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Abstract. The version 10 (v10) Atmospheric Carbon Obser-
vations from Space (ACOS) Level 2 full-physics (L2FP) re-
trieval algorithm has been applied to multiyear records of ob-
servations from NASA’s Orbiting Carbon Observatory 2 and
3 sensors (OCO-2 and OCO-3, respectively) to provide esti-
mates of the carbon dioxide (CO2) column-averaged dry-air
mole fraction (XCO2). In this study, a number of improve-
ments to the ACOS v10 L2FP algorithm are described. The
post-processing quality filtering and bias correction of the
XCO2 estimates against multiple truth proxies are also dis-
cussed. The OCO v10 data volumes and XCO2 estimates
from the two sensors for the time period of August 2019
through February 2022 are compared, highlighting differ-
ences in spatiotemporal sampling but demonstrating broad
agreement between the two sensors where they overlap in

time and space. A number of evaluation sources applied to
both sensors suggest they are broadly similar in data and er-
ror characteristics. Mean OCO-3 differences relative to col-
located OCO-2 data are approximately 0.2 and −0.3 ppm
for land and ocean observations, respectively. Comparison
of XCO2 estimates to collocated Total Carbon Column Ob-
serving Network (TCCON) measurements shows root mean
squared errors (RMSEs) of approximately 0.8 and 0.9 ppm
for OCO-2 and OCO-3, respectively. An evaluation against
XCO2 fields derived from atmospheric inversion systems that
assimilated only near-surface CO2 observations, i.e., did not
assimilate satellite CO2 measurements, yielded RMSEs of
1.0 and 1.1 ppm for OCO-2 and OCO-3, respectively. Eval-
uation of uncertainties in XCO2 over small areas, as well
as XCO2 biases across land–ocean crossings, also indicates
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similar behavior in the error characteristics of both sensors.
Taken together, these results demonstrate a broad consistency
of OCO-2 and OCO-3 XCO2 measurements, suggesting they
may be used together for scientific analyses.

1 Introduction

Estimates of the column-averaged carbon dioxide (CO2) dry-
air mole fraction (XCO2) derived from global space-based
measurements can be assimilated into atmospheric inversion
systems to quantify CO2 fluxes associated with both nat-
ural and anthropogenic sources and sinks (Gurney et al.,
2002). However, these estimates must have both high pre-
cision and accuracy due to the long atmospheric lifetime of
CO2 (Archer et al., 2009) and the high background concen-
trations (≈ 415 parts per million by volume, ppm, in 2022)
such that even the most intense sources and sinks produce
only small (≈ 1 ppm) changes in XCO2 (Miller et al., 2007).

The Orbiting Carbon Observatory 2 and 3 missions,
OCO-2 and OCO-3, respectively, referred to collectively as
OCO in this document, are NASA’s primary operating assets
for monitoring CO2 concentrations from space. Both of these
instruments measure reflected solar radiation at high spec-
tral resolution in specific narrow spectral bands in the near-
infrared and shortwave infrared regions (NIR and SWIR, re-
spectively), where molecular oxygen (O2) and CO2 absorb
sunlight. A variety of physics-based algorithms and sources
of prior information are required to convert the measured
spectra into estimates of XCO2 in a series of steps. First,
the individual soundings are geolocated and then radiomet-
rically and spectrally calibrated. Then, these products are
pre-screened to filter out scenes contaminated by clouds and
heavy aerosol loading. A retrieval is then performed to es-
timate XCO2 from the geolocated and calibrated radiances.
Finally, a post-processing step is applied that quality-screens
the retrieval output and applies an empirically based bias
correction to the XCO2 concentrations. Although estimates
of solar-induced chlorophyll fluorescence (SIF) are also pro-
vided from OCO-2 and OCO-3 measurements, the focus of
this paper is on the XCO2 estimates. Readers are referred to
Doughty et al. (2022) for an overview of the OCO SIF prod-
ucts.

Space-based measurements from OCO-2 and OCO-3 have
already been successfully used to quantify CO2 sources and
sinks at global (e.g., Crowell et al., 2019; Peiro et al., 2022;
Byrne et al., 2023), regional (e.g., Palmer et al., 2019; Byrne
et al., 2021; Philip et al., 2022), and even local and/or urban
scales (e.g., Lei et al., 2021; Kiel et al., 2021; Nassar et al.,
2022). However, biases and random errors in the XCO2 esti-
mates relative to reference measurements persist, even after
application of bias correction and filtering. These biases and
random errors are associated with multiple factors, such as
instrument measurement noise, uncertainties in instrument

calibration, error in CO2 and O2 gas absorption cross sec-
tions, complications in accurately representing aerosols and
surface characteristics in the retrieval, and lack of accurate
knowledge of the prior estimates of the atmospheric state that
are used in the retrieval algorithm (Connor et al., 2016; Ku-
lawik et al., 2016; Hobbs et al., 2017; Kulawik et al., 2019).
Numerous studies have demonstrated that small, but region-
ally coherent, biases in CO2 concentrations can result in flux
estimate errors (e.g., Chevallier et al., 2005, 2007, 2014;
Basu et al., 2013; Feng et al., 2016). It is therefore essential
to quantify, as well as possible, the remaining biases present
in the satellite XCO2 products.

The paper is organized as follows: the OCO instru-
ments, spectral measurements, and calibration are reviewed
in Sect. 2. Section 3 discusses updates to the v10 L2FP re-
trieval algorithm and other components of the data process-
ing pipeline. In Sect. 4, the OCO-2 and OCO-3 v10 XCO2
data volumes are analyzed for the overlapping time period
of August 2019 through February 2022, while Sect. 5 com-
pares the XCO2 estimates from the two sensors. Section 6
compares the satellite XCO2 estimates from both sensors to
XCO2 estimates derived from the Total Carbon Column Ob-
serving Network (TCCON), atmospheric inversion systems
(models), and small areas and coastal crossings. A summary
of the findings is presented in Sect. 7. A deeper examination
of the full OCO-2 v10 record, which spans more than 7 years,
is provided in Appendix A. Finally, in Appendix B, several
aspects of the OCO-3 v10 dataset are explored in detail, in-
cluding the application of a time-dependent correction to the
OCO-3 v10 XCO2 estimates to correct a calibration artifact
using a set of soundings collocated with OCO-2.

2 The OCO-2 and OCO-3 instruments and calibration

There are many similarities between the OCO-2 and OCO-
3 sensors, as the latter was built as a flight spare for the
former. Both are three-channel grating spectrometers with
a common telescope used to direct reflected solar radiation
from the field of view through a dispersion grating onto a
focal plane array (FPA). The FPA electronics convert analog
signals into measured digital numbers (DNs). Predetermined
calibration information is used to convert DNs into radiances
(photons s−1 m−2 sr−1 µm−1) in the three spectral channels:
(i) the oxygen A band centered at 0.765 µm, (ii) a weak
CO2 band centered at 1.61 µm, and (iii) a strong CO2 band
centered at 2.06 µm, referred to as the ABO2, WCO2, and
SCO2, respectively, all with high spectral resolving power
(λ/1λ> 17 000) and 1016 spectral channels. A single OCO
measurement frame contains eight along-slit “footprints”,
which are acquired at 3 Hz, yielding 24 individual soundings
per second. The exact footprint size of each OCO-2 sound-
ing varies by observation mode and latitude but is of the or-
der of 1.3 km cross-track and 2.25 km along-track (2.9 km2)
near-nadir viewing. The orbit altitude of OCO-3 aboard the
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International Space Station (ISS) is lower than that of OCO-2
(≈ 400 and ≈ 705 km for OCO-3 and OCO-2, respectively),
necessitating an enlargement of the instrument’s field of view
from 0.8 to 1.8◦ in order to maintain a similar footprint size.
Even so, OCO-3 footprints are typically slightly larger, at
1.6 km cross-track by 2.2 km along-track (3.5 km2).

OCO-2 began science operations in September 2014
(Crisp et al., 2017; Eldering et al., 2017). It flies in a sun-
synchronous polar orbit on a dedicated satellite bus in the
afternoon constellation, i.e., A-train constellation (L’Ecuyer
and Jiang, 2010), which has a local overpass time of approx-
imately 13:36 and a 16 d orbit repeat cycle. OCO-2 science
measurements are made in one of three observation modes:
(i) down-looking nadir (ND), (ii) sun glint (GL), or (iii) tar-
get (TG). For routine science observations, a full dayside or-
bit is acquired in one of the two primary observation modes
(nadir or glint) in an alternating fashion. However, for or-
bits that pass largely over ocean, the satellite orients the in-
strument to view the sun’s specular glint spot, which max-
imizes the signal over water (Miller et al., 2007). In addi-
tion, a small number (order 30) of predetermined target sites
are viewed as conditions allow. Most of the targeted observa-
tions are collected over Total Carbon Column Observing Net-
work (TCCON) stations, whose up-looking observations are
used to validate the OCO-2 XCO2 estimates (Wunch et al.,
2011a, 2017). Other targets include surface calibration sites
(e.g., Bruegge et al., 2019), large urban areas (e.g., Rißmann
et al., 2022), and power plants (e.g., Nassar et al., 2017).

OCO-3 began science operations in August 2019 (Taylor
et al., 2020). The OCO-3 instrument is mounted as an exter-
nal payload on the Japanese Experimental Module – Exposed
Facility (JEM-EF) aboard the ISS. The ISS flies in a precess-
ing orbit with a varying time-of-day local overpass across a
63 d illumination cycle. To provide agile pointing from the
ISS, a two-axis pointing mirror assembly (PMA) was added
to the fore optics of OCO-3 (Eldering et al., 2019). For rou-
tine science observations, OCO-3 acquires measurements in
nadir mode over land and glint mode over large water bod-
ies. A much larger set of target observations is possible com-
pared to OCO-2 due to the more up-to-date onboard elec-
tronics control system and the rapid repointing allowed by
the PMA. In addition, a new observation mode called snap-
shot area mapping (SAM) allows the instrument to compile
contiguous images as large as 80 by 80 km2 over sites of in-
terest such as mega-cities, power plants, volcanoes, flux tow-
ers, and field campaigns. The spatially contiguous nature of
the SAMs is already showing tremendous promise for carbon
cycle science (e.g., Kiel et al., 2021; Wu et al., 2022; Roten
et al., 2022; Nassar et al., 2022) and for investigating sources
of bias within the L2FP retrieval (Bell et al., 2023).

The precision and accuracy requirements for OCO-2 and
OCO-3 were originally applied to regional scales, roughly
defined as 10◦ latitude by 10◦ longitude. Early observa-
tion system simulation experiments (OSSEs) indicated that
XCO2 precision and accuracy better than 1 ppm (less than

0.25 %) are needed at this scale to constrain typical natural
and anthropogenic sources and sinks of CO2 (Miller et al.,
2007). In practice, the spatial scale for precision and accu-
racy requirements is determined by the distribution of the
validation reference measurements. This is defined by the
approximately 24 TCCON stations and a comparable num-
ber of EM27/SUN and Aircore stations distributed over the
globe. The system performance on finer scales has also been
assessed through comparisons with data collected by air-
craft campaigns, e.g., ACT-America (Bell et al., 2020) and
ATom (Kulawik et al., 2019), as well as multi-instrument
EM27/SUN campaigns (Rißmann et al., 2022).

The precision and accuracy requirements place strict de-
mands not only on the instrument sensitivity, but also on its
calibration and the accuracy of the retrieval algorithm. Both
OCO-2 and OCO-3 were radiometrically calibrated prior to
launch using integrating sphere sources calibrated with re-
spect to the National Institute of Standards and Technology
(NIST) reference standards. Observations of the integrating
spheres yielded pre-launch gain coefficients used to convert
measured digital numbers into radiances. The radiometric
calibration of OCO-2 and OCO-3 is frequently updated in-
flight through the use of onboard calibration systems (Crisp
et al., 2017; Keller et al., 2022), which are analyzed to up-
date Ancillary Radiometric Products (ARPs) covering 3 to
7 d; gain degradation coefficients are provided to correct ra-
diances based on pre-launch gains.

For OCO-2, in-flight updates to the pre-launch calibration
are derived from observations of the sun through a transmis-
sive diffuser and from its primary onboard lamp. While the
sun observations track the overall change in instrument re-
sponse with time, lamp observations provide corrections of
relative changes in the response of the individual samples,
which are comprised of 20 detector pixels each (see Fig. 2
of Crisp et al., 2017, for the readout scheme). Lunar obser-
vations taken throughout the mission have been used to track
and account for the degradation of the solar diffuser. Details
of the pre-flight and on-orbit calibration of OCO-2 Level 1b
(L1b) can be found in Rosenberg et al. (2017), Lee et al.
(2017), Crisp et al. (2017), and Marchetti et al. (2019). In
general, the instrument calibration and the full-physics re-
trieval algorithm for OCO-2 have reached relatively mature
states. For example, updates to the OCO-2 v10 calibration
algorithms used to produce calibrated L1b spectra were lim-
ited to an improved treatment of radiometric degradation us-
ing lunar calibration observations, a small refinement in the
spectral dispersion coefficients, and the identification of ad-
ditional spectral sample outliers (Crisp et al., 2021).

Keller et al. (2022) describe the current state of the cali-
bration for the L1b OCO-3 v10 data products. OCO-3, un-
like OCO-2, cannot view the sun from the ISS, making solar
calibration impossible (Rosenberg et al., 2020). Therefore,
compared to OCO-2, more emphasis has been placed on the
internal lamp calibration system, which is comprised of three
tungsten halogen lamps and a reflective diffuser. The three
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calibration lamps are illuminated with different cadences and
thus age at different rates. For v10 L1b, an algorithm was
developed to use information from all three lamps with the
goal of mitigating lamp aging while still allowing changes in
instrument response to be tracked with the necessary tempo-
ral resolution. This is particularly important for OCO-3, as
it has exhibited significant, abrupt changes in its overall in-
strument response. In addition, an update was made to the
OCO-3 stray light model used for v10 L1b to account for
spatial variability on the detectors. More detail is provided in
Sect. 2.1 of the OCO-3 v10.4 data quality statement (Chat-
terjee et al., 2022). Because of initial difficulties in reducing
geolocation errors for OCO-3, plans to perform lunar cali-
bration, intercomparison of L1b radiances with OCO-2, and
vicarious calibration using the Railroad Valley Playa were
delayed. These are now all underway and will inform the in-
flight calibration for the next OCO-3 product version. Ad-
ditional OCO-3 calibration details are contained in the L1b
Algorithm Theoretical Basis Document (ATBD) (Crisp et al.,
2021).

3 The ACOS v10 XCO2 retrieval pipeline

Beginning with the geolocated and calibrated L1b spectra,
the ACOS pipeline consists of three distinct steps to pro-
duce the final estimates of XCO2. First, due to the com-
putational demands of the L2FP retrieval algorithm, which
requires about 5 min per sounding on a single processor,
and the inability to reliably estimate XCO2 in the presence
of clouds and heavy aerosol loadings, a pre-screening step
is performed to identify and remove these soundings (Tay-
lor et al., 2016). The soundings that are identified as likely
to yield good-quality results are then input to the ACOS
Level 2 full-physics (L2FP) retrieval algorithm, which uti-
lizes a Bayesian optimal estimation framework to derive es-
timates of XCO2 by combining information from the L1b
spectra with prior information about the state of the atmo-
sphere and measurement geometry (Rodgers, 2004; Connor
et al., 2008; O’Dell et al., 2012). In a post-processing step,
each sounding that successfully converges within the L2FP
is assigned either a good or bad quality flag based on a
set of empirically derived filters. Furthermore, an empirical,
parametric bias correction, derived from comparisons with
multiple truth proxies, is applied to each sounding (O’Dell
et al., 2018). The quality-filtered and bias-corrected XCO2
estimates are included in the L2 Lite files, which also con-
tain essential retrieval, time, and geometry information. A
brief summary of recent changes specific to v10 is provided
in Sect. 3.1.

3.1 Level 2 full-physics retrieval algorithm updates for
v10

ACOS v10 is the fourth major reprocessing of the OCO-2
record, which began with the v6 release in December 2014,
followed by v7 in 2015 and v8 in 2017 (O’Dell et al.,
2018). The v9 XCO2 product, released in 2018, was a post-
processing-only effort to correct XCO2 errors introduced by
a small error in the instrument boresight pointing and geolo-
cation (Kiel et al., 2019). Since there were no changes to the
L2FP code from v8 to v9, for the remainder of this docu-
ment the nomenclature “v8/9” will be used to refer to the
previous version of the algorithm. For OCO-3, the v10 XCO2
product is only the second public release. It is a substantial
improvement over the first release, vEarly, which employed
the ACOS v10 algorithm but had significant instrument cal-
ibration and geolocation errors and was quality-filtered and
bias-corrected against a very short data record of only a few
months (Taylor et al., 2020). Table 1 summarizes the four
substantial changes that were made to the ACOS L2FP re-
trieval algorithm from v8/9 to v10. More detail can be found
in the v10 L2FP ATBD (Crisp et al., 2020).

Each new release of ACOS uses the latest gas absorption
coefficient (ABSCO) tables produced at NASA’s Jet Propul-
sion Laboratory (JPL). For v10, the ABSCO tables were up-
dated from v5.0 (Oyafuso et al., 2017) in ACOS v8/9 to AB-
SCO v5.1 in ACOS v10 (Payne et al., 2020). The most sig-
nificant changes occurred in the ABO2 spectral band (Drouin
et al., 2017; Payne et al., 2020) related to consistency be-
tween oxygen line shapes and collision-induced absorption.
This update yielded reduced spatial variability of the bias be-
tween the L2FP retrieved surface pressure and the prior value
from 3.3 hPa in v9 to 2.8 hPa in v10. ABSCO v5.1 also in-
cludes an update to the water vapor continuum model, which
affects the WCO2 and SCO2 spectral bands.

A second important change between ACOS v8/9 and v10
was an update of the prior values adopted for aerosol types,
optical depths (AODs), vertical distribution, and uncertain-
ties. In previous versions, the aerosol priors were compiled
from a monthly climatology derived from the NASA God-
dard Modeling and Assimilation Office (GMAO) Modern-
Era Retrospective analysis for Research and Applications
version 2 (MERRA-2) product (Rienecker et al., 2008, 2011;
Gelaro et al., 2017). For v10, these monthly aerosol priors
were replaced with daily estimates derived from the GEOS-5
Forward Product for Instrument Teams (FP-IT) product. Fur-
thermore, the AOD prior variance (expressed in log(AOD))
was reduced from 2 to 0.5 in v10. These changes led to sig-
nificant improvements in both retrieved aerosol values and
estimates of XCO2 from OCO-2, especially in aerosol-laden
regions. Full details on the v10 aerosol formulation, includ-
ing tests on its efficacy, are provided in Nelson and O’Dell
(2019) and Sect. 3.3.2.3 of Crisp et al. (2020).

A third significant change from v8/9 to v10 was replacing
the source of the CO2 prior profiles from that developed by

Atmos. Meas. Tech., 16, 3173–3209, 2023 https://doi.org/10.5194/amt-16-3173-2023



T. E. Taylor et al.: OCO-2 and OCO-3 v10 XCO2 3177

Table 1. Updates to the ACOS L2FP retrieval algorithm from v8/9 to v10.

ACOS v8/v9 ACOS v10

1 Spectroscopy ABSCO v5.0 ABSCO v5.1
2 Aerosol prior source MERRA monthly climatology 3-hourly GEOS-5 FP-IT with tightened prior AOD uncertainty
3 CO2 prior source TCCON GGG2014 TCCON GGG2020
4 Solar continuum model ATLAS 3 SOLSPEC TSIS-SIM

the TCCON team for use in the GGG2014 algorithm (Wunch
et al., 2015) to the newest version used in GGG2020 (Laugh-
ner et al., 2023). A complete description of the calculation of
the v10 CO2 priors is provided in Sect. 3.3.2.1 of the L2FP
ATBD (Crisp et al., 2020). In short, the priors are calculated
from a scaling of the NOAA monthly averaged flask values
(Lan et al., 2022) measured at the Mauna Loa and Ameri-
can Samoa sites to individual sounding dates and locations.
The tropopause altitude is derived from data contained in
the 3-hourly GOES-FPIT meteorology, which has a nominal
1 d lag and provides diagnosed potential vorticity, allowing
for better representation of latitudinal CO2 transport in the
stratosphere. A previous study using measurements from the
Japanese Greenhouse Gases Observing Satellite (GOSAT;
Kuze et al., 2009) processed with the ACOS v9 L2FP re-
trieval showed that a correction to account for the difference
in the CO2 prior from v8/9 to v10 yielded a global mean ad-
justment in XCO2 of approximately 0.2 ppm, with 95 % of
changes falling between −0.1 and +0.5 ppm (Taylor et al.,
2022).

The last significant change to the v10 L2FP was replace-
ment of the solar continuum model used to simulate the top-
of-atmosphere (TOA) solar spectrum. For the OCO missions,
a high-resolution TOA solar spectrum is derived by com-
bining a high-spectral-resolution solar transmission spectrum
for solar Fraunhofer lines with an observed, low-spectral-
resolution TOA solar spectrum. The solar transmission spec-
trum is derived from an empirical solar line list (Toon, 2014).
In earlier versions of the L2FP model, the solar continuum
was derived to fit the ATLAS 3 SOLSPEC measurements
(Thuillier et al., 2003) when the OCO solar spectrum was
convolved with the SOLSPEC spectral response function
(SRF). For v10, this continuum was replaced by one de-
rived to fit new measurements from the Total Solar Irradiance
Sensor (TSIS) Spectral Irradiance Monitor (SIM) aboard the
ISS (Richard et al., 2020) when convolved with the TSIS-
SIM SRF. The new solar model reduced the solar contin-
uum values by≈−1.3 %,−3.0 %, and−6.5 %, in the ABO2,
WCO2, and SCO2 spectral bands, respectively. These re-
sults are consistent with the more recently derived TSIS-1
Hybrid Solar Reference Spectrum (Coddington et al., 2021).
L2FP tests indicated that these changes had a minimal im-
pact on XCO2 estimates. This is most likely because the solar
flux differences were relatively small in the ABO2 channel,
which is most sensitive to the accuracy of the solar illumi-

nation and absolute radiometric calibration. However, even
these small differences shifted the retrieved surface pressures
by≈−0.2 hPa for land and≈+0.2 hPa for ocean soundings,
which has a small impact on the bias correction.

3.2 Preprocessor and sounding selection for v10

The ACOS software includes two preprocessors to flag
soundings that are likely to fail to converge in the full-physics
retrieval due to cloud and aerosol: the A-band preproces-
sor (ABP) (Taylor et al., 2012, 2016) and the IMAP-DOAS
preprocessor (IDP) (Frankenberg et al., 2005; Taylor et al.,
2016). For v10, an update was made to the ABP state vec-
tor to include a zero-level offset to the calculated top-of-
atmosphere radiances to account for instrument stray light
and SIF. The v10 ABP uses v5.1 ABSCO to be consistent
with the L2FP retrieval. To accommodate changes to the AB-
SCO and L1b, updates were made to tune the ABP surface
pressure vs. solar zenith angle and chi-squared vs. signal-to-
noise ratio parameterizations, both of which are used as in-
dividual filters to determine scenes contaminated by clouds
and aerosols as first described in Taylor et al. (2012) for ap-
plication to GOSAT and more recently in Taylor et al. (2016)
as applied to OCO-2.

The IDP algorithm serves two purposes in the ACOS
pipeline: (i) single-band retrievals of CO2 and H2O are used
for cloud screening, and (ii) the ABO2 spectral band is used
to estimate SIF (Frankenberg et al., 2012; Doughty et al.,
2022). For v10, no changes were made to the IDP. In fact,
the code has remained unaltered for many versions, includ-
ing use of the older v4.2 ABSCO (Drouin et al., 2017).

The sounding selection strategy, which determines if a
sounding should be run through the L2FP, remains roughly
consistent for v10 compared to previous versions. Details are
provided in Table 2. For both sensors, the single difference
between land and ocean–glint selection criteria is that for
OCO-2, the solar zenith angle (SZA) cutoff is slightly more
strict at 80◦ for ocean–glint compared to 85◦ for land. For
OCO-3, the SZA cutoff is 80◦ for both land and ocean–glint.
For OCO-2 v10, target-mode observations were filtered us-
ing the satellite observation angle to remove soundings more
oblique than 50◦. This criterion was removed for OCO-3 tar-
get (and SAM) observations so that the same set of selection
criteria is used for all land observations. Because there is
minimal information content in ocean–nadir measurements
due to a low signal-to-noise ratio (SNR), no ocean–nadir
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Table 2. Sounding selection criteria for OCO-2 and OCO-3 v10. Soundings are categorized as either land (land fraction≥ 80 %), water (land
fraction≤ 20 %), or indeterminate (20 %< land fraction< 80 %). N/U: not used. N/P: not processed. In addition to the criteria defined in the
table, all soundings must have a “sounding quality flag” of 0.

OCO-2 v10 Land (all except TG) TG Ocean–glint Ocean–nadir

Solar zenith angle ≤ 85 ≤ 85 ≤ 80 N/P
Observation zenith N/U < 50 N/U N/P
ABP cloud flag = 0 = 0 = 0 N/P
IDP CO2 ratio [0.985, 1.045] N/U [0.985, 1.045] N/P
L1b ABO2 SNR > 100 N/U > 100 N/P
L1b SCO2 SNR > 75 N/U > 75 N/P

OCO-3 v10 Land (all) Ocean–glint Ocean–nadir

PMA motion flag = 0 = 0 = 0
Solar zenith angle ≤ 80 ≤ 80 ≤ 80
Observation zenith N/U N/U N/U
ABP cloud flag = 0 = 0 = 0
IDP CO2 ratio [0.980, 1.055] [0.980, 1.055] [0.980, 1.055]
IDP H2O ratio [0.80, 1.25] [0.80, 1.25] [0.80, 1.25]
L1b ABO2 SNR > 100 > 100 > 225
L1b SCO2 SNR > 50 > 50 > 125

soundings were selected for OCO-2 v10. However, the early
part of the OCO-3 record contains a large fraction of ocean–
nadir observations prior to tuning of the PMA. To maximize
the selection of potentially good-quality soundings, the L1b
SNR filters in both the ABO2 and SCO2 spectral bands were
relaxed. However, the scientific merit of the ocean–nadir ob-
servations is as of yet undetermined, and therefore ocean–
nadir soundings are not considered further in this work.

3.3 Postprocessing: quality filtering and bias correction
for OCO v10 XCO2 estimates

All selected soundings, as described in Sect. 3.2 are subse-
quently processed by the L2FP retrieval, which primarily es-
timates XCO2. Soundings that converge (typically ≈ 85 %–
90 % of the attempts), are reported in the L2 Standard prod-
uct files (L2Std), which are organized into granules that
typically include full orbits or partial orbits, yielding about
15 files per day. The L2Std files are in HDF5 format and
are about 20 MB each (≈ 300 MB per day). Next, a post-
processing step assigns to each sounding a binary quality flag
(QF= 0 indicates the best data), as well as a bias correction
adjustment to XCO2 (O’Dell et al., 2018). The results are ag-
gregated into daily output L2 Lite XCO2 files. Lite files are
in NetCDF format and are typically about 50–70 MB each. It
is highly recommended that only the good-quality (QF= 0)
soundings contained in the L2 Lite XCO2 product be used in
global- and regional-scale studies, although local-scale stud-
ies may benefit from the use of some of the lower-quality
(QF> 0) soundings.

3.3.1 Quality filtering and bias correction truth proxies

The quality filtering and bias correction procedure requires
XCO2 truth proxies with which to compare the retrieved es-
timates. The term truth proxies is used to describe sources
of data which can be used as an independent estimate of
the atmospheric CO2 abundance. For OCO v10, three truth
proxies were used. The first comprised estimates of XCO2
derived from TCCON measurements. Table 3 provides a list
of TCCON stations, locations, operational ranges, and data
citations. Although TCCON XCO2 estimates have relatively
high precision and accuracy while providing good temporal
coverage at most sites, they are very limited in spatial extent,
especially outside the northern midlatitudes.

To augment the sparse spatial coverage of TCCON, at-
mospheric inversion models are used in the OCO XCO2
quality filtering and bias correction process to provide full
global coverage (O’Dell et al., 2018). For ACOS v10, the me-
dian XCO2 was derived from the four-dimensional (4D) CO2
fields of models that assimilated only in situ CO2 data. To en-
sure consistency in the models, for each OCO sounding, only
the models with XCO2 that deviated by less than ±1.5 ppm
from the initial median value were retained. Furthermore,
soundings were excluded if more than one of the models
had been rejected or if the standard deviation amongst the
valid models was > 1 ppm. Tables 4, 5, and 6 provide infor-
mation about the suite of models. An asterisk is used in Ta-
ble 6 to identify the specific models and data versions used in
the quality filtering and bias correction procedure: three for
OCO-2 and four for OCO-3 v10. Some of the same models
were also used in the XCO2 evaluation, but using a different
model data version and a different evaluation period. A few
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Table 3. TCCON stations used in the quality filtering and bias correction of OCO-2 and OCO-3 v10. Sites used only for OCO-2 are indicated
with a in the first column. Sites located on an island are indicated with b in the second column.

TCCON Latitude Altitude Operational date range Data
station name Continent (degrees) (meters) (yyyymm–yyyymm) citation

Sodankyläa Europe 67.4 N 188 200901–present Kivi et al. (2020)

East Trout Lake North America 54.4 N 502 201610–present Wunch et al. (2018)

Bialystoka Europe 53.2 N 180 200903–201810 Deutscher et al. (2017)

Bremena Europe 53.1 N 27 200407–present Notholt et al. (2019)

Karlsruhe Europe 49.1 N 116 200909–present Hase et al. (2015)

Paris Europe 48.8 N 60 201409–present Te et al. (2014)

Orleans Europe 48.0 N 130 200908–present Warneke et al. (2014)

Garmisch Europe 47.5 N 740 200707–present Sussmann and Rettinger (2018a)

Zugspitze Europe 47.4 N 2960 201204–present Sussmann and Rettinger (2018b)

Park Falls North America 45.9 N 440 200405–present Wennberg et al. (2017a)

Rikubetsu Asia 43.5 N 380 201311–present Morino et al. (2018c)

Lamont North America 36.6 N 320 200807–present Wennberg et al. (2016)

Anmyeondoa Asia 36.5 N 30 201408–present Goo et al. (2017)

Tsukuba Asiab 36.1 N 30 200812–present Morino et al. (2018a)

Nicosia Europeb 35.1 N 185 201908–present Petri et al. (2020)

Edwards North America 35.0 N 699 201307–present Iraci et al. (2016)

JPLa North America 34.2 N 390 201103–201307 Wennberg et al. (2017b)
201706–201805 Wennberg et al. (2017b)

Caltech North America 34.1 N 230 201209–present Wennberg et al. (2015)

Saga Asiab 33.2 N 7 201106–present Shiomi et al. (2014)

Izana Africab 28.3 N 237 200705–present Blumenstock et al. (2017)

Burgos Asiab 18.5 N 35 201703–present Morino et al. (2018b)

Ascensiona Africab 7.9 S 10 201205–present Feist et al. (2017)

Darwin Australia 12.4 S 30 200508–present Griffith et al. (2014a)

Reunion Africab 20.9 S 87 201109–present De Mazière et al. (2017)

Wollongong Australia 34.4 S 30 200805–present Griffith et al. (2014b)

Lauder Australiab 45.0 S 370 200406–present Pollard et al. (2017)

of the models were used only for the XCO2 product evalua-
tion.

An averaging kernel correction was applied to both the
TCCON and the model XCO2 values to account for differ-
ences in the vertical profiles compared to the ACOS prior.
The general form of the equation is

XCO2,ak =

20∑
i=1

hi
{
aium,i + (1− ai)ua,i

}
. (1)

Here, hi is the pressure weighting function on the i = 1. . .20
ACOS model levels, defined as the pressure intervals as-
signed to the state vector normalized by the surface pressure
and corrected for the presence of atmospheric water vapor.
See Appendix A of O’Dell et al. (2012) for details. The vec-
tor a is the CO2 column averaging kernel, which relates the
sensitivity of the retrieved CO2 to the true atmospheric state
of CO2 at each vertical level, as described in Connor et al.
(2008). The vector um is the retrieved TCCON or model pro-
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Table 4. Names, institutions, and citations of the atmospheric inversion systems used in the quality filtering, bias correction, and XCO2
evaluation of OCO v10.

Model Name Institute Citations

CAMS-REAN European Centre for Medium-Range Weather Forecasts Agustí-Panareda et al. (2014), Ramonet et al. (2021)
CAMS-INV Copernicus Atmosphere Monitoring Service Chevallier et al. (2010), Chevallier (2021)
CarbonTracker NOAA Global Monitoring Laboratory Peters et al. (2007), Jacobson et al. (2021)
CarboScope Max Planck Institute for Biogeochemistry Rödenbeck et al. (2018), Rödenbeck (2005)
LoFI NASA Goddard GMAO Weir et al. (2021)
UoE University of Edinburgh Atmospheric Composition Feng et al. (2009), UoE (2021)

Modelling Group

Table 5. Characteristics of models used for quality filtering, bias correction, and evaluation of OCO v10. The notation n/a indicates not
applicable.

Model short Spatial Temporal Transport model Inverse Meteorology
name resolution resolution method source

(lat× long)

CAMS-REAN 0.75◦× 0.75◦ 3 h Integrated Forecast System (IFS) 4D-Var ECMWF
CAMS-INV 1.9◦× 3.75◦ 3 h LMDZ Variational ERA-Interim
CarbonTracker 2◦× 3◦ 3 h TM5 EnKF ERA-Interim
CarboScope 4◦× 5◦ 6 h TM3 4D-Var NCEP
LoFI 0.5◦× 0.625◦ 3 h GEOS GCM n/a MERRA-2
UoE 2◦× 2.5◦ 3 h GEOS-Chem EnKF GEOS-FP

file of CO2, linearly interpolated from the native vertical res-
olution to the 20 ACOS levels. The vector ua is the ACOS
prior profile of CO2. Generally the averaging kernel correc-
tions are on the order of 0.5 ppm or less.

Finally, a third truth proxy for training the v10 quality fil-
tering and bias correction was the “small area approxima-
tion” (SAA). Each small area is a collection of OCO XCO2
soundings over < 100 km sections within single orbits, for
which, in the absence of strong localized sources, the real
uncertainty in XCO2 is expected to be well under 0.1 ppm
(Worden et al., 2017). A median value of each small area
provides a truth proxy to which each sounding in the small
area can be compared. While small areas are not suitable for
determining large-scale biases in the satellite data, they pro-
vide a measure of the uncertainty in the XCO2 estimates due
to both instrument noise and systematic errors that act on
smaller scales. This “actual” uncertainty can be compared
to the “theoretical” uncertainty derived from the L2FP re-
trieval and stored in the L2Lite files as xco2_uncertainty. For
the v10 quality filtering and bias correction training, approx-
imately 750× 103 and 280× 103 small areas were identified
for OCO-2 and OCO-3, respectively.

3.3.2 Quality filtering and bias correction methodology

Details of the OCO quality filtering procedure are described
in Sect. 4.2 of Kiel et al. (2019) for the OCO-2 v9 product
and in Sect. 6.2 of Taylor et al. (2020) for OCO-3 vEarly.
Here, the method is summarized and differences in the v10

implementation for OCO-2 and OCO-3 are highlighted. In
short, the quality filtering procedure assigns to each sounding
in the L2Std XCO2 product a good (QF= 0) or bad (QF= 1)
binary quality flag based on comparison to truth proxies. A
number of retrieval parameters (32 for OCO-2 v10 and 30
for OCO-3 v10.4) are assigned threshold cutoff values, out-
side which a sounding is considered unreliable, although all
soundings in the L2Std product are retained in the L2 Lite
XCO2 files. The selected variables and their threshold val-
ues can be found in Sect. 3.2.4 of the OCO-2 v10 Data User
Guide (DUG) (Osterman et al., 2020) and Sect. 5.1.2 of the
OCO-3 v10.4 DUG (Payne et al., 2022). Training for the
quality filtering and bias correction procedure takes place on
a quick test set (QTS), which is an intelligently selected sub-
set of approximately 5 % of the full OCO data record that is
available at the time of the training.

The methodology for the empirical bias correction of the
XCO2 estimates was first described in Wunch et al. (2011b)
and later in more detail by O’Dell et al. (2018), wherein the
fundamental equation for OCO is defined as

XCO2,bc (mode,j)=

XCO2,raw−CP (mode)−CF (j = 1. . .8)
C0 (mode)

. (2)

Here, CP is the mode-dependent parametric bias, CF is a
mode- and footprint-dependent bias for each of the eight
footprints, and C0 represents a mode-dependent global scal-
ing factor. Bias correction coefficients are derived using only
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Table 6. Model versions used for the quality filtering, bias correction (indicated by an asterisk ∗), and XCO2 evaluation of OCO v10. The
notation n/a means not applicable.

Model name QF/BC QF/BC time period Evaluation Evaluation time period
version (yyyymmdd–yyyymmdd) version (yyyymmdd–yyyymmdd)

OCO-2

CAMS-INV∗ 2018-v2 20140906–20190304 v20r2 20190806–20201231
CarbonTracker∗ CT-NRT.v2019-2 20140906–20190329 n/a n/a
CarboScope∗ s04oc-v4 20140906–20190304 s10oc-v2021 20190806–20201231
Lo-Fi n/a n/a m2ccv1sim 20190806–20201231
UoE n/a n/a v5 20190806–20201231

OCO-3

CAMS-REAN∗ v11899 20190806–20210223 n/a n/a
CAMS-INV∗ v20r3 20190806–20210223 v20r2 20190806–20201231
CarbonTracker∗ CT-NRT.v2021-3 20190806–20200731 n/a n/a
Lo-Fi m2ccv1 20190806–20210223 m2ccv1sim 20190806–20201231
CarboScope∗ n/a n/a s10oc-v2021 20190806–20201231
UoE n/a n/a v5 20190806–20201231

soundings that have been assigned a good quality flag. Many
details related to the v10 quality filtering and bias correc-
tion can be found in the DUGs (Osterman et al., 2020; Payne
et al., 2022).

For ACOS OCO-2 v10, the selected bias correction param-
eters are similar to those used in previous versions. For land,
the parameters are (i) a term related to the deviation in the
retrieved CO2 profile from the prior, “CO2 grad del”, (ii) the
difference between the elevation-adjusted retrieved surface
pressure and the prior surface pressure, dPfrac, (iii) the com-
bined aerosol optical depth (AOD) of coarse-mode parti-
cles, log(AODdust+AODwater cloud+AODsea salt), and (iv) the
AOD of fine-mode particles, AODfine. Ocean retrievals use
two terms: (i) CO2 grad del and (ii) the difference between
the retrieved and prior surface pressure in the SCO2 band,
dPSCO2. The bias correction is very similar for OCO-3 v10,
with the exception that the coefficients are slightly different,
and over land, the AODfine term has been replaced with cri-
teria based on the retrieved albedo in the weak CO2 channel.

Table 7 provides a statistical summary of the results from
the quality filtering and bias correction for both OCO-2 and
OCO-3 for each of the three truth proxies. Results are given
separately for land observations (combined nadir and glint)
and for ocean–glint observations. The number of soundings
contained in each truth proxy dataset that was used in the
quality filtering and bias correction procedure is listed, along
with the fraction of the total soundings contained in the L2
Lite XCO2 product that were assigned a good quality flag,
i.e., the throughput. The standard deviation (σ ) of the dif-
ference between the satellite XCO2 estimates and the truth
proxy values is derived relative to (i) the raw XCO2 prior to
bias correction, (ii) the quality-filtered XCO2, and (iii) the
combined quality-filtered and bias-corrected XCO2. The two

rightmost columns of the table show the percent of the vari-
ance explained by the quality filtering (compared to the raw
XCO2) and the bias correction (compared to the quality fil-
tered XCO2), respectively. The variance explained is calcu-
lated as 1− (σ2/σ1)

2, where σ1 is the original uncertainty
(standard deviation) in the 1XCO2 and σ2 is the remaining
uncertainty. For each sensor and for both land and ocean–
glint observations, the mean values from the three truth prox-
ies are provided to help summarize the statistics.

Overall, the fraction of good-quality soundings remains
the same at approximately 60 % for both sensors for land
and ocean–glint. XCO2 estimates from both sensors exhibit
comparable uncertainties in raw XCO2 against the three truth
proxies of ≈ 2–3 ppm. Estimates from both sensors show a
reduction in uncertainties after application of the quality fil-
ter first and then the combined quality filter and bias cor-
rection to approximately 1 ppm for land and 0.7 ppm for
ocean–glint. Even though the mean of the uncertainties for
the OCO-2 raw XCO2 versus truth proxies for land was
higher (2.9 ppm) compared to OCO-3 (2.2 ppm), the mean
of the uncertainties for the OCO-2 quality-filtered and bias-
corrected XCO2 of 1.0 ppm is somewhat smaller than for
OCO-3 at 1.3 ppm. This implies that the bias correction is
more effective for OCO-2 than for OCO-3 over land. This is
evidenced in the rightmost column of the table, which indi-
cates that the OCO-2 bias correction explains 56 %–71 % of
the variance (mean of 61 %) across the truth proxies, while
only 24 %–43 % of the variance (mean of 34 %) is explained
by the OCO-3 bias correction. For ocean–glint observations,
the variance explained by the bias correction is similar for
OCO-2 and OCO-3 at 58 % and 55 %, respectively.

The lower variance explained by the OCO-3 bias correc-
tion seems to originate from a combination of both a less
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Table 7. Summary of the OCO-2 and OCO-3 v10 quality filtering (QF) and bias correction (BC) results versus the individual XCO2 truth
proxies.

Mode Sensor Truth proxy N Fraction Uncertainty (σ ) (ppm) Variance
(103 soundings) good QF explained

Raw QF QF and BC by QF by BC

Land OCO-2 TCCON 700 67 % 2.74 1.74 1.15 60 % 56 %
Models 3950 44 % 3.77 1.67 1.09 80 % 57 %
SAA 1400 69 % 2.18 1.53 0.84 51 % 71 %

Mean 2017 60 % 2.90 1.65 1.03 64 % 61 %

Land OCO-3 TCCON 200 69 % 2.02 1.50 1.33 45 % 24 %
Models 2150 56 % 2.76 1.49 1.16 71 % 34 %
SAA 870 67 % 1.70 1.11 0.97 57 % 43 %

Mean 1073 64 % 2.16 1.37 1.30 58 % 34 %

Ocean–glint OCO-2 TCCON 240 71 % 1.73 1.07 0.82 62 % 41 %
Models 2030 52 % 2.52 1.12 0.73 80 % 58 %
SAA 750 72 % 1.52 0.90 0.46 65 % 74 %

Mean 1006 65 % 1.92 1.03 0.67 69 % 58 %

Ocean–glint OCO-3 TCCON 170 54 % 2.05 1.15 1.01 69 % 23 %
Models 1560 55 % 2.22 1.21 0.72 70 % 65 %
SAA 910 73 % 1.59 0.97 0.47 63 % 77 %

Mean 880 61 % 1.95 1.11 0.73 67 % 55 %

effective dP correction and a much less effective CO2 grad
del correction, a term related to the deviation in the re-
trieved CO2 profile from the prior. It is likely that the resid-
ual pointing errors in OCO-3 v10 of up to 1–2 km (median
of ≈ 0.5 km), shown in Appendix B, produce a less accu-
rate surface pressure prior, which in turn yields larger dP
uncertainties from the L2FP retrieval. In addition, remaining
radiometric calibration issues in the OCO-3 ABO2 spectral
band may affect the retrieved surface pressure. Both of these
factors could explain the less effective OCO-3 dP bias cor-
rection term. No viable explanation has yet been formulated
for why the OCO-3 CO2 grad del bias correction term is so
much less effective relative to that for OCO-2.

Improvements in successive versions of the ACOS L2FP
retrieval are demonstrated in Fig. 1, which compares RMSEs
in XCO2 from v9 and v10 OCO-2 as well as v10 OCO-3
versus the three truth proxies for land and ocean–glint ob-
servations. There are substantial decreases in the RMSE for
OCO-2 from v9 to v10 compared to both TCCON and to
the MMM for both land and ocean–glint. The changes in
the OCO-2 RMSE from v9 to v10 for the small area anal-
ysis were insignificant between versions, which is to be ex-
pected because errors at very small spatial scales are primar-
ily driven by instrument noise, which cannot be further re-
duced. For all three truth metrics versus land observations,
OCO-3 compares worse than OCO-2. The discrepancy is
likely driven by both OCO-3 residual pointing errors and L1b

calibration errors, both of which are expected to improve in
the next data version. The worse agreement of OCO-3 v10
with TCCON compared to OCO-2 v10 can be explained
in part by the limited number of TCCON collocations with
OCO-3 that were available at the time of creation of the QTS.
Incidentally, the data also demonstrate that for all truth prox-
ies and for both sensors, ocean–glint errors are lower than
land errors, indicating higher precision relative to land obser-
vations. This result is at odds with previous findings showing
unrealistic features in global inversion models which assim-
ilate OCO-2 ocean–glint data (e.g., Peiro et al., 2022; Byrne
et al., 2023).

4 OCO v10 XCO2 data volumes

Global maps showing the spatial distribution of the native
sounding densities for a single year (2020) and a single foot-
print are shown in panels (a) and (c) of Fig. 2 for OCO-2 and
OCO-3, respectively. The data here have been aggregated to
2.5◦ by 5◦ latitude–longitude grid cells, whereas the actual
swath width of each sensor is on the order of 10 km. Al-
though the total number of soundings collected is very simi-
lar (≈ 40 million), the distinct difference in latitudinal extent
of the two sensors due to the orbital characteristics is evi-
dent. The polar orbit of OCO-2 provides nearly continuous
latitudinal coverage. There is somewhat less coverage for or-
bit tracks over the northeastern Pacific because these orbits
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Figure 1. RMSEs for different versions of OCO-2 and OCO-3
XCO2 versus three truth proxies: TCCON, multi-model median
(MMM), and small area approximations (SAAs). Results are de-
rived from single-sounding statistics using quality-filtered and bias-
corrected XCO2 from the QTS. Results for land observations are
shown in panel (a), while panel (b) shows results for ocean–glint
observations.

are used for data downlink, during which the OCO-2 instru-
ment does not acquire science measurements. The precessing
orbit of OCO-3 on the ISS limits coverage to latitudes less
than ≈ 52◦, near which there is a high density of soundings
at the orbit inflection points. In other words, OCO-3 produces
a similar overall number of soundings compared to OCO-2,
but the soundings are restricted to a smaller area, thus pro-
ducing a higher density.

The soundings that pass the preprocessor checks for cloud
and aerosol loading and then converge in the L2FP algorithm
are assigned either a good (QF= 0) or a bad (QF> 0) quality
flag in post-processing. Typically, it is recommend that only
the good-quality-flagged soundings be used in atmospheric
inversion systems to deduce CO2 fluxes. Panels (b) and (d)
of Fig. 2 show the sounding densities of the good-quality-
flagged data for OCO-2 and OCO-3, respectively. Qualita-
tively, the distributions of good soundings from the two sen-
sors resemble clear-sky fraction maps, as expected. Over
land, OCO-3 provides more good soundings than OCO-2,
especially near 50◦ latitude as a result of the ISS orbit. Fur-
thermore, OCO-3 operates almost exclusively in nadir mode
over land, which may also contribute to a higher good-quality
sounding throughput relative to OCO-2 land–glint observa-
tions, which have higher optical path lengths and thus sen-
sitivity to clouds and aerosols. Conversely, OCO-3 provides
less good soundings over the oceans compared to OCO-2 due
to lower sampling rates in glint observation mode as con-
strained by operations aboard the ISS. Mechanical and oper-
ational constraints on the OCO-3 instrument frequently pre-
clude pointing towards the glint spot. During these periods,
the instrument collects ocean data in nadir mode, for which
the signal-to-noise ratio is too low to provide accurate esti-
mates of XCO2.

Figure 3 shows bar plots quantifying the number of good
soundings by month for each observation mode for the over-
lapping time period of August 2019 through February 2022
for OCO-2 (Fig. 3a) and OCO-3 (Fig. 3b). These plots help to
visualize the difference in the ratio of land to ocean–glint ob-
servations for the two sensors. OCO-2 collects a much larger
and more stable fraction of monthly ocean–glint compared to
OCO-3. The lack of good-quality ocean–glint OCO-3 obser-
vations early in the mission is evident, as observations were
often restricted to nadir-viewing mode due to safety concerns
related to early uncertainties in the effects of polarization and
signal levels for OCO-3, which were mitigated by revised
PMA pointing with respect to the glint spot (Taylor et al.,
2020). The plot also highlights the higher relative fraction
of OCO-3 TG and SAM data (8 % of the total) compared to
only 1 % TG data for OCO-2, a distinguishing characteristic
that sets the two missions apart.

Figure 4 presents the densities of good data (QF= 0) grid-
ded in time (10 d) and latitude (10◦) for OCO-2 (top) and
OCO-3 (bottom). This again effectively demonstrates the dif-
ference in spatial coverage between the two sensors. The
time–latitudinal coverage of OCO-2 is much smoother than
OCO-3 due to the repeating sun-synchronous polar orbit. In
contrast, OCO-3 has a sinusoidal-like pattern of alternating
high and low densities over midlatitudes, with the maximum
value alternating in time between the Northern and Southern
Hemisphere. This is due to the precessing orbit of OCO-3
aboard the ISS, which introduces periodic variations in the
portion of the Earth that is viewed during daylight hours.
In addition, OCO-3 is subject to both predictable and un-
predictable periods during which science measurements ei-
ther cannot be collected at all or are limited to nadir view-
ing, as discussed in Appendix B. Predictable data gaps occur
rather frequently for ocean–glint observations due to physi-
cal viewing constraints aboard the ISS JEM-EF. Periods of
missing data that are longer than 10 d can be seen in Fig. 4d
as columns that are fully gray.

5 Comparing v10 XCO2 estimates from OCO-2 and
OCO-3

As described in Sect. 1 of the OCO-3 v10.4 data qual-
ity statement (Chatterjee et al., 2022), early in the produc-
tion of the OCO-3 v10 XCO2 Lite product, an analysis
of XCO2 estimates collocated with OCO-2 soundings sug-
gested that there was a diverging trend that was correlated
with time since the last OCO-3 instrument decontamination
cycle. After development and application of an “ad hoc”
bias correction to the OCO-3 XCO2, the drift was elimi-
nated, bringing the two sensors into agreement within the
expected uncertainties of a few tenths of a part per million.
A new set of OCO-3 L2 Lite XCO2 files (v10.4) was gen-
erated and distributed to the NASA Goddard Earth Sciences
(GES) Data and Information Services Center (DISC) website
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Figure 2. Version 10 data volumes from a single detector footprint (4 of 8, 1-based) for the year 2020 gridded at 2.5◦ latitude by 5◦ longitude
resolution for OCO-2 (a, b) and OCO-3 (c, d). The total number of measured soundings (N ) for each sensor is shown in panels (a) and (c).
Panels (b) and (d) show the number of soundings (N ) that were assigned a good quality flag in the L2 Lite XCO2 product. The percent of
the total number of measurements is given as G. Grid cells containing fewer than 10 soundings are colored gray.

Figure 3. Bar plots of the monthly number of good-quality-flagged
soundings for OCO-2 (a) and OCO-3 (b) by observation mode (col-
ors) for the time period of August 2019 through February 2022. The
fractional percent for each observation mode is listed in the legend,
along with the total number of good-quality-flagged soundings (N ).

(OCO Science Team et al., 2022). A full discussion of the ad
hoc correction is provided in Appendix B. The remainder of
the analysis that follows uses the OCO-3 v10.4 XCO2.

Figure 5 shows maps of the magnitude of the bias cor-
rection (ppm) for both sensors for April and August 2020.
The patterns look qualitatively similar, with bias corrections
ranging from zero to ≈ 2 ppm in the midlatitudes and polar
regions and bias corrections of up to≈ 4 ppm over the Sahara
and dust outflow regions, as well as the tropical oceans. The

mean global bias corrections are slightly larger for OCO-3
compared to OCO-2 for both months, but the uncertainties
are slightly smaller for OCO-3. The 2020 annual median
bias correction was 1.81 ppm for OCO-2 and 2.11 ppm for
OCO-3. Note that the OCO-3 v10.4 time-dependent ad hoc
bias correction discussed in Appendix B3 has been removed.

Figure 6 shows the spatial maps of OCO-2 and OCO-3
gridded quality-filtered and bias-corrected XCO2 for the
months of April and August 2020. The well-known fea-
tures of the atmospheric distribution of CO2 are present. For
example, high values are observed in the Northern Hemi-
sphere (NH) spring when the land biosphere is still quies-
cent (≈ 415 ppm), followed by lower values at high north-
ern latitudes in August when the biosphere is most active
(≈ 405 ppm). Since the seasonal cycle of CO2 is driven pri-
marily by biospheric activity on land, the difference in April
and August XCO2 in the Southern Hemisphere (SH) is much
smaller compared to the NH. Although the distribution of
XCO2 between the two sensors is qualitatively similar, the
figures illustrate the difference in latitudinal coverage due to
the differing orbit characteristics. This has meaningful conse-
quences for the interpretation of flux estimates derived from
inverse modeling of the OCO-2 and OCO-3 XCO2 concen-
trations. For example, OCO-3 cannot directly capture the
strong summer drawdown of CO2 in the northern boreal
forests. For this time and location, an inversion of OCO-3
CO2 fluxes must rely more on the model prior values since
there is no information provided by satellite measurements,
whereas an assimilation of OCO-2 XCO2 for this same time
and location would provide information to the models since
the satellite observed this location at this time. It is worth
noting that it is challenging to produce a meaningful differ-
ence in XCO2 for the two sensors at the global scale due to
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Figure 4. Data density (103) of the number of good-quality-flagged soundings for v10 OCO-2 (a, b) and OCO-3 (c, d) for land (a, c) and
ocean (b, d) at 10◦ latitude by 10 d resolution for the time period of August 2019 through February 2022. The ordinate axis is scaled by the
cosine of the latitude to elucidate the decreasing fractional surface area of the Earth with increasing latitude. Grid cells containing fewer than
10 soundings are colored gray.

Figure 5. Monthly maps of the bias correction for OCO-2 (a, b) and OCO-3 (c, d) for April 2020 (a, c) and August 2020 (b, d) gridded in
2.5◦ latitude by 5◦ longitude bins. The number of single soundings (SSs) is given by N , while the mean (µ) and standard deviation (σ ) of
the gridded (bin) data are reported. Grid cells with fewer than 10 soundings are colored gray.

the spatial and temporal differences in sampling. Generally,
such maps look qualitatively like differences in CO2 driven
by synoptic-scale weather patterns, as for any given grid box,
there might be a difference of several days in observations
from the two sensors. However, a direct comparison in XCO2
for a small set of collocated observations is provided in Ap-
pendix B3.

To further demonstrate the agreement between the two
sensors, panels (a) and (d) of Fig. 7 show the meridional
behavior of XCO2 for both sensors and observation modes
for April and August 2020, respectively. Here, the resolution
is 5◦ latitude bins, and the monthly median OCO-2 XCO2
has been subtracted. In April, when XCO2 concentrations
are near their annual maximums in the extratropical North-
ern Hemisphere, the meridional gradients are strong over
both land and ocean. In August, when the Northern Hemi-
sphere biosphere is fully active, XCO2 is within ≈ 1 ppm of

the global median for latitudes below approximately 40◦ N
but much lower than the global average at higher northern
latitudes. The difference plots (OCO-3−OCO-2), shown in
panels (b) and (e) of Fig. 7, indicate that OCO-3 ocean–
glint is generally biased low relative to OCO-2 by about 0.3
to 0.4 ppm with uncertainty, σ , of approximately 0.2 ppm.
For land observations, the differences vary significantly with
latitude, making inferences difficult. Panels (c) and (f) of
Fig. 7 show the zonally averaged differences between land
and ocean observations, which are expected to be close to
zero for both sensors. Based on the results for these partic-
ular months, OCO-2 and OCO-3 are in approximate agree-
ment, with land–ocean biases ranging ≈±2 ppm and signif-
icant variation by latitude. These same behaviors were ob-
served for most months in 2020. This latitudinally dependent
land–ocean bias is an unexpected feature of the dataset that
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Figure 6. Monthly maps of quality-filtered and bias-corrected XCO2 for OCO-2 (a, b) and OCO-3 (c, d) for April 2020 (a, c) and August
2020 (b, d) at 2.5◦ latitude by 5.0◦ longitude resolution. The number of single soundings (SSs) is given by N , while the mean (µ) and
standard deviation (σ ) of the gridded (bin) data are reported. Grid cells with fewer than 10 soundings are colored gray.

Figure 7. Meridional XCO2 gradients at 5◦ latitude resolution by sensor and observation mode for April 2020 (a) and August 2020 (d). Only
latitude bins containing at least 1000 soundings are shown. The total number of soundings (N ) for each sensor and observation mode is given
in the legend. Panels (b) and (e) show the differences in the monthly binned values (OCO-3−OCO-2) for both land (pink diamonds) and
ocean (purple circles) observations. Panels (c) and (f) show the differences in the monthly binned values (land− ocean) to demonstrate the
land–ocean bias. The mean (µ) and standard deviation (σ ) of the binned differences are given in the legend. Here, land observations include
land–nadir, land–glint, land–TG, and land–SAM, while ocean includes ocean–glint observations.

requires further investigation. The analysis for April and Au-
gust 2021 (not shown) was qualitatively very similar.

Figure 8 shows XCO2 binned at 10 d by 10◦ latitude for the
overlapping time period of August 2019 through February
2022 for OCO-2 (top row) and OCO-3 (middle row). Results
are shown separately for land (left column) and ocean (right
column). Qualitatively, the XCO2 patterns at this spatiotem-

poral resolution look very similar, as expected, with maxi-
mum XCO2 in NH spring just before the biospheric draw-
down begins and minimums in NH summer. The plots high-
light the secular trend of ≈ 2.2 ppm yr−1 and the seasonal
variation in the latitudinal gradient of XCO2, which are both
important features of the carbon cycle. Again, the substan-
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Figure 8. Good-quality-flagged and bias-corrected XCO2 gridded at 10◦ latitude by 10 d for the overlapping time period of August 2019
through February 2022 for OCO-2 land (a) and OCO-3 land (b). The gridded differences for land observations (includes land–nadir, land–
glint, land–TG, and land–SAM) are shown in panel (c). Panels (d), (e), (f) are the same, except for ocean–glint observations. The ordinate
axis is scaled by the cosine of the latitude to elucidate the decreasing fractional surface area of the Earth with increasing latitude. Data cells
with fewer than 10 soundings are colored gray. In panels (c) and (f) the number of valid grid cells (N ) is given, along with the mean (µ),
standard deviation (σ ), and maximum (max) and minimum (min) differences in the gridded values.

tial time periods during which no ocean data are collected by
OCO-3 are evident in Fig. 8e.

Due to the vastly different sampling strategies of OCO-2
and OCO-3, coupled with spatial changes in XCO2 over
short time periods, a direct comparison of observed XCO2
at a global scale is extremely difficult and can only be
used to obtain a rough idea of how the sensors agree. Us-
ing the gridded values, the differences for land observations
(Fig. 8c) have a mean value of 0.0 ppm, standard deviation
of 0.67 ppm, and a range of +5 to −4 ppm. The ocean ob-
servations (Fig. 8f) exhibit a mean bias of−0.26 ppm (OCO-
3 lower than OCO-2), with significantly lower uncertainty
(0.45 ppm) and min–max (−1.9 and +1.7 ppm) compared to
land. A more direct and accurate comparison between the
two sensors, reported for a small subset of observations with
tight spatial and temporal collocation, is discussed in Ap-
pendix B3.

6 Evaluation of OCO v10 XCO2 estimates versus truth
proxies

This section discusses the evaluation of the OCO v10 good-
quality-flagged XCO2 estimates against the truth proxies
used in the quality filtering and bias correction procedure.
Although there is some circularity in evaluating the satel-
lite data against the same truth proxies used for filtering and
bias correction, the multiparameter parametric bias correc-
tion is general enough so as not to overfit the OCO data.
Furthermore, the truth proxies used for evaluation have been
extended in time compared to the datasets used to train the
filtering and bias correction. Although it is outside the scope

of the current work, OCO-2 data have been validated against
a range of other datasets, including in situ, NOAA and Air-
core vertical observations (Rastogi et al., 2021), aircraft cam-
paigns, e.g., ATom (Kulawik et al., 2019) and ACT-America
(Bell et al., 2020), shipborne and airborne measurements
(Müller et al., 2021), and EM27/SUN measurements (Jacobs
et al., 2020).

6.1 OCO v10 XCO2 estimates versus TCCON

Section 3.3.1 introduced and discussed the TCCON data
as used in the OCO v10 quality filtering and bias correc-
tion. Both OCO-2 and OCO-3 were quality-filtered and bias-
corrected against TCCON GGG2014 data, while here TC-
CON GGG2020 XCO2 estimates are used in the comparison.
Key changes to the retrieval algorithm between GGG2014
and GGG2020 are available on the TCCON wiki page (TC-
CON, 2023). The OCO quality filtering and bias corrections
were trained using data through December 2018 for OCO-2
and December 2020 for OCO-3, whereas the validation data
extend through February 2022 for OCO-2 and August 2022
for OCO-3. This provides some degree of independence in
the evaluation.

Figure 9 shows one-to-one correlation plots of the OCO-2
and OCO-3 v10 XCO2 estimates versus TCCON GGG2020
estimates, as well as the direct correlation between OCO-2
and OCO-3 using the collocated soundings that are presented
in Appendix B. Each point on the graphs represents, for
OCO, the mean XCO2 of the individual soundings acquired
on a single overpass within a box 2.5◦ latitude by 5.0◦ longi-
tude around a TCCON station. Only overpasses with at least
100 good-quality-flagged OCO soundings within the 2.5◦ lat-
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Figure 9. One-to-one XCO2 correlation plots for land (a–c) and ocean (d–f) observations. Panels (a) and (d) show OCO-2 v10 versus
collocated TCCON GGG2020 estimates, while panels (b) and (e) show OCO-3 v10 versus TCCON. Panels (c) and (f) show the correlation
in OCO-3 versus OCO-2 XCO2, respectively, for the set of collocated soundings described in Appendix B3. In each panel, the top two rows
of statistics give the mean (µ) of the XCO2 from all of the collocations and the mean standard deviation in the XCO2 (σ ) from all of the
collocations. The third through seventh rows of statistics give the number of collocations (N ), the mean 1XCO2, the standard deviation of
the 1XCO2, the RMSE (

√
µ2+ σ 2), and the coefficient of determination (R2: the squared Pearson linear correlation coefficient).

itude by 5.0◦ longitude grid box were retained. The TCCON
values are the median of the XCO2 acquired within ±1 h of
the OCO overpass.

For the 1121 OCO-2 land collocations (includes land–
nadir, land–glint, and land–target) shown in Fig. 9a and the
259 OCO-3 land collocations (includes land–nadir and land–
target) shown in Fig. 9b, the mean biases versus TCCON are
0.24 and 0.12 ppm, respectively, while the uncertainties are
0.77 and 0.90 ppm, respectively. In comparison, the OCO-3
vs. OCO-2 results, using the satellite collocations described
in Appendix B, show a mean bias of 0.04 ppm with un-
certainty of 0.82 ppm for land (Fig. 9c). This suggests that
OCO-2 and OCO-3 agree with each other about as well as
they agree with TCCON for land observations.

For the ocean–glint observations, OCO-2 exhibits a rel-
atively high bias against TCCON of 0.43 ppm, with uncer-
tainty of 0.73 ppm (Fig. 9d), while for OCO-3, the bias is
0.09 ppm with uncertainty of 0.90 ppm (Fig. 9e). It is impor-
tant to note, however, that several of the TCCON stations
that provide the bulk of the ocean–glint collocations had not
yet processed their measurements through the GGG2020 ver-
sion of the algorithm to provide estimates of XCO2. These

stations include Ascension Island, Darwin, and Wollongong.
When those data are available, more robust statistics will be
calculated. Comparison of the OCO-2/3 ocean–glint collo-
cations in Fig. 9f indicates that the bias between OCO-3
and OCO-2 ocean–glint is −0.28 ppm, with uncertainty of
0.49 ppm. This again suggests that the two sensors agree with
each other in ocean–glint viewing approximately as well as
they agree with TCCON.

6.2 OCO v10 XCO2 estimates versus models

To assess the impact of OCO XCO2 estimates on atmo-
spheric inverse models, it is useful to compare the v10 prod-
uct to results generated by an ensemble of carbon flux in-
verse models constrained by in situ measurements alone
(e.g., O’Dell et al., 2018). This is done by calculating the
difference between OCO retrievals from a reference XCO2
field; this difference is referred to as the “signal”. In the cur-
rent work, the reference field is computed as the median of
posterior concentrations from multiple models constrained
by in situ measurements and is hereafter referred to as the
multi-model median (MMM). The MMM provides a reason-
able representation of XCO2 with seasonality and trends con-
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sistent with information derived from in situ measurements
of atmospheric CO2 and does not necessarily represent the
actual atmosphere at all spatiotemporal scales. This tech-
nique for looking at differences between satellite retrievals
and modeled fields over broad, zonal regions is not new and
has been employed in the literature for sanity checks (e.g.,
Chahine et al., 2008; Buchwitz et al., 2017; Zhang et al.,
2017).

One of the contributions of satellite XCO2 estimates, such
as those from OCO-2 and OCO-3, towards improving atmo-
spheric flux inversion estimates is their ability to increase
the density of global observations. A well-calibrated and pre-
cise satellite data record should offer the potential to reduce
some of the uncertainties in the flux estimation associated
with sparse sampling.

However, the global atmospheric transport models used in
current-generation inversion studies have spatial resolutions
of the order of 2 to 6◦ latitude and longitude. Such models
cannot provide information with variability finer than sev-
eral hundred kilometers. Rather than ingesting each individ-
ual OCO-2 XCO2 estimate falling inside a model grid box,
down-sampling of the data into 10 s averages (10-sec-avg)
prior to assimilation into inversion systems has become com-
mon (Crowell et al., 2019; Peiro et al., 2022; Byrne et al.,
2023). This provides an even more compact dataset with re-
duced random sounding-to-sounding errors in the XCO2 es-
timates and mitigates the potential impact of correlated er-
rors on ≈ 10 km spatial scales, such as those driven by sur-
face features or the presence of aerosols and clouds (Massie
et al., 2021; Mauceri et al., 2023; Massie et al., 2023). Care
is taken to specify an appropriate measurement uncertainty,
calculated as a function of the number of soundings within
the 10-sec-avg bin, individual uncertainties associated with
the soundings, coverage across the grid box, and correlations
between their individual errors (Baker et al., 2022). In this
study, XCO2 from the 10-sec-avg files is used to compare
against the relatively spatially coarse model fields.

The models chosen for evaluation of the OCO v10 signal,
identified in Sect. 3.3 and Table 6, all fit the following cri-
teria: (i) each is constrained only by in situ measurements
of CO2 concentrations in the atmosphere, (ii) each has been
evaluated and vetted against independent data in the peer-
reviewed literature, (iii) the simulated CO2 fields and surface
fluxes are publicly available, and (iv) each simulation uses
different atmospheric transport models and a unique inverse
modeling framework (Table 5), thus sampling the full range
of uncertainties in our present-day state-of-the-art knowledge
of the atmospheric CO2 field.

Figure 10 shows maps of the signal at 2.5◦ by 5◦ lat–
long resolution for April (top row) and August (bottom row)
2020 for OCO-2 (right column) and OCO-3 (middle col-
umn). Both sensors exhibit spatially coherent biases against
models on the order of half of a part per million. Over oceans,
the satellite estimates of XCO2 are generally biased low rela-
tive to the models in the SH and biased high in the NH. How-

ever, in the OCO-2 data, which extend further poleward com-
pared to OCO-3, the high bias seems to occur at higher lati-
tudes, both north and south. Following expectations, the un-
certainty in the gridded data for both sensors in both months
is higher for land (≈ 1 ppm) due to biases associated with to-
pographic and surface albedo variability than it is for ocean
(≈ 0.5 ppm), where these effects are minimal.

The differences in the gridded sensor signals are
shown in Fig. 10c for April and Fig. 10f for Au-
gust. Mathematically, the calculation is expressed as
1signal= signalOCO-3

− signalOCO-2. Since the satellites
sample the models at different times for individual soundings
within a grid box, this calculation is not equivalent to a direct
difference in the XCO2 between the sensors. Rather, it quan-
tifies how different the satellite signals are from the MMM.
The 1signal values demonstrate that the two sensors agree
better with each other than they do with the model suite in
the region of overlap, as seen by the reduction in uncertainty
to ≈ 0.45 ppm, with mean biases around 0.25 ppm in both
months. Generally, OCO-3 is biased slightly higher against
the MMM over land compared to OCO-2, while over ocean,
OCO-3 is biased low against the MMM compared to OCO-2.

A useful way to investigate the characteristics of the sig-
nal is by binning values into zonal (10◦ latitude) and 10 d
bands, as seen in Fig. 11. Here, land observations, which in-
clude land–nadir, land–glint, land–TG, and land–SAM, are
shown in the left column and ocean–glint observations on
the right, with OCO-2 on the top row and OCO-3 in the mid-
dle. The model suite runs only through December 2020, so
the graphs cover a 16-month period starting in August 2019.
While the zonal mean tends to de-emphasize certain spatial
features visible in the global maps, it brings out the tempo-
ral variations in the signal. Based on these results, coherent
seasonal and latitudinal patterns in the signal are observed
for both sensors. For land observations, both sensors tend
to have positive signals in the NH and negative signals in
the SH, while for ocean–glint observations, the signals tend
to be positive poleward of the tropics in both hemispheres
and negative in the tropics. The statistics calculated for the
gridded signal data indicate that OCO-3 has higher uncer-
tainty than OCO-2 (0.62 ppm vs. 0.46 ppm) and a larger bias
(−0.30 ppm vs. −0.15 ppm) than OCO-2 for land observa-
tions, as seen in Fig. 11a and b. The statistics for ocean–glint
signals indicate similar uncertainties between the two sensors
of 0.53 and 0.59 ppm for OCO-2 and OCO-3, respectively,
with mean biases of 0.24 and−0.23 ppm, as seen in Fig. 11d
and e. The lower two panels of Fig. 11 show the differences
in the gridded values (1signal) between the two sensors for
land observations in Fig. 11c and for ocean–glint observa-
tions in Fig. 11f. The gridded mean difference between the
two sensors for land observations is −0.08 ppm. The largest
differences for land occur in December 2019, immediately
following the OCO-3 PMA calibration that was described in
Sect. 2.1.2 of Taylor et al. (2020), continuing through Jan-
uary 2020 when the next OCO-3 decontamination cycle oc-
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Figure 10. Maps of XCO2 signal (XCOOCO
2 −XCOMMM

2 ) at 2.5◦ latitude by 5◦ longitude resolution for April 2020 (a–c) and August
2020 (d–f) for OCO-2 (a, d) and OCO-3 (b, e). The numbers of single soundings (N SS) for all observation modes combined (all), combined
land–nadir, land–glint, land–TG, and land–SAM (land), and water–glint (water) are given. The mean (µ) and standard deviation (σ ) of the
binned values (bin) are also given for each observation mode. Grid cells containing fewer than five soundings are colored gray. Panels (c)
and (f) show the 1signal (OCO-3−OCO-2) for grid cells in which both sensors have valid data. Here, the statistics are given only for all
observation modes combined.

Figure 11. The XCO2 signal (XCOOCO
2 −XCOMMM

2 ) gridded at 10◦ latitude by 10 d for the time period of August 2019 through December
2020 for OCO-2 land (a) and OCO-3 land (b). The1signal for land observations (includes land–nadir, land–glint, land–TG, and land–SAM)
is shown in panel (c). Panels (d), (e), and (f) are the same, except for ocean–glint observations. The ordinate axis is scaled by the cosine of
the latitude to elucidate the decreasing fractional surface area of the Earth with increasing latitude. Data cells with fewer than 10 soundings
are colored gray. In panels (a), (b), (d), and (e) the number of single soundings (N SS) is given, along with the mean (µ), standard deviation
(σ ), and maximum (max) and minimum (min) values of the gridded (bin) values. In panels (c) and (f) the number of valid grid cells (N ) is
given, along with the mean (µ), standard deviation (σ ), and maximum (max) and minimum (min) differences in 1signal.

curred. The origin of this feature in the OCO-3 v10.4 XCO2
record is not currently understood. The gridded differences
for ocean–glint observations, shown in Fig. 11f, indicate a
mean low bias of −0.3 ppm for OCO-3 relative to OCO-2.
Overall, as demonstrated with the maps in Fig. 10, these plots

suggest that the two sensors tend to agree better with one an-
other than they do with the model suite.
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Figure 12. Analysis of XCO2 uncertainties for land–nadir small
areas for OCO-2 (a, b) and OCO-3 (c, d). Panels (a) and (c) pro-
vide the frequency distributions of both the theoretical uncertain-
ties (blue curves) of the retrieved XCO2 as reported in the L2Lite
file product (variable xco2_uncertainty) and the actual uncertainties
(green curves) calculated from the standard deviation in the XCO2
for individual small areas. The number of small areas (N ) as well as
the mean (µ) and standard deviation (σ ) of the theoretical and actual
uncertainties are given in the legend. Panels (b) and (d) show the
correlation of the actual uncertainties against the theoretical uncer-
tainties using binned median values (black filled circles) to highlight
deviations from the 1-to-1 line (dashed black line). A least-squares
linear fit to the binned data is shown (dotted red line), along with
the correlation coefficient (R), the slope of the fit (m), and the fit
offset (y).

6.3 OCO v10 XCO2 estimates over small areas

Small areas, as introduced in Sect. 3.3.1, were used as XCO2
truth proxies in the development of the v10 quality filtering
and bias correction. Small areas can also be used to derive re-
alistic estimates of XCO2 uncertainties for assimilation into
inversion systems (Baker et al., 2022; Peiro et al., 2022). For
each small area, the “theoretical” uncertainty is calculated as
the median value of the XCO2 uncertainties, which are de-
scribed in Appendix B of O’Dell et al. (2012) and recorded
in the L2Lite files. The “actual” uncertainty is calculated as
the standard deviation of the retrieved XCO2 in each small
area. A minimum of 40 OCO soundings are required for each
small area. Ideally, the actual uncertainties are highly corre-
lated with the theoretical uncertainties, with the relationship
having a one-to-one dependence (slope, m= 1) and the y in-
tercept falling at zero (y= 0). Figures 12 and 13 show the
results of an analysis of the small area XCO2 uncertainties
for land–nadir and ocean–glint observations, respectively.

The frequency distributions of the XCO2 uncertainties
over land–nadir small areas, as shown in panels (a) and (c)

Figure 13. Same as Fig. 12, but for ocean–glint small areas.

of Fig. 12 for OCO-2 and OCO-3, respectively, indicate that
the actual uncertainties (green curves) are slightly larger with
a wider distribution of values compared to the L2FP noise-
driven theoretical uncertainties (blue curves). Although the
actual uncertainties tend to be biased high, they are highly
correlated with the theoretical uncertainties, having R values
of 0.95 and 0.98 for OCO-2 and OCO-3, respectively, as seen
in panels (b) and (d) of Fig. 12 for OCO-2 and OCO-3, re-
spectively. Here, the median binned values are shown, rather
than the uncertainties for individual small areas, to highlight
deviations from the expected 1-to-1 relationship. These re-
sults imply that there are additional spatially correlated sys-
tematic uncertainties in the ACOS retrieval over small areas,
and these additional uncertainties are similar for both sen-
sors.

For ocean–glint observations, shown in Fig. 13, XCO2 un-
certainties in small areas have different characteristics com-
pared to land observations. The frequency distributions of the
XCO2 uncertainties, shown in panels (a) and (c) of Fig. 13
for OCO-2 and OCO-3, respectively, indicate that the ac-
tual uncertainties (green curves) are often lower than the
L2FP noise-driven theoretical uncertainties (blue curves), es-
pecially for OCO-3. Furthermore, even though the actual un-
certainty correlates reasonably well with the theoretical un-
certainty (R= 0.53 for OCO-2 andR= 0.89 for OCO-3), the
line of best fit falls well off the expected one-to-one relation-
ship, with a slope of 0.18 for OCO-2 and 0.31 for OCO-3. For
the lowest theoretical uncertainties, the actual uncertainty is
near or somewhat higher than anticipated, but when the the-
oretical uncertainties are large, the actual uncertainties are
significantly lower than anticipated. This is unexpected for a
well-characterized retrieval and indicates that there is some
nonlinearity or other systematic behavior in the v10 ocean–
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glint retrieval. Early efforts to develop the OCO-2 v11 prod-
uct suggest this is due to the parameterization of the ocean
surface reflectance model. Additional investigation is under-
way.

6.4 OCO v10 XCO2 estimates along coastal crossings

Although not used in the parametric bias correction, the con-
tinuity of XCO2 estimates across coastlines (coastal cross-
ings) provides a metric for detecting and correcting biases
between land and ocean estimates of XCO2. Barring strong
carbon sources or sinks, the true XCO2 should not change
significantly at this transition, so the retrieved estimates
should agree quite well. Here, a coastal crossing is defined as
a set of contiguous soundings spanning approximately 50 km
on either side of a land–water interface. The XCO2 val-
ues are quality-filtered and bias-corrected and include only
glint-viewing-mode observations for both land and water. For
OCO-2 v10, the coastal crossings were used, along with TC-
CON collocations and model fields, to determine the ocean–
glint global scaling factor of 0.995, as described in Sect. 3.2.3
of the DUG (Osterman et al., 2020). For OCO-3 v10, the
coastal crossings and model fields were used to determine
the ocean–glint global scaling factor of 0.9961, as described
in Sect. 5.1.5 of the DUG (Payne et al., 2022).

Figure 14 shows an analysis of the coastal crossing dataset
for the v10 OCO-2 (top row) and OCO-3 (bottom row),
containing ≈ 20×103 and 0.5×103 crossings, respectively.
Figure 14a and c show 1XCO2 in 5◦ latitude bins with
1 standard deviation error bars as thin vertical lines. The
mean land–ocean difference tends to be positive (negative) in
the southern (northern) extratropical latitudes for both sen-
sors. Figure 14b and d show the frequency distributions of
1XCO2 for the individual coastal crossings. The means are
biased −0.10± 0.83 and −0.11± 0.88 ppm for OCO-2 and
OCO-3, respectively. The uncertainties are presumably due
to local geometry, aerosol, and surface effects. In the future,
an assessment should be made as to whether these biases can
be explained by any retrieved parameters or other indepen-
dent information such as population centers, which may help
to shed light on the cause of these ubiquitous land–ocean
XCO2 differences.

7 Summary

This work presents updates to the ACOS v10 retrieval algo-
rithm used to derive estimates of XCO2 from the data col-
lected by both the NASA OCO-2 and OCO-3 sensors. Four
substantial changes were made to the L2FP code to provide
better estimates of XCO2 relative to v9: (i) use of the AB-
SCO v5.1 absorption tables, (ii) calculation of more realistic
prior aerosol information derived from daily GMAO GEOS-
5 FP-IT model output, (iii) an update to the calculation of the
CO2 vertical priors based on the GGG2020 algorithm, and

(iv) implementation of a new solar continuum model based
on TSIS-SIM measurements.

The quality filtering and bias correction implemented in
the post-processing of the raw XCO2 estimates for v10 were
briefly described. Overall, both the quality filtering and bias
correction parameters selected from the training were similar
to previous versions. It was shown that, while the efficacy of
the quality filtering was similar for both sensors, the bias cor-
rection is more effective for OCO-2 than it is for OCO-3 for
land observations. The remaining OCO-3 v10 pointing errors
(median value of ≈ 0.5 km), coupled with residual instru-
ment calibration errors, may introduce a less accurate surface
pressure prior, which affects the efficacy of the dP bias cor-
rection term. The cause of a less effective CO2 grad del term
in the OCO-3 v10 bias correction is still not understood.

Although the OCO-2 and OCO-3 sensors are similar, they
provide different spatiotemporal coverage from their polar,
sun-synchronous (OCO-2), and precessing (OCO-3) orbits.
In particular, OCO-2 provides nearly full latitudinal coverage
with a local sampling time of ≈ 13:36± 0.25 h, while OCO-
3 is limited to latitudes ≈≤ 52◦ with variable local sampling
time across a 63 d cycle. This work demonstrates, however,
that the numbers of good-quality XCO2 estimates from the
two sensors are approximately equal, albeit with different
spatiotemporal coverage and quite different splits in obser-
vation modes. The OCO-3 sensor provides a larger fraction
of good-quality soundings in nadir viewing over land, espe-
cially around 50◦ N latitude at the orbit inflection point. In
addition, for OCO-3, nearly 10 % of its good-quality-flagged
XCO2 estimates are taken in TG or SAM observation mode,
allowing additional opportunities for targeting sites of inter-
est, such as mega-cities and power plants (Wu et al., 2022;
Roten et al., 2022; Lei et al., 2021; Nassar et al., 2022;
Chevallier et al., 2022).

In this work, it has been demonstrated that the spatial and
temporal distributions of XCO2 estimates from the OCO-2
and OCO-3 v10 products display the well-known features of
the atmospheric distribution of CO2, including the Northern
Hemisphere spring drawdown, the expected seasonal merid-
ional gradients, and the secular trend of ≈ 2.2 ppm yr−1. Af-
ter application of an ad hoc bias correction to the OCO-3
XCO2 by way of an L2 Lite file reprocessing to account for
a time-dependent drift due to an L1b calibration artifact, the
OCO-3 product agrees with OCO-2 within a few tenths of a
part per million for a set of collocated soundings. This agree-
ment is of a similar magnitude as the agreement of either
sensor with the two truth proxies, TCCON and the multi-
model median, for which RMSEs are on the order of 0.5 to
1 ppm. An analysis against small areas, which are contigu-
ous regions smaller than 100 km over which the real uncer-
tainty in XCO2 is expected to be less than ≈ 0.1 ppm, shows
that the retrieval posterior uncertainties are underestimated
by 20 %–40 % for land observations, while the uncorrelated
relationship between actual and theoretical uncertainties for
ocean–glint observations suggests deficiencies in the ACOS
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Figure 14. Analysis of the coastal crossing dataset for OCO-2 v10 (a, b) and OCO-3 v10 (c, d). Panels (a) and (c) show 1XCO2 (land–
glint− ocean–glint) in 5◦ latitude bins with 1 standard deviation error bars as thin vertical lines. The number of latitude bins (N ) and the
mean (µ) and standard deviation (σ ) of the binned values are given in the legend. Panels (b) and (d) show the frequency distributions of
1XCO2 for the individual coastal crossings. The number of coastal crossings (N ) and the mean (µ) and standard deviation (σ ) of the XCO2
values for the individual crossings are given in the legend.

L2FP v10 ocean surface model. These deficiencies are ex-
pected to be mitigated in the next ACOS algorithm version.
Additionally, a set of aggregated land–ocean XCO2 estimates
from coastal crossings, used to deduce the global land and
ocean scaling factors during the bias correction procedure,
shows a global mean land–ocean difference of ≤ 0.1 ppm for
both sensors, suggesting that the land–ocean bias has been
mitigated.

As the science community continues work to better con-
strain the global carbon cycle (Crisp et al., 2022; Friedling-
stein et al., 2022), top-down flux and inventory estimates
utilizing XCO2 observations from space have demonstrated
promise for answering key questions about the present and
future response of the system to continued human activities
and climate change (e.g., Byrne et al., 2021, 2022; Philip
et al., 2022; Kong et al., 2022; Chevallier et al., 2022). The
need for an international fleet of robust, dedicated carbon-
monitoring satellites is paramount to this effort (Ciais et al.,
2014; Crisp et al., 2018; Janssens-Maenhout et al., 2020;
Palmer et al., 2022). The OCO-2 and OCO-3 records, which
began in September 2014 and August 2019, respectively, will
only gain in significance over time as an early baseline for
globally monitoring CO2 concentrations from space. Over-
all, the results presented in this work indicate that a set of
consistent estimates of XCO2 from OCO-2 and OCO-3, de-
rived from a single retrieval algorithm (ACOS v10), compare
well with one another. This suggests that the simultaneous as-
similation of the two data records into atmospheric inversion
systems has the potential to provide additional constraints on
carbon fluxes relative to assimilating a single sensor.

Appendix A: OCO-2 v10 full data record and
comparison to v9

While the discussion in Sections 4 and 5 focused on the
2.5-year overlap period with OCO-3, here, the full 7.5-year
OCO-2 v10 data record is examined. The use of the OCO-
2 v10 data record has already begun to appear in the pub-
lished literature. Examples include an evaluation of the CO2
concentrations against the NOAA in situ network (Rastogi
et al., 2021), quantification of power plant emissions (Nas-
sar et al., 2021, 2022), detection of urban XCO2 gradients
(Rißmann et al., 2022), a global and regional carbon budget
analysis (Kong et al., 2022; Byrne et al., 2022), and an eval-
uation of global net carbon exchange based on a multi-model
intercomparison project (Byrne et al., 2023).

Figure A1 shows a bar chart of the good-quality-flagged
data volume for the full OCO-2 v10 data record, spanning
6 September 2014 through 28 February 2022. Here only one
of the eight footprints per frame is represented. This figure
highlights the stability in the data volume over the 7.5-year
OCO-2 v10 record. During approximately the first year of
operations, prior to the optimization of the scanning strategy
implemented on 12 November 2015 as detailed in Sect. 5.2
of Crisp et al. (2017), the volume of good-quality-flagged
data tended to be lower. Overall, the fractions of ocean–
glint and land observations match those of the Earth propor-
tions (≈ 70 % and 30 %, respectively). Due to the alternating
nadir–glint viewing pattern, there is an even split between
land–glint and land–nadir. The fraction of TG data is ≈ 1 %
of the full science record. The most substantial instrument
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Figure A1. Bar plots of the monthly number of good-quality-
flagged soundings for a single footprint (4 of 8, 1-based) for the
full OCO-2 v10 data record, spanning 6 September 2014 through
28 February 2022. Observation modes are distinguished by colors.
The fractional percent for each observation mode is listed in the
legend, along with the total number of soundings (N ).

Figure A2. OCO-2 v10 XCO2 gridded at 10◦ latitude by 10 d
for the time period of September 2014 through February 2022.
Panel (a) includes land–nadir, land–glint, land–TG, and land–SAM
(Land) soundings, while panel (b) is for ocean–glint soundings. The
ordinate axis is scaled by the cosine of the latitude to elucidate the
decreasing fractional surface area of the Earth with increasing lat-
itude. Grid cells containing fewer than 10 soundings are colored
gray.

anomaly took place in August and September 2017 due to the
temporary failure of the instrument baffle calibrator assembly
door. However, regular planned decontamination cycles often
interrupt OCO-2 science data acquisition for several days at
a time.

Figure A2 shows the OCO-2 v10 XCO2 binned by latitude
(10◦) and time (10 d) from September 2014 through Febru-
ary 2022 for both land (Fig. A2a) and ocean (Fig. A2b).
The dominant features of the atmospheric carbon cycle are
observed, namely the secular increase of ≈ 2.2 ppm yr−1

(> 15 ppm over 7.5 years), the seasonal cycle with higher
CO2 concentrations in the NH winter–spring, and lower val-
ues in the summer–autumn. In addition, the latitudinal depen-
dence of the seasonal cycle is observed. The 7.5-year OCO-
2 v10 XCO2 data record has the potential to allow for exam-
inations of nearly decadal carbon cycle phenomena, as has
been done with the 11.5-year GOSAT v9 record (Jiang et al.,
2022).

Figure A3 provides a brief analysis of the CO2 concentra-
tions and atmospheric growth rates (AGRs) calculated from
the OCO-2 v10 7-year record. This figure is a reproduction
of Fig. 2 in Buchwitz et al. (2018). Shown in Fig. A3a are

Figure A3. CO2 concentrations and calculated atmospheric growth
rates (AGRs) from the OCO-2 v10 data record (orange), with a
comparison to ACOS GOSAT v9 (gray) and NOAA GML marine
surface values (blue), similar to Fig. 2 in Buchwitz et al. (2018).
Panel (a) shows the monthly CO2 concentrations for each product.
Panel (b) shows the calculated monthly values of the AGR with
vertical error bars (see text for description of how the error is calcu-
lated). The mean (µ) monthly AGR is indicated with corresponding
standard deviation. Panel (c) shows the calculated annual AGRs.
The linear Pearson correlation coefficient (R) of the satellite versus
the NOAA GML values is given, along with the mean difference in
the annual AGR (µ1AGR) with corresponding standard deviation.

the globally averaged, monthly values of XCO2 for OCO-2
land observations (orange), along with the most recent ACOS
GOSAT XCO2 (v9; Taylor et al., 2022) in gray, and the
global monthly mean marine surface values reported by
NOAA GML (Dlugokencky and Tans, 2022) in blue. Here, a
cosine of latitude factor has been applied to the satellite data
to weight individual soundings for surface area, i.e., higher
(lower) weighting in the tropics (high latitudes). It is im-
portant to distinguish differences in the NOAA and satellite
products. NOAA’s values are calculated from precisely cali-
brated surface observations at a few select locations (Conway
et al., 1994), while OCO-2 and GOSAT provide full column
measurements with much larger random errors (instrument
plus retrieval), as well as spatial and temporal sampling bi-
ases, but for hundreds to thousands of samples per day.

Panel (b) of Fig. A3 shows the monthly calculated AGRs
from the OCO-2 v10 (orange) and GOSAT v9 (gray)
datasets. Here the vertical error bars are calculated as the
mean of two individual error terms divided by the number
of valid months within a given calendar year. The error terms
are (i) the mean value of the XCO2 uncertainty for individual
soundings within the month and (ii) the mean of the standard
deviation of the calculated AGRs within the calendar year.
The monthly average OCO-2 AGR over the 7.5-year record
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is 2.53± 0.42 ppm, shown here as a solid line. The dashed
lines indicate the±2σ level. The sharp increase in AGR dur-
ing the middle of 2015 due to the strong El Niño is observed
(Chatterjee et al., 2017; Liu et al., 2017), followed by a slow
decreasing period from early 2016 to early 2017. The AGR
was then stable through the end of 2018, when a second sharp
increase was observed due to the weak 2019 El Niño. After
some decline through early 2020, the AGR remained rela-
tively constant through the end of the reported record (au-
tumn 2021). The GOSAT v9 AGRs agree quite well with the
OCO-2 v10 for the overlapping time period.

Panel (c) of Fig. A3 compares the annual growth rates of
OCO-2 v10 and GOSAT v9 (the annual mean of the monthly
values shown in Fig. A3b) to the NOAA GML annual marine
surface values. The satellite AGRs generally agree to within
a tenth of a part per million or less. The correlation coeffi-
cient across the 7-year OCO-2 record is 0.98 with a mean
difference of 0.02± 0.08 ppm. The maximum difference of
0.13 ppm occurred in 2019, presumably due to the high AGR
peak seen by OCO-2 in the first quarter.

To get a sense of the improvement in the OCO-2 v10
XCO2 product relative to v9, Fig. A4 shows maps of XCO2
signal (XCOOCO

2 −XCOMMM
2 ) at 2.5◦ latitude by 5◦ longi-

tude resolution for April (top row) and August (bottom row)
2019 for OCO-2 v9 (left) and OCO-2 v10 (middle). The right
column shows the 1signal (OCO-2 v10−OCO-2 v9) for
grid cells in which both v9 and v10 have valid data. Gen-
erally, for April and August 2019, the global bias against
models is smaller for OCO-2 v10 (≤ 0.3 ppm) than it was for
v9 (≥ 0.5 ppm), with a slight reduction in uncertainty from
> 0.65 ppm to ≈ 0.60 ppm. The 1signal values indicate that
OCO-2 v10 XCO2 is shifted≈ 0.6 ppm higher than v9. Most
of the difference is in the ocean, whereas the changes in land
XCO2 were relatively small between versions. Although the
details vary, corresponding plots for other months and years
(not shown) look similar.

Appendix B: OCO-3 v10

B1 OCO-3 operations

As was discussed in Taylor et al. (2020), the collection of
science data by OCO-3 is often interrupted by either the
Hunstville Operations Support Center (HOSC) or the Mis-
sion Operations System (MOS) at JPL. Interruptions by the
HOSC are generally due to arriving or departing vehicles
from the ISS or other ISS activities such as spacewalks or
instrument outgassing events. OCO-3 also suffers from data
drop-outs in ocean–glint viewing due to physical obstruc-
tions within the field of view, e.g., solar panels.

Table B1 shows the statistics at a per-granule (orbit) level
for OCO-3 from August 2019 through February 2022. Over
the course of these 31 months, HOSC interruptions occurred
for ≈ 9 % (1329) of the total number of granules (14 527),

while MOS interruptions occurred for ≈ 8 % (1038) of the
observable granules (13 198), yielding 12 160 granules con-
taining science measurements (≈ 92 % of the observable,
84 % of total). This well exceeds the mission requirement of
50 % data acquisition.

B2 OCO-3 v10 pointing correction

Although the first public release of OCO-3 XCO2 (vEarly)
was derived using the v10 L2FP algorithm, the dataset suf-
fered from significant geolocation errors (Taylor et al., 2020).
Here, an update in the geolocation for v10 is described.

Precise geolocation of OCO-3 footprints requires knowl-
edge of (i) the position and attitude of the instrument in
space, (ii) the position and control of the PMA, and (iii) the
effective alignment of the OCO-3 detectors with respect
to the instrument reference. Improvements were made in
all three areas for v10, as described in Sect. 2.2 of the
OCO-3 v10.4 data quality statement (Chatterjee et al., 2022).
OCO-3 attitude data are now taken primarily from the on-
board stellar reference unit (SRU), which was not possible
for vEarly due to a systems timing error that yielded large
geolocation errors early in the mission. When the SRU is
not available for attitude information, the OCO-3 processing
stream relies on stellar reference data from the CALorimetric
Electron Telescope (CALET) (Torii and Marrocchesi, 2019),
another instrument aboard the ISS JEM-EF. During early op-
erations, the PMA was calibrated using measurements from
the onboard internal context camera (ICC), and an external
lookup table was derived for azimuth and elevation angle
offsets. For v10, a model fit to the PMA calibration data was
implemented directly into the geolocation algorithm. Finally,
for OCO-3 v10, the effective alignment of the detectors with
the instrument reference was empirically determined using
a best-fit static alignment adjustment. An additional rotation
element was added to the geolocation algorithm, and the rel-
ative alignment space was systematically explored using a
metric derived from minimizing surface pressure errors and
albedo differences. This removed a systematic pointing error
of 1 to 2 km. Overall, adjustments to the OCO-3 geolocation
led to an improvement in the pointing errors from 1–2 km in
vEarly down to typically less than 1 km in v10. Further re-
finements to OCO-3 geolocation are expected in future ver-
sions.

To confirm the v10 pointing errors, a pointing optimiza-
tion code was developed to examine the residual errors for
individual swaths within a collection of SAMs. The code
minimizes a cost function using the difference in retrieved
and modeled surface pressure (the L2FP prior), coupled with
differences in the weak CO2 surface albedo between the re-
trieved values from the IDP and the black-sky albedo from
MODIS Band 6, using the closest-in-time available MODIS
albedo file (1 km resolution, product MCD43A3; Schaaf,
2022). The primary result of the code is an optimal shift in
latitude and longitude for each swath in a given OCO-3 SAM
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Figure A4. Maps of XCO2 signal (XCOOCO
2 −XCOMMM

2 ) at 2.5◦ latitude by 5◦ longitude resolution in April 2019 (a–c) and August
2019 (d–f) for OCO-2 v9 (a, d) and OCO-2 v10 (b, e). The numbers of single soundings (N SS) for all observation modes combined (all),
combined land–nadir, land–glint, land–TG, and land–SAM (land), and water-glint (water) are given. The mean (µ) and standard deviation
(σ ) of the binned values (bin) are also given for each observation mode. Grid cells containing fewer than five soundings are colored gray.
Panels (c) and (f) show the 1signal (OCO-2 v10−OCO-2 v9) for grid cells in which both sensors have valid data. Here, the statistics are
given only for all observation modes combined.

or target observation to bring it into alignment with the ancil-
lary data. Note that SAM swaths are not actually displaced by
the suggested optimization values within the v10.4 data prod-
ucts, and thus geolocation errors typically up to 1 km remain
in OCO-3 v10 data. However, for future reprocessing, a final
optimization on all SAMs in the data collection prior to pub-
lic release may be considered, depending on the residual er-
rors. In specific instances, the project has supported requests
to optimize individual SAMs in support of science analysis,
as was done for Nassar et al. (2022).

Figure B1 shows analysis of the OCO-3 v10 pointing off-
set optimization results for a set of a few hundred SAMs col-
lected over an approximately 1-year period. As each SAM
consists of between four and six swaths, the total swath
count is 372 after several quality assurance criteria are ap-
plied based on the certainty of the results for each fit. Fig-
ure B1a provides the frequency distribution of the optimiza-
tion distance (1d) for vEarly (pink) and v10 (blue). While
the mean /median 1d was ≈ 1.5 km in vEarly, for v10 the
optimization distance has been reduced to ≈ 0.5 km.

Panel (b) of Fig. B1 shows the cumulative frequency distri-
bution, which indicates that for vEarly ≈ 65 % of the swaths
had1d > 1.25 km, while for v10 the fraction of swaths with
1d > 1.25 km has been reduced to ≈ 15 %. In the vEarly
product, more than 7 % of the swaths had 1d > 2.5 km,
while for v10, less than 1 % of the swaths have a pointing
error greater than 2.5 km. Recall that the nominal size of an
OCO-3 footprint is 1.6 by 2.2 km. An additional reduction
in the OCO-3 pointing error to the sub-0.5 km level, on or-

Figure B1. Comparison of OCO-3 pointing optimization for vEarly
(pink) and v10 (blue) spanning an approximately 1-year time pe-
riod. Panel (a) shows the frequency distribution of the optimization
distance. The orbit ranges and number of swaths are indicated in
the legend, along with the mean, median, and maximum optimiza-
tion distances (dx) in kilometers. Panel (b) shows the cumulative
frequency distributions. The percent of the swaths (Frac N ) with
optimization distances greater than 1.25, 2.5, and 5.0 km are indi-
cated in the legend.

der with OCO-2 (Kiel et al., 2019), is the nominal goal for a
future reprocessing.
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Table B1. Monthly statistics of the OCO-3 collection for the period of August 2019 through February 2022.

Total Orbits containing Number of Orbits containing Number of
Month number of HOSC interruptions observable orbits MOS interruptions collected orbits

orbits (% of total) (% of total) (% of observable) (% of observable)

Aug (2019) 402 99 (24.6 %) 303 (75.4 %) 34 (11.2 %) 269 (88.8 %)
Sep (2019) 465 34 ( 7.3 %) 431 (92.7 %) 60 (13.9 %) 371 (86.1 %)
Oct (2019) 481 176 (36.6 %) 305 (63.4 %) 127 (41.6 %) 178 (58.4 %)
Nov (2019) 465 40 ( 8.6 %) 425 (91.4 %) 382 (89.9 %) 43 (10.1 %)
Dec (2019) 481 92 (19.1 %) 389 (80.9 %) 0 (0.0 %) 389 (100.0 %)
Jan (2020) 480 90 (18.8 %) 390 (81.2 %) 16 (4.1 %) 374 (95.9 %)
Feb (2020) 449 74 (16.5 %) 375 (83.5 %) 21 (5.6 %) 354 (94.4 %)
Mar (2020) 480 34 ( 7.1 %) 446 (92.9 %) 6 (1.3 %) 440 (98.7 %)
Apr (2020) 465 33 ( 7.1 %) 432 (92.9 %) 8 (1.9 %) 424 (98.1 %)
May (2020) 480 21 ( 4.4 %) 459 (95.6 %) 9 (2.0 %) 450 (98.0 %)
Jun (2020) 464 0 ( 0.0 %) 464 (100.0 %) 46 (9.9 %) 418 (90.1 %)
Jul (2020) 480 31 ( 6.5 %) 449 (93.5 %) 0 (0.0 %) 449 (100.0 %)
Aug (2020) 480 8 ( 1.7 %) 472 (98.3 %) 0 (0.0 %) 472 (100.0 %)
Sep (2020) 465 2 ( 0.4 %) 463 (99.6 %) 8 (1.7 %) 455 (98.3 %)
Oct (2020) 480 31 ( 6.5 %) 449 (93.5 %) 2 (0.4 %) 447 (99.6 %)
Nov (2020) 465 7 ( 1.5 %) 458 (98.5 %) 0 (0.0 %) 458 (100.0 %)
Dec (2020) 480 11 ( 2.3 %) 469 (97.7 %) 4 (0.9 %) 465 (99.1 %)
Jan (2021) 480 16 ( 3.3 %) 464 (96.7 %) 56 (12.1 %) 408 (87.9 %)
Feb (2021) 433 36 ( 8.3 %) 397 (91.7 %) 26 (6.5 %) 371 (93.5 %)
Mar (2021) 480 11 ( 2.3 %) 469 (97.7 %) 0 (0.0 %) 469 (100.0 %)
Apr (2021) 465 25 ( 5.4 %) 440 (94.6 %) 26 (5.9 %) 414 (94.1 %)
May (2021) 480 0 ( 0.0 %) 480 (100.0 %) 31 (6.5 %) 449 (93.5 %)
Jun (2021) 464 13 ( 2.8 %) 451 (97.2 %) 1 (0.2 %) 450 (99.8 %)
Jul (2021) 480 71 (14.8 %) 409 (85.2 %) 0 (0.0 %) 409 (100.0 %)
Aug (2021) 480 63 (13.1 %) 417 (86.9 %) 48 (11.5 %) 369 (88.5 %)
Sep (2021) 464 13 ( 2.8 %) 451 (97.2 %) 0 (0.0 %) 451 (100.0 %)
Oct (2021) 480 38 ( 7.9 %) 442 (92.1 %) 0 (0.0 %) 442 (100.0 %)
Nov (2021) 465 81 (17.4 %) 384 (82.6 %) 0 (0.0 %) 384 (100.0 %)
Dec (2021) 480 65 (13.5 %) 415 (86.5 %) 50 (12.0 %) 365 (88.0 %)
Jan (2022) 480 88 (18.3 %) 392 (81.7 %) 31 (7.9 %) 361 (92.1 %)
Feb (2022) 434 26 ( 6.0 %) 408 (94.0 %) 46 (11.3 %) 362 (88.7 %)

Grand total 14 527 1329 ( 9.2 %) 13 198 (90.8 %) 1038 (8.3 %) 12 160 (91.7 %)

B3 OCO-3 v10 ad hoc XCO2 bias correction

The ad hoc correction to OCO-3 v10 XCO2 using collo-
cated OCO-2 data is predicated upon the hypothesis that two
sensors measuring the same column of air at the same time
should produce the same XCO2 estimate when derived using
the same retrieval algorithm. Therefore, a set of spatiotem-
poral collocations between the OCO-2 and OCO-3 sensors
was identified over the time period of 6 August 2019 through
31 October 2021. If the XCO2 values from the two sensors
are in good agreement, the expectation is for a mean bias
close to zero, with low variability and no time trend.

Each OCO-2/3 collocation consists of a cluster of sound-
ings for each of the two sensors measured within a 25 km
radius and ±4 h time and containing at least 15 good-
quality-flagged soundings per sensor. The difference in the
mean bias-corrected XCO2 (µ) for each collocated cluster of

soundings (1XCO2=µOCO-3−µOCO-2) provides a rea-
sonably direct comparison between the sensors.

Figure B2 provides two example visualizations of overlap-
ping orbit tracks from OCO-2 and OCO-3 as measured over
eastern Europe on 12 August 2019 (A) and over the south-
western coast of Africa on 22 September 2021 (B). In ex-
ample (A) the time difference between the overpasses was
< 5 min, with a 1XCO2 of 0.17 ppm. In example (B), the
time difference was 25 min, with a 1XCO2 of 0.01 ppm.
The variability in XCO2 for the entire scene was about 0.5-
0.8 ppm for both sensors.

Time series plots of the 1XCO2, as shown in panel (a) of
Fig. B3 for land observations and panel (a) of Fig. B4 for
ocean–glint observations, suggest a significant divergence
in 1XCO2 between orbits 4339 and 9719 (February 2020
through January 2021). This time period corresponds to a
long interval with no instrument decontamination, which is

https://doi.org/10.5194/amt-16-3173-2023 Atmos. Meas. Tech., 16, 3173–3209, 2023



3198 T. E. Taylor et al.: OCO-2 and OCO-3 v10 XCO2

Figure B2. XCO2 from simultaneous nadir overpasses (SNOs) between the OCO-2 and OCO-3 over eastern Europe on 12 August 2019 (A)
and over the southwestern coast of Africa on 22 September 2021 (B). In example (A) the time difference between the overpasses was 282 s
(< 5 m) and the difference in the average XCO2 from the two sensors was 0.17 ppm. In example (B), the time difference was 1519 s (25 m) and
the difference in the average XCO2 from the two sensors was 0.01 ppm. The uncertainty in XCO2 for the entire scene was about 0.5 to 0.8 ppm
for both sensors. The background for these image comes from ArcGIS, available at https://server.arcgisonline.com/ArcGIS/rest/services (last
access: 1 May 2022). Note that the collocation criteria used in this work (25 km radius and ±4 h) mean that not all collocations were direct
simultaneous overpasses, and a mixture of both nadir and glint viewing was used.

indicated by the shaded areas in the plot. Upon investigation,
it was found that the diverging 1XCO2 correlates with an
OCO-3 L1b calibration artifact: the instrument stray light,
or zero-level offset (ZLO), as shown in Fig. B3b. The band-
dependent ZLO is derived from measurements of the on-
board calibration lamps on the unilluminated pixels of the
detector and is found to increase nonlinearly in time since
the last decontamination cycle, as shown against the left or-
dinate in Fig. B3c.

A correction to the OCO-3 XCO2 values (right ordinate
of Fig. B3c) is derived from a linear fit of the 1XCO2
(at a given orbit) versus the WCO2 ZLO at the same orbit
(Fig. B3b). After application of this ad hoc correction, the
time dependence of 1XCO2 between OCO-2 and OCO-3 is
largely mitigated, as shown in Fig. B3d. Fit coefficients were
determined separately for each OCO-3 FP and for land and
ocean–glint observations. A reprocessing of the OCO-3 L2
Lite product was performed to correct the XCO2 for all re-
ported soundings. The new v10.4 L2 Lite XCO2 files were
delivered to the NASA GES DISC in April 2022 (Chatter-
jee et al., 2022). The files contain a new variable field, Re-
trieval/xco2_zlo_bias, giving the size of the additive correc-
tion made to the XCO2 values. Researchers are urged to use
these files and avoid use of the XCO2 values reported in the
L2 Standard product, which do not have the ad hoc bias cor-
rection applied.

Figure B5 shows a verification of the OCO-3 XCO2 ad
hoc correction compared to the multi-model median (MMM)
that was discussed in Sect. 6.2. The top row shows results
prior to the ad hoc correction for land–nadir (Fig. B5a) and
for ocean–glint (Fig. B5b). Although early in the record the
agreement is quite good, a strong, unexpected time diver-
gence is seen in the uncorrected data in the second half of
2020. After application of the ad hoc bias correction, as seen
in Fig. B5c for land and Fig. B5d for ocean–glint, the OCO-
3 XCO2 is in better agreement with the MMM and is on
par with expectations based on previous results from both
OCO-2 and GOSAT, e.g., Sect. 6.2 of this work and Sect. 4.4
of Taylor et al. (2022).

B4 OCO-3 v10 XCO2 diurnal signal

The orbit of OCO-3 aboard the ISS precesses in time such
that the Equator crossing occurs approximately 20 min ear-
lier each day. This yields observations spanning all daylight
hours over the course of a 63 d repeat cycle (Eldering et al.,
2019). The semi-diurnal nature of the OCO-3 data has poten-
tial to allow for interesting science investigations (e.g., Xiao
et al., 2021) that are not possible with data from polar orbiters
with a fixed overpass time.

Analysis of OCO-3 XCO2 from a set of more than 2000
same-day paired intersecting orbits, i.e., self-crossings, over
land is shown in Fig. B6. The time separation between in-
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Figure B3. Ad hoc bias correction of OCO-3 v10 XCO2 for footprint 4 (FP-4) land measurements. Panel (a) shows the 1XCO2 (OCO-
3−OCO-2) for a set of collocated clusters of soundings versus the OCO-3 orbit number. The number of collocations (N ) and the mean
(µ) and standard deviation (σ ) of the 1XCO2 are given in the legend. Panel (b) shows the correlation between the 1XCO2 and the OCO-3
WCO2 ZLO used to determine the correction. Panel (c) shows the OCO-3 WCO2 ZLO (left) and magnitude in parts per million (ppm) of
the ad hoc XCO2 bias correction (right) versus OCO-3 orbit number. Panel (d) is similar to panel (a), except with the OCO-3 XCO2 ad hoc
correction applied. In all panels, the small gray dots indicate individual collocations, while the large black dots are binned median values.
The vertical shaded regions in panels (a), (c), and (d) indicate the time period during which the OCO-3 instrument was powered down for a
decontamination cycle.

Figure B4. Same as Fig. B3, but for ocean–glint collocations.
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Figure B5. The XCO2 signal (OCO-3−MMM) gridded at 15◦ latitude by 10 d for the time period of August 2019 through December 2020.
Panels (a) and (c) show results before and after the ad hoc XCO2 bias correction for land–nadir observations, while panels (b) and (d) are
for ocean–glint observations. The ordinate axis is scaled by the cosine of the latitude to elucidate the decreasing fractional surface area of the
Earth with increasing latitude. Data cells with fewer than 10 soundings are colored gray.

Figure B6. Analysis of OCO-3 XCO2 from a set of paired intersecting orbits, i.e., self-crossings, over land. Panel (a) shows the one-to-one
correspondence in XCO2 between the early and late orbits. The number of collocations (N ), mean (µ), standard deviation (σ ), and maximum
1XCO2 (1max) are given in the legend. Also shown in the legend is the percent of the collocations having 1XCO2 greater than 0.25, 0.5,
1.0, 2.0, and 3.0 ppm. Panel (b) shows the 1XCO2 versus the time difference between self-crossings. Panel (c) shows the 1XCO2 versus
the L2FP retrieved total aerosol optical depth (combined for the ascending and descending nodes).

tersecting orbits ranges from 1.5 h up to approximately 10 h,
with a spatial coincidence of 25 km radius. The difference
in observed XCO2 between overpasses is a combination of
random uncertainty driven by instrument calibration and re-
trieval uncertainties, plus real changes in XCO2. Over a
timescale of hours, local variations in XCO2 are due to a
combination of (i) synoptic-scale transport, i.e., CO2 weather
(Parazoo et al., 2008), (ii) biospheric diurnal effects, i.e.,
drawdown by the terrestrial biosphere (Keppel-Aleks et al.,
2011), and (iii) local point source emissions (e.g., Nassar
et al., 2021).

Panel (a) of Fig. B6 shows the one-to-one correspon-
dence in XCO2 between the 2218 pairs of orbits. The mean
difference is 0.04 ppm with a 1.1 ppm uncertainty. About
one-quarter of the samples have a difference smaller than
0.25 ppm, while one-quarter have a difference larger than
1 ppm, which is near the upper end of expected diurnal
changes in the column (Torres et al., 2019). The maximum

observed difference is > 6.6 ppm! A test using a tighter spa-
tial collocation of 10 km radius yielded indistinguishable dif-
ferences, but a reduction in the number of collocations to
≈1850 (results not shown).

Panel (b) of Fig. B6 shows the 1XCO2 versus the time
difference between self-crossings. It might be expected that if
the self-crossings were detecting real changes in the column
CO2 between overpasses driven by smooth diurnal variations
due to biospheric drawdown, then larger 1XCO2 would be
seen at larger 1time. However, no significant correlation in
1XCO2 with 1time is observed. The largest differences in
XCO2 are about as likely to occur between two orbits 1.5 h
apart as they are to occur between two orbits 8 or 9 h apart.

An effort was made to explore geophysical and retrieval
covariates in the observed XCO2 differences. Any significant
correlations between 1XCO2 and L2FP retrieval variables,
as is done in the bias correction procedure, could help to un-
derstand physical processes, as aerosols are a known source
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of error in the L2FP (Nelson and O’Dell, 2019; Bell et al.,
2023). Figure B6c shows the correlation in 1XCO2 with
the L2FP retrieved total aerosol optical depth (combined for
the two overpasses). Although there is a modest increase in
spread for higher values of AOD, the median1XCO2 values
(heavy filled circles with 1σ error bars) show no significant
correlation. No other L2FP retrieval variables, e.g., albedos
and geometries, were found to correlate with 1XCO2 (re-
sults not shown).

Although additional analysis is warranted, the general con-
clusion is that the variability in the 1XCO2 from the self-
crossing analysis is dominated by random uncertainties in
the measurements and/or the L2FP retrieval. This conclusion
is in line with reported XCO2 errors on the order of 0.5 ppm
and with the fidelity of the comparisons against truth proxies.

Data availability. The OCO XCO2 and other retrieval properties
are publicly available at the NASA Goddard Earth Science Data
and Information Services Center (GES-DISC). The full suite of
retrieval products in the standard per-orbit format can be ob-
tained at https://doi.org/10.5067/6SBROTA57TFH (OCO Science
Team et al., 2020b) and https://doi.org/10.5067/D9S8ZOCHCADE
(OCO Science Team et al., 2021) for OCO-2 and OCO-
3, respectively. The Lite files, which include the quality-
flagged and bias-corrected estimates of XCO2, can be obtained
at https://doi.org/10.5067/E4E140XDMPO2 (OCO Science Team
et al., 2020a) and https://doi.org/10.5067/970BCC4DHH24 (OCO
Science Team et al., 2022) for OCO-2 and OCO-3, respectively. For
OCO-3, researchers are urged to use the v10.4 Lite files and avoid
use of the XCO2 values reported in the v10 L2 Standard product,
which do not have the ad hoc bias correction applied.

The TCCON data for individual stations are referenced in Table 3
and are available on the CaltechDATA site (https://data.caltech.edu/,
last access: 21 June 2023). CarbonTracker CT-NRT.v2019-2 and
CT-NRT.v2021-3 results are provided by NOAA ESRL, Boulder,
Colorado, USA, from the website at https://carbontracker.noaa.gov
(last access: 21 June 2023). The Jena-CarboScope model data
are available at http://www.bgc-jena.mpg.de/CarboScope (last
access: 21 June 2023). The Copernicus Atmosphere Monitor-
ing Service (CAMS) CAMS-INV model data were obtained
from https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/
cams-global-greenhouse-gas-inversion?tab=overview (last
access: 21 June 2023), while the CAMS-REAN data were
obtained from https://ads.atmosphere.copernicus.eu/cdsapp#!/
dataset/cams-global-ghg-reanalysis-egg4?tab=overview (last
access: 21 June 2023). The UoL model data are available at
https://www.geos.ed.ac.uk/~lfeng/ (last access: 21 June 2023).
The GEOS data used in this study were provided by the Global
Modeling and Assimilation Office (GMAO) at NASA Goddard
Space Flight Center.
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