

that the risk A allele prevents chromatin opening. This finding

was not driven by mapping bias because A was the reference

allele in the hg19 build used in this analysis. This SNP lies at

chr2p15 and overlaps a putative enhancer that forms a looping

interaction with B3GNT2 identified by publicly available

PCHi-C (Figure 5D). rs4672505 is associated with AS, Crohn dis-

ease, and psoriasis10 and is an eQTL for B3GNT2.45

Use of disease-specific functional genomic datasets
enhances drug target discovery in AS
The final aim of our study was to prioritize new therapeutic tar-

gets in AS.We previously developed Pi, a genetics-led approach

that annotates GWASs with functional genomic data to prioritize

therapeutic targets across a range of immune-mediated dis-

eases.33,34 We modified the underlying algorithm of Pi to include

our new AS-specific functional genomic datasets (Figure 6A;

STAR Methods), the algorithm previously having been limited

to non-disease-context functional genomics data, and assessed

whether this inclusion increased the power to identify potential

therapeutic targets. In the original algorithm, we used disease-

specific genetic associations to define seed (core) genes,

including (1) nearby genes (nGene) using genomic proximity

and organization, (2) expression-associated genes (eGene)
AS loci10 with association p value thresholds as indicated in CD4+ T cells, CD8+

GWAS loci9 in CD4+ T cells, CD8+ T cells, andmonocytes; GWAS association p

he OR (from GARFIELD42). ***p < 0.001, **p < 0.01, *p < 0.05.

-46600000; bottom, chr3:46090000-46200000). PCHiC looping events38 that

scripts from the Ensembl database are shown. ChromHMM is shown for 4 AS

s100100710 is shown. Representative ATAC, H3K4me3, and H3K27ac tracks

d HCs (blue), with called peaks marked by gray boxes and differential peaks



Table 1. Evidence of enhancer-gene interactions at GWAS loci

Locus Lead SNPs Interacting gene Gene function

Gene-SNP

distance (bp) Other evidence Putative mechanism Figure

chr1p36.11 rs6600247a,b RUNX3 (RUNX family

transcription factor 3)

TF in T cell differentiation 13,612 functional evidence of

disrupted TF binding15–18
SNPs alter TF binding;

local looping interactions

Figure S5

chr2q11.2 rs4851529a,b IL18RAP (IL-18 receptor

accessory protein)

component of IL-18 receptor,

binds pro-inflammatory

cytokine

387,952 – long-range enhancer Figure S6

chr2q31.3 rs12615545a ITGA4 (integrin subunit

alpha 4)

integrin component, role

in cell motility and migration

273,165 long non-coding RNA in CD4/CD8 long-range enhancer Figure S7

chr5p13.2 rs11742270a IL7R (IL-7 receptor) component of IL-7 receptor,

binds pro-inflammatory

cytokine

1,738 regulatory and splice

variant SNPs20 eRNA

present

two signals: regulatory

SNP; splicing SNP

controls soluble

IL-7R production

Figure S8

chr5p13.1 rs12186979,a

rs1992661b
PTGER4 (prostaglandin

E receptor 4)

prostaglandin receptor,

role in IL-23 and TNF

pathways

155,171 functional SNP44; eRNAs

present; differential

ChromHMM at promoter

long-range enhancer Figures 5

and S9

chr6q15 rs17765610a BACH2 (BTB domain

And CNC homolog 2)

TF, T cell regulation 0 – long-range enhancer

within gene

Figure S10

chr11q24.3 rs7933433b ETS1 (ETS proto-oncogene 1) TF, regulates cytokines

and chemokines

134,204 eRNA present long-range enhancer Figures 5

and S11

chr17q23.3 rs196941b ERN1 (endoplasmic

reticulum to nucleus

signaling 1)

unfolded protein response 0 – intronic enhancer Figure S12

chr21q22.2 rs2836883,a

rs9977672b
ETS2 (ETS proto-oncogene 2) TF, T and B cell regulation 269,866 eRNA present long-range enhancer Figure S13

All SNPs except rs1992661 were used as baits in the Capture-C experiment. See also Figures 5 and S5–S14.
aLead SNP for each locus from Cortes et al.9

bLead SNP for each locus from Ellinghaus et al.10
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integrating eQTL datasets, and (3) conformation genes (cGene)

using PCHi-C datasets. Here, we added five types of AS-specific

functional genomic predictors using data from this study

(denoted RNA, eRNA, H3K27ac, H3K4me3, and ATAC). The

AS-specific expression predictor (RNA) was generated based

on differential gene expression, and AS-specific epigenomic

predictors (ATAC, H3K4me3, H3K27ac, and eRNA) were pre-

pared on the basis of differential peaks linked to genes as above.

We benchmarked the performance of the Pi algorithmwith and

without the AS-specific functional genomic predictors to priori-

tize currently approved drug targets for AS versus simulated

negative targets (STAR Methods). This showed that inclusion

of disease-specific data improved the predictive power (area

under the curve [AUC] = 0.869) compared with the original pre-

diction (AUC = 0.822) and the state-of-the-art approach (Open

Targets,49 including text mining [AUC = 0.761] and genetic asso-

ciations [AUC = 0.582] from the Open Targets Genetics Portal50)

(Figure 6B). As expected, combined use of predictors performed

much better than each predictor alone (Figures 6B and S15A).

Among the top 1% of prioritized genes (of >17,000 ranked

genes) were the known AS drug targets IL23R, JAK2, and

TYK2 (Figure S15B). Pathway enrichment analysis of the top

1% of genes identified pathogenic AS pathways, such as Janus

kinase-signal transducer and activator of transcription (JAK-

STAT) signaling (false discovery rate [FDR] = 3.3 3 10�32), TNF

signaling (FDR = 1 3 10�16) and Th17 cell differentiation

(FDR = 3.13 10�24) (Figure 6C). The significantly enriched path-

ways also included cytokine-cytokine receptor interaction, Toll-

like receptor signaling, ErbB signaling, chemokine signaling, and

T cell receptor (TCR) signaling, which were consistent with our

findings from the RNA-seq data (Figure S2C). Pathway crosstalk

analysis for potential therapeutic intervention identified a

network of 53 interconnecting genes (Figure 6D), including genes

that are already therapeutic targets in AS and other autoimmune

conditions, such as JAK1 and TYK2, alongside yet unexplored

genes. The list of genes within this network (Figure 6E) are highly

prioritized as candidates for therapeutic intervention, providing

an input for the drug development pipelines and further study.51

DISCUSSION

Summary of findings
We performed transcriptomic and epigenomic profiling in spe-

cific primary immune cell populations isolated from carefully
Figure 5. Chromosome looping interactions link genes with geneticall

(A) Summary of epigenomic evidence at 10 GWAS loci where enhancer-gene in

interactions, differential ATAC, H3K4me3, H3K27ac, eRNA peaks, or eQTLs45 in

(B) Visualization of the ETS1 locus (chr11:127980000–128560000).

(C) Visualization of the PTGER4 locus (chr5:40280000–40890000). The following

Ensembl: selected transcripts of Ensembl genes. ChromHMM: ChromHMM data

SNP: Position of lead GWAS SNPs from International Genetics of Ankylosing Spo

SNPs in LD (r2 > 0.8) with lead SNP. Baits: position of Capture-C baits (see also Tab

scores colored according to bait for AS patients and HCs in CD4+ T cells, CD8+

(D) Genetic association with chromatin openness at B3GNT2. Left: visualization o

looping events.38 ENSEMBL: B3GNT2 gene. ATAC-seq: representative ATAC tra

gray with the differential peak chr2:62559366–62561099 in red. SNP: position o

limma-corrected counts with the rs4672505 genotype calculated by ANOVA with

See also Figures S5–S14 and Table S9.
phenotyped patients with active AS. This revealed disease-spe-

cific changes in the chromatin landscape and differential regula-

tory signatures significantly enriched near AS-associated loci.

Pathway analysis indicated the importance of NOTCH and che-

mokine receptor signaling in AS in addition to known disease-

associated pathways. Capture-C identified physical interactions

between associated SNPs lying in enhancer regions and nearby

gene promoters. Taken together, these results provide a map of

the epigenetic landscape in AS and evidence of the mechanisms

by which genetic associations can alter immune cell function in

AS. Earlier studies have compared gene expression between

AS patients and HCs in PBMCs.27–30 By looking at individual

cell types, in this studywe demonstrated a key role ofmonocytes

in the pathogenesis of AS. This work highlights the importance of

looking for functional effects of SNPs in the appropriate cellular

and disease contexts in AS and other immune-mediated

conditions.

Identification of regulatory disease-associated SNPs
and cognate genes
When analyzing the effects of a genetic variant with putative

enhancer-modifying activity, a key component is to understand

which gene(s) are regulated by that enhancer. Here, we

described 10 enhancers that overlap AS-associated SNPs and

that interact with a gene promoter within the same TAD (Table 1;

Figures 5 and S5–S14). These enhancers share common fea-

tures such as eRNA expression, activating histone marks, and

open chromatin marks.

We discovered enhancer-gene interactions with twomembers

of the ETS proto-oncogene (ETS) family of TFs, ETS1 and ETS2

(Figures 5, S11, and S13). At the ETS1 locus, we observed

chromatin looping interactions with dual enhancers, up- and

downstream of the gene, specifically in T cells, of which the

downstream enhancer overlaps an AS-associated lead SNP

(rs793343310). A monocyte-specific interaction was observed

between an enhancer and the ETS2 promoter, which overlaps

the 99% credible set comprising 5 AS-associated SNPs52 that

are also eQTLs in monocytes.43 ETS1 and ETS2 enhancers

exhibit non-coding eRNA transcription. ETS1 and ETS2 are

TFs expressed across various immune cell types and have roles

including regulation of T cell subset differentiation.53 ETS1 regu-

lates the expression of IL-7R54 (encoding the IL-7Ra subunit),

which is also associated with AS,20 and RUNX3, which encodes

Runt-related TF 3, a TF involved in T cell function with known
y associated SNPs at enhancers

teractions are observed. Colored squares indicate the presence of Capture-C

each cell type. Pi rank shows priority ranking among 17,000 genes (Figure 6).

data are shown for CD4+ T cells and monocytes.

from four AS patients and four HC are shown with colors as in Figure 3B. Lead

ndylitis Consortium (IGAS) et al.9 and/or Ellinghaus et al.10 as per Table 1. LD:

le S9). Capture-C:mean interaction count (n = 3) and 1 SD shading, with PeakY

T cells, and monocytes.

f the B3GNT2 locus (chr2:62320000–62700000) in CD8+ T cells. PCHiC: PCHiC

cks for AS patients with each rs4672505 genotype. Called peaks are shown in

f rs4672505. Right: association of ATAC-seq peak chr2:62559366–62561099

Tukey post-test. ****p < 0.0001.
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AS-associated functional variants.15–18 ETS1, ETS2, and IL7R

are in the Pi network output (Figure 6D), indicating that they

form part of an important functional pathway with strong possi-

bility for therapeutic intervention.

Gene-SNP interactions were also observed at the PTGER4 lo-

cus (Figures 5 and S9). PTGER4 is widely expressed throughout

the immune system and is involved in the IL-23 and TNF-a path-

ways.55 It is also expressed in osteoclasts and could potentially

have a role in new bone formation in AS.56 GWASs have found

two independent associations at the PTGER4 locus.9 Tewhey

et al.44 described a functional SNP (rs9283753) that lies in an

enhancer and alters PTGER4 expression in lymphoblastoid

cell lines. Our data show a chromatin looping interaction

between AS-associated SNP rs1992661 and the PTGER4 pro-

moter in all three cell types and a T cell-specific interaction be-

tween rs9283753 and the PTGER4 promoter. Our ChromHMM

analysis shows that these SNPs overlap enhancer marks in the

same cell types. Taken together, these data strongly support a

functional role of rs1992661 and rs9283753 in regulation of

PTGER4.

We found allele-specific differences in the ATAC-seq signal for

an AS GWAS-associated SNP, rs4672505. This variant has been

associated previously with differential abundance of B3GNT2, a

poly-N-acetyllactosamine synthase in whole blood.45 B3GNT2 is

upregulated in T cells on activation, and a recent CRISPR screen

showed evidence that this enzyme is important in modulating

T cell activation in the setting of cancer.57 Our findings suggest

that reduced expression of B3GNT2 in individuals with the AS

risk allele is likely caused by reduced chromatin openness at

this locus. This may impact higher-order chromatin structures,

such as the looping event identified between a distal enhancer

and B3GNT2 (Figure 5). The JASPAR 202258 database of TF

binding profiles predicts that STAT1 binds to this site, a TF that

plays an important role in transcriptional activation in the immune

system.59 Further work, such as genomic editing and functional

assays, will be needed to identify the function of these or other

unknown TFs at this locus.

Cytokine and NOTCH signaling pathways
GPCR-related and cytokine signaling pathways were consis-

tently enriched across modalities and cell types. In particular,

expression of CXC cytokine subfamily genes was upregulated

in CD4+ and CD8+ T cells, consistent with the inflammatory envi-

ronment of AS. Chemokine levels have been shown previously to

be increased at the gene and protein level in AS60 and psoriatic

arthritis, a related spondyloarthropathy.61,62 This may contribute

to the differentiation of pro-inflammatory Th1 and Th17 cells,
Figure 6. Prioritization of new drug targets in AS

(A) Overview of the modified Pi prioritization algorithm.

(B) Inclusion of disease-specific datasets (AS) improves the Pi algorithm output re

Targets textMining and geneticAssociations. AUC, area under the curve.

(C) Prioritized target pathways (FDR < 0.05) based on KEGG pathway enrichment

genes represented in that pathway.

(D) Identification of pathway crosstalk; that is, a network of highly prioritized and in

by predictor/evidence types.

(E) Table summarizing the prioritization and evidence information associated w

represent the datasets in support. Existing therapeutic targets are indicated for a

See also Figure S15.
which are expanded in AS, or trafficking of leukocytes and oste-

oclast precursors to the sites of inflammation at the joint.63

NOTCH signaling has a wide range of functions in the innate

and adaptive immune systems.64We found that NOTCHsignaling

was linked to changes in chromatin signatures in monocytes.

NOTCH signaling has been shown to be important for mono-

cyte-macrophage differentiation, with increased NOTCH

signaling favoring inflammatory M1 macrophage development

in atherosclerosis, systemic lupus erythematosus, and cancer.65

NOTCH signaling has already been implicated in inflammatory

states66 and rheumatoid arthritis67 and may be important for

regulating monocyte differentiation to osteoclasts,68 thus influ-

encing the pathogenic ossification that is a key feature of late-

stage AS.69 Wang et al.70 showed that NOTCH1 expression is

reduced in AS patients who have had anti-TNF biologic therapy.

Further study of this pathway in AS is warranted and could lead to

repurposing of existing NOTCH pathway inhibitors in AS.71

Identification of novel therapeutic targets
We showed how disease-context-specific functional genomic

data could be used to identify novel therapeutic targets in AS.

We modified Pi, a previously published algorithm designed to

identify the network of therapeutic targets in autoimmune dis-

ease from GWAS. The multi-omics approach used here sup-

ported the importance of known candidate pathways, such as

Th17/IL-23 and TNF, and identifies new pathways and potential

drug targets, including PTGER4, ErbB, phosphatidylinositol

3-kinase (PI3K)/AKT, NOTCH, and GPCR (Figure 6). Existing in-

hibitors of these pathways could be repurposed in AS, such as

PI3K inhibitors used in lymphoma treatment.72 Our results

show exciting promise for development of new therapeutics in

AS. The exact roles these TFs and other network genes play in

AS remain to be elucidated and will be investigated in the future

using, for example, genomic editing and functional assays.

Conclusions
We demonstrated that the epigenomic landscape of immune

cells is altered in AS. We used these results, together with evi-

dence of chromosomal interactions, to inform the interpretation

of GWASs for AS in terms of likely functional variants and modu-

lated genes and prioritize potential drug targets and networks.

This is important because existing therapies are only effective

in a subset of AS patients and ultimately do not cure the disease.

Limitations of the study
This study used disease-relevant immune cell subsets isolated

from PBMCs of AS patients and HCs. One limitation of our study
lative to the original Pi algorithm (Original) and outperformance relative to Open

analysis using the top 1% prioritized genes. Dot size represents percentages of

terconnecting genes defined by KEGG interaction data, with nodes segmented

ith pathway crosstalk genes. Colored boxes underneath each predictor type

AS and bother autoimmune conditions.
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was the use of bulk CD4+ T cell, CD8+ T cell, and CD14+ mono-

cyte populations rather than investigating smaller subsets of

these cell types. This was necessary because of the large cell

numbers required to perform a panel of multi-omics experiments

on the same sample, in particular mapping of chromosomal in-

teractions. We showed that major cell subsets were present at

expected frequencies and did not differ between AS patients

and HCs (Figure S1), although disease-specific cell type fre-

quencies have been reported for minor cell subtypes.20,25,26,73

Future work sampling cells from sites of inflammation, such as

sacroiliac joints, and utilizing single-cell-based methods will

further unravel the cell types and pathogenic mechanisms of

AS.74 For individual modalities, signals from differential analysis

were modest, especially in CD4+ T cells, which could be due to

the heterogeneity of this cell type. Context specificity of regula-

tory regions is key, so in addition to direct ex vivo analysis of cells

from patients with the active disease state, analysis of such cells

subjected to immune challenges in vitro (such as lipopolysac-

charide stimulation of monocytes, anti-CD3/28 stimulation of

T cells) may identify additional functional SNPs specifically in

those activation states. The study was underpowered to perform

expression and chromatin quantitative trait mapping on a

genome-wide scale, and this is an important area for future

work in a disease context. We were unable to study the effect

of other covariates, including sex and drug regimens (although

all patients were biologic therapy naive), because of the small

sample size. We have shown previously that eRNAs have a

role in innate immune activation.75 The observed widespread

bidirectional eRNA expression at genomic enhancers can be

further investigated using more sensitive methods (such as

global run-on sequencing, small capped RNA sequencing, and

precision run-on sequencing76) to detect more subtle alterations

in eRNA expression and specifically identify the role of SNPs

therein. Findings from ChromHMMwere limited by small sample

size. We focused on the presence of activating chromatin mod-

ifications (chromatin accessibility, promoter- and enhancer-

associated histone modifications), so future studies could inves-

tigate the role of repressive histonemarks such as H3K9me3 and

H3K27me3. Future studies will be required to further charac-

terize the genes and pathways highlighted by this study to

assess their effect at the protein level and on cellular phenotype

and function; for example, through genome editing and small-

molecule inhibitors.
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osalva Pérez, N., et al. (2022). Jaspar 2022: the 9th release of the open-

access database of transcription factor binding profiles. Nucleic Acids

Res. 50, D165-d173. https://doi.org/10.1093/nar/gkab1113.

59. Villarino, A.V., Kanno, Y., and O’Shea, J.J. (2017). Mechanisms and con-

sequences of Jak–STAT signaling in the immune system. Nat. Immunol.

18, 374–384. https://doi.org/10.1038/ni.3691.

60. Wang, J., Zhao, Q.,Wang, G., Yang, C., Xu, Y., Li, Y., and Yang, P. (2016).

Circulating levels of Th1 and Th2 chemokines in patients with ankylosing

spondylitis. Cytokine 81, 10–14. https://doi.org/10.1016/j.cyto.2016.

01.012.

61. Muntyanu, A., Abji, F., Liang, K., Pollock, R.A., Chandran, V., and Glad-

man, D.D. (2016). Differential gene and protein expression of chemokines

and cytokines in synovial fluid of patients with arthritis. Arthritis Res. Ther.

18, 296. https://doi.org/10.1186/s13075-016-1196-6.

62. Affandi, A.J., Silva-Cardoso, S.C., Garcia, S., Leijten, E.F.A., van

Kempen, T.S., Marut, W., van Roon, J.A.G., and Radstake, T.R.D.J.

(2018). CXCL4 is a novel inducer of human Th17 cells and correlates

with IL-17 and IL-22 in psoriatic arthritis. Eur. J. Immunol. 48, 522–531.

https://doi.org/10.1002/eji.201747195.

63. Simone, D., Al Mossawi, M.H., and Bowness, P. (2018). Progress in our

understanding of the pathogenesis of ankylosing spondylitis. Rheuma-

tology 57, vi4–vi9. https://doi.org/10.1093/rheumatology/key001.

64. Radtke, F., MacDonald, H.R., and Tacchini-Cottier, F. (2013). Regulation

of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 13,

427–437. https://doi.org/10.1038/nri3445.

65. Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C., and Li, J. (2014).

Macrophage polarization and function with emphasis on the evolving

roles of coordinated regulation of cellular signaling pathways. Cell.

Signal. 26, 192–197. https://doi.org/10.1016/j.cellsig.2013.11.004.

66. �Su�cur, A., Filipovi�c, M., Flegar, D., Kelava, T., �Sisl, D., Luka�c, N., Kova�ci�c,

N., and Gr�cevi�c, D. (2020). Notch receptors and ligands in inflammatory

arthritis – a systematic review. Immunol. Lett. 223, 106–114. https://doi.

org/10.1016/j.imlet.2020.04.010.

67. Wei, K., Korsunsky, I., Marshall, J.L., Gao, A., Watts, G.F.M., Major, T.,

Croft, A.P., Watts, J., Blazar, P.E., Lange, J.K., et al. (2020). Notch signal-

ling drives synovial fibroblast identity and arthritis pathology. Nature 582,

259–264. https://doi.org/10.1038/s41586-020-2222-z.

68. Sekine, C., Koyanagi, A., Koyama, N., Hozumi, K., Chiba, S., and Yagita,

H. (2012). Differential regulation of osteoclastogenesis by Notch2/Delta-

like 1 and Notch1/Jagged1 axes. Arthritis Res. Ther. 14, R45. https://doi.

org/10.1186/ar3758.

69. Kusuda, M., Haroon, N., and Nakamura, A. (2022). Complexity of enthe-

sitis and new bone formation in ankylosing spondylitis: current under-
standing of the immunopathology and therapeutic approaches. Mod.

Rheumatol. 32, 484–492. https://doi.org/10.1093/mr/roab057.

70. Wang, X.B., Ellis, J.J., Pennisi, D.J., Song, X., Batra, J., Hollis, K., Brad-

bury, L.A., Li, Z., Kenna, T.J., and Brown, M.A. (2017). Transcriptome

analysis of ankylosing spondylitis patients before and after TNF-a inhib-

itor therapy reveals the pathways affected. Gene Immun. 18, 184–190.

https://doi.org/10.1038/gene.2017.19.

71. Christopoulos, P.F., Gjølberg, T.T., Kr€uger, S., Haraldsen, G., Andersen,

J.T., and Sundlisæter, E. (2021). Targeting the notch signaling pathway in

chronic inflammatory diseases. Front. Immunol. 12, 668207. https://doi.

org/10.3389/fimmu.2021.668207.

72. Sapon-Cousineau, V., Sapon-Cousineau, S., and Assouline, S. (2020).

PI3K inhibitors and their role as novel agents for targeted therapy in lym-

phoma. Curr. Treat. Options Oncol. 21, 51. https://doi.org/10.1007/

s11864-020-00746-8.

73. Shen, H., Goodall, J.C., and Hill Gaston, J.S. (2009). Frequency and

phenotype of peripheral blood Th17 cells in ankylosing spondylitis and

rheumatoid arthritis. Arthritis Rheum. 60, 1647–1656. https://doi.org/

10.1002/art.24568.

74. Simone, D., Penkava, F., Ridley, A., Sansom, S., Al-Mossawi, M.H., and

Bowness, P. (2021). Single cell analysis of spondyloarthritis regulatory

T cells identifies distinct synovial gene expression patterns and clonal

fates. Commun. Biol. 4, 1395. https://doi.org/10.1038/s42003-021-

02931-3.

75. Zhang, P., Amarasinghe, H.E., Whalley, J.P., Tay, C., Fang, H., Migliorini,

G., Brown, A.C., Allcock, A., Scozzafava, G., Rath, P., et al. (2022). Epi-

genomic analysis reveals a dynamic and context-specific macrophage

enhancer landscape associated with innate immune activation and

tolerance. Genome Biol. 23, 136. https://doi.org/10.1186/s13059-022-

02702-1.

76. Field, A., and Adelman, K. (2020). Evaluating enhancer function and tran-

scription. Annu. Rev. Biochem. 89, 213–234. https://doi.org/10.1146/an-

nurev-biochem-011420-095916.

77. Ahern, D.J., Ai, Z., Ainsworth, M., Allan, C., Allcock, A., Angus, B., Ansari,
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Antibodies

Anti- CD14-PE BioLegend Cat#325602; RRID AB_830675

Anti-CD4-BUV295 BD Biosciences Cat# 563550, RRID:AB_2738273

Anti-CD8-BUV737 BD Biosciences Cat#612754; RRID:AB_2870085

Anti-CD3-BV786 BD Biosciences Cat #563918; RRID:AB_2738487

Anti-CD14-FITC BD Biosciences Cat #555397; RRID:AB_395798

Anti-CD16-APC BioLegend Cat #360706; RRID:AB_2562751

Ani-HLA-DR-BV605 BD Biosciences Cat #562845

anti-H3K27ac Diagenode Cat#C15410196; RRID:AB_2637079

anti-H3K4me3 Diagenode Cat# pAb-003-050, RRID:AB_2616052

anti-H3K4me1 Diagenode Cat# C15410194, RRID:AB_2637078

Biological samples

AS patients and HC blood samples This study N/A

Chemicals, peptides, and recombinant proteins

Ficoll-Paque Plus Sigma-Aldrich GE17-1440-02

CD4 MicroBeads Miltenyi Biotec Cat# 130-045-101, RRID:AB_2889919

CD8 MicroBeads Miltenyi Biotec Cat#130-045-201; RRID:AB_2889920

CD14 MicroBeads Miltenyi Biotec Cat#130-050-201; RRID:AB_2665482

Trypan Blue Gibco 15250061

FACS Lysing Solution 10x concentrate BD Biosciences Cat# 349202, RRID:AB_2868862

eBioScienceTM Flow Cytometry Staining Buffer ThermoFisher Scientific Cat# 00-4222-26

7-AAD Viability Staining Solution BioLegend Cat# 420403

eBioScienceTM 1-Step Fix/Lyse Solution ThermoFisher Scientific Cat# 00-5333-54

PBS, pH 7.4 Gibco Cat#10010031

BSA New England Biolabs Cat#B9000S

Trizma� hydrochloride solution (Tris-HCl) pH 7.4 Sigma-Aldrich Cat#T2194

Sodium chloride solution, 5M Sigma-Aldrich Cat#S5150

MgCl2 (1M) Invitrogen Cat#AM9530G

Digitonin Promega Cat#G9441

Tween 20 Sigma-Aldrich Cat#P1379

TD Tagment DNA Buffer Illumina Cat#15027866

TDE1 Tagment DNA Enzyme Illumina Cat#15027865

AMPure XP Beads Beckman Coulter Cat#A63881

Formaldehyde solution Sigma-Aldrich Cat#F8775

Glycine Sigma-Aldrich Cat#G7403

Sodium dodecyl sulphate solution Sigma-Aldrich Cat#71736

EDTA (0.5M) pH8 Sigma-Aldrich Cat#102161034

Tris (1 M), pH 8.0, RNase-free Invitrogen Cat#AM9855G

Complete Protease Inhibitor Cocktail Sigma-Aldrich Cat#COEDTAF-RO

Triton X-100 Sigma-Aldrich Cat#T8787

Dynabeads Protein G for Immunoprecipitation Invitrogen Cat#10003D

10% Igepal CA-630 Sigma-Aldrich Cat#I8896

DpnII 50,000 U/ml New England Biolabs Cat#R0543M

T4 DNA HC ligase (30 Weiss U/mL) Thermo Fisher Scientific Cat#EL0013

RNase, DNase free Roche Cat#1119915

Proteinase K Thermo Fisher Scientific Cat#EO0491
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Dynabeads M-270 Streptavidin Invitrogen Cat#65305

Ribonucleic acid, transfer from baker’s yeast Sigma-Aldrich Cat#R5636

Lithium chloride solution, 8M Sigma-Aldrich Cat#L7026

Sodium deoxycholate monohydrate Alfa Aesar Cat#B20759

Tris-EDTA buffer solution Sigma-Aldrich Cat#T9285

Critical commercial assays

Live/Dead Fixable Violet Dead cell stain kit Invitrogen Cat#L34955

AllPrep DNA/mRNA/miRNA Universal kit Qiagen Cat#80224

Ribo-Zero rRNA Removal kit Illumina Cat#20040526

TruSeq Stranded Total RNA Illumina Cat#20020596

MinElute PCR purification kit Qiagen Cat#28004

NEBNext High-Fidelity 2x PCR master mix New England Biolabs Cat#M0541S/L

NEBNext DNA Library Prep Master Mix Set New England Biolabs Cat#E6040S/L

Herculase II Fusion Enzyme with dNTPs Combo Agilent Cat#600677

Nimblegen SeqCap EZ Hybridisation and wash kit Roche Cat#05634261001

Nimblegen SeqCap EZ Accessory kit v2 Roche Cat#07145594001

KAPA Library Quantification Complete Kit (Universal) KAPA Cat#KK4824

NextSeq 500/550 High Output kit v2.5 (150 Cycles) Illumina Cat#20024907

TapeStation D1000 Screen Tape Agilent Cat#5067-5582

TapeStation High Sensitivity D1000 Screen Tape Agilent Cat#5067-5584

TapeStation D1000 Reagents Agilent Cat#5067-5583

Infinium Global Array V2.0 Illumina Cat#20024444

Deposited data

PCHi-C Javierre et al.38 https://osf.io/u8tzp/

Ankylosing spondylitis Immunochip

summary statistics

Cortes et al.9 N/A

Cross-disease GWAS summary statistics Ellinghaus et al.10 N/A

eQTL catalogue Kerimov et al.43 https://www.ebi.ac.uk/eqtl/

Human PBMC scRNA-seq data COvid-19 Multi-omics Blood

Atlas (COMBAT) consortium77

https://www.combat.ox.ac.uk/

RNA-seq, ATAC-seq, ChIPm fastq data This study European Genome-Phenome Archive:

EGAS00001006233

Genotype data This study European Genome-Phenome Archive:

EGAS00001006945

RNA-seq, ATAC-seq, ChIPm raw and

normalised count data; Capture-C

count data and PeakY scores;

ChromHMM data

This study https://doi.org/10.5281/zenodo.6373353

Oligonucleotides

Capture-C baits This study Table S8

NEBNext Multiplex Oligos for Illumina

(Index Primers set 1)

New England Biolabs Cat#E7335S/L

NEBNext Multiplex Oligos for Illumina

(Index Primers set 2)

New England Biolabs Cat#E7500S/L

Nimblegen HyperCap Universal

Blocking Oligos

Roche Cat#08286396001

Modified Nextera Index primers Buenrostro78 N/A

Software and algorithms

CapSequm2 Telenius et al.79 https://capsequm.molbiol.ox.ac.uk/cgi-bin/

CapSequm.cgi

CaptureCompare Telenius et al.79 https://github.com/djdownes/CaptureCompare
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QTLtools Delaneau et al.80 https://qtltools.github.io/qtltools/

CIBERSORTx Newman et al.37 https://cibersortx.stanford.edu/

Eagle2 Loh et al.81 https://alkesgroup.broadinstitute.org/Eagle/

PBWT Durbin et al.82 https://github.com/richarddurbin/pbwt

STAR Dobin et al.83 https://github.com/alexdobin/STAR/

releases; RRID:SCR_004463

Picard tools Picard Toolkit. 2019.

Broad Institute, GitHub

Repository.

https://broadinstitute.github.io/

picard/; RRID:SCR_006525

HTSeq Anders et al.84 https://htseq.readthedocs.io/en/

release_0.11.1/count.html;

RRID:SCR_011867

BEDTools Quinlan et al.85 https://bedtools.readthedocs.

io/en/latest/; RRID:SCR_006646

DESeq2 Love et al.86 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html;

RRID:SCR_015687

XGR Fang et al.33 http://galahad.well.ox.ac.uk:3030/

Bowtie2 v2.3.5.1 Langmead et al.87 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml; RRID:SCR_016368

Samtools v.1.12 Danecek et al.88 http://www.htslib.org/; RRID:SCR_002105

bedGraphToBigWig Kent et al.89 https://www.encodeproject.org/

software/bedgraphtobigwig/

MACS2 Zhang et al.90 https://macs3-project.github.io/

MACS/; RRID:SCR_013291

featureCounts Liao et al.91 http://subread.sourceforge.

net; RRID:SCR_012919

ChIPseeker Yu et al.92 http://www.bioconductor.org/

packages/release/bioc/html/

ChIPseeker.html; RRID:SCR_021322

ChromHMM Ernst et al.39 http://compbio.mit.edu/ChromHMM/;

RRID:SCR_018141

FactoMineR Lê et al.93 http://factominer.free.fr/;

RRID:SCR_014602

GARFIELD Iotchkova et al.42 https://www.ebi.ac.uk/birney-

srv/GARFIELD/

FastQC v0.11.4 Babraham Bioinformatics https://www.bioinformatics.babraham.

ac.uk/projects/fastqc; RRID:SCR_014583

cutadapt v 1.10 Martin et al.94 https://cutadapt.readthedocs.io/en/

stable/; RRID:SCR_011841

TrimGalore v 0.4.4 Babraham Bioinformatics https://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/

FLASH Mago�c et al.95 https://sourceforge.net/projects/

flashpage/files/FLASH-1.2.11.tar.

gz/; RRID:SCR_005531

PeakY Eijsbouts et al.96 https://github.com/cqgd/pky

Pi Fang et al.33 http://pi.well.ox.ac.uk:3010/; 97

Dnet Fang et al.98 https://cran.r-project.org/

package=dnet

ggplot2 Wickham et al.99 https://ggplot2.tidyverse.org;

RRID:SCR_014601
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EnhancedVolcano v1.12.0 EnhancedVolcano: Publication-

ready volcano plots with

enhanced colouring and

labelling

https://github.com/kevinblighe/

EnhancedVolcano; RRID:SCR_018931

Venny 2.1 VENNY. An interactive tool

for comparing lists with

Venn Diagrams.

https://bioinfogp.cnb.csic.es/tools/venny/;

RRID:SCR_016561

KEGG mapper – Colour Kanehisa et al.100 https://www.genome.jp/kegg/

mapper/color.html

GenomicInteractions Harmston et al.101 https://www.bioconductor.org/

packages/release/bioc/html/

GenomicInteractions.html

Gviz Hahne et al 2016102 https://bioconductor.org/

packages/release/bioc/

html/Gviz.html

Limma Ritchie et al.103 https://bioconductor.org/

packages/release/bioc/

html/limma.html; RRID:

SCR_010943

R R Core Team (2021). R: A

language and environment

for statistical computing.

R Foundation for Statistical

Computing, Vienna, Austria

https://www.R-project.

org/; RRID:SCR_001905

ICeCAP pipeline This paper https://doi.org/10.5281/

zenodo.7760066

Other

DynaMag-2 Magnet Invitrogen 12321D

AutoMACS Pro Separator Miltenyi Biotech https://www.miltenyibiotec.com/

GB-en/products/automacs-pro-

separator-starter-kit.html#gref;

RRID:SCR_018596

LSRFortessa X-20-flow cytometer BD Biosciences https://www.bdbiosciences.com/

en-us/instruments/research-

instruments/research-cell-analyzers/

lsrfortessa; RRID:SCR_018655

HiSeq4000 platform Illumina https://emea.illumina.com/systems/

sequencing-platforms/hiseq-3000-

4000.html

NextSeq 500 platform Illumina https://emea.illumina.com/systems/

sequencing-platforms/nextseq.html

M220 focussed ultrasonicator Covaris https://www.covaris.com/m220-

focused-ultrasonicator-500295

TapeStation 4200 Agilent https://www.agilent.com/en/product/

automated-electrophoresis/tapestation-

systems/tapestation-instruments/4200-

tapestation-system-228263
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Lead contact
Further information and request for resources and reagents should be directed to and will be fulfilled by the lead contact, Julian

Knight (julian@well.ox.ac.uk).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d Sequence level RNA-seq, ATAC-seq, ChIPm fastq and genotype data have been deposited at the European Genome-

Phenome Archive (EGA); access is managed by a Data Access Committee. Count data for RNA-seq, ATAC-seq, ChIPm

and eRNA (raw and normalised), Capture-C mean pile-up tracks and PeakY scores, and ChromHMM data are deposited at

Zenodo. Accession numbers are listed in the key resources table. This paper analyses existing, publicly available data

(GWAS data, PCHiC data and eQTL). The accession numbers for the datasets are listed in the key resources table.

d All original code for the ICeCAP pipeline has been deposited at GitHub and Zenodo and is publicly available as of the date of

publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
20 patients with AS and 35 HC were enrolled in the study; see demographic information in Table S1. All samples were collected

following informed consent and under ethical approval: National Research Ethics Service Committee South Central – Oxford

Research Ethics Committee B (Ref 12/SC/0063 for patient samples, Ref 06/Q1605/55 for HC). AS patient samples were collected

at the Nuffield Orthopaedic Centre in Oxford. Patients fulfilled the ASAS imaging criteria for axial Spondyloarthritis.104 Cases were

reviewed by two consultant rheumatologists to confirm the patients had active disease at the time of recruitment as judged by

the British Society for Rheumatology criteria for biologic therapy eligibility.105 85% of patients and 8.6% of HC were positive for

HLA-B27. All patients had axial manifestation of spondyloarthritis, and peripheral and extra-articular manifestations were present

in a subset of patients. 53% of patients were taking NSAIDS, 11% were taking csDMARDs and none were taking glucocorticoids

or anti-TNF biologic therapy (see clinical summary in Table S1 and extended clinical information in Table S2). All participants

were aged over 18 and had no other current infections. 75% of AS patients were male, which reflects the higher frequency of disease

in men; 49% of HC were male, and controls were matched for age. Human samples were collected over time and next-generation

sequencing (NGS) was performed in seven sets (Table S2). NGS set and sex were included as covariates in all downstream analyses

except ATAC analysis, where ATAC method and sex were included as covariates. Data quality control was performed by PCA and

outliers were removed as appropriate.

METHOD DETAILS

Isolation of immune cell populations
Up to 100 mL blood was taken from AS patients or HC into heparinised vacutainers. PBMCs were isolated from blood samples by

density gradient separation using Ficoll-Paque Plus with centrifugation at 500 x g for 30 minutes at room temperature with minimum

acceleration and no braking. Primary cell subpopulations were separated using magnetic-activated cell sorting following the man-

ufacturer’s instructions. Consecutive positive selection was performed using beads for CD8+, and CD4+ cells using an AutoMACS

Pro (Miltenyi Biotech) followed by a manual cell count with Trypan blue.

Flow cytometry
Cell purity following MACS separation was determined by flow cytometry. Briefly, cells were incubated with Live/Dead Fixable

Violet Dead cell stain kit (Invitrogen) for 30 minutes followed by incubation with either anti-CD14-PE, anti-CD4-BUV395 or anti-

CD8-BUV737 antibodies for 30 minutes at room temperature. Cells were fixed for 10 minutes using FACS Lysing Solution then

re-suspended in PBS + 0.2%BSA for acquisition using LSR Fortessa X-20-flow cytometer (BD Biosciences). Cells were immediately

processed for downstream assays without further culture (Figure 1A). The composition of monocyte bulk populations was deter-

mined as follows. Cells were washed with PBS and pelleted, then incubated with Human BD Fc BlockTM Reagent for 10 minutes

at room temperature. Cells were incubated for 30 minutes with anti-CD3-BV786, anti-CD14-FITC, anti-CD16-APC and anti-HLA-

DR-BV605 antibodies diluted in eBioScienceTM Flow Cytometry Staining Buffer (2 mL antibody/1x106 cells). Cells were also stained

for viability using 7-AAD Viability Staining Solution then fixed for 10 minutes with 1X eBioScienceTM 1-Step Fix/Lyse Solution, and

washed with 0.2% PBS-BSA prior to flow cytometry analysis using a BD LSRFortessaTM X-20 Cell Analyzer. 1x105 events were re-

corded for each sample.

RNA-seq
Total RNA was isolated from purified CD4+ T cells, CD8+ T cells and monocytes (2-3 x 106 cells resuspended in RLT Plus) using the

AllPrep DNA/mRNA/microRNA Universal kit (Qiagen) from 16 AS patients and 19 HC. Samples were depleted from ribosomal RNA

using Ribo-Zero rRNA Removal kit (Illumina) prior to cDNA synthesis and library preparation using TruSeq Stranded Total RNA (Illu-

mina). Libraries were sequenced using HiSeq4000 to a depth of 25 million paired-end reads per sample.
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ATAC-seq
ATAC-seq was used to assess chromatin accessibility in CD4+ T cells, CD8+ T cells and monocytes from 16 AS patients and 30 HC.

Three different variations of the ATAC-seq protocol were used as improvements to themethodwere published: ATAC-seq106 (5 x 104

cells); Fast-ATAC107 (FATAC, 2 x 104 cells); Omni-ATAC108 (OATAC, 5 x 104 cells), with minor modification to determine amplification

by using 10%of the sample in qPCR prior to indexing and amplification. FollowingMACS isolation, ATACwas carried out. For ATAC-

seq cells were re-suspended in 50 mL lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) for

10 minutes at 4�C. Nuclei were pelleted (500 x g 10 min at 4�C) and re-suspended in 50 mL transposition mixture (1 x TD Tagment

DNA buffer (Illumina), 2.5 mL TDE1 (Illumina) and incubated for 40 min at 37 �C with agitation at 400 rpm. For Fast-ATAC-seq cells

were incubated in 50 mL transposition mixture (1 x TD Tagment DNA buffer (Illumina), 2.5 ul of TDE1 (Illumina), 0.01% Digitonin)

for 30 minutes at 37�C with agitation at 400 rpm. For Omni-ATAC-seq cells were re-suspended in 50 mL lysis buffer (10 mM Tris-

HCl pH7.4, 10 mM NaCl, 3 mM MgCL2, 0.01% Digitonin, 0.1% Tween 20, 0.1% Igepal CA-630) for 3 minutes at 4�C, then 1 mL

cold wash buffer (10 mM Tris-HCl pH7.4, 10 mM NaCl, 3 mM MgCL2, 0.1% Tween 20) was added. Nuclei were pelleted (500 x g

10 min at 4�C), re-suspended in 50 mL transposition mixture (1 x TD Tagment DNA buffer (Illumina), 2.5 mL TDE1 (Illumina), 0.01 %

Digitonin and 0.1 % Tween-20), and incubated for 30 min at 37�C with agitation at 1000 rpm. DNA was extracted with MinElute

PCR Purification Kit (Qiagen). Samples were amplified and indexed as in Buenrostro et al109 with NEBNext High-Fidelity PCR

MasterMix (NEB) with modified Nextera indexing primers.78 DNA libraries were purified using the MinElute PCR purification kit (Qia-

gen) and AMPure XP Magnetic Beads (Beckman Coulter). Library distribution was determined using TapeStation D1000 reagents

and tape. Libraries were sequenced on a HiSeq4000 or NextSeq500 Illumina platform to a depth of 30 million paired-end reads after

filtering.

ChIPmentation
ChIPmentation (ChIPm) for H3K4me3 and H3K27ac was performed as described110 on samples of 1x105 CD4+ T cells, CD8+ T cells

and monocytes from 10 AS patients and 11 HC.

ChIPm was also performed for H3K4me1 on samples from one healthy individual not included in the other experiments. Following

MACS isolation, cells were fixedwith 1% formaldehyde (Sigma) in PBS for 10min, then quenchedwith glycine (0.25M for 5min). Cells

were pelleted (100 x g 2.5 minutes), washed with PBS, then pelleted again and re-suspended in 130 mL SDS lysis buffer (0.25% SDS,

1mM EDTA, 10mM Tris-HCl pH8, 1x Protease Inhibitor) and sonicated for 8 min using M220 Focused-ultrasonicator (Covaris), duty

factor 10%, peak power of 75, cycles/burst of 200 set to 7�C. 50 mL chromatin aliquots were mixed with 75 mL ChIP Equilibration

Buffer (1.66% Triton-X100, 1 mM EDTA, 10 mM Tris-HCl pH8, 233 mM NaCl, 1x protease inhibitor) and 25 mL ChIP buffer (0.1 %

SDS, 1% Triton-X100, 1 mM EDTA, 10 mM Tris-HCl pH8, 140 mM NaCl, 1x protease inhibitor). Antibodies (1 mg anti-H3K4me3,

2 mg anti-H3K27ac, 1 mg anti-H3K4me1) were added and incubated overnight at 4 �C with rotation. Protein G Dynabeads were pre-

pared in bead wash buffer (0.1% SDS, 1 mM EDTA, 50 mM Tris-HCl pH8, 150 mM NaCl, 1% Igepal CA-630, 1 x protease inhibitor)

and blocked with yeast tRNA and BSA as per the manufacturer’s instructions. Samples and beads were incubated for 2 hr 4�C with

rotation, then washed twice with 200 mL each wash buffer (wash buffer 1: 0.1% SDS, 1% Triton-X100, 2 mM EDTA, 20 mM Tris-HCl

pH8, 150 mM NaCl, 1 x protease inhibitor; wash buffer 2: 0.1% SDS, 1% Triton-X100, 2 mM EDTA, 20 mM Tris-HCl pH8, 500 mM

NaCl, 1 x protease inhibitor; wash buffer 3: 0.25 M LiCl, 1% Triton-X100, 0.7% sodium deoxycholate monohydrate, 1 mM EDTA,

10mM Tris-HCl pH8, 1 x protease inhibitor) and once with 10mM Tris-HCl pH8. Samples were finally resuspended in 20 mL Tagmen-

tation reaction buffer (1 x TD buffer, 1 mL TDE 1 Tagment DNA Enzyme (Illumina)) and incubated for 10 min at 37 �C. Samples were

washed twice with 200 mL wash buffer (0.1% SDS, 1% Triton-X100, 2 mM EDTA, 20 mM Tris-HCl pH8, 150 mM NaCl, 1 x protease

inhibitor) and once with Tris-EDTA buffer. Samples were de-crosslinked in ChIP Elution buffer (10 mM Tris-HCl pH8, 5 mM EDTA,

300 mM NaCl, 0.4% SDS) containing 2.4 U proteinase K for 1 hour at 55 �C then overnight at 65 �C with 1400 rpm shaking. Samples

were purified using theMinElute PCR purification kit (QIAgen). Indexing was performedwith modified Nextera indexing primers78 and

NEBNext HiFi PCR master mix using cycle number determined by qPCR. PCR product clean-up was performed using AMPureXP

beads and QC was performed using TapeStation D1000 tape and reagents. DNA quantitation was performed using KAPA assay.

Input libraries were prepared using 1 ng of purified chromatin without antibody incubation. Libraries were sequenced using the

HiSeq4000 Illumina platform at a depth of 25 million paired-end reads after filtering.

Capture-C
Capture-C experiments were performed as described by Davies et al111 with minor changes.

Oligonucleotide baits for sequence-capture were designed for regions containing (i) 52 GWAS SNPs associated with AS,9,10 (ii) 47

promoters of nearby genes, and (iii) five control regions with known genomic interactions (Table S8, Figure S14). Two biotinylated

120nt ssDNA bait sequenceswere designed for each viewpoint (DpnII fragment to be captured) usingCapSequm279 and synthesized

by Sigma-Aldrich. Some bait oligos were 80nt and some baited viewpoints had only one oligo bait due to regional sequence

repetitiveness. All oligo baits were combined in equimolar amounts to make a pool containing each oligo at 2.9nM. For two regions,

interactions were seen not with the baited promoter, but with other genes so results are presented with those gene names (ITGA4

relates to bait for UBE2E3, and IL12RAP relates to bait for IL1R2). We were unable to capture the DpnII fragment containing

rs4672505 using Capture-C due to DNA repeats.
Cell Genomics 3, 100306, June 14, 2023 e6



Article
ll

OPEN ACCESS
FollowingMACS isolation, 10-30 x 106 ofmonocytes, CD8+ T cells andCD4+ T cells from three AS patients and three HCwere fixed

with 2% formaldehyde (10 min), quenched with 0.1M glycine (10 min on ice), washed with PBS and snap frozen in 1ml of lysis buffer

(10 mM Tris-HCl pH8, 10 mM NaCl, 0.3% Igepal CA-630, 1 x protease inhibitor). Cells were thawed and centrifuged at 500 x g for

5minutes at RT. The supernatant was removed, cells were washed in 1mL of 1 x DpnII buffer (NEB) to remove the residual lysis buffer

and spun down at 500 x g for 5min at room temperature. Cells were re-suspended in 200 mL of 1 x DpnII buffer per every 6 x 106 cells

and homogenized to free the nuclei. Chromatin was digested using 1500U of DpnII per 6 x 106 cells overnight at 37 �C with shaking

900 rpm; the reaction was stopped by incubation for 20minutes at 65 �C. Ligation was performed with 240 U T4 DNA ligase overnight

at 16 �C. Controls were prepared without DpnII digestion (Undigested) and without ligation steps (Digested). De-crosslinking was

performed with addition of 3 U Proteinase K and overnight incubation at 65 �C. Samples were treated with RNase A for 30 min at

37 �C then DNA was purified by phenol-chloroform extraction and ethanol precipitation. Covaris M220 focussed ultrasonicator

was used to fragment the 3C material to 200 bp (duty cycle, 20%; intensity, 50; cycles per burst, 200; time, 280s), then AMPure

XP SPRI bead cleanup was performed. Illumina TruSeq sequencing adapters (NEBNext Multiplex Oligos Index Primers sets 1 and

2, NEB) were added to 5mg of sonicated 3C material using NEBNext DNA Library Prep Master Mix Set (NEB) reagents for end repair,

dA tailing and adaptor ligation, Herculase II Fusion Enzyme (Agilent) for indexing PCR, and AMPure� XPBeads (BeckmanCoulter) for

clean-up steps.

Selective enrichment of 3C libraries was performed as described111 with minor changes using Nimblegen SeqCap EZ Hybridisa-

tion and wash kit, Accessory kit v2 (Roche) and their HyperCap Workflow v2.0.

Briefly, the oligo bait pool was hybridised to a pool of indexed 3C libraries (up to six 3C libraries equating to 6 mg of material per

hybridisation reaction) in the presence of Universal Blocking Oligos (Roche) and SeqCap EZ reagents (Roche) at 47�C for 72h. The

captured fragments were pulled down with M-270 Streptavidin Dynabeads (Invitrogen), washed with SeqCap EZ wash buffers,

cleaned up using AMPure XP Beads (Beckman Coulter) and amplified using KAPA Library Quantification Complete Kit (Roche) (9-

12 cycles). The resulting enriched library was used as an input for a secondary capture following the same protocol as above, but

with hybridization time of 24h and fewer final PCR cycles determined by a test qPCR reaction. Quality control was performed using

TapeStation high sensitivity D1000 screen tape and reagents. Capture-C libraries were sequenced on the Illumina NextSeq 500 plat-

form using 150bp paired-end reads at a depth of 1 million paired end reads per viewpoint.

Genotyping
DNAwas isolated from purified CD4+ T cells, CD8+ T cells andmonocytes (2-3 x 106 cells resuspended in RLT Plus) using the AllPrep

DNA/mRNA/microRNA Universal kit (Qiagen) from 20 AS patients and 20 HC. Samples were submitted for genome wide array

genotyping at the Oxford Genomics Center and processed using the Infinium Global Array V2.0 (Illumina).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of flow cytometry data
Flow cytometry data were analysed using FlowJo Version 10.8.1. Cells were gated by size (FSC) and granularity (SSC) and then for

singlets by FSC-H vs FSC-W followed by SSC-H vs. SSC-W. CD3neg cells were selected using CD3 vs. SSC-A. A CD14 vs. CD16 plot

was used to define CD14hi/CD16neg classical monocytes (cMono), CD14hi/CD16pos intermediatemonocytes (iMono), andCD14lo/

CD16pos non-classical monocytes (ncMono). CD14lo/CD16pos cells were defined as non-monocytic (not Mono).

Downstream analysis of NGS data
RNA-seq

NGS data was mapped to human genome assembly GRCh37 (hg19) using STAR,83 reads were counted using featureCount91 with

those mapping to X and Y chromosomes removed. Duplicates were marked and removed using Picard Tools. Genes lying within

500kb of lead AS-associated SNPs9,10 were identified using BEDtools85 window. PCA was performed using DESeq2 accounting

for sex and sequencing set using limma103 (Table S2). Differential analysis between AS patients and HC was performed using DE-

Seq286 with sex and batch effect included in the design. Thresholds padj <0.05 and fold-change >1.5 were used to call significantly

differential genes. Enriched pathways were identified in REACTOME pathways using XGR.33

ATAC-seq, ChIPm and eRNA analysis

Reads were aligned to the human genome assembly GRCh37 (hg19) using bowtie2.87 Picard Tools was used to remove PCR dupli-

cates, read with MAPQ score <30, non-uniquely mapping reads, non-properly paired reads and mitochondrial reads. Pileup tracks

were generated using BEDTools genomCoverageBed and bedGraphToBigWig.85 Normalised bigWigs were generated from normal-

ised bedgraph files with BEDTools genomecov. Peak calling was performed usingMACS2 callpeak90 and peakmaster lists were built

by union of peaks present in at least 20% of samples. Reads for ATAC and ChIPm were counted using HTSeq,84 with those from X

and Y chromosomes removed subsequently. Enhancer RNAs (eRNAs) were defined as uniquely mapped RNA reads within ATAC-

seq peaks > 3kb from a gene coding sequence andwere counted using featureCounts.91 Genomic distributions of ATAC peaks, ChIP

peaks and eRNAs were generated using ChIPseeker.92 In all cases features were filtered that did not have at least 10 reads in the

smallest batch, or in at more than one sample for ChIP. PCA was performed on ATAC-seq, ChIPm and eRNA data both across

and within each cell type using DEseq286 accounting for sex and batch using limma.103 Differential analysis within each cell type
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to compare samples from AS patients and HCwas performed using DESeq286 including sex and batch in the design. QTLtools80 was

used for QTL discovery and trait significance was calculated using ANOVA with Tukey post-test.

Computational deconvolution of bulk RNA-seq data
The composition of CD4+ T cell, CD8+ T cell and monocyte populations was analysed by deconvolution of bulk RNA-seq data using

CIBERSORTx37. Reference single-cell RNA-seq data from PBMC from 10 healthy individuals was obtained from the COMBAT con-

sortium.77 Raw counts for cells annotated as CD4, CD8, or monocyte (comprising cMono or ncMono) were extracted and used as

inputs for theCIBERSORTxCreate SignatureMatrix function, performedwith parametersMin.Expression = 0.25, Replicates = 20 and

Sampling = 0.5. The CIBERSORTx Impute Cell Fractions module was run using these Signature Matrices and raw bulk RNA-seq

counts from the CD4+ T cell, CD8+ T cell and CD14+ monocyte populations with S-mode batch correction and 100 permutations.

Annotations were used according to the COMBAT consortium minor subsets. For visualisation, cycling classical monocytes (cMo-

no_cyc) were merged with classical monocytes (cMono), proliferating T Effector cells (TEFF.prolif) were merged with T effector cells

(TEFF), and CCL5-expressing T central memory cells (TCM_CCL5) were merged with T central memory cells (TCM).

ChromHMM
ChromHMM39 was run on a subset of four AS patients and four HC samples for which we had all data types, RNA, ATAC, H3K4me3

and H3K27ac and were processed together as a single batch. A generic H3K4me1 track was used that was independent of all sam-

ples. For the coding track a binarized file of the genes was generated based on the presence or absence of the gene within each

200bp bin. The default settings were used for ChromHMM and a 14-state model based on analysis of the output for varying model

sizes. Manual curation was used to assign putative functions to each state according to the combination of epigenomic marks and

genomic distribution. MCA was performed on global or individual chromatin states using FactoMineR.93 In order to reduce the

number of regions analysed (to reduce computational time), the most polymorphic regions were selected. For the global analysis

(Figure 3D), 200-bp regions were kept if they contained at least two different states, and if the quiescent state 14 (Quies) was present

in less than 2/3 of the samples. For individual state analysis (Figure S3B), regions were selected where that state was present in at

least 1/3 of the samples.

Differences in ChromHMM states between AS patients and HC were assessed by Fisher exact tests for each state and each cell

type separately. Because of the limited sample size (4 AS, 4 HC) and of the binary parameter analysed, the number of p-values ob-

tained was limited with a minimal p value of 0.05 corresponding to a state present in 4 AS patients and no HC or 4 HC and no AS

patients. To identify states with a higher number of differentially distributed regions between the two groups than expected by

chance, we permuted the disease status as many times as possible (70 combinations) and compared the experimentally observed

frequency of significant regions (Fisher p < 0.05) with the permuted distribution (Figure S3B). From this we calculated a p value whose

significance is reported in Figure 3C. The most significant p value possible is 1/70 i.e. 0.015.

Pathway enrichment analysis
ATAC andChIP peaks, eRNAs and ChromHMM regions were assigned to genes on the basis of (i) genomic proximity and (ii) genomic

looping events. Proximal genes (<50 kb) were annotated using XGR.36 Genomic looping events were obtained from PCHi-C data38

from the cell types most similar to those in our study (total CD4+ and CD8+ T cells, and monocytes). Regions with >50% overlap with

the ends of PCHi-C loops were identified using BEDtools.85 Pathway enrichment analysis in REACTOME and KEGG databases was

performed using XGR on gene sets from individual cell types. Gene sets were generated from the top 200 differential ATAC-seq

peaks, ChIPm peaks or eRNAs, and genes associated with differential ChromHMM regions (Fisher p < 0.05).

GWAS enrichment
Enrichment of AS-associated variants was determined using GARFIELD42 for each of the epigenomic marks identified in this study

(ATAC, H3K27ac andH3K4me3) and the chromatin states defined byChromHMManalysis. Enrichment of AS variants fromEuropean

subanalysis of Cortes et al.9 was assessed at four GWAS significance thresholds: p < 1, 0.1, 5 3 10�7 and 5 3 10�8. The UK10K

variant set,112 pre-processed in GARFIELD, was used as the reference population for these analyses, with correction for multiple

testing performed using the Bonferroni method.

Capture-C NGS data analysis
The quality of Illumina reads was validated with FastQC v0.11.4 and the presence of Illumina adapter sequences addressed using

cutadapt v1.10.94 TrimGalore v.0.4.4 was used to automate quality and adaptor trimming. We extended the length of the pair-end

libraries following the overlap and merge criteria of FLASH96 a fast length adjustment algorithm 100, so that two sets of merged

and non-merged reads were generated for downstream analysis.

A single core version of FLASH was modified for Capture-C analysis, to allow for in-silico digestion of flashed and non-flashed

reads at the DpnII recognition sequence, subsequent to the merging step. Pairs of in-silico digested, reported read sequences

were enumerated, counted and aligned to hg19 using bowtie2.87 All in-silico digested sub-sequence pairs were assessed and the

corresponding mapping quality reported, together with the genomic location of the pair ends, within both flashed and non-flashed

read set independently. Any pair containing sub-reads shorter than a minimum 20 base pairs were discarded. All pairs that passed
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this stage were then considered for downstream analysis. Duplicated pairs were enumerated and excluded using samtools.113 Pairs

containing low quality mapping reads (Phred Quality Score <30) on either end were also excluded. De-duplicated valid paired-end

reads were then considered for bona-fide Capture-C filtering, using an in-house algorithm, ICeCAP (see key resources table). In brief,

after flashing and aligning reads and after in-silico digestion, artefacts, e.g. self-ligation and re-ligation events were identified,

enumerated and excluded based on the principles of the HiCUP pipeline. Remaining fragments were allocated to each bait and

grouped in promoter specific and enhancer specific bona-fide ditags for statistical analysis. ICeCAP combines the principles of

fast length adjustment (FLASH) and bona-fide Capture-HiC filtering principles of the HiCUP pipeline. The significance of interaction

frequencies was assessed using Peaky96. CaptureCompare79 was used to compare AS and HC scores and to generate mean tracks

for visualisation. Median PeakY interaction scores were calculated from the top 10% of scores across the region of interest,

which were defined based on ChromHMM enhancer/promoter delineation. ETS1 promoter region chr11:128310000-128410000,

ETS1 SNP region chr11:128150000-128185000. PTGER4 promoter region chr5:40650000-40690000, rs1992661 SNP region,

chr5:40370000-40420000, rs9283753 SNP region chr5:40480000-40505000.

Genetic analysis and imputation
Data QC was performed by the Oxford Genomics Centre using Genome Studio v2.0 (Illumina, Human genome reference assembly

GRCh37/hg19). To impute B27 from the genotyping data, we used snp2hla on chromosome 6 of genotyped data using the T1DGC

reference panel, as described in Jia et al.114 For genome wide imputation SNPs were removed if they had a minor allele frequency

(MAF) < 5%, missingness >2% or a heterozygosity rate greater than 3 standard deviations from the mean. We also removed SNPs if

they deviated from Hardy-Weinberg Equilibrium (p < 1x10�7). Imputation was performed on the Sanger Imputation Server with the

HRC reference panel115 using Eagle281 and PBWT.82 After imputation, we kept SNPswith an info score >0.8,MAF >0.05 and in Hardy

Weinberg equilibrium.

Therapeutic target prioritisation
Using our previously established Pi pipeline,33 we first prepared three types of genomic predictors taking as inputs GWAS summary

data in AS9 and the knowledge of protein interactions116 including: (i) nearby genes (the nGene predictor) using genomic proximity

and organisation117 (ii) expression-associated genes (the eGene predictor) integrating eQTL datasets,118–122 and (iii) conformation

genes (the cGene predictor) using PCHi-C datasets.38 Next, we modified the Pi algorithm to prepare additional five types of genomic

predictors using disease-specific functional genomic datasets arising from this study, including (iv) the AS-specific expression pre-

dictor (the RNA predictor) generated based on differential gene expression between AS patients and HC, and (v) AS-specific epige-

nomic predictors (the ATAC, eRNA, H3K4me3 and H3K27ac predictors) on the basis of differential peaks (linked to genes via

genomic proximity or PCHi-C looping events) between AS patients and HC. The knowledge of protein interactions was obtained

from the STRING database,116 and only the genes located in chromosomes 1-22 were considered; this corresponded to a total of

17,249 genes prioritised (and ranked by priority rating). The performance benchmarking (including how to define clinical proof-of-

concept targets and simulate negative targets) and comparisons with naı̈ve prioritisation and Open Targets49,50 were the same as

previously described33,34 and uses Area Under the Curve (AUC) as a global measure of performance. We carried out pathway

enrichment analysis of the top 1% prioritised genes using KEGG pathways123 with the enrichments measured by Z-score and

FDR (one-sided Fisher’s exact test). Using the algorithm originally proposed in dnet,98 we performed pathway crosstalk analysis

to identify a subset of gene interactions (merged from KEGG pathways) that contained highly prioritised and interconnecting genes.

Data visualisation
Results from PCA, gene expression, pathway analysis and GWAS enrichment were plotted with ggplot2. Volcano plots were gener-

ated with EnhancedVolcano. The Venn diagram showing cell type specificity of differentially expressed genes was generated using

Venny. Colour mapping of gene expression (by fold-change) in the CXC Cytokine Receptor pathway was performed using KEGG

mapper – color pathway.100

Genomic data including location of ENSEMBL genes, ChromHMM data, RNA-seq, ATAC-seq data, ChIPm data, PCHiC data, and

Capture-C interactions were plotted in R (https://www.R-project.org/) using Gviz102 and GenomicInteractions.101 For visualisation

RNA-seq was plotted in bins of 1000bp using the log2 of the count. ATAC-seq and ChIPm-seq were visualised with sliding windows

of 200bp and 400bp respectively. Capture-C tracks are plotted as mean counts from three AS patients and three HC samples in bins

of 400bp, with the PeakY interaction score (-log10(FDR)) plotted below each pile-up track with a sliding window of 400bp. PCHiC

interactions were plotted with a CHiCAGO124 score of >=5. For ATAC-seq andChIPm tracks, data from one representative AS patient

and one HC are shown. For ChromHMM data from all four AS patients and controls is shown.
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