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Summary
Background Urinary biomarkers may improve the prediction of chronic kidney disease (CKD) progression. Yet, data
reporting the applicability of most commercial biomarker assays to the detection of their target analyte in urine
together with an evaluation of their predictive performance are scarce.

Methods 30 commercial assays (ELISA) were tested for their ability to quantify the target analyte in urine using strict
(FDA-approved) validation criteria. In an exploratory analysis, LASSO (Least Absolute Shrinkage and Selection
Operator) logistic regression analysis was used to identify potentially complementary biomarkers predicting fast CKD
progression, determined as the 51CrEDTA clearance-based measured glomerular filtration rate (mGFR) decline
(>10% per year) in a subsample of 229 CKD patients (mean age, 61 years; 66% men; baseline mGFR, 38 mL/
min) from the NephroTest prospective cohort.

Findings Among the 30 assays, directed against 24 candidate biomarkers, encompassing different pathophysiological
mechanisms of CKD progression, 16 assays fulfilled the FDA-approved criteria. LASSO logistic regressions identified
a combination of five biomarkers including CCL2, EGF, KIM1, NGAL, and TGF-α that improved the prediction of
fast mGFR decline compared to the kidney failure risk equation variables alone: age, gender, mGFR, and
albuminuria. Mean area under the curves (AUC) estimated from 100 re-samples was higher in the model with
than without these biomarkers, 0.722 (95% confidence interval 0.652–0.795) vs. 0.682 (0.614–0.748), respectively.
Fully-adjusted odds-ratios (95% confidence interval) for fast progression were 1.87 (1.22, 2.98), 1.86 (1.23, 2.89),
0.43 (0.25, 0.70), 1.10 (0.71, 1.83), 0.55 (0.33, 0.89), and 2.99 (1.89, 5.01) for albumin, CCL2, EGF, KIM1, NGAL,
and TGF-α, respectively.

Interpretation This study provides a rigorous validation of multiple assays for relevant urinary biomarkers of CKD
progression which combination may improve the prediction of CKD progression.
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Research in context

Evidence before this study
Patients with chronic kidney disease usually experience a
progressive reduction in kidney function, but the rate of the
decline varies widely from one individual to another one. Well
established risk factors for fast kidney function decline include
older age, male gender, a reduced baseline glomerular
filtration rate and a high urine albumin to creatinine ratio.
However, the prediction of kidney function decline provided
by these elements remains imprecise. Several studies
investigated if the urinary excretion rate of additional
biomolecules could improve risk stratification among patients
suffering from chronic kidney disease. The quantification of
these biomolecules in urine usually relays on Enzyme Linked
Immunosorbent Assays that were not tested for their ability to
robustly detect their analyte in urine, a very peculiar matrix. In
addition, the majority of reported studies focused on the
detection of one or a few additional biomolecules precluding
the evaluation of redundancy or complementarity among
potential urinary biomarkers of kidney function decline.

Added value of this study
Among 30 commercial assays for the detection of potential
urinary biomarkers that we tested, only 16 full-filled FDA-
approved criteria for the detection of their analyte into urine.
Exploratory analyses in a deeply phenotype cohort of 229
patients suffering from chronic kidney disease identified a
non-redundant combination of 5 biomarkers, which improved
the prediction of fast kidney decline in this cohort.

Implications of all the available evidence
The discovery of biomarkers for the prediction of kidney
function decline requires a robust validation of the assays’
performance in the urine matrix. The combination of distinct
biomarkers reflecting different aspects of the pathophysiology
of chronic kidney disease may not only improve patients risk
stratification but also pinpoint underlying druggable
pathophysiological processes.
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Introduction
Chronic Kidney Disease (CKD) affects about 10% of the
Western population and is associated with increased
risk of cardiovascular death as well as all-cause
mortality.1–3 CKD is characterized by the progressive
decline of kidney function that occurs, regardless of the
initial cause, once a critical number of functional
nephrons has been lost. While almost all kidney dis-
eases can lead to nephron loss, the degradation of the
remnant nephrons occurs through common patho-
physiological pathways, allowing common therapeutic
interventions for CKD patients. Epidemiological studies
have shown that the rate of CKD progression varies
widely among individuals.4 In fact, if some patients will
progress rapidly to end stage kidney disease (ESKD),
others may remain stable or even improve over the
time.5,6 Accordingly, there is a need for new strategies to
discover biomarkers able to identify patients at highest
risk for CKD progression, who might maximally benefit
from increased surveillance, early prevention and tar-
geted therapies. In addition, such biomarkers might
also serve as important surrogate markers for treatment
response in clinical trials for which we tremendously
lack valuable end points. Decreased glomerular filtration
rate and increased albumin urinary excretion are
established markers of CKD progression.7,8 However,
these markers may appear relatively late in the course of
CKD and reflect more the functional changes than the
early structural alterations in the kidney. Moreover,
albuminuria can regress in spite of on-going CKD and
patients can progress without albuminuria.9 Thus,
increasing prediction accuracy by adding biomarkers
has become an important concern for the community.
In the last decade, a number of studies have focused
their interest on the discovery of CKD biomarkers.10–22

Although urinary biomarkers have emerged, many of
them maintain an undefined pathophysiological signif-
icance and limited practical clinical application.22–24

Importantly, few assays have been validated for the
measurement of those biomarkers in urine, a very
specific matrix with unusual biochemical characteris-
tics.25 Validating the applicability of biochemical assays
to urine matrices should rely on rigorous homogenous
criteria, which are often lacking or not mentioned in a
significant number of publications.26 In addition, the
vast majority of the studies performed in CKD have
focused on one or a few biomarkers.27,28 Considering the
complexity of CKD progression, it is, however, unlikely
that a unique molecule can alone reflect the evolution of
the disease. Recent studies using proteomics, metab-
olomics or specific bioassays for urinary biomarkers
detection have shown that combining biomarkers may
ameliorate the prediction of CKD progression and/or
outcomes.29–31 In this context, defining valid and poten-
tially complementary assays for urinary biomarker in
CKD is of major importance.

To provide insights into the validity and the comple-
mentarity of multiple bioassays for candidate biomarkers
of CKD progression, we used a pipeline incorporating
robust technical validation and multivariable assessment
of the ability of the selected biomarkers to improve the
prediction of CKD progression in a well-phenotyped
cohort of patients with serially measured glomerular
filtration rate (mGFR). We selected an a-priori panel of
24 molecules based on their implication in known
pathophysiological common processes involved in CKD
www.thelancet.com Vol 93 July, 2023
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progression, broadly covering fibrosis (CTGF, Fibro-
nectine, MMP9, Procollagen III N-terminal peptide,
Periostin, Osteopontin, TIMP1, and TGF-β),10–12,32–35
inflammation (CCL2, GDF15, IL6, IL18, and LIF),36–42

cell growth and proliferation (EGF and TGF-α),15,27,43
angiogenesis (VEGFA and VEGFC),44–46 oxidative stress
(Carbonyl protein) and tubular damage (Cystatin C,
FABP1, KIM1, N-acetyl-β-D-glucosaminidase, NGAL,
Uromodullin).16–21,47,48 To measure these biomarkers in
urine, we tested a total of 30 commercial kits according to
the strict criteria defined by the Food and Drug Admin-
istration (FDA) guidelines for immunoassay validation.49

We then studied the associations of each individual
biomarker with fast mGFR decline in a subsample of the
NephroTest prospective cohort study,50 and used Lasso
(least absolute shrinkage and selection operator) regres-
sion to select the best combination of those to improve
the prediction of CKD progression as compared to the 4-
variables Kidney Failure Risk Equation (KFRE).51
Methods
Analytical method validation
The methods used to validate the assays according to the
FDA approved criteria for industry are detailed in
Supplementary Methods.

Patient cohorts
Pilot cohort
For the technical validation of the assays, we consecu-
tively collected urines (under anti-proteases) from CKD
patients admitted at the Nephrology Department of
Necker hospital from March to September 2011 or
healthy subjects recruited in our Institute. We estimated
GFR (eGFR) using four-variable modification of diet in
renal disease (MDRD) equation (eGFR = 175 × stan-
dardized serum creatinine in mg/dL −1.154 × age in
years −0.203 × 1.212 [if black] × 0.742 [if female]).52 For
this convenience sampling, we planned to collect urine
from 5 patients for each CKD stage and for each of the
three main aetiologies followed in our clinical unit: CKD
of all origins (except genetics origin), Autosomal
Dominant Polycystic Kidney Disease (ADPKD) and
transplanted patients. We first enrolled 13 healthy in-
dividuals and 19 CKD patients with different level of
GFR (pilot study 1; Supplementary Table S1), to validate
each tested assay according to the FDA-approved
criteria. To confirm the ability of assays to detect the
endogenous concentration of their analytes in urines
from CKD patients, we systematically applied the assays
fulfilling FDA criteria to the urine of sixty patients
known to have CKD of any cause and of 15 subjects with
no known renal impairment or albuminuria, recruited
in the same manner (pilot study 2). The characteristics
of these patients are presented in Supplementary
Table S2. The sample size was determined a priori ac-
cording to the good laboratory practice for the validation
www.thelancet.com Vol 93 July, 2023
of ELISA for urinary biomarkers. We did not perform a
power analysis.

Of note the urines were collected, processed, handled
and stored exactly as in the Nephrotest cohort.

NephroTest cohort
NephroTest is a prospective cohort study which included
1825 adult patients with all-cause and any stage of CKD
from three large nephrology centers in Paris: European
Georges Pompidou hospital, Bichat hospital and Tenon
hospital.50 Exclusion criteria were patients on any form of
kidney replacement therapy and pregnant women. The
urine collection biobank in the protocol started in 2009.
Among the 1825 patients, we selected 229 patients who
had stored urine collections under anti-proteases and 2
or more mGFRs overtime (127 patients with 2 mGFR, 92
with 3, 10 with 4) at the time of the study in order to
assess disease progression. The median follow-up time
for these patients in the cohort from the time of the first
urine collection was 21.6 (IQR, 13.6–24.7) months. First
urine collection from these 229 patients was analyzed.
The clinical and biological data were prospectively
collected from patients as previously described.50

Measurement and definition of CKD progression
As reported elsewhere,53 all patients in NephroTest
cohort had GFRs measured by chromium-51 labelled
ethylenediaminetetraacetic (EDTA) clearance. Individ-
ual slopes in mL/min/year were estimated using ordi-
nary least-squares (OLS) linear regression. We then
calculated relative mGFR slopes in % per year and
classified patients into two groups of slow and fast
progressors, defined by a relative mGFR decline ≤10%
per year vs. >10% per year, respectively.4

Urine collection and storage
Mid-stream urine was collected into a sterile pot and
stored at −80 ◦C after a maximal 4-h period at 4 ◦C. We
stored the urine supernatant after initial centrifugation
at 1000g for 10 min (to removed particulate matter) in a
15 mL polypropylene centrifuge tube containing ¼
protease inhibitor cocktail tablet (cOmplete; Roche) and
subsequently aliquoting in smaller volumes (to avoid
protein degradation due to freeze-thaw cycle). We
simultaneously collected urine in a similar fashion but
omitting the either protease inhibitor, the centrifugation
step or both.

Analytical method validation
Matrix-based standard curve preparation
In order to determine the capacity of each kit to adequately
measure their target analyte in urine matrix, we created a
standard curve in urine and calculated the recovery of the
amount of analyte added to the matrix compared to the
actual amount added. For each assay, we spiked urine
samples with 6–8 increasing levels of recombinant pro-
tein, generating a matrix-based standard curve. We
3
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calculated the mean percent recovery of the assay in urine
as [(final concentration − initial endogenous concentra-
tion)/added concentration] × 100. Matrix effect was
excluded when the percent recovery stand within a range
of 70%–130%. We also determined the lower and upper
limits of quantification (LLOQ and ULOQ) defined as the
lowest and highest concentrations of the calibration curve
in the matrix, which can be determined with an inter-
assay precision of <20% CV (coefficient of variation) and
an accuracy of within 20% of the actual value.49

Quality controls selection
To obtain an overview of analytes endogenous concen-
trations in human samples a convenience sample from
healthy patients (n = 13) and CKD patients (n = 19) were
analyzed (see “pilot cohort” section for details). Among
these samples, we selected three quality controls (QCs)
that covered the range of quantification of the analyte in
this population (low, medium, and high).

Selectivity
To assess the selectivity of each assay (ability to solely
measure the biomarkers of interest irrespective of the
presence of other molecules), the three QCs were
measured by ELISA after depletion of the analyte of
interest by overnight immunoadsorption at 4 ◦C.
Measured analyte concentrations of depleted QCs were
compared to those of QC incubated overnight in
absence of depleting antibody.

Assay linearity
To assess the dilution linearity of each assay, we selected
six random urine samples (3 from the healthy donors
and 3 from the patients) with measured high analyte
levels and undertook two-fold serial dilutions (from the
starting dilution recommended by the manufacturer)
using assay diluent. When there were no samples with
high endogenous levels, we diluted the three QCs.

For the molecules for which urinary concentration
appeared below the assay detection threshold, we eval-
uate the effect of concentration on the detection of the
analyte. We concentrated ten-fold 3 samples spiked with
low quantities of recombinant protein using Amicon®
Ultra-0.5 centrifugal with the appropriate cut-off for the
molecule.

Stability
To evaluate analyte stability, the three QC were treated
with 1 or 2 thaw-freeze cycle (s) (15 min at room tem-
perature and then 2 h at −80 ◦C). In addition, the effect
of overnight 4 ◦C and room temperature storage were
also evaluated.

Intra- and inter-assay precision
Intra-assay precision (within a plate) was evaluated by 8
repeated measures of the 3 QCs and 3 determinations
per each six to eight concentrations of the standard in
the biological matrix. Likewise, we measured the inter-
assay precision (between plates), using the same con-
trols as above, but measured on two different plates. The
mean CV for intra and inter-assay precisions is shown
in Supplementary Table S3 and did not exceed 10% and
19% respectively for all the kits.

Biomarker measurements
ELISA used to measure biomarkers in urine are pre-
sented in Table 1. All ELISA were performed according
manufacturer’s instructions and all samples assayed in
duplicates. For each immunoassay plate, we generated a
calibration curve, as per the manufacturers’ instruction,
consisting in a zero-sample and six to eight non-zero
standards covering the expected range. We used a sig-
moid function, four-parameter logistic regression model
for curve fitting, with a coefficient of regression closest
to 1 (r2 > 0.99). All biomarker values were normalized
for urinary creatinine to correct for differences in con-
centrations related uniquely to the hydration status or
urinary volume of the subject. Urine creatinine was
measured in the hospital laboratory using the enzymatic
technique with standardization to isotope dilution mass
spectrometry.

Ethics
All the patients signed an informed consent. The
NephroTest study was approved by an ethics committee
(Direction Generale pour la Recherche et l’Innovation &
Comité Consultatif sur le Traitement de l’Information en
matière de Recherche dans le domaine de la Santé: MG/
CP09.503, July 9, 2009). Nephrotest cohort has been
approved by the national commission on informatics
and liberty (CNIL; DR 2010-149). The biobank and the
database from the Department of Physiology of Necker
Hospital have been declared to the French ministry of
research (DC-2020-3940) and to the national commis-
sion on informatics and liberty (1764193).

Statistics
Clinical and laboratory data were expressed as percent-
ages, means (± standard deviation, SD) or median
(interquartile range, IQR), as appropriate. All urinary
biomarkers had skewed distributions and were subse-
quently log-transformed. NGAL and cystatin C required
two sequential log-transformations to approach a
normal distribution, which was assessed using QQ-plots
before and after transformation. To account for gender-
related differences in biomarker distribution, log-
transformed values were then standardized to a mean
of 0 and SD of 1, using gender-specific means and SDs
[i.e., (measured value − mean)/SD].

We compared baseline clinical and laboratory data
and CKD risk factors between slow and fast progressors
as defined above. Continuous variables were compared
with theWilcoxon rank-sum test and categorical variables
with the chi-squared or Fisher’s exact test. Gender
www.thelancet.com Vol 93 July, 2023
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Analyte Bibliography Company Reference Matrix
effect

Detection range in
urine

Linearity Precision Specificity

Recovery in
urine (%)

LLOQ-ULOQ Recovery
after 4 fold
dilution
(%)

Coefficient of
variation (%)

Depletion by specific
antibody (%)

Intra-
assay

Inter-
assay

QC Low QC
Medium

QC high

Carbonyl protein Cell Biolab STA-310 1 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Connective tissue
growth factor

11,54 Usnc E90010Hu 46 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Peprotech 900-K317 227 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Cystatin C 55–57 R&D CTC0 101 3.12–100 ng/mL 108 4.7 4.4 86 65 66

Chemokine ligand 2 58,59 R&D CP00 103 62.5–2000 pg/mL 108 4.9 11.9 67 77 82

Epidermal growth factor 27 R&D EG00 81 3.9–250 pg/mL 100 4.7 6.8 98 95 96

Fatty acid binding protein 1 60–62 R&D Z-001 104 6.25–400 ng/mL 92 8.3 4.1 66 67 53

Fibronectin 63 Thermofisher
Scientific

BMS2028 110 0.62–20 ng/mL 119 6.4 4.8 71 81 83

Growth and differentiation
factor 15

42,64 R&D GD150 101 23.4–1500 pg/mL 100 4.7 4.1 95 92 97

Interleukin 6 65 R&D D6050 93 3.12–300 pg/mL 79 4.6 5.5 96 97 98

Interleukin 18 58,66,67 Cusabio CSB-E07450h 46 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

eBioscience BMS267/2 163 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Kidney injury molecule 1 28,58 R&D KM100 100 0.31–10 ng/mL 80 6.8 16.9 60 78 83

Leukaemia inhibitory factor 68,69 R&D LF00 55 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

eBioscience BSM242TEN 88 3.13–200 pg/mL 97 4.4 11.9 100 96 99

Matrix metalloprotease 9 70 R&D MP9 81 1.25–20 ng/mL 119 5.1 2.7 100 96 100

N-Acetyl-β-D-
glucosaminidase

71,72 Roche 10 875 406
001

65 to 407 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Diazyme DZ062A-K 11 to 226 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Neutrophil gelatinase
associated lipocalin

15,17,66 BioPorto 036RUO 97 25–1000 pg/mL 108 9.9 14.4 100 100 100

Osteopontin 73,74 R&D OST00 112 2.5–20 ng/mL 95 5.3 5.7 78 78 79

Periostin 75 R&D Y3548 47 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Aviscera
Bioscience

SK00072-06 34 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Pro-collagen III N-terminal
peptide

76 Uscn E90573Hu 43 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

Tissue inhibitor of
metalloprotease 1

77 R&D TM100 77 0.15–10 ng/mL 87 4.2 19.3 95 94 91

Transforming growth
factor-α

43 CellScience CKH188 32 Discarded Discarded Discarded Discarded Discarded Discarded Discarded

R&D TGA00 91 15.6–1000 pg/mLa,b 81 5.7 5.8 100 100 100

Transforming growth
factor-β

78 R&D DB100B 97 31.2–2000 pg/mLa Discarded Discarded Discarded Discarded Discarded Discarded

eBioscience BMS249/3 85 31–2000 pg/mLa Discarded Discarded Discarded Discarded Discarded Discarded

Uromodulin 31 MBD
bioscience

M036020 91 4.68–150 ng/mL 112 8.7 7.9 61 64 77

Vascular endothelial growth
factor A

79 R&D VE00 93 15.6–1000 pg/mL 144 5.5 15.2 30 67 85

Vascular endothelial growth
factor C

80 R&D VEC00 111 219–7000 pg/mLa Discarded Discarded Discarded Discarded Discarded Discarded

eBioscience BMS297/2 91 230–15000 pg/mLa Discarded Discarded Discarded Discarded Discarded Discarded

QC: quality control, LLOQ: lower limit of quantification. ULOQ: upper limit of quantification. Bibliography is articles containing pathophysiological evidences in favor of the selected biomarker. aIndicates
assays with a detection range above the naturally occurring concentration of the analyte in urine. bIndicates assays with a detection range overlapping the naturally occurring concentration of the analyte
in urine after urine concentration.

Table 1: Validation of the candidate biomarker assays.

Articles
differences regarding biomarkers and mGFR slopes
were similarly tested. We also assessed Pearsons corre-
lations between log-transformed biomarkers. Logistic
regression was used to estimate crude and adjusted odds
ratios (OR) of fast progression for each biomarker
considered individually. ORs were sequentially adjusted
www.thelancet.com Vol 93 July, 2023
for baseline covariates: age, gender, ethnicity, mGFR,
BMI, mean blood pressure, diabetes mellitus, history of
cardiovascular disease, smoking, renin angiotensin sys-
tem (RAS) blockade such as angiotensin converting
enzyme inhibitor (ACEI) or angiotensin receptor blocker
(ARB) treatment, and finally for albuminuria. We used
5
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Holm and Bonferroni’s method to provide p-values cor-
rected for multiple testing. In order to select the best
combination of biomarkers to predict CKD progression
and to quantify the potential gain in discrimination
ability as compared to traditional risk factors, we used
logistic regression regularized by LASSO (Least Absolute
Shrinkage and Selection Operator) penalty with the
complete set of biomarkers and/or risk factors from the
4-variables KFRE (age, sex, mGFR, albumin-to-creatine
ratio).51 To provide an unbiased estimation of the
model performances, we used a resampling approach.
Two-fold stratified cross-validation repeated 50 times
were performed both to choose the penalty parameter of
the LASSO maximizing the area under the ROC curve
(AUC), and to re-estimate the mean AUC and 95% con-
fidence interval (obtained with the percentile method)
through the 100 resamples. Finally, a logistic model was
fitted including biomarkers and risk factors selected by
the LASSO regression with the highest mean AUC.

For the pilot cohort studies, levels of biomarkers
between different groups (e.g.: control vs. CKD patients
or CKD stage I-II vs. stage III-V) were compared using
Mann Whitney t-test. Statistical analyses were per-
formed with SAS 9.2 (SAS Institute Inc., Cary, NC
USA), R 2.3 (R Foundation for Statistical Computing,
Vienna, Austria, 2014).

Role of funders
The funders of this study were Institut National de la
Santé et de la Recherche Médicale, Université de Paris
Cité, Assistance Publique Hôpitaux de Paris, Agence
Nationale de la Recherche, Pharma Research and Early
Development Roche Laboratories (Basel, Switzerland),
Institut Roche de Recherche et Médecine Trans-
lationnelle (Paris, France). They were not involved in
study design, data collection, data analyses, interpreta-
tion, or writing of report.
Results
Biomarker selection
In order to identify robust biomarkers that would
improve the prediction of CKD progression, we first
selected a panel of biomarkers that full-fill at least two of
the following criteria: (i) reflect tissue damage or kidney
functional mass; (ii) participate to the mechanisms
leading to kidney damage; (iii) availability of a com-
mercial assay is for its measurement. To refine our
analysis, we selected molecules whose function does not
overlap and tried to cover all the cellular events known to
be involved in CKD progression, as cell proliferation,
matrix balance and inflammation. This pipeline led us
to define a panel of 24 distinct biomarkers (Table 1).

Assay validation
We then determined the validity of the assays allowing
the detection of these molecules in urine according to
the FDA guidelines for immunoassay validation.49 In
this aim, we first evaluated if urine interferes with the
capacity of each assay to adequately measure the ana-
lyte. Notably, when an assay showed a matrix effect, we
eventually tested an additional commercially available
assay for that analyte. Among the 30 tested assays, 10
displayed significant matrix interference [i.e., the per-
centage of recovery of the analyte in the urine over-
stepped the accepted range (70%–130%) for more than
4 out of 6 standard concentrations; Table 1 and
Supplementary Fig. S1]. In addition, we were unable to
validate the spectrophotometric assays for N-acetyl-
β-D-glucosaminidase measurement, due to matrix
interference and a high variability between sample
replicates and experiments (Table 1). These matrix
interferences led us to discard assays for Carbonyl
Protein, CTGF, IL18, Periostin and Pro-collagen III N-
terminal peptide.

We then assessed if the detection range of the assays
was compatible with the usual endogenous level of the
molecule in the urine from healthy individuals (n = 13)
and CKD patients (n = 19). Results showed that the
majority of the ELISA kits displayed good linearity with
a deviation percentage from undiluted sample not
exceeding the 20% limit (Table 1). Only TGF-α, TGF-β
and VEGFC assays had lower limits of detection (LLOD,
defined by manufacturers), above the naturally occur-
ring endogenous levels of the analyte in the urine. After
concentration by ultrafiltration, TGF-β and VEGFC
remained below LLOD, suggesting protein degradation
or very small urinary levels. In contrast, TGF-α reached
quantifiable levels. In addition, urine concentration was
associated with acceptable recovery (83.8%) when re-
combinant TGF-α was added to heat inactivated urines
before concentration.

We next evaluate the selectivity of each kit (i.e., the
ability to solely measure the biomarker of interest irre-
spective of the presence of other molecules) through
depletion experiments. For all the assays tested, except
for the low-quality control in VEGFA, we achieved an-
alyte depletion above 50%, which was deemed sufficient
for appropriate selectivity (Table 1).

One of the problems of studying a large panel of
biomarkers is the time required for sample processing
particularly when applied to a large cohort of patients,
since this may compromise correct quantification if the
stability of the analyte is reduced over the time. Hence,
we analyzed the values of analyte concentration in
samples that underwent thaw/freeze cycle and overnight
storage at 4 ◦C or room temperature compared to
freshly thawed samples. We observed that many of the
tested analytes were stable in these conditions (i.e., less
than 20% protein degradation; Supplementary
Tables S3 and S4). However, cystatin C, FABP1,
MMP9 and TIMP1 were unstable after 1 or 2 thaw-
freeze cycles (Supplementary Table S3). In addition,
cystatin C, IL6, KIM1, MMP9, TIMP1 and uromodulin
www.thelancet.com Vol 93 July, 2023
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All Slow
progressors

Fast
Progressors

P-value

N 229 161 68

Age, years 61 ± 13 60 ± 13 62 ± 13 0.4

Men 66% (152) 66% (106) 68% (46) 0.8

African origin 10% (23) 12% (19) 6% (4) 0.2

Diabetes 25% (57) 21% (34) 34% (23) 0.04

mGFR (mL/min) 38 [26–50] 40 [30–50] 35 [24, 44] 0.06

Mean blood pressure
(mm Hg)

92 ± 13 92 ± 12 92 ± 14 0.9

Elevated blood pressure
(>140/90 mm Hg)

26% (57) 24% (38) 28% (19) 0.5

ACEI or ARB 89% (202) 86% (137) 96% (65) 0.04

Body mass index, kg/m2 27.2 ± 5.9 27.0 ± 5.8 27.7 ± 6.1 0.3

History of cardiovascular
disease

17% (38) 16% (25) 19% (13) 0.5

Smoking 0.4

Past 38% (87) 35% (57) 44% (30)

Current 10% (22) 11% (17) 7% (5)

Kidney disease 0.2

PKD 7% (16) 4% (7) 13% (9)

Diabetic nephropathy 8% (19) 7% (12) 10% (7)

Glomerular disease 16% (37) 16% (26) 16% (11)

Vascular disease 25% (57) 26% (42) 22% (15)

Interstitial nephritis 17% (39) 19% (30) 13% (9)

Unknown 27% (61) 27% (44) 25% (17)

Proteinuria (mg/mmol) 24.6 [0.0620, 848] 17.7 [0.0620, 544] 59.2 [1.7, 848] <0.001

Albuminuria (mg/mmol) 12.4 [0.03, 547] 7.9 [0.03, 401] 31.7 [0.05, 547] <0.001

mGFR: measured glomerular filtration rate; ACEI: Angiotensin converting enzyme inhibitor; ARB: angiotensin
receptor blocker; PKD: polycystic kidney disease. Data are expressed as mean ± standard deviation (SD), median
[interquartile range (IQR)] or percent % (number of patients (n) as appropriate.

Table 2: Baseline characteristics of NephroTest cohort patients.
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were unstable after overnight storage at 4 ◦C or room
temperature (Supplementary Table S4).

Finally, we analyzed the intra-assay precision of each
assay within a plate and between two different plates by
repeating 8 measures of the 3 quality controls and 3
measures of the standard in urine. As shown in Table 1,
the mean coefficient of variation (CV) for intra and
inter-assay precisions did not exceed 10% and 19%,
respectively.

Biomarker concentrations in CKD patients and
controls
This rigorous evaluation pipeline allowed us to identify
16 assays that fulfilled all the technical requirements for
the detection of a urinary molecule relevant to CKD
progression. Then, we wondered, which of the bio-
markers was associated with CKD and its severity. In
this aim, we measured the levels of the 16 biomarkers in
15 healthy controls and 60 CKD patients (Pilot cohort).
All biomarker values were normalized for urinary
creatinine to correct for differences in concentrations
related exclusively to the hydration status or urinary
volume output. The mean biomarker levels were
significantly increased in CKD patients when compared
with healthy controls for CCL2, cystatin C, FABP1,
fibronectin, KIM1, LIF, MMP9, NGAL, and TIMP1. In
contrast, the concentration of EGF and osteopontin was
significantly decreased (Supplementary Fig. S2). In an
exploratory analysis, we compared patients with early,
mild stages of CKD (stages I and II) to those with more
severe stages (stages III to V), we observed higher levels
of cystatin C, FABP1, fibronectin, GDF15 and KIM1 and
TIMP1 in patients with more severe CKD
(Supplementary Fig. S3). Conversely, EGF and uromo-
dulin excretion were lower in advanced stages of CKD
(Supplementary Fig. S3).

Characteristics of the NephroTest cohort patients
We then evaluated the association of each individual
biomarker with CKD progression in a subsample of 229
patients with CKD stage 2–5 from the NephroTest
cohort with both urine collection and at least two sub-
sequent 51CrEDTA clearance-based mGFR measure-
ments. Participants were mostly men (66%) with a
mean age of 61 ± 13 years and a median mGFR of 38.3
(IQR, 26.4–49.6) mL/min at the time of urine collection;
a majority (89%) were prescribed renin-angiotensin
system (RAS) blockers (Table 2).

Over a median follow-up time of 21.6 months, the
median absolute change in mGFR was −1.4 (IQR, −4.2 to
1.1) mL/min/year and the relative change was −3.9
(IQR, −12 to 2.7) % per year from baseline (negative
values represent a loss). Sixty-eight (30%) patients were
‘fast progressors’ as defined by a mGFR decline >10%
per year. Fast progressors had significantly higher albu-
minuria, and more often diabetes than slow progressors;
they were also more often prescribed RAS blockers (all
www.thelancet.com Vol 93 July, 2023
P < 0.05). They did not significantly differ, however, ac-
cording to age, gender, ethnicity, as well as follow-up
duration (median 18 vs. 23 months, P = 0.07) or num-
ber of mGFR measurements over the study period (>2
visits for 47% vs. 38%, respectively, χ2 test: P = 0.2).

Distribution of urinary biomarkers, overall and by
gender
The baseline distribution of the 16 studied biomarkers
is shown in Supplementary Table S5. For MMP9, IL6,
and LIF, more than 20% of the patients had values
below the LLOD. These biomarkers were not included
in subsequent analyses. The distributions varied by
gender for seven of the biomarkers. Levels of LIF,
MMP9, NGAL, TGF-α, and uromodulin were signifi-
cantly higher and those of TIMP1 and VEGFA, lower, in
women than in men. There was no difference in base-
line mGFR normalized for body surface area (BSA)
between men and women (36.8 vs. 34.6 mL/min/1.73
m2, t-test: P = 0.3). Correlations between biomarkers
were shown in Supplementary Table S6.
7

www.thelancet.com/digital-health


Articles

8

Crude and adjusted associations of individual
urinary biomarkers with CKD progression
As expected, odds-ratio of “fast progression”, estimated
per one gender-specific standard deviation (SD) increase
of log-transformed biomarkers, was significantly higher
in patients with higher albuminuria and proteinuria,
before and after adjusting for common progression risk
factors (Table 3). Crude and adjusted odds-ratios were
also significantly higher with higher levels of cystatin C,
CCL2, FABP1, fibronectin, GDF15, KIM1, NGAL,
TIMP1, TGF-α and VEGFA, and lower for higher EGF
level, but only those associated with CCL2, TIMP1, and
TGF-α remained statistically significant after further
adjusting for albuminuria and multiple testing. There
was no significant association with osteopontin or uro-
modulin, either before or after adjustment (Table 3).
Interestingly, we observed a stronger odds-ratio of fast
progression for TGF-α than for albumin. Further
adjustment for center did not change any of these re-
sults (data not shown). Of note, we also tested the as-
sociations between each biomarker and mGFR, as a
continuous variable, and found consistent results be-
tween the logistic and the linear regression models (data
not shown).

Combining urinary biomarkers to predict CKD
progression
We then performed exploratory analysis to investigate
if a combination of several biomarkers was susceptible
to classify patients into slow vs. rapid progressors bet-
ter than the 4-variables KFRE based on age, gender,
Model 1 Model 2

OR (95%CI)a Pb OR (95%

Protein 2.15 (1.52–3.03) <0.001 2.24 (1.

Albumin 2.08 (1.48–2.91) <0.001 2.12 (1.

Cystatin C 1.92 (1.40–2.65) <0.001 2.13 (1.

CCL2 2.10 (1.51–2.93) <0.001 2.10 (1.

EGF 0.62 (0.46–0.84) 0.015 0.55 (0.

FABP 1.87 (1.37–2.54) <0.001 1.88 (1.

Fibronectin 1.59 (1.18–2.15) 0.015 1.62 (1.

GDF15 1.60 (1.17–2.19) 0.017 1.62 (1.

KIM1 1.70 (1.16–2.51) 0.023 1.68 (1.

NGAL 1.50 (1.12–2.00) 0.023 1.58 (1.

Osteopontin 1.09 (0.80–1.49) 0.59 1.11 (0.

TIMP1 2.02 (1.45–2.83) <0.001 2.08 (1.

TGF-α 2.08 (1.48–2.92) <0.001 2.39 (1.

Uromodulin 1.26 (0.94–1.69) 0.24 1.27 (0.

VEGFA 1.82 (1.31–2.53) 0.003 1.95 (1.

Model 1: crude model. Model 2: adjusted for mGFR, age, gender, ethnicity, body mass
angiotensin converting enzyme inhibitor or angiotensin receptor blocker. Model 3: mode
C-C motif chemokine ligand 2; EGF, Epidermal Growth Factor; FABP1, Fatty Acid Bindi
Molecule 1; NGAL, Neutrophil Gelatinase Associated Lipocalin; TIMP1, Tissue Inhibitor
Endothelial Growth Factor A. aOdds-ratios (95% confidence intervals) estimated per on
biomarker values were normalized for urinary creatinine. bAdjusted p-value for multiple

Table 3: Crude and adjusted odds-ratios of fast CKD progression (mGFR decl
mGFR, and albuminuria.51 Some biomarkers were
highly correlated (r>|0.5|) as shown in Supplementary
Table S6. Therefore, we used LASSO (Least Absolute
Shrinkage and Selection Operator) to obtain the most
parsimonious model for patients classification.81 We
first performed three LASSO regressions to test three
sets of covariates including: (1) the 4 KFRE variables,
(2) the 13 urinary biomarkers selected at the first step
of the study, and (3) both the 13 biomarkers and the 4
KFRE variables. Models 2 selected 5 biomarkers,
including CCL2, EGF, NGAL, TGF-α, and KIM1, which
were also selected in Model 3 (Supplementary
Table S7). The discriminatory power as measured
with mean area under the curves (AUC) estimated
from 100 re-samples (two-fold stratified cross-
validation repeated 50 times), slightly improved from
model 1 to model 2 and 3, with AUC of 0.673 [95%
confidence interval, 0.564–0.751], 0.703 [0.625–0.783],
and 0.715 [0.632–0.786], respectively. Model 3,
combining the 4 KFRE variables with CCL2, EGF,
NGAL, TGF-α, and KIM1 was the best predictive model
regarding mean AUC, but the empirical confidence
intervals overlapped between the 3 models. In 81% of
the re-samples, the performance of the model
combining the 4 KFRE variables with BMs was better
to that of the model which only uses the 4 KFRE var-
iables, with a median of the paired differences in AUC
of 0.0466 (Q1 = 0.0139-Q3 = 0.072, max = 0.220).
Adding biomarkers to a model including all covariates
(age, sex, mGFR, albuminuria, ethnicity, BMI, mean
blood pressure, diabetes mellitus, history of
Model 3

CI)a Pb OR (95%CI)a Pb

52–3.31) <0.001

44–3.12) 0.002

45–3.14) 0.001 1.69 (1.10–2.60) 0.15

49–2.97) <0.001 1.87 (1.31–2.66) 0.006

35–0.86) 0.038 0.63 (0.40–1.01) 0.37

32–2.69) 0.004 1.49 (1.00–2.22) 0.37

16–2.26) 0.034 1.43 (1.01–2.03) 0.37

16–2.27) 0.034 1.41 (1.00–2.00) 0.37

10–2.57) 0.05 1.38 (0.90–2.13) 0.43

14–2.18) 0.034 1.34 (0.95–1.89) 0.39

78–1.60) 0.56 1.03 (0.75–1.42) 0.86

44–3.02) 0.001 1.75 (1.19–2.57) 0.049

64–3.48) <0.001 2.33 (1.57–3.44) <0.001

94–1.73) 0.25 1.24 (0.91–1.70) 0.43

33–2.87) 0.005 1.67 (1.12–2.48) 0.12

index, mean blood pressure, diabetes, history of cardiovascular disease, smoking,
l 2 + albumin-to-creatinine ratio. mGFR, measured glomerular filtration rate; CCL2,
ng Protein; GDF15, Growth and Differentiation Factor 15; KIM1, Kidney Injury
of Metalloprotease 1, TGF-α, Transforming Growth Factor alpha, VEGFA, Vascular
e gender-specific standard deviation unit increase (after log-transformation). All
-tests (Holm–Bonferroni).

ine >10% per year) associated with individual urinary biomarker.
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cardiovascular disease, smoking, and RASi) also
increased model’s AUC (AUC without biomarkers:
0.666 [0.5000–0.742]; with biomarkers: 0.708
[0.615–0.787]). We then estimated adjusted odds ratios
of fast progression for all biomarkers and covariates
selected by the LASSO (Fig. 1). Odds-ratios were
significantly higher for albumin, CCL2, and TGF-α,
and lower for EGF and NGAL. This model fitted the
data significantly better than a model based on age,
mGFR, and albuminuria alone (likelihood-ratio test, p-
value < 0.001).

Impact of urine collection on the detection of the
selected biomarkers
In the NephroTest study, we used a very rigorous, but
costly and cumbersome method to collect urine. It is
possible that this might limit the clinical applicability of
our molecular signature. Therefore, we tested whether
urine centrifugation and protease inhibitors were
required for the proper detection of the four most
promising biomarkers. Neither the absence of protease
inhibitors nor that of centrifugation appeared to impact
the detection of the four analytes (Supplementary
Table S8), indicating that these biomarkers are
amenable to clinical practice.
Discussion
Identifying urinary biomarkers predicting GFR decline
has long been an area of intense investigation in the
field of nephrology.82,83 Most candidates proposed to
date originate from pathophysiologic models70,84 or
transcriptional screens performed on human or ro-
dents kidney tissues.15,27,85 Such pipelines are essen-
tially based upon protein biomarkers, which detection
in urine relays mainly, to date, on ELISA. While the
number of candidate biomarkers has impressively
increased over the past two decade, the data regarding
Fig. 1: Adjusted odds-ratios of fast CKD progression (mGFR
deline > 10% per year) associated with a combination of urinary
biomarkers. Odds-ratios were adjusted for all variables selected by
the LASSO including age, mGFR, albuminuria and five biomarkers.
Chemokine (C-C motif) Ligand 2 (CCL2), Epidermal Growth Factor
(EGF), Kidney Injury Molecule 1 (KIM 1), Neutrophil Gelatinase
Associated Lipocalin (NGAL), Transforming Growth Factor-α (TGF-α)
and albuminuria in the model.

www.thelancet.com Vol 93 July, 2023
the applicability of the commercially available ELISA
targeting these biomarkers to their quantification in
urine are surprisingly scarce.25 In addition, whether
distinct biomarkers play a complementary or a redun-
dant role in refining the prediction of CKD progression
remains unclear.

The first aim of this study was to determine if a
consequent panel of 30 commercial ELISA for 24
promising urinary biomarkers of CKD progression meet
FDA criteria for analyte quantification in urine. This un-
precedent effort in the field of CKD progression led to
identify important pitfalls. First, we found unacceptable
matrix interference for a third of the tested assays. Of
note, we obtained reasonable performance with assays
that were not previously validated in urine matrices (IL6,
LIF, TGF-α, and VEGFA). In contrast, some of the kits
that were supposed to allow analyte quantification in
urine had significant matrix effect (e.g., CTGF and
NAG). In addition, we observed that LLOQ below the
naturally occurring concentration of the analyte in pa-
tient urine represented another important limitation for
additional assays. Although urine concentration was able
to solve this issue in the case of TGF-α, this ap-
proach complexify the pre-analytic pipeline, which may
compromise the use of this otherwise promising assay in
routine screening. Our results further revealed the poor
stability of cystatin C and uromodulin in urine, which
limits their use as routine urinary biomarkers. An
appreciable positive finding of this study is that neither
the use of antiprotease or urine centrifugation is
required to achieve accurate quantification of the most
promising biomarkers tested in urine, precluding the
future use of costly and/or cumbersome urine collection
protocol for these molecules.

Having identified robust assays for the detection of
16 candidate biomarkers of CKD progression in urine,
our second goal was to explore the ability of these
markers to predict fast GFR decline either individually
or in combination in a subsample of 229 CKD patients
from the NephroTest prospective cohort. Considering
the biomarkers individually, we observed a significant
and independent association with the risk of fast CKD
progression for cystatin C, CCL2, fibronectin, GDF15,
TGF-α, TIMP1, and VEGFA, and on the borderline of
significance for EGF. CCL2 is an important chemo-
attractant for monocytes derived macrophage86 and plays
an instrumental role in the progression of distinct ro-
dent CKD models.87–90 CCL2 urinary excretion rate has
been previously associated with the risk of GFR decline
in diabetic nephropathy91 and autosomal dominant
polycystic kidney disease.19,92 Thus, our findings gener-
alize the concept that CCL2 represents a promising
biomarker for the progression of CKD. In contrast to
CCL2, the data regarding the use of urinary TIMP1,93,94

fibronectin63 or TGF-α for the prediction of CKD pro-
gression are to date scarce or inexistent. Nonetheless,
concordant evidence suggests that these molecules are
9
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linked to CKD progression. This is particularly notable
for the epidermal growth factor receptor (EGFR) ligand
TGF-α, which has been shown to fuel renal parenchyma
deterioration through EGFR activation in distinct rodent
models of CKD.43,95,96 While fibronectin and TIMP1 are
clearly associated with renal fibrosis, their instrumental
role in CKD progression remains debated.97–101 Thus,
this study sheds light on the potential use of these
overlooked potential biomarkers as predictors of CKD
progression.

We further investigate if a combination of different
biomarkers could improve the prediction of fast GFR
decline compared to the 4 KFRE variables alone. Using
LASSO logistic regression, we observed, that a model
incorporating CCL2, EGF, TGF-α, NGAL, and KIM1
offered the strongest improvement in patient classifi-
cation. However, the small size of the cohort did not
allow us to demonstrate significant improvement of the
prediction, when comparing AUC between models
including age, gender, mGFR and albuminuria with
and without the 5 selected biomarkers. Additional
investigation involving independent cohorts are
required to confirm or infirm the potential of these
biomarkers’ combination. In addition, a more sensitive
assay for urinary TGF-α that will not require urine
concentration step to detect its target analyte is also
mandatory.

Nonetheless, our study enhances the notion that the
combined use of rigorously validated biomarkers in-
creases the predictive accuracy for GFR decline. The
nature of the molecules involved and their specific
association with the outcome in our exploratory model
further raise interesting questions. First, it is worth
noting that our prediction model incorporates two
EGFR ligands (i.e., EGF and TGF-α), with opposite
associations with the outcome. While EGF and TGF-α
activate EGFR, they differentially impacts on its acti-
vation kinetic and trafficking, leading to the non-
parallel recruitment of downstream effectors with
divergent cellular effects.102,103 Intriguingly, while TGF-
α expression is associated with deleterious EGFR acti-
vation in different CKD models,15,43,95 EGF perfusion
has been shown to promote recovery from acute kidney
injury,104–106 raising the hypothesis that EGF and TGF-α
ligand may differentially orient the fate of the renal
parenchyma toward repair or deterioration. A reduc-
tion in EGF urinary excretion has been associated with
deleterious outcome in CKD cohorts.27,107 Unexpect-
edly, while univariate analysis pinpointed NGAL as a
weak predictor of fast GFR decline, we observed that
high NGAL excretion was associated with a reduction
of the risk of CKD progression, when included in our
model incorporating EGF, TGF-α, albuminuria, KIM1
and CCL2. NGAL is a well-characterized marker of
kidney injury. Previous studies of this biomarker alone
or in association with other biomarkers showed a
modest significant association between NGAL urinary
excretion and CKD outcome.17,108 However, NGAL
measurement did not improved risk stratification
compared to traditional risk factors.22,24 NGAL is a
secreted molecule with pleiotropic, context specific ef-
fects. Exogenous NGAL administration mitigated renal
damage in different models of acute kidney injury.109–112

On the contrary, NGAL has been show to relay the
deleterious effect of EGFR activation or albuminuria in
rodents models of CKD.15,113 The difference that we
observed regarding the association of NGAL excretion
with CKD progression depending on the incorporation
of additional biomarkers in the model may therefore
reflects the versatile functions of NGAL in kidney
diseases.

Our study has notable limitations. First, we did not
include all the available ELISAs for each targeted
biomarker, nor extensively tested multiple lots for each
assay. Second, the selected population of the Neph-
roTest cohort precludes generalization of our findings to
the overall CKD patient population, but is representative
of the nephrology patients. Third, as we used a conve-
nient sample reflecting our intuition recruitment for
assays validation, we cannot exclude that some assays
may not perform as well in patients suffering from
kidney disease that were not included in this initial
convenient sample. Fourth, we lacked an independent
external cohort to validate our results. Nevertheless, we
did perform an internal validation of our models by
cross validation, as recommended by current TRIPOD
guidelines,114 a method which proved to be a most
effective to minimize overfitting when applied to the
entire sequence of modeling steps as we did.115 Finally,
the small size of the study precluded stratified analyses
per kidney disease etiology. Nevertheless, our hypothe-
ses relied on the assumption that mechanisms of CKD
progression and its prediction were independent of
disease.116

Our study has also notable strengths including: the
use of a robust validation pipeline for multiple assays to
detect a broad panel of biomarkers in the urine, the use
of measured GFR to define CKD progression and the
simultaneous assessment of multiple biomarkers ac-
counting for multiple testing, which allowed us to
questioned their redundancy and/or complementarity
for the prediction of fast GFR decline.

In conclusion, this study provides a robust validation
of several assays carefully selected for the detection in
urine of relevant biomarkers reflecting various patho-
physiological mechanisms of CKD progression. It also
suggests that the combination of some of these bio-
markers may improve the prediction of CKD progres-
sion. Further studies are needed to refine the optimal
combination of biomarkers predicting GFR decline in
individuals with CKD and allowing personalized thera-
peutic intervention.
www.thelancet.com Vol 93 July, 2023
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