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Abstract

We propose a nonlocal macroscopic pedestrian flow model for two populations with differ-
ent destinations trying to avoid each other in a confined environment, where the nonlocal term
accounts for anisotropic interactions, mimicking the effect of different cones of view, and the
presence of walls or other obstacles in the domain. In particular, obstacles can be incorporated
in the density variable, thus avoiding to include them in the vector field of preferred direc-
tions. In order to efficiently compute the solution, we propose a Finite Difference scheme that
couples high-order WENO approximations for spatial discretization, a multi-step TVD method
for temporal discretization, and a high-order numerical derivative formula to approximate the
derivatives of nonlocal terms, and in this way reducing consistently the amount of calculations.
Numerical tests confirm that each population manages to evade both the presence of the obsta-
cles and the other population.
Including obstacles in the nonlocal operator and having a computationally affordable simula-
tion code allows to tackle the shape optimization of the walking domain as a classical PDE
constrained optimization problem. In particular, we compute the optimal positions and sizes of
obstacles that minimize the pedestrian evacuation time.

Key words: nonlocal conservation laws; macroscopic pedestrian flow models; anisotropic interac-
tions; WENO numerical schemes; domain shape optimization.

1 Introduction

We consider the class of nonlocal crowd dynamics models for two populations with different desti-
nations trying to avoid each other in a confined environment and described by their densities ρ1 and
ρ2. More precisely, we are interested in the following initial-boundary value problem for a nonlocal
system of two conservation laws that describes the evolution of the pedestrian density ρ = (ρ1, ρ2)T

as a function of time t and position x = (x1, x2) on a walking domain Ω ⊂ R2:
∂tρ+ divx F

(
ρ,ν

(
x, I[ρ(t)](x), Î[∇xρ(t)](x)

))
= 0, x ∈ Ω, t ≥ 0,

ρ(0,x) = ρ0(x), x ∈ Ω,

ρ(t,x) = 0, x ∈ ∂Ω, t ≥ 0.

(1)
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‡GIMNAP-Departamento de Matemática, Universidad del B́ıo-B́ıo and CI2MA-Universidad de Concepción-

Concepción-Chile. E-mail: lvillada@ubiobio.cl

1



Here ν = (ν1,ν2)T with νk = (νk1 , ν
k
2 ), k = 1, 2, are two vector fields that (with slight abuse of

notation) are defined as

νk(t,x) := νk
(
x, Ik[ρ(t)](x), Îk[∇xρ(t)](x)

)
= (1− ϵ1Ik[ρ(t)](x))µk(x)− ϵ2Îk[∇xρ(t)](x), (2)

where µk are the (normalized) fixed smooth vector fields of preferred directions (e.g., given by the
regularized solution of an eikonal equation, which identifies the shortest path to destination), and
Ik[ρ(t)], Îk[∇xρ(t)] are nonlocal correction terms that depend on the current density distribution
and its gradient, where the notation indicates a functional dependence, i.e., Ik (resp. Îk) depends
on the function ρ(t) := ρ(t, ·) (resp. ∇xρ(t) := ∇xρ(t, ·)) as a whole. Also, ϵ1 > 0 and ϵ2 > 0 are
scaling factors, which temper the impact of the correction terms. In particular, we consider the
following model introduced in [10]:

∂tρ
1 + divx

[
ρ1v1(ρ

1)
((

1− ε1I1[ρ1 + ρ2]
)
µ1(x)− ε2Î1[∇xρ

2]
)]

= 0,

∂tρ
2 + divx

[
ρ2v2(ρ

2)
((

1− ε1I2[ρ1 + ρ2]
)
µ2(x)− ε2Î2[∇xρ

1]
)]

= 0,

(3)

where

Ik[ρ] :=
ηk ∗w ρ√

1 + ∥ηk ∗w ρ∥2
, Îk[∇xρ] :=

ηk ∗w ∇xρ√
1 + ∥ηk ∗w ∇xρ∥2

=
∇x(ηk ∗w ρ)√

1 + ∥∇x(ηk ∗w ρ)∥2
.

Above, for k = 1, 2, ηk are smooth non-negative kernels with compact support such that
∫∫

R2 ηk(x) dx =
1 and vk = vk(ρ

k) > 0 are the pedestrians’ speed functions.
We remark hereby that the present framework can be easily generalized to more than two popu-
lations. Also, other nonlocal pedestrian flow models accounting for slightly different dynamics can
be treated similarly, see e.g. [4, 5, 3]

Aiming at reproducing the limited vision field of pedestrians, oriented towards the direction of
movement, we follow the approach introduced in [3, 4, 10]. We consider conic convolution kernels
constructed as follows: given a kernel function η(x), we cut a conic section η(x)χS(x,l,α,γk)

(x) of
angle 2α oriented in direction γk(x), k = 1, 2, which is described by the region

S(x, l, α,γk) =

{
y ∈ R2 : ∥y − x∥ ≤ l,

(y − x) · γk(x)

∥y − x∥
∥∥γk(x)

∥∥ ≥ cosα

}
. (4)

The section ηχS(x,l,α,γk)
is smoothed by convolution with a Gaussian kernel g(x) = exp(−(∥x∥2/2σ))

with σ = 5 × 10−4, then normalized and finally shifted so that the maximum of the normalized
smoothed kernel is centered in (0, 0), see Example 2 in [3] for more details.

The nonlocal terms, whose support can exceed the walking domain Ω, are problematic when
dealing with boundaries, such as walls or other obstacles. In this work, we make the choice of
incorporating the information in the convolution kernel, as originally proposed in [3, 8]. More
precisely, we assume that Ωc = R2 \ Ω is a compact set consisting of a finite number M ∈ N of
connected components Ωc = Ωc

1 ∪ . . . ∪ Ωc
M . As in [3] the convolution product ∗w is defined as(

η ∗w ρ(t)
)
(x) =

∫∫
R2

ρw(t,y)η(x− y) dy, (5)
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respectively (
η ∗w ∇xρ(t)

)
(x) =

∫∫
R2

ρw(t,y)∇xη(x− y) dy,

where ρw : R2 → R+ is the extension of the pedestrian density including the presence of obstacles:

ρw(t,x) :=

{
ρ(t,x) if x ∈ Ω,

Rwℓ
if x ∈ Ωc

ℓ,
(6)

with Rwℓ
≥ R > 0, ℓ = 1, . . . ,M , big enough so that νk(t,x) ·n(x) ≤ 0 for all x ∈ ∂Ω, t ≥ 0, where

n is the outward normal to Ω.

Remark 1 Note that, even in the worst case scenario µk(x) = n(x) for some x ∈ ∂Ω, one can find
Rwℓ

big enough to guarantee νk(t,x) · n(x) ≤ 0, provided that 1 < ε1 + ε2. In particular, we can
avoid including (some) obstacles in the preferred vector field µ = (µ1,µ2)T , letting the nonlocal
correction to account for their presence. This has the advantage to avoid the need of re-meshing
the computational domain and recomputing µ if the obstacle positions change. Compared to other
approaches [6, 7], which in this case would require the artificial construction of a “discomfort”
vector field pointing inward the walking domain at its boundary to guarantee zero flux conditions,
our choice greatly simplifies the numerical resolution of shape optimization problems, which can be
addressed as classical PDE constrained optimization on a fixed computational domain.

In this work, we are interested in finding the optimal positions and sizes of some obstacles in
front of the exits to improve the pedestrian flow and minimize the evacuation time in walking facil-
ities. In the last two decades, this problem has made the object of several investigations employing
different techniques [7, 9, 12, 14, 16, 19], and we believe that our approach offers new perspectives
to efficiently handle the problem. Nevertheless, the computational cost related to the presence of
nonlocal terms poses severe limitations to the implementation of optimization routines. For this
reason, we also propose an optimized version of the high order Runge-Kutta WENO finite difference
scheme developed in [3], which minimizes the number of (discretized) convolution products to be
computed, thus greatly improving the simulation time.

The rest of the paper is organized as follows. Section 2 recalls the regularity hypotheses and
resumes the analytical properties of (1), its numerical discretization is described in Section 3.
Section 4 collects the numerical tests. In particular, the shape optimization problem is formulated
and solved in Section 4.3. Conclusions and perspectives are given in Section 5.

2 Model analysis

Well-posedness of general system of nonlocal conservation laws couple in the integral terms was
first studied in [1]. Below, we summarize the necessary assumptions concerning the domain Ω and
the functions vk, ν

k, µk and ηk, k = 1, 2:

(I1) The domain Ω ⊂ R2 is a non-empty bounded open set with smooth boundary ∂Ω, so that
the outward normal n(x) is uniquely defined for all x ∈ ∂Ω.

(I2) The vector fields νk point inward along the boundary ∂Ω of Ω, i.e., νk(t,x) · n(x) ≤ 0 for all
x ∈ ∂Ω, t ≥ 0.
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(I3) The speed functions vk ∈ C2(R;R+) are non-increasing, vk(0) = V k
max and vk(R) = 0 for

some constants V k
max, R > 0.

(I4) The vector fields of preferred directions µk ∈ (C2 ∩ W2,∞)(R2;R2) are defined such that
divµk ∈ (W1,1 ∩W1,∞)(R2;R).

(I5) The kernel functions ηk ∈ (C3
c ∩W3,∞)(R2;R+) satisfy

∫∫
R2 ηk(x) dx = 1.

Assumption (I2) guarantees the invariance of the domain Ω, i.e. if supp ρk(0, ·) ⊂ Ω, then we
have that supp ρk(t, ·) ⊂ Ω for all t > 0, so that the boundary condition become useless and the
problem can be studied on the whole plane R2. Solutions of problem (1) are then intended in the
following sense.

Definition 1 [2, Def. 2.1] For any T > 0 and ρ0 ∈ L1(R2, [0, R]2) such that suppρ0 ⊂ Ω, a
function ρ ∈ C0([0, T ],L1(R2; [0, R]2) is said to be a weak entropy solution to (1) if, for k = 1, 2,
ρk is a Kružkov entropy solution to the Cauchy problem∂tρ

k + divx F
k
(
ρk, νk(t,x)

)
= 0, x ∈ Ω, t ≥ 0,

ρk(0,x) = ρk0(x), x ∈ Ω,
(7)

i.e., for all κ ∈ R and all test functions ϕ ∈ C∞
c (]−∞, T [×R2;R+) there holds∫ T

0

∫
R2

{∣∣∣ρk − κ
∣∣∣∂tϕ+ sgn(ρk − κ)

(
F k

(
ρk, νk(t,x)

)
− F k

(
κ, νk(t,x)

))
· ∇xϕ

}
dx dt

−
∫ T

0

∫
R2

divx F
k
(
κ, νk(t,x)

)
sgn(ρk − κ)ϕ dx dt+

∫
R2

∣∣∣ρk0(x)− κ
∣∣∣ϕ(0,x) dx ≥ 0.

(8)

The existence of solutions follows from [1, 2], see [2, Section 3] in particular for an application
to a system similar to (3).

More precisely, [2, Theorem 2.2] holds under the above assumptions:

Theorem 1 Let assumptions (I1)-(I5) hold. For any initial datum ρ0 ∈
(
L1 ∩ L∞ ∩ BV

)
(Ω; [0, R]2),

there exists a solution ρ ∈ C0(R+,L
1(Ω; [0, R]2)) of (1), (3) in the sense of Definition 1. Moreover,

the following bounds hold ∥∥ρ(t, ·)∥∥
L1(Ω;[0,R]2)

= ∥ρ0∥L1(Ω;[0,R]2),

TV(ρ(t, ·)) ≤ eK1tTV(ρ0) +K2(e
K1t − 1),∥∥ρ(t+ τ, ·)− ρ(t, ·)

∥∥
L1(Ω;[0,R]2)

≤ C(t)τ,

where K1, K2 and C(t) are constant depending on ∥ρ0∥L1, TV(ρ0) and on vk, µ
k, ηk for k = 1, 2.

Remark 2 By the specific choice of the flux function F made in (3) and assumption (I3), we have

that F k
(
0, νk(t,x)

)
= F k

(
R, νk(t,x)

)
= 0. Therefore, a trivial application of the comparison

principle implies that the maximum principle holds, i.e., if ρk0(x) ∈ [0, R] for all x ∈ Ω, then
ρk(t,x) ∈ [0, R] for all x ∈ Ω and t > 0, k = 1, 2.
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3 High-resolution numerical scheme

3.1 Notation and semi-discrete formulation

We consider a rectangular computational domain D = ]a, b[× ]c, d[ and we use a Cartesian grid
with nodes (xi1, x

j
2), i = 1, . . . , N1, and j = 1, . . . , N2, such that xi1 = (i− 1/2)h1, x

j
2 = (j− 1/2)h2,

where h1 = (b − a)/N1 and h2 = (d − c)/N2. This provides N1 × N2 grid points xi := (xi1, x
j
2),

where i = (i, j) ∈ M := {1, . . . , N1} × {1, . . . , N2}. Moreover, the two dimensional unit vectors
e1 := (1, 0) and e2 := (0, 1) allow to denote neighbouring grid points as xi+e1 = (xi+1

1 , xj2) and

xi+e2 = (xi1, x
j+1
2 ). As in [3, 10], we denote by u : [0,+∞[→ R2×N1×N2 the solution of (1) computed

at time t in the grid points where

uk,i(t) = ρk(t,xi), Fk,i = F k
(
ρk(t,xi), ν

k(t,xi)
)

for k = 1, 2 and i ∈ M.

In order to define a numerical scheme, first we approximate the solution of (1) in a semi-discrete
form by a system of ODEs

du

dt
= C(u), (9)

where C(u) is the spatial discretization of the convective term with entries given by

C(u) =
(
C(u)i

)
i∈M with C(u)k,i = −

2∑
l=1

1

hl

(
f̂k,i+ 1

2
el
− f̂k,i− 1

2
el

)
, k = 1, 2,

for suitable numerical fluxes f̂k,i+ 1
2
el

for k, l = 1, 2 obtained by WENO reconstructions of split

fluxes. For the numerical flux fk = f̂k,i+ 1
2
el
, the Lax-Friedrichs-type flux splitting f±

k (ρ) is given

by

f±
k (ρ) =

1

2

(
fk(ρ)± αkρ

)
, αk = max

l=1,2
max
ρk

∣∣∣∂ρk(ρkvk(ρk))∣∣∣ sup
x∈Ω

| ν(x) · el|.

IfR±
(
fk,i+(−r:r)el

)
= R± (

fk,i−rel , . . . , fk,i+rel

)
denotes (2r−1)th-order WENO upwind-biased

reconstructions for r = 2, 3, 4, then

f̂k,i+ 1
2
el
= R+

(
f+
k,i+(−r:r)el

)
+R−

(
f−
k,i+(−r+1:r+1)el

)
, k, l = 1, 2, (10)

see [15, 18]. In this work we consider third-order of accuracy in space with r = 2.

3.2 Discretization of the convolution term

In order to evaluate the nonlocal terms in (3), where the convolution term ∗w is defined by (5),
the corresponding convolutions (η1 ∗w ρ1), (η1 ∗w ρ2), (∂η1/∂x1 ∗w ρ2), (∂η1/∂x2 ∗w ρ2) and (η2 ∗w
ρ1), (η2 ∗w ρ2), (∂η2/∂x1 ∗w ρ1), (∂η2/∂x2 ∗w ρ1) are calculated approximately on the discrete grid
via a quadrature formula, in our cases a composite Simpson rule. Since supp(η) ⊂ [−n0h, n0h] ×
[−n0h, n0h] for n0 ∈ N large enough, any convolution product is given by(

η ∗ ρ(t)
)
(xi) ≈

n0∑
p=−n0

n0∑
q=−n0

h2cpcqρ(t,xi−p)η(xp),
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where cp and cq are the coefficients in the quadrature rule and p = (p, q). For u = (ui) ∈ RN1×N2

and for the convolution product (5), this formula can be written as

(η ∗w u)(xi) =

n0∑
p=−n0

n0∑
q=−n0

h2cpcquw,i−pη(xp), (11)

where uw,i is a discrete version of the function (6) defined by

uw,i =


ui if xi ∈ Ω \ Ωc,

Rwℓ
if xi ∈ Ωc

ℓ,

0 if xi ∈ ΩE ,

(12)

where Ωc
ℓ corresponds to the component representing walls and obstacles and ΩE ⊂ Ωc is such that

ΩE ∩ Ω := ΓE corresponds to the exits, where we apply absorbing boundary conditions.
Clearly, the discrete convolution (11) causes a computational bottleneck. This is a classical problem
in scientific computing that is effectively handled by fast convolution algorithms, mainly based on
Fast Fourier Transforms [20].

Finally, the semi-discrete scheme (9) is discretized by a third-order TVD Runge-Kutta time
discretization method

u(1) = un +∆t C(un) ,

u(2) = 3
4u

n + 1
4

(
u(1) +∆t C(u(1))

)
,

un+1 = 1
3u

n + 2
3

(
u(2) +∆t C(u(2))

)
.

(13)

The numerical solution of the system of ODEs (9) using the integration (13) is called FD-RK-
WENOk, where k is the order of the WENO approach used.

3.3 A fast, Third-order Multi-Step scheme

In order to reduce the computational cost and improve the performance of the above algorithm, we
proceed as follow, targeting a finite difference approximation of third-order of accuracy:

Step 1 Evaluate approximately the nonlocal terms (η1 ∗w ρ1), (η1 ∗w ρ2), (η2 ∗w ρ1) and (η2 ∗w ρ2)
on the discrete grid via the quadrature formula (11).

Step 2 The remaining nonlocal terms containing derivatives (∂η1/∂x1 ∗w ρ2), (∂η1/∂x2 ∗w ρ2),
(∂η2/∂x1 ∗w ρ1) and (∂η2/∂x2 ∗w ρ1) are approximated by using a fourth-order centered
difference approximation of the first derivative

(∂g/∂xl)(xi) ≈
−g(xi+2el) + 8g(xi+el)− 8g(xi−el) + g(xi−2el)

12hl
, l = 1, 2, (14)

for g = η1 ∗w ρ2, η2 ∗w ρ1.

Step 3 Compute numerical fluxes (10) by using a WENO reconstruction of third-order of accuracy.
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Step 4 Finally, the semi-discrete scheme (9) is discretized by a multi-step method with the TVD
property [11]. In this case, we consider a four-step, third-order scheme

un+1 =
16

27

(
un + 3∆t C(un)

)
+

11

27

(
un−3 +

12

11
∆t C(un−3)

)
, (15)

where we use the FD-RK-WENO3 scheme to compute the first three approximations u1,u2

and u3.

The above finite difference scheme can be adapted to obtain higher order schemes. For example, for
fifth-order accuracy, we must consider in Step 2 a formula of sixth-order accuracy instead of (14),
in Step 3, we need to use a fifth-order WENO reconstruction, and in Step 4 a five-step, fifth-order
method (higher order formulas can be found in [11, Table 5.1]).
The numerical solution of the system of ODEs (9) obtained using the Algorithm described by Step
1 to Step 4 is called FD-MS-WENOk, where k is the order of the WENO approach used.
Observe that, to obtain an approximation from tn to tn +∆t, while the FD-RK-WENOk requires
calculating 3 × 6 convolution terms, the FD-MS-WENOk scheme requires only 1 × 4 convolution
evaluations plus the computation of 4 numerical derivatives (14), at the price of larger computational
memory usage.

4 Numerical tests

In this Section, we aim at investigating the effects of the nonlocal operator (5)-(6) from the crowd
dynamics modelling point of view, and also we check the effectiveness of the high-resolution nu-
merical scheme proposed in Section 3.3. To this end, we approach numerically the solution ρ(t,x)
of (3)-(6) for (t,x) ∈ [0, T ] × Ω by using the multi-step scheme (15) with a third-order WENO
reconstruction labeled FD-MS-WENO3, obtaining a vector solution un at the N1 ×N2 grid points
xi := (xi1, x

j
2), where i = (i, j) ∈ M := {1, . . . , N1} × {1, . . . , N2}, such that unk,i ≈ ρk(tn,xi) for

k = 1, 2 and n = 0, 1, 2, . . . .
In all the examples below, we consider the speed functions and the kernel functions [7] given by

vk(ρ) = V max
k (1− ρ), ηk(x) = η(x) =

315

128πl18
(l4 − ∥x∥4)4χ[0,l](∥x∥),

and a conic section η(x)χS(x,l,α,γi)
(x) of angle 2α oriented in direction γk(x) for k = 1, 2, where

S(·) is given by (4) and the other parameters are specified in each example.
For each iteration, the time step ∆t in (15) is determined by the formula

∆t

h
max{α1, α2} =

1

3
Ccfl,

where Ccfl is the largest multiple of 0.05 that yields oscillation-free numerical solutions. In all
numerical tests we have used Ccfl = 0.2.

In the following examples, we measure space in meters and time in seconds.

4.1 Example 1: Bidirectional flow in a corridor with obstacles

In this example, we consider a pedestrian flow with two populations traveling in a corridor in
opposite directions, including the presence of three obstacles in the corridor located in Ω = [0, 4]×
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[0, 2]. The exit doors of each population are located at ΓE,1 = {4}×[0, 2] and ΓE,2 = {0}×[0, 2] for ρ1

and ρ2 respectively. This problem can be modeled by equations (3) in Ω = [0, 4]×[0, 2]\(Ωc
1∪Ωc

2∪Ωc
3),

where
Ωc
1 = B((1.5, 0.5), 0.1), Ωc

2 = B((1.5, 1.5), 0.1), Ωc
3 = B((2.5, 1), 0.2),

which represent the position of the obstacles, where B(x0, r) denotes the ball centered in x0 and
radius r. The vector fields are fixed and oriented towards the respective exits, i.e. µ1(x) = (1, 0)
and µ2(x) = (−1, 0) respectively, and the other parameters are given by

V max
1 = 4, γ1(x) = (1, 0) l = 0.3, α1 =

π

3
, ε1 = 0.6,

V max
2 = 4, γ2(x) = (−1, 0) l = 0.5, α2 =

π

3
, ε2 = 0.8.

The initial conditions and the vector fields are displayed in Figure 1 with[
ρ10

ρ20

]
(x) =

[
0.9χ]0.4,1.1[× ]0.6,1.4[

0.85χ]3,3.5[× ]0.4,0.6[

]
(x), x ∈ Ω .

0 1 2 3 4
x

0

1

2

y

ρ1

0 1 2 3 4
x

ρ2

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Example 2: Initial condition ρk0 and vector field µk for each species k = 1, 2.

In order to include the presence of the obstacles in the computational domain, we put Rω1 =
Rω2 = Rω3 = 1.1 in the evaluation the nonlocal terms. In Figure 2 we display numerical solution
for ρ1 and ρ2 at simulation times T = 0.5, 3.0, 7.0 computed with FD-MS-WENO3 scheme with
320× 640 points (hx = hy = 1/160). We observe that each group manages to evade the presence of
the obstacles. At the same time, both populations scale their speed according to the total density
and deviate from their preferred trajectory if the other group is in their view horizon.

4.2 Example 2: Comparing FD-MS-WENO3 and FD-RK-WENO3 numerical
schemes

In this example, we compare the accuracy and the CPU-time of the FD-MS-WENO3 scheme
proposed in Section 3.3 with the FD-RK-WENO3 scheme used in [3]. As scenario, we consider a
bidirectional corridor as in Example 1 represented by the set Ω = [0, 2]×[0, 2], but without obstacles,
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0

1

2

y

ρ1

T = 0.5

ρ2

T = 0.5

0

1

2

y

ρ1

T = 3.0

ρ2

T = 3.0

0 1 2 3 4
x

0

1

2

y

ρ1

T = 7.0

0 1 2 3 4
x

ρ2
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Figure 2: Example 1: Evacuation dynamics with obstacle, for angle 2α with α = π/3, at simulated
times T = 0.5, 3, 7, for densities ρ1 (left column) and ρ2 (right column) respectively.
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so that the solution remains smooth for sufficiently short time, when we consider a smooth initial
condition as

ρ10(x) = 0.8e−10∥x−(0.9,1)∥2 , ρ20(x) = 0.6e−20∥x−(1.1,1)∥2 , x ∈ Ω.

The remaining parameters are as in Example 1. In Table 1 shows the approximate L1-error at
T = 0.1, the experimental order accuracy (e.o.a.) and the CPU-times for both schemes, for different
levels of discretization with N1 ×N2 points, N1 = N2 = 40, 80, 160, 320, 640 and h1 = h2 = 1/N1.
The reference solution is computed using the FD-RK-WENO3 scheme with 2560 × 2560 points.
We infer that FD-MS-WENO3 scheme is always more efficient than the FD-RK-WENO3 scheme,
with speedup factors above 4. Indeed, the MS-WENO3 scheme requires the computation of 1× 4
nonlocal terms + 1×4 numerical derivatives at each time step, in contrast with RK-WENO3 scheme
that needs the computation of 3× 6 nonlocal terms to solve (3)-(6).

T = 0.1 MS-WENO3 RK-WENO3

N1 ×N2 L1-error e.o.a. cpu-time L1-error e.o.a. cpu-time

40× 40 1-5e-4 – 0.4 1.4e-4 – 2.3

80× 80 3.1e-5 2.3 1.0 2.3e-5 2.31 4.9

160× 160 5.8e-6 2.4 5.9 4.9e-6 2.52 20.1

320× 320 1.0e-6 2.5 40.7 8.8e-7 2.48 155.2

640× 640 1.8e-7 2.4 309.2 8.6e-8 2.51 1210.3

Table 1: Example 2: Comparing the efficiency of FD-MS-WENO3 and FD-RK-WENO3 numerical
schemes.

4.3 Optimization of position and radius of a circular obstacles for evacuation
problems

In the following examples, we consider the problem of evacuating two populations ρ1 and ρ2 from
a domain. We are interested in studying the impact of different size of circular obstacles located
in the domain and how its strategic positions, and sizes, can improve the total travel time in the
evacuation dynamic.

To fix ideas, let us denote by Ωopt := ∪ℓ∈IoptΩ
c
ℓ ⊆ Ωc, with Iopt ⊆ {1, . . . ,M}, the set of

obstacles / walls whose positions we want to optimize to minimize the evacuation time. Since their
impact is incorporate in the dynamics through the extended convolution product (5)-(6) and not
as zero-flux boundary conditions, neither in the fixed vector field µ, the underlying domain shape
optimization problem reduces to a simpler PDE-constrained optimization, which in particular does
not require adaptive meshes.

The optimization problem considered in this work consists of minimizing the total travel time
of pedestrians, depending on the circular obstacle positions and sizes. Let xℓ ∈ Ωc

ℓ, rℓ ≥ 0, ℓ ∈ Iopt,
be a reference coordinate and radius for each control obstacle, the optimization problem consists
in finding

Topt := min
xℓ∈Ωobs

rℓ∈[rmin
ℓ ,rmax

ℓ ]

ℓ∈Iopt

T(ℓ) = min
xℓ∈Ωobs

rℓ∈[rmin
ℓ ,rmax

ℓ ]

ℓ∈Iopt

∫
R+

∫
Ω
ρ(t,x) dxdt , (16)

where Ωobs ⊆ R2 is a predefined subset of admissible obstacle positions and ρ is the solution of (3)
on the domain Ω, which depend on the obstacle positions xℓ and radius rℓ ≥ 0, ℓ ∈ Iopt, see
Figure 3.

10



Ω
Ωobs

r1

Ωc
1

·

Ωc
2

Ωc
3

x1

Figure 3: Example of walking domain Ω and set of obstacles/walls with Ωopt = Ωc
1.

The above PDE-constrained optimization problem is generally non convex, and can be solved
numerically by standard algorithms involving gradient descent or stochastic optimization. To avoid
local minima, we made the choice to solve problem (16) using Bayesian Optimization [17], via
MATLAB Bayesian optimizer bayesopt, which operates a Gaussian process model to minimize
the objective function, thus better exploring the admissible control domain.

We aim to optimize the total travel time of the evacuation domain by finding the coordinates
xℓ, or the radius rℓ ∈ [rmin

ℓ , rmax
ℓ ], of the balls B(xℓ, rℓ) ⊂ Ωobs, with ℓ ∈ Iopt. We initialize each

xℓ by choosing it arbitrarily in Ωobs and rℓ = 1
2(r

min
ℓ + rmax

ℓ ). The prescribed maximal iteration
number is 10 × nopt ×

∣∣Iopt∣∣, where nopt is the number of parameters to be optimized and
∣∣Iopt∣∣

is the cardinality of Iopt respectively, and for each result of the optimized problem we output the
optimal cost value Topt, to be compared with the reference time Tref , which is the evacuation time
without obstacles.

4.3.1 Example 3: Optimization of obstacle position in a cross domain

In this example, we consider the problem of evacuating two populations ρ1 and ρ2 from a domain
consisting of two perpendicularly intersecting corridors. The obstacle consists of a column of cross
section B(x0, r), a ball centered in x0 = (x0, y0) ∈ Ωobs and with fixed radius r = 0.125. The space
available to the populations is the cross section

Ω = ]− 3, 3[× ]− 0.5, 0.5[∪ ]− 0.5, 0.5[× ]− 3, 3[ \Ωc
1 ,

where the exit doors are located at Γ1 = {3}×]− 0.5, 0.5[ and Γ2 =]− 0.5, 0.5[×{3} and

Ωc
1 = B(x0, 0.125), Ωobs = ]− 0.5, 0.5[× ]− 0.5, 0.5[ , nopt = 2, Iopt = {1},

see Figure 4.
The vectors fields, µ1(x) and µ2(x) are computed setting µi(x) = −∇ϕi(x) for i = 1, 2, where

ϕi are the solutions of the Eikonal equations
|∇ϕi(x)| = 1, x ∈ Ω̂ := ]− 3, 3[× ]− 0.5, 0.5[∪ ]− 0.5, 0.5[× ]− 3, 3[ ,

ϕi(x) = 1 x ∈ ∂Ω̂ \ Γi ,

ϕi(x) = 0, x ∈ Γi .

i = 1, 2
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Figure 4: Example 3: Initial condition ρk0 and vector field µk for each species k = 1, 2.

It is important to note that we have not considered the presence of the obstacle Ωc
1 when computing

the solutions of the Eikonal equations. The orientation of the vision field and and other parameters
are given by [

ρ10

ρ20

]
(x) =

[
0.95χ]−2.35,−1.65[× ]−0.25,0.25[

0.3χ]−0.25,0.25[× ]−2.35,−1.65[

]
(x),

γ1(x) = (1, 0), ε1 = 0.8, α1 = π/4,

γ2(x) = (0, 1), ε2 = 0.9, α2 = π/4.
l = 0.2 .

In order to include the presence of the obstacle in the computational domain, we put Rω1 = 2 in
the evaluation of the nonlocal terms.

The numerical solutions are computed with FD-MS-WENO3 with 240× 240 points (h = 1/40),
the total mass in the room, at time t = 0, is given by ∥ρ10+ρ20∥1 = 0.4375, and Tref = 26.7 is the time
needed by the pedestrians to evacuate the room without obstacles. To locate the optimal position
x0 ∈ Ωobs of the obstacle B(x0, 0.125) we used the Bayesian optimizer with 10× nopt × |Iopt| = 20
iterations, where we use ∥ρ1(t, ·) + ρ2(t, ·)∥1 ≤ 10−5 as a stopping criterion. The optimal position
of the obstacle obtained with bayesopt is x0 = (−0.079, 0.253) ∈ Ωobs with an optimal time
Topt = 4.62. In Figures 5 and 6, we display three different numerical solutions computed at times
T = 0.6, T = 1.2 and T = 3.4 with and without obstacle in the optimal position.

As in [10], we notice that the speed of both populations is influenced by their own density and
the presence of obstacles, and they deviate from their preferred trajectory when these enter their
field of view. Also, we observed that the presence of the obstacle accelerates a lot the evacuation
of both populations, see Figure 7, preventing them from obstructing each other and guiding them
towards their respective exits. This can be appreciated in Figures 5 and 6 at time T = 3.4. We also
note the formation of the expected diagonal lanes at intersection, as already observed in [10, 13].
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Figure 5: Example 3: Evacuation dynamics without obstacle, for angle 2α for α = π/4, at simulated
times T = 0.6, T = 1.2 and T = 3.4, for densities ρ1 (left column) and ρ2 (right column) respectively.
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Figure 6: Example 3: Evacuation dynamics with obstacle, for angle 2α for α = π/4, at simulated
times T = 0.6, T = 1.2 and T = 3.4, for densities ρ1 (left column) and ρ2 (right column) respectively.
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Figure 7: Example 3: Time evolution of the partial masses ρ1 and ρ2 and the total mass ρ1 + ρ2

with and without obstacle for angle α = π/4.

4.3.2 Example 4: Optimization of position and radius of a circular obstacles

Similarly to Example 3, we aim at improving the evacuation speed in a room with one exit by
finding the optimal positions and size of two circular obstacles with radius r̄, located in x1 ∈ Ωobs1

and x2 ∈ Ωobs2 , i.e. the optimal parameters to be determined are r1 = r2 = r̄, x1 and x2. The
pedestrians move from left to right through the space given by

Ω = ]0, 10[× ]0, 5[ \
(
Ωc
1 ∪ Ωc

2 ∪ Ωc
3 ∪ Ωc

4

)
,

where Ωc
3 = [9, 10]× [0, 1.5] and Ωc

4 = [9, 10]× [3.5, 5] form a semi-corridor pointing to the exit door
located at Γ1 = {10} × [1.5, 3.5] and

Ωc
1 = B(x1, r̄), Ωc

2 = B(x2, r̄)

are the obstacles, which must lie in the admissible region given by

Ωobs = Ωobs1 ∪ Ωobs2 ,

with

Ωobs1 =]6.6, 8.6[× ]0.6, 2.4[ and Ωobs2 =]6.6, 8.6[×]2.6, 4.4[, r̄ ∈ [0.1, 0.4], Iopt = {1, 2}.

In this cases, we have nopt = 5 and |Iopt| = 2. The vectors fields µ1(x) = µ2(x) are computed by
solving the Eikonal equation

|∇ϕ(x)| = 1, x ∈ Ω̂ =]0, 10[×]0, 5[ \
(
Ωc
2 ∪ Ωc

3

)
,

ϕ(x) = 1 x ∈ ∂Ω̂ \ Γ1 ,

ϕ(x) = 0, x ∈ Γ1 ,

and setting µi(x) = −∇ϕ(x) for i = 1, 2. The initial condition displayed in Figure 8 and the other
parameters are given by[

ρ10

ρ20

]
(x) =

[
0.2χ]1,3.4[× ]0.5,2.0[ + 0.4χ]1,3.4[× ]3.0,4.5[ + 0.2χ]3.5,6.0[× ]2.1,2.9[

0.4χ]1,3.4[× ]2.1,2.9[ + 0.3χ]3.5,6.0[× ]0.5,2.0[ + 0.4χ]3.5,6.0[× ]3.0,4.5[

]
(x), x ∈ Ω,
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Figure 8: Example 4: Initial conditions ρk and vector field µk for each species k = 1, 2.

γ1(x) = γ2(x) = (1, 0), α1 = α2 = π/2, V max
1 = 4, V max

2 = 2

l = 0.4, ε1 = 0.8, ε2 = 0.9.

The numerical solutions are computed with FD-MS-WENO3 with h1 = h2 = 1/80. Initially, the
total mass in the room is given by ∥ρ10 + ρ20∥1 = 5.95 and Tref = 35.61 is the time needed by
the pedestrians to evacuate the room without obstacles. In order to find the optimal parameters
x1 = (x1, y1) ∈ Ωobs1 , x2 = (x2, y2) ∈ Ωobs2 and r̄ ∈ [0.1, 0.4] that minimize the total travel time
functional, we use the Bayesian optimizer with 10 × nopt × |Iopt| = 100 iterations on a mesh grid
defined by{
(xik, y

j
k) ⊂ Ωobsk : xi+1

k − xik = h1, yj+1
k − yjk = h1

}
, k = 1, 2 and r0 ∈ {0.1, 0.15, . . . , 0.35, 0.4},

and as in the previous example, we use ∥ρ1(t, ·) + ρ2(t, ·)∥1 ≤ 10−5 as a stopping criterion.
The optimal parameters obtained with bayesopt are

x1 = (7.45, 0.85) ∈ Ωobs1 x2 = (8.35, 4.40) ∈ Ωobs2 r̄ = 0.25,

for which the optimal time is Topt = 31.5. In Figures 9 and 10, we display the numerical approxi-
mations computed at simulation times t = 2.0, 7.0 and 25 without obstacles and with obstacles in
the optimal position, respectively.

We observe that the behaviour between the two groups and with respect to the obstacles is
similar as shown in the previous example. On the other hand, the optimal location of the obstacles
in Figure 9 avoids large density concentrations, allowing for a quicker evacuation of the total
population compared to Figure 10. In this case, the impact of the obstacle is less remarkable, see
Figure 11.

5 Conclusion

In this work, we have proposed a nonlocal macroscopic pedestrian flow model for two populations
with different destinations and/or desired velocities trying to avoid each other in a confined envi-
ronment, where we have considered anisotropic interactions in the nonlocal terms, mimicking the
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Figure 9: Example 4: Evacuation dynamics, without obstacle, for angle 2α for α = π/2, at
simulated times T = 2.0, T = 7.0 and T = 25.0, for densities ρ1 (left column) and ρ2 (right
column) respectively.
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Figure 10: Example 4: Evacuation dynamics, with obstacles, for angle 2α for α = π/2, at simulated
times T = 2.0, T = 7.0 and T = 25, for densities ρ1 (left column) and ρ2 (right column) respectively.
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Figure 11: Example 4: Time evolution of the partial masses ρ1 and ρ2 and the total mass ρ1 + ρ2

with and without obstacle for angle α = π/2.

effect of different cones of view, and the presence of walls or other obstacles in the domain, which
were incorporated in the density variable. Unlike previous models, we do not need to include the
presence of obstacles in the computation of the vector field of preferred directions, thus facilitating
the resolution of domain shape optimization problems.

To compute the numerical solution, we proposed a Finite Difference scheme coupling high-
order WENO approximations for spatial discretization, a multi-step TVD method for temporal
discretization, and a high-order numerical derivative formula to approximate the derivatives of
nonlocal terms. The resulting scheme avoids excessive calculations and is faster with respect to
numerical schemes proposed in previous works.

We exploit this computational gain to solve a model constrained optimization problem consisting
in minimizing the evacuation time of a confined space. In particular, the optimal positions and sizes
of some obstacles are obtained through the solution of a total travel time minimization problem.

Future work will include simulations of more complex scenarios, the study of the positivity
preservation of the proposed high-order scheme and the application of Adaptive Mesh Refinement
(AMR) techniques, which concentrate computational effort in regions of strong variation.
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