Blown-up toric surfaces with non-polyhedral effective cone - Archive ouverte HAL
Article Dans Une Revue Journal für die reine und angewandte Mathematik Année : 2023

Blown-up toric surfaces with non-polyhedral effective cone

Antonio Laface
Jenia Tevelev
  • Fonction : Auteur
Luca Ugaglia
  • Fonction : Auteur

Résumé

We construct projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone. As a consequence, we prove that the pseudo-effective cone of the Grothendieck-Knudsen moduli space M ¯ 0, n \overline{M}_{0,n} of stable rational curves is not polyhedral for n ≥ 10 n\geq 10. These results hold both in characteristic 0 and in characteristic p, for all primes p. Many of these toric surfaces are related to an interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order. Our analysis relies on tools of arithmetic geometry and Galois representations in the spirit of the Lang-Trotter conjecture, producing toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone in characteristic 0 and in characteristic p, for an infinite set of primes p of positive density.
Fichier principal
Vignette du fichier
2009.14298.pdf (1.08 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04191697 , version 1 (21-09-2023)

Licence

Identifiants

Citer

Ana Maria Castravet, Antonio Laface, Jenia Tevelev, Luca Ugaglia. Blown-up toric surfaces with non-polyhedral effective cone. Journal für die reine und angewandte Mathematik, 2023, 2023 (800), pp.1-44. ⟨10.1515/crelle-2023-0022⟩. ⟨hal-04191697⟩
18 Consultations
59 Téléchargements

Altmetric

Partager

More