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Pneumococcal conjugate vaccines (PCVs) protect against diseases caused by Streptococcus pneumoniae,
such as meningitis, bacteremia, and pneumonia. It is challenging to estimate their population-level impact due
to the lack of a perfect control population and the subtleness of signals when the endpoint—such as all-cause
pneumonia—is nonspecific. Here we present a new approach for estimating the impact of PCVs: using least
absolute shrinkage and selection operator (LASSO) regression to select variables in a synthetic control model
to predict the counterfactual outcome for vaccine impact inference. We first used a simulation study based
on hospitalization data from Mexico (2000–2013) to test the performance of LASSO and established methods,
including the synthetic control model with Bayesian variable selection (SC). We found that LASSO achieved
accurate and precise estimation, even in complex simulation scenarios where the association between the
outcome and all control variables was noncausal. We then applied LASSO to real-world hospitalization data from
Chile (2001–2012), Ecuador (2001–2012), Mexico (2000–2013), and the United States (1996–2005), and found
that it yielded estimates of vaccine impact similar to SC. The LASSO method is accurate and easily implementable
and can be applied to study the impact of PCVs and other vaccines.

counterfactual prediction; epidemiologic methods; LASSO regression; least absolute shrinkage and selection
operator; pneumococcal conjugate vaccines; Streptococcus pneumoniae; vaccine impact

Abbreviations: IPD, invasive pneumococcal diseases; IRR, incidence rate ratio; ITS, interrupted time series; LASSO, least
absolute shrinkage and selection operator; PCV, pneumococcal conjugate vaccine; SC, synthetic control with Bayesian variable
selection; SF, season-forced; STL + PCA, seasonal-trend decomposition using locally estimated scatterplot smoothing plus
principal component analysis; SU, season-unforced.

The bacterium Streptococcus pneumoniae (pneumococ-
cus) poses a substantial health burden globally. Although
it typically colonizes the human nasopharynx asymptomati-
cally, infection can lead to disease ranging from mild (e.g.,
otitis media) to severe (e.g., pneumonia, meningitis) (1).

Antipneumococcal vaccines were developed to combat
pneumococcal infections. The most widely used is pneumo-
coccal conjugate vaccine (PCV), in which several types of
pneumococcal capsular polysaccharides are conjugated to
carrier proteins to elicit immunity to a subset of approxi-
mately 100 serotypes of pneumococcus (2). Following the
widespread adoption of a 7-valent PCV (PCV7) in national
childhood immunization programs, PCVs of higher valency

(e.g., 10-valent (PCV10), 13-valent (PCV13)) were intro-
duced (3, 4). Unlike previous antipneumococcal vaccines,
which merely reduced the risk of disease (5), PCVs also pro-
tect against carriage of vaccine serotypes and can therefore
help to achieve herd immunity (6, 7).

Randomized controlled trials have demonstrated PCV
efficacy in disease prevention (8) through comparisons of
vaccinated and unvaccinated groups. The efficacy measured
in randomized controlled trials is different from the actual
vaccine impact on a population level—that is, the reduc-
tion of disease burden in a population consisting of vacci-
nated and unvaccinated individuals in comparison with an
otherwise similar but universally unvaccinated population
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(9)—after PCV introduction. Randomized controlled trials
may substantially underestimate vaccine impact on the pop-
ulation level, because vaccinating infants with PCV protects
not only the vaccinated but also unvaccinated children and
adults against invasive pneumococcal diseases (IPD) and
pneumonia (10–12).

Addressing the limitation of randomized controlled trials
in vaccine impact estimation means finding a suitable unvac-
cinated comparison population, which is difficult, if not
impossible. Hence, statistical models are routinely employed
to emulate the counterfactual disease burden in a hypothet-
ical unvaccinated version of the population (12–18). Since
statistical models rely on observational data such as the
incidence rates of pneumococcal diseases before and after
the introduction of PCVs, they are prone to confounding
(such as changes in surveillance systems, reporting, and pop-
ulation demographic characteristics), as acknowledged in
previous studies (12, 14, 15, 18). To tackle unmeasured con-
founding, new methods, consistent with the synthetic control
framework (19, 20), compare the trends for pneumococcal
diseases with other control conditions that are unaffected by
PCVs. One may select controls a priori (17), via Bayesian
variable selection (21, 22), or via principal component anal-
ysis (23); however, no consensus exists on how best to select
controls in order to construct the counterfactual (17, 21–24).

In this study, we present a novel approach for selecting
controls under the synthetic control framework for estima-
tion of PCVs’ impact using least absolute shrinkage and
selection operator (LASSO) regression, which simultane-
ously performs variable selection and parameter estimation

(25). Through comprehensive simulations, we show that
LASSO regression can achieve accurate counterfactual pre-
diction for vaccine impact inference. We further present an
application using real-world data to empirically illustrate
PCVs’ impact on pneumococcal diseases in different age
groups and countries.

METHODS

Data

We used monthly hospitalization data originally published
and described by Bruhn et al. (21). These data consisted of
routinely collected information on reasons for hospitaliza-
tion in Brazil, Chile, Ecuador, Mexico, and 10 US states, pro-
vided either by each individual country’s Ministry of Health
or its health-care statistics agency. In this study, we excluded
data from Brazil because of a coding shift for the cause
of hospitalization in 2008 due to a reimbursement policy
change (21). We included all available data periods (which
differed by country; see Table 1) for all countries except the
United States. For the United States, as in the study by Bruhn
et al. (21), we excluded the period 2006–2010 and focused
exclusively on the early postvaccine period. In the US data
set, counts less than 10 were masked for privacy reasons;
therefore, we imputed these values by randomly drawing
values between 0 and 9, and we further excluded the period
1994–1995 due to a considerable amount of masked data.
The data were aggregated into 8 age groups (<1, 1, 2–4,
5–17, 18–39, 40–64, 65–79, and ≥80 years) for Ecuador,

Table 1. Characteristics of Monthly Hospitalization Count Data Sets for Persons Receiving Pneumococcal Conjugate Vaccine in 4 Countries,
1996–2013a

Country Data Period
Type of
PCVb

Date of
Introductionb

Evaluation
Period

Median No. (Range) of Pneumonia
Hospitalizations per Monthc

Prevaccine
Period

Postvaccine
Period

Chile January 2001–
December 2012

PCV10 January 2011 July 2011–
December 2012

5,151
(2,586–13,993)

5,036
(2,645–10,520)

Ecuador January 2001–
December 2012

PCV10 January 2010 January 2011–
December 2012

1,958
(980–3,658)

2,926
(1,959–5,910)

Mexico January 2000–
December 2013

PCV7 January 2006 January 2010–
December 2011

2,246
(1,165–5,375)

3,316
(1,424–6,548)

United Statesd January 1996–
December 2005

PCV7 January 2000 January 2002–
December 2004

30,089
(21,517–51,772)

34,517
(25,244–56,984)

Abbreviations: PCV, pneumococcal conjugate vaccine; PCV7, 7-valent pneumococcal conjugate vaccine; PCV10, 10-valent pneumococcal
conjugate vaccine.

a For each country, we report the data period included in this study, the type of PCV being introduced, and the date of PCV introduction, as
well as how we defined the evaluation period. A full description of the data sets has been published by Bruhn et al. (21).

b Data regarding the type of PCV and the year of introduction were obtained from Bruhn et al. (21), Carnalla-Barajas et al. (47), and the Pan
American Health Organization (54).

c Median monthly hospitalization counts (with IQRs) are presented for the outcome, all-cause pneumonia, for all age groups, in the prevaccine
and postvaccine periods, to illustrate the scope of the disease burden captured in these data sets.

d The US data came from 10 states: Arizona, Colorado, Iowa, Massachusetts, New Jersey, New York, Oregon, Utah, Washington, and
Wisconsin.
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Table 2. Summary of How Comparator Methods Were Implemented in the Simulation Study

Method Variables Supplied
Variable

Selection?
Period of Fit

Method of
Calculating

Counterfactual

Method of
Calculating IRR

ITS 11 seasonal
variables,
intervention
indicator variable

No Whole period By predicting
postvaccine period
outcome after
changing the
intervention indicator
variable from 1 to 0

Fitted outcome/
counterfactual
outcome

LASSO 11 seasonal
variables, control
variables

Yes Prevaccine period By predicting
postvaccine period
outcome based on
prevaccine fit

Observed outcome/
counterfactual
outcome

SC 11 seasonal
variables, control
variables

Yes Prevaccine period By predicting
postvaccine period
outcome based on
prevaccine fit

Observed outcome/
counterfactual
outcome

STL + PCA 11 seasonal
variables, control
variables

Noa Prevaccine period By predicting
postvaccine period
outcome based on
prevaccine fit

Observed outcome/
counterfactual
outcome

Abbreviations: IRR, incidence rate ratio; ITS, interrupted time series; LASSO, least absolute shrinkage and selection operator; SC, synthetic
control with Bayesian variable selection; STL + PCA seasonal-trend decomposition using locally estimated scatterplot smoothing plus principal
component analysis.

a STL + PCA does not select variables but includes a principal component that summarizes the extracted smoothed trends of variables
supplied.

Mexico, and the United States. For Chile, the youngest 2 age
groups (<1 year and 1 year) were combined.

Outcome variable

Our study’s primary endpoint was all-cause pneumonia
hospitalization, an established indicator for PCVs’ impact
(12, 14, 15, 17, 21, 26). All-cause pneumonia was defined
as the presence of International Classification of Diseases,
Tenth Revision, codes J12–J18 (Chile, Ecuador, and Mexico)
or International Classification of Diseases, Ninth Revision,
codes 480–486 (United States) in the diagnostic field of
the electronic hospitalization database (21). In the US data
set, we analyzed 4 additional disease endpoints: 1) IPD
(pneumococcal meningitis and pneumococcal septicemia);
2) pneumococcal/lobar pneumonia; 3) all-cause pneumonia
according to Griffin et al.’s (27) definition (pneumonia listed
in the first diagnostic field or listed after a first diagnosis of
sepsis, meningitis, or empyema); and 4) all-cause pneumo-
nia with a less specific definition (pneumonia listed in any
of the diagnostic fields).

Control variables and other input variables

Following the method of Bruhn et al. (21), we included
the time series of monthly counts of control conditions
(“control variables”), which may be associated with all-
cause pneumonia but are not themselves affected by PCV

(e.g., dermatological conditions, urinary tract infections,
etc.). Counts for all control variables were log-transformed
and standardized. In addition, we included 11 Fourier func-
tions (6 pairs of sine and cosine functions (with frequency
s/12) per month (s = 1, . . . 6), minus 1 sine function
equal to 0 for s = 6) with annual periodicity to model the
background seasonality of pneumonia (28, 29) over a period
of 12 months (“seasonal variables”). Finally, we included
the natural logarithm of nonrespiratory hospitalization as an
offset to control for changes in population size or changes in
the surveillance system. A complete list of all input variables
can be found in Web Appendix 1, Web Table 1 (available at
https://doi.org/10.1093/aje/kwad061).

Data period

For all methods except the interrupted time series (ITS)
method, the full data period was divided into 3 parts:
1) the prevaccine period, within which the regression model
was trained; 2) the implementation period, during which
data were not used; and 3) the evaluation period, during
which the outcome incidence rate ratio (IRR) was calculated.
The prevaccine period varied by country depending on
data availability and the date of vaccine introduction. The
implementation period varied depending on the rollout
progress of the country. The evaluation period was at least 18
months long in each country. Country-specific data periods
are detailed in Table 1, and the fitting period for each method
is shown in Table 2.
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Statistical models

We tested LASSO regression, an extension of generalized
linear regression that decreases the variance of regression
coefficients and the prediction error by adding a term to the
log-likelihood to penalize model complexity (25). This leads
to a parsimonious model with a subset of control variables
that best predicts the outcome. In our implementation, we
tested 2 variants of the LASSO regression model: The first
included all seasonal variables by default (season-forced
(SF)), while the second treated seasonal variables as control
variables and allowed LASSO regression to select from
them (season-unforced (SU)); model selection was based
on either 10-fold cross-validation or the Akaike information
criterion (30). The selected model was refitted onto the entire
prevaccine period to predict the counterfactual outcome
(ỸT ) during the evaluation period—that is, the hospitaliza-
tion counts that would have occurred in the population if
PCV had not been introduced, assuming that the distribu-
tion and associations of the population features captured
in the prevaccine period data remained unchanged. With
the LASSO-predicted counterfactual under the no-vaccine
scenario and the observed outcome (YT), we calculated
the vaccine impact using equation 1. An IRR less than 1
indicates a reduction in all-cause pneumonia hospitalization
due to the vaccination program.

IRR = YT

ỸT
=

∑
t∈T Yt∑
t∈T Ỹt

, (1)

where T is the set of time points during the evaluation period.
We compared LASSO regression with 3 established meth-

ods in the field of vaccine impact estimation: namely, ITS,
synthetic control with Bayesian variable selection (SC) (21,
22), and seasonal-trend decomposition using locally esti-
mated scatterplot smoothing plus principal component anal-
ysis (STL + PCA) (23). All 4 methods are summarized in
Table 2 and detailed in Web Appendix 2.

Performance assessment with simulated data

To assess the performance of all methods in estimat-
ing vaccine impact, we designed a simulation study. We
generated the outcome, monthly pneumonia hospitalization
(Yt), based on a combination of n (n = {5, 10}) control
variables (X1, X2, . . . , Xn) randomly selected from the list
of control variables available in the Mexico data set (21).
We then incorporated an intercept (α), the logarithm of non-
respiratory hospitalization (NRH) as the offset (ln (NRHt)),
background seasonality (St), and a vaccine impact compo-
nent (γ) into the equation to generate the logarithm of the
expected number of monthly pneumonia hospitalizations.
A predetermined value was assigned to γ starting from the
time point of PCV introduction (tvac). Assuming a Poisson
distribution for the outcome, we simulated 100 time series;
thus, the variability of the simulated time series originated
from the Poisson variation. The model is represented by

equation 2:

Yt ∼ Poisson (μt) ;

ln (μt) = α + ln (NRHt)+
n∑

i=1
βi Xit + St + γ1 ( t ≥ tvac),

where α = ln
(

Y
NRH

)
and

St =
6∑

s=1
δs cos

(
2πst
12

)
+

5∑
s=1

ζs sin
(

2πst
12

)
. (2)

The intercept, α, is calculated as the logarithm of the mean
ratio of pneumonia hospitalization to all nonrespiratory hos-
pitalization (ln(Y/NRH)). In all simulations, we assumed a
vaccine with null impact (γ = 0), IRR = 1, except in the
sensitivity analysis using a nonnull vaccine. The simulated
data were screened to ensure they were realistic, such that
the maximum ratio of annual maximum to minimum for
the expected count of the outcome in any simulation set
would not exceed 10. A full description of parameter values
is included in Web Appendix 3.

We tested the performance of all methods across 4 scenar-
ios. First, we used 5 randomly selected control variables and
a seasonal variable to generate the outcome. This analysis
was performed 5 times (simulation sets A–E) with resam-
pling of the 5 control variables. To illustrate this process,
we plotted the first set of 5 control variables (set A) and
their assigned β values used to generate the outcome time
series in Figure 1A and the generated outcome time series in
Figure 1B. Second, we repeated this analysis with 10 control
variables (simulation sets F–J). Third, we tested the perfor-
mance of all methods on sparse data, which may affect the
performance of these methods (23). We generated the sparse
data (simulation set K) by taking a 10% binomial subsample
from the outcome in set A. A flowchart for the outcome
simulation procedures can be found in Web Appendix 3,
Web Figure 1; plots similar to Figures 1A and 1B for sim-
ulation sets A–E can be found in Web Appendix 3, Web
Figure 2. The complete list of control variables used to
simulate the outcome can be found in Web Appendix 1, Web
Table 1.

Finally, we tested all methods under a fourth scenario
(simulation sets L–P), in which the variables causing the
outcome were unavailable. We used 3 control variables (C1–
C3) to generate 4 conditions (Z1–Z4) and the outcome,
such that the conditions Z1–Z4 and the outcome were not
causally related but were non–causally associated via com-
mon causes. We then removed C1–C3 and their associated
control variables (i.e., diagnosis from the same chapter of
the International Classification of Diseases, Tenth Revision)
from the list of control variables. This scenario is more real-
istic because observed associations between different causes
of hospitalization are likely to be due to common causes
rather than direct causal influence. A directed acyclic graph
depicting the underlying data-generation process under this
scenario can be found in Web Appendix 3, Web Figure 3,
and the control variables used for outcome simulation are
provided in Web Appendix 1, Web Table 1.
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Figure 1. An illustration of how outcome was simulated based on 5 randomly selected control variables in the simulation study. A) Time series
of the first set of 5 control variables selected randomly for the simulation of outcome data, colored by the association size, β, assigned to
each of them (see Web Appendix 2 for other scenarios that used different sets of 5 control variables to generate the outcome). The 5 control
variables shown here are hospitalizations due to 1) health examinations (orange; β = 0.17), 2) nonpneumonia infections (blue; β = −0.23),
3) dermatological conditions (red orange; β = 0.24), 4) nonpneumococcal septicemia (yellow; β = 0.04), and 5) bronchitis and bronchiolitis (red;
β = 0.25). B) Time series of the simulated outcome, all-cause pneumonia (black point), and the model prediction from LASSO-SF (orange solid
line) and LASSO-SU (green dotted line). The implementation period is marked by the gray area. The y-axis is log-transformed. LASSO, least
absolute shrinkage and selection operator; SF, season-forced; SU, season-unforced.

To assess the risk of type II error, we performed a sensi-
tivity analysis under the first scenario (sets A–E) by testing
LASSO-SF and LASSO-SU for a nonnull, low-impact (1 −
IRR = 10%) vaccine.

We evaluated performance by comparing each method’s
estimates with the true IRR value. In the LASSO regression
and ITS, we report uncertainty of estimation as the 95% pre-
diction intervals of the IRR obtained from each simulation,

extracted from the 2.5th and 97.5th percentiles of the Poisson
distribution of the predicted values. In SC and STL + PCA,
we report the 95% credible intervals for the IRR from each
simulation, extracted from the 2.5th and 97.5th percentiles of
the Bayesian posterior distributions. In frequentist LASSO
methods, the usual statistical constructs such as confidence
intervals and P values do not exist in the method’s imple-
mentation (31, 32); therefore, we report different uncertainty
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measures for different methods, and they are not directly
comparable. For each set of 100 simulations, we measured
the accuracy of each method by calculating the mean IRR
with its standard deviation. We measured the precision as
the width of the 95% uncertainty intervals. For each set
of 100 simulations, we assessed performance stability by
coverage (proportion of the time that the uncertainty interval
contained the true value). For each scenario, we report these
performance indicators as a range over the 100 simulations.

Application to real-world data

In the analysis of the primary endpoint (all-cause pneumo-
nia), LASSO-SF, LASSO-SU, and SC were applied to each
age group in each country. Similar to the procedure used
on the simulated data, we fitted models to the prevaccine
period and used these models to predict the counterfac-
tual outcomes. We performed model selection, prediction
of the counterfactuals, and calculation of vaccine impact
using the same aforementioned procedures used to assess
performance in the simulated data; we then compared the
results from the 3 methods. In addition, we explored the use
of maximum entropy bootstrapping (33) for the outcome
and covariates to calculate approximate 95% confidence
intervals for the LASSO estimates in case the 95% prediction
intervals became overly narrow. The bootstrap procedures
are described in Web Appendix 4, and all of the uncertainty
intervals used are summarized in Web Appendix 4, Web
Table 2.

We then applied LASSO-SF, LASSO-SU, and SC on
the US data using different endpoints (IPD, pneumococcal
pneumonia, and 2 definitions of all-cause pneumonia) and
compared the results. We performed a sensitivity analysis
by removing “bronchitis and bronchiolitis” from the list of
possible control variables for LASSO selection, because this
control variable could be affected by PCV and violate the
assumption that all control variables are not affected by the
health intervention (21, 34).

Numerical implementation

All analyses were conducted in RStudio with R, version
4.1.0 (35). LASSO regression was implemented using the
package “glmnet,” version 4.1-2 (36). SC and STL + PCA
were implemented using the package “InterventionEvalu-
atR,” version 0.1 (37). Maximum entropy bootstrapping was
implemented using the package “meboot,” version 1.4-9.2
(33). The project’s R dependencies were recorded by the
package “renv,” version 0.14.0 (38), for reproducibility.

RESULTS

Performance assessment with 5 causal control
variables

Figure 2 shows the vaccine impact estimated by each
method for each simulation in 5 scenarios (sets A–E). In
each scenario, a different set of 5 randomly selected control
variables was used to generate the outcome. LASSO-SF and

LASSO-SU performed well in all 5 scenarios; both achieved
high coverage (SF: 97%–100%; SU: 96%–100%) and
accurate mean IRRs (SF: 1.00–1.02; SU: 1.00–1.03) with
good precision (SF: 0.12–0.13; SU: 0.12–0.13), as shown in
Figure 2 and Table 2. The estimates obtained by LASSO-SF
and LASSO-SU were similar. In general, LASSO regression
tended to select the causal variables (Web Figure 4). When
comparing cross-validation selection and selection based
on the Akaike information criterion, we did not observe
different performance in terms of accuracy and precision, but
we noticed that cross-validation selection resulted in models
with more variables while selection based on the Akaike
information criterion led to more parsimonious models (Web
Figure 5). The accuracy and precision of LASSO-SF and
LASSO-SU remained robust in the sensitivity analysis,
where the vaccine impact was 10% (Web Figure 6).

Other methods showed variable performance. ITS yielded
accurate and precise estimates with high coverage in one
scenario (set D) but the estimates were biased, although
precise, in the other scenarios (sets A, B, C, and E), resulting
in variable coverage (0%–100%). Similarly, the mean IRR
estimated by STL + PCA was biased in some scenarios
(sets B and D), causing the coverage to be variable (0%–
100%). SC showed relatively high coverage (78%–94%)
and accurate mean IRRs (0.99–1.02) with good precision
(0.07–0.11). The performance indicators for all methods are
summarized in Table 3.

Performance assessment with 10 causal control
variables

The performance of LASSO-SF and LASSO-SU remained
robust in another 5 scenarios (sets F–J), in which different
sets of 10 randomly selected control variables were used
to generate the outcome (Web Figure 7). As the number
of causal control variables increased from 5 to 10, the
number of control variables that were consistently selected
by LASSO-SF and LASSO-SU also increased (Web Figure
8). Again, the performance of SC was satisfactory and
consistent, while that of the other methods appeared to be
variable (Web Figure 7). The performance is summarized in
Table 3.

Performance assessment with sparse data

When the monthly hospitalization counts became as
sparse as 10% of the simulated outcome in set A (set K), the
performance of all methods remained consistent in terms of
accuracy, but the precision notably decreased as the 95%
uncertainty intervals for the IRR estimated by all methods
widened considerably, which in turn increased coverage
(Web Figure 7).

Performance assessment with noncausal control
variables

When tested on the data generated from 3 causal control
variables (C1–C3) that were subsequently removed (sets
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Figure 2. Incidence rate ratios (IRRs) for all-cause pneumonia estimated via various methods for simulations 1–100 in different simulation sets
A–E. Each row shows the estimates obtained using a different method (from top to bottom: interrupted time series (ITS); least absolute shrinkage
and selection operator, season-forced (LASSO-SF); least absolute shrinkage and selection operator, season-unforced (LASSO-SU); synthetic
control with Bayesian variable selection (SC); and seasonal-trend decomposition using locally estimated scatterplot smoothing plus principal
component analysis (STL + PCA)). Each column represents a scenario with the outcome simulated with a different set of 5 causal control
variables (which remained in the data set) and 1 seasonal variable. The 5 causal control variables used for the simulation set, from left to right,
were: set A—health examinations, bronchitis and bronchiolitis, dermatological conditions, nonpneumonia infections, and nonpneumococcal
septicemia; set B—nonpneumococcal septicemia, urinary tract infection (UTI), diabetes, stroke, and injury; set C—human immunodeficiency
virus (HIV) infection, cholelithiasis, dermatological conditions, endocrinological conditions, and congenital conditions; set D—UTI, dermatological
conditions, health examinations, diabetes, and bronchitis and bronchiolitis; and set E—HIV infection, gynecological conditions, gastrointestinal
conditions, nonpneumococcal septicemia, and appendicitis.Each panel shows the result from 100 simulations; the points represent the estimated
IRR, and the error bars represent the 95% uncertainty interval. The red vertical line indicates the true impact of the vaccine in the simulation,
which was 1 in all of our simulation scenarios; here, an IRR higher than 1 means underestimation of the vaccine’s impact and an IRR lower than
1 means overestimation of the vaccine’s impact. All x-axes are log-transformed.

L–P), the estimation by LASSO-SF and LASSO-SU
remained accurate and precise (Figure 3, Table 3). In the
absence of C1–C3, LASSO-SF and LASSO-SU selected the
control variables that were associated with the outcome via
the common causes, such as Z2, Z3, or Z4. We also observed
that LASSO-SF and LASSO-SU preferentially selected
the control variable that was more strongly associated
with the common cause, Z2, whereas Z1, the control
variable with a weaker association with the common
cause, was almost never selected in all 5 scenarios (Web
Figure 9).

Application to real-world data

The characteristics of the 4 countries’ data sets are sum-
marized in Table 1. The IRRs estimated by LASSO-SF
and LASSO-SU were comparable to those obtained by SC
for Chile, Ecuador, Mexico, and the United States. The
3 methods generally arrived at the same conclusion as to
whether there was a significant impact of PCV, except for
2 instances: 1) The 2 LASSO methods found a significant
impact of PCV in the age group 40–64 years in Chile, in the
age group 18–64 years in Ecuador, and in the age group 40–
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Table 3. Performance of 5 Methods for Estimating the Impact of Pneumococcal Conjugate Vaccine Under
Different Simulation Scenariosa

Method
Range of Mean IRRs

(Range of SDs)
Range of Mean Widths

of 95% UIs
Range of

Coverage, %

Simulation sets A–Eb

ITS 0.74–1.00 (0.010–0.015) 0.08–0.12 0–100

LASSO-SF 1.00–1.02 (0.015–0.026) 0.12–0.13 97–100

LASSO-SU 1.00–1.03 (0.014–0.023) 0.12–0.13 96–100

SC 0.99–1.02 (0.014–0.035) 0.07–0.11 78–94

STL + PCA 0.91–1.19 (0.012–0.015) 0.17–0.23 0–100

Simulation sets F–Jc

ITS 0.75–1.15 (0.009–0.017) 0.09–0.16 0–0

LASSO-SF 0.99–1.03 (0.020–0.028) 0.14–0.14 96–100

LASSO-SU 0.99–1.03 (0.020–0.027) 0.14–0.14 91–100

SC 0.99–1.01 (0.023–0.040) 0.08–0.13 87–95

STL + PCA 0.87–1.23 (0.010–0.017) 0.19–0.23 0–100

Simulation set Kd,e

ITS 0.86 (0.041) 0.31 74

LASSO-SF 1.02 (0.044) 0.40 100

LASSO-SU 1.03 (0.042) 0.41 100

SC 1.02 (0.046) 0.23 98

STL + PCA 1.03 (0.045) 0.25 97

Simulation sets L–Pf

ITS 0.75–0.99 (0.011–0.014) 0.08–0.12 0–100

LASSO-SF 0.96–1.03 (0.021–0.027) 0.11–0.13 79–100

LASSO-SU 0.96–1.04 (0.019–0.030) 0.11–0.13 81–100

SC 1.00–1.02 (0.012–0.036) 0.06–0.11 78–97

STL + PCA 0.91–1.08 (0.011–0.014) 0.15–0.24 16–100

Abbreviations: IRR, incidence rate ratio; ITS, interrupted time series; LASSO, least absolute shrinkage and
selection operator; SC, synthetic control with Bayesian variable selection; SD, standard deviation; SF, season-
forced; STL + PCA seasonal-trend decomposition using locally estimated scatterplot smoothing plus principal
component analysis; SU, season-unforced; UI, uncertainty interval.

a We applied 5 methods (ITS, LASSO-SF, LASSO-SU, SC, and STL + PCA) to 16 sets of 100 simulations. We
summarized the IRR estimated for each of the 100 simulations using the mean IRR with an SD. We summarized
the precision of the IRR estimated for each of the 100 simulations using the mean width of the 95% UI. We report
the range of mean IRRs and the range of SDs, as well as the range of the mean widths or the 95% UIs, for each
type of simulation scenario, except for set K, where a value is reported instead of a range.

b Simulation sets A–E: outcome was simulated using 5 causal control variables.
c Simulation sets F–J: outcome was simulated using 10 causal control variables.
d Simulation set K: outcome was simulated using the 5 causal control variables as in set A, but the outcome

count was 10% as sparse as that in set A.
e Because there was only 1 set of simulations for the sparse outcome (set K), we report the mean IRR with its

SD, the mean width of the 95% UI, and coverage, instead of a range.
f Simulation sets L–P: outcome was simulated using 3 causal control variables, which were then removed.

64 years in the United States, while SC did not; and 2) the
SC method detected a significant impact of PCV in the
age group 65–79 years in Chile and in the age group <2
years in Mexico, which was not detected by the LASSO
methods (see Figure 4). In general, we found that LASSO
delivered estimates comparable to those of SC, which has
been shown to be a reliable method for vaccine impact

estimation (21, 22). While the 95% prediction intervals
for LASSO estimates were much narrower than the 95%
credible intervals for the SC estimates in the US adult age
groups, the 95% confidence intervals for LASSO estimates
obtained using maximum entropy bootstrapping (33) were
more comparable to the 95% credible intervals for the SC
estimates across age groups in all countries (Web Figure 10).
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Figure 3. Incidence rate ratios (IRRs) for all-cause pneumonia estimated via various methods for simulations 1–100 in simulation sets L–P.
Each row shows the estimates obtained using a different method (from top to bottom: interrupted time series (ITS); least absolute shrinkage
and selection operator, season-forced (LASSO-SF); least absolute shrinkage and selection operator, season-unforced (LASSO-SU); synthetic
control with Bayesian variable selection (SC); and seasonal-trend decomposition using locally estimated scatterplot smoothing plus principal
component analysis (STL + PCA)). Each column represents a scenario with the outcome simulated from a different set of 3 causal control
variables (which were then removed alongside other control variables under the same chapter of the International Classification of Diseases,
Tenth Revision, leaving behind only noncausal control variables) and 1 seasonal variable. The 3 causal control variables used for the simulation
set, from left to right, were: set L—neoplasms, urinary tract infection (UTI), and bronchitis and bronchiolitis; set M—neoplasms, UTI, and diabetes;
set N—health examinations, UTI, and bronchitis and bronchiolitis; set O—health examinations, UTI, and diabetes; and set P—gastrointestinal
conditions, UTI, and diabetes. Each panel shows the result from 100 simulations; the points represent the estimated IRR, and the error bars
represent the 95% uncertainty interval. The red vertical line indicates the true impact of the vaccine in the simulation, which was 1 in all of our
simulation scenarios; here, an IRR higher than 1 means underestimation of the vaccine’s impact and an IRR lower than 1 means overestimation
of the vaccine’s impact. All x-axes are log-transformed.

The results using Ecuador, Mexico, and US data were
sensitive to removal of “bronchitis and bronchiolitis” from
the list of control variables that LASSO regression and SC
could select (Web Appendix 5, Web Figure 11).

Finally, we applied LASSO-SF, LASSO-SU, and SC to
US IPD hospitalization data and compared results for 4
different endpoints: IPD, pneumococcal pneumonia, all-
cause pneumonia with a more specific definition, and
all-cause pneumonia with a more inclusive definition.

LASSO-SF found a statistically significant reduction in
IPD hospitalization across all age groups, except for
the age group 5–17 years. LASSO-SU and SC found
a significant reduction in IPD hospitalization in age
groups younger than 5 years and older than 64 years.
As the endpoint definition became less specific, the point
estimate for reduction became smaller in size, and the
95% uncertainty interval more often included 1 (see
Figure 5).
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Figure 4. Age-group–specific incidence rate ratios (IRRs) for all-cause pneumonia in 4 countries, estimated via 2 different LASSO methods
(least absolute shrinkage and selection operator, season-forced (LASSO-SF) and least absolute shrinkage and selection operator, season-
unforced (LASSO-SU)) and synthetic control with Bayesian variable selection (SC). Each panel shows the IRR for all-cause pneumonia in a
population whose infants were vaccinated with pneumococcal conjugate vaccine (PCV) as compared with a counterfactual population in which
PCV was never introduced, estimated by LASSO-SF (green), LASSO-SU (orange), and SC (blue). The 4 countries are Chile (2001–2012) (A),
Ecuador (2001–2012) (B), Mexico (2000–2013) (C), and the United States (1996–2005) (D). The 95% prediction intervals of IRR estimates made
via LASSO-SF and LASSO-SU are shown by error bars joined at a circle; the 95% credible intervals of estimates made via SC are shown by
error bars joined at a square. Ninety-five percent prediction intervals and 95% credible intervals are different measures of uncertainty, and they
are not directly comparable. All y-axes are log-transformed.

DISCUSSION

In this study, we aimed to assess whether LASSO
regression models can accurately estimate vaccine impact.
Using a simulation study, we first assessed the performance
of LASSO regression as compared with other commonly
implemented methods, including ITS, SC (21, 22), and
STL + PCA (23). Upon applying LASSO regression and SC
(21, 22) to real-world data, overall we found that LASSO
regression allowed for accurate and precise estimation of
vaccine impact and performed comparably to established
methods, such as SC (21, 22).

The results from the simulation study showed that
LASSO regression was able to estimate the predetermined

vaccine impact accurately and precisely, and its performance
remained stable even under more complex scenarios, such as
the ones without any causal variables. While ITS was able
to estimate the predetermined vaccine impact accurately
in some simulation scenarios, its performance was not
robust across scenarios. Because ITS did not include any
control variables (only the offset and seasonal terms were
included), its assumption that the characteristics in the
population remained unchanged throughout the study period
limited its performance (39). In practice, control variables
can be included in more advanced ITS models to improve
performance (12, 39); however, the process of hand-picking
control variables is subjective and can introduce biases
into the analysis (40). By design, ITS assumes a linear (or
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Figure 5. Age-group–specific incidence rate ratios (IRRs) for all-cause pneumonia regarding invasive pneumococcal diseases and other
disease endpoints in the United States, estimated via 2 LASSO methods (least absolute shrinkage and selection operator, season-forced
(LASSO-SF) and least absolute shrinkage and selection operator, season-unforced (LASSO-SU)) and synthetic control with Bayesian variable
selection (SC). Each panel shows the IRRs for 4 disease endpoints in a population whose infants were vaccinated with pneumococcal conjugate
vaccine (PCV) as compared with a counterfactual population in which PCV was never introduced, estimated by LASSO-SF (A), LASSO-SU (B),
and SC (C). The 4 endpoints used were invasive pneumococcal diseases (IPD; red filled triangles), pneumococcal pneumonia (PP; orange filled
squares), all-cause pneumonia (ACP) as the primary diagnosis or as the first diagnosis made after sepsis, meningitis, or empyema (specific;
light blue open squares), and ACP as the primary or nonprimary diagnosis (less specific; dark blue open circles). The error bars in panels A and
B represent the 95% prediction intervals of the IRR estimates, and the error bars in panel C represent the 95% credible intervals. Ninety-five
percent prediction intervals and 95% credible intervals are different measures of uncertainty, and they are not directly comparable. All y-axes
are log-transformed.
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exponential, when a log-link function is used) trend for the
continuous effect of an intervention (21, 39, 41), which can
limit validity because the nature of the persistent effect of
an intervention is often unknown or difficult to ascertain.

We compared LASSO regression with 2 other methods—
SC (21, 22) and STL + PCA (23). In contrast to a priori
selection of control conditions (17), these methods use data-
driven approaches to select various control conditions to
generate the counterfactual comparator. Therefore, even
when confounders are unknown or when the network of
causal pathways is complicated, these methods can still
help reduce confounding of the causal relationship of
interest (17, 21, 23). The results from the simulation study
showed stable performance of LASSO methods and SC,
while the performance of STL + PCA was not consistent.
One possible explanation for the biased estimation by
STL + PCA in some of the simulation scenarios is that
only 1 principal component was used for the counterfactual
prediction, which may not have been sufficient in some
scenarios. Our simulation results showed that LASSO
regression tended to select the causal variables, or associated
variables when no causal variables were available, consistent
with its known feature of identifying few predictors with
strong associations (30, 42).

When we applied LASSO regression to the real-world
data, we found that PCV was associated with reductions
in all-cause pneumonia hospitalization in the youngest age
groups and in adult age groups (ages 18–64 years) in Chile
and Ecuador, as in existing literature (34, 43–45), but we
did not observe similar results in Mexico or the United
States, which contrasts with published evidence (27, 45, 46).
Part of these discrepancies may be explained by the vaccine
rollout timeline and coverage. In Mexico, PCV7 was first
given to children in resource-poor regions before its official
introduction in 2008 (47), and initial universal vaccination in
Mexico covered only 2 (instead of 3) doses due to financial
constraints (47). In the United States, initial low PCV 3-dose
coverage during 2002–2004 may have been insufficient to
reach herd immunity in the older age groups (48).

Our results showed that applying LASSO regression to
pneumonia hospitalization data was sensitive to removing
“bronchitis and bronchiolitis” from the pool of control vari-
ables subject to selection by LASSO. One possible expla-
nation for this observation is a potential violation of our
assumption that bronchitis and bronchiolitis hospitalization
was not affected by PCV. Bruhn et al. (21) and Jimbo
Sotomayor et al. (34) highlighted that including bronchitis
and bronchiolitis hospitalization can be important for accu-
rate prediction of pneumonia hospitalization due to its asso-
ciation with respiratory syncytial virus infections. Notably,
the fraction of bronchitis and bronchiolitis hospitalization
caused by pneumococcus and the prevalence of respiratory
syncytial virus differ by age group (49–51); therefore, the
pathogen-pathogen interactions are potentially different in
different age groups.

There were a few limitations in our study that should
be considered. First, the simulated data were generated
based on time series of 10 or fewer causes of hospital-
ization, and LASSO tends to perform well in situations
where a few variables predict the outcome well because

of its property of eliminating variables by shrinking their
coefficients to 0. Therefore, the simulation scenarios in our
study may have favored LASSO regression. Nevertheless,
it is possible that pneumonia hospitalization can be pre-
dicted by a few control conditions given its seasonality and
relatively well-established etiology. Second, due to privacy-
related masking of low monthly case counts in the United
States, we imputed these masked values by randomly select-
ing a number between 0 and 9. Although we do not think this
approach posed problems for the primary endpoint analysis
because pneumonia hospitalization case counts across all
age groups were high (on the scale of 100–10,000), more
specific endpoints such as IPD and pneumococcal pneumo-
nia had lower hospitalization counts in younger age groups.
However, information from the trend of the time series was
retained because the masked value had a definite range (less
than 10). Third, using the predicted counterfactual based
on prevaccine period data to infer vaccine impact assumes
that the relationship between the control conditions and the
outcome remained the same before and after PCV intro-
duction. Therefore, if the relationship between the control
conditions and the outcome changed around the time of
vaccine introduction, the prediction performance of LASSO
would have been affected. However, we believe it is unlikely
that the relationship between all of the control conditions
and the outcome would have been altered at the same time.
An exception may be a situation in which a vaccine is
introduced to mitigate the effects of a disease that has a very
strong impact on lifestyle, mortality, and health-care system
capacity, as was seen, for example, during the coronavirus
disease 2019 (COVID-19) pandemic (52, 53).

Lastly, a potential limitation of LASSO is the absence
of simple methods for quantifying parametric uncertainty,
expressed as a confidence interval. In our analyses, we
instead calculated the prediction interval, which quantifies
only the prediction uncertainty from the Poisson distribu-
tion. Nevertheless, these prediction intervals had reasonable
coverage across a range of scenarios in our simulations,
and were generally comparable to the credible intervals
for the SC estimates obtained in the real-word data anal-
yses. A noticeable exception was the US data set, where
the prediction intervals appeared too narrow in some age
groups with high average case counts. This phenomenon
is expected from the properties of the Poisson distribution
and the definition of the IRR. Specifically, defining Y ∼
Poisson (μ), where μ is the mean of the outcome time
series, the IRR can be approximated by μ/Y , whose standard
deviation—calculated using the delta method—is roughly
equal to 1/

√
μ (this scaling function was verified using the

empirical data sets). Because of this property, the prediction
interval may become too narrow in data sets with large
average case counts, and in such cases, we recommend
calculating the confidence interval using a bootstrapping
approach (such as maximum entropy bootstrapping (33)).

In conclusion, our study offers a comprehensive simu-
lation framework for comparing different methods of esti-
mating vaccine impact and presents a novel approach for
counterfactual prediction to infer vaccine impact. Given its
stable performance and ease of implementation, we argue
that LASSO regression is useful for assessing the impact of
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other vaccines and ultimately can help analyze epidemio-
logic data for health policy-making.
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