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ABSTRACT:  Laser-Induced Breakdown Spectroscopy (LIBS) is a widely accepted technique used 

for both classification and quantification purposes considering complex and heterogeous samples. 

Based on a set of training spectra acquired from diverse and representative samples within a specific 

application domain, it becomes possible to apply various data processing techniques and modeling 

methods to construct the predictive model in question. Naturally the complexity of both the laser-

matter and the laser-plasma interactions and the heterogeneity of natural samples often requires the 

development of various predictive models, which are then compared based on figures of merit such as 
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the RMSEP (Root Mean Square Error of Prediction) value for quantification or the classification rate 

for qualitative analysis. Our ultimate goal is, of course, to select the model that appears to be the most 

accurate, which ultimately boils down to searching for the lowest RMSEP value or the highest classi-

fication rate. This is precisely where the whole problem lies because even if we observe a different 

level of error for two models, for example, this difference is not necessarily statistically significant. In 

such a case, we are therefore not allowed to say that the lower error indicates the best predictive model 

to consider. The purpose of this article is to provide a tutorial on introducing a statistical model com-

parison procedure, whether they are quantitative or qualitative. Two LIBS data sets have been used to 

illustrate the principles of the proposed method.  

INTRODUCTION 

Laser-Induced Breakdown Spectroscopy (LIBS) is nowadays a well-established technique of 

elemental analysis. It has been successfully applied for both quantification and classification purposes, 

utilizing microscopes [1], handheld devices [2,3], and standoff instruments [4]. High-quality LIBS 

spectra are now routinely captured, and diverse data processing and modelling strategies are employed 

to achieve optimal analytical performance. Quantification is achieved, for example, through univariate 

regression (namely classical calibration curves), as well as through multivariate approaches such as 

Partial Least Squares (PLS) regression [5–7] and Artificial Neural Network (ANN) [8], among others. 

Classification is typically accomplished using other multivariate tools that rely on methods like K-

Nearest Neighbors (KNN) [9,10], Soft Independent Modeling of Class Analogy (SIMCA) [11], and 

Support Vector Machines (SVM) [12], among others. Beyond the choice of the predictive tool, the 

analyst must also consider the entire spectral correction pipeline, which may include, but is not limited 

to, denoising, baseline correction, or even normalization. It is evident that no one can claim to be able 

to select, from scratch, an optimal spectral correction and predictive algorithm for the given dataset. 

That is why we develop different combinations of models and spectral data treatments, hoping to be 

able to obtain a good one. The evaluation and comparison of predictive models in LIBS analysis pose 

unique challenges. The performance of a predictive model is typically assessed using figures of merit 
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such as the Root Mean Square Error of Prediction (RMSEP) for quantification tasks or the classifica-

tion rate for qualitative analysis. These metrics provide valuable insights into the predictive capability 

of a model. However, the simple comparison of error values or classification rates between models 

may not be sufficient to draw meaningful conclusions. The crux of the problem lies in determining the 

statistical significance of the differences observed in model performance. Merely observing a lower 

error value does not necessarily imply that the corresponding model is superior. It is imperative to 

account for the inherent variability in LIBS data, as well as the uncertainties associated with the model 

fitting process. Robust statistical methods and procedures are therefore required to enable researchers 

to make confident decisions regarding model selection and performance evaluation. This article aims 

to address this challenge by providing a comprehensive tutorial on introducing a statistical model 

comparison procedure for LIBS data analysis, encompassing both quantitative and qualitative aspects. 

The tutorial will provide step-by-step guidance on implementing this procedure and interpreting the 

results. Furthermore, it will utilize two LIBS data sets, carefully selected to exemplify the principles 

and practical implementation of the proposed method. By the end of this tutorial, readers will gain a 

solid understanding of the challenges associated with model comparison in LIBS analysis and will be 

equipped with the knowledge and tools necessary to evaluate and select the most appropriate predic-

tive model for their specific applications.  

MATERIAL AND METHODS 

 

Statistical strategy to compare two quantitative models 

Assume two predictive models (denoted model1 and model2) that have been developed to pre-

dict a y value (which is often a concentration) from LIBS spectral information. Both of these models 

may of course have been developed in the univariate framework (i.e. predicting a quantity from the 

emission at a single wavelength), the first using a linear regression and the other using a non-linear 

one. Two univariate regressions each using a different wavelength could also be considered. From a 

chemometric point of view (i.e. a multivariate analysis one), these two models can also have been 

developed with very different strategies such as a multilinear method like the well-known PLS regres-
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sion or a non-linear one like a neural network and much more. We can also consider a unique multi-

variate method like PLS regression using for example different data preprocessing for the two models 

to be compared. Moreover, these two models can also have used different spectral information as for 

example all the wavelengths of the spectral domain or a selection of sub-spectral domains and/or 

wavelengths. These two models could also have used the same or two different calibration data sets. 

From this description, we can see that we can consider all the experimental conditions for these two 

models that we wish to compare, and why not compare a univariate model and a multivariate one if 

we wish. We could even go further by comparing, for example, the predictive power of a first model 

utilizing data from a specific spectroscopic technique and a second model based on another one (such 

as LIBS vs X-ray fluorescence). In a way, we can say that the only constraint imposed on the models 

is to exploit the spectral data acquired on a given sample to predict the concentration of a given element 

of interest. On the other hand, we have much less freedom regarding the procedure we propose in this 

article to compare the predictive capabilities of these two quantitative models. Nevertheless, we will 

see that this constraint is minimal and quite logical. Indeed, we have first to use the same test set of n 

samples. It is obvious that these samples must never have been used by the models during their devel-

opment. Classically, we can evaluate the predictive power of the two models by calculating their Root 

Mean Square Error of Prediction (RMSEP1 and RMSEP2) defines as: 

𝑅𝑀𝑆𝐸𝑃1 = √
∑ (𝑦̂𝑖,1−𝑦𝑖)2𝑛

𝑖=1

𝑛
     and     𝑅𝑀𝑆𝐸𝑃2 = √

∑ (𝑦̂𝑖,2−𝑦𝑖)2𝑛
𝑖=1

𝑛
          (eq. 1) 

where 𝑦̂𝑖,1 and 𝑦̂𝑖,2 are respectively the predicted concentration for the sample i by model1 and model2, 

𝑦𝑖 the reference value for the same sample i and n the total number of sample in the test set. In all 

statistical rigor, we cannot directly compare these two RMSEP values without considering the poten-

tial bias observed on each model. The bias is the systematic error made by the model at the time of a 

prediction which must be very small or ideally zero. We can thus calculate the bias of each model by 

the equations: 

𝑏𝑖𝑎𝑠1 =
1

𝑛
∑ 𝑒𝑖,1

𝑛
𝑖=1      with     𝑒𝑖,1 = 𝑦̂𝑖,1 − 𝑦𝑖            (eq. 2) 

𝑏𝑖𝑎𝑠2 =
1

𝑛
∑ 𝑒𝑖,2

𝑛
𝑖=1      with     𝑒𝑖,2 = 𝑦̂𝑖,2 − 𝑦𝑖            (eq. 3) 
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where 𝑒𝑖,𝑗 is the residual (i.e. the prediction error) of the sample i given by the model j.  There is no 

specific threshold that allows us to determine if a given model's bias is significant, but typically, the 

experimenter compares it to the RMSEP value, which is, in turn, compared to the range of concentra-

tion of the product of interest. This is also an opportunity to introduce the Standard Error of Prediction 

(SEP) which takes this bias into account for the two models:  

𝑆𝐸𝑃1 = √
∑ (𝑒𝑖,1−𝑏𝑖𝑎𝑠1)2𝑛

𝑖=1

𝑛−1
     and     𝑆𝐸𝑃2 = √

∑ (𝑒𝑖,2−𝑏𝑖𝑎𝑠2)2𝑛
𝑖=1

𝑛−1
          (eq. 4) 

The methodology we propose here is a pairwise comparison of the two models. We have not invented 

anything since this methodology was proposed by Pitman in 1939 [13]. This methodology has also 

been applied in other areas of analytical chemistry [14]. Readers interested in more statistical details 

are invited to read the book by Snedecor and Cochran, for example [15]. From a statistical standpoint, 

it is not possible to directly compare the RMSEP values of two models if biases are present. The model 

comparison procedure will therefore be broken down into two steps. First, we will try to find out if 

there is a statistically significant difference between the biases of the two models and in a second step 

we will do the same for the two SEP values. In order to compare the two biases, we will use a t 

confidence interval of paired samples. Thus the difference between the two biases 𝑏𝑖𝑎𝑠1 − 𝑏𝑖𝑎𝑠2 has 

a standard deviation 𝑆𝑑 : 

𝑆𝑑 = √
∑ (𝑑𝑖−𝑑)2𝑛

𝑖=1

𝑛(𝑛−1)
                   (eq. 5) 

with  𝑑𝑖 =  𝑒𝑖,1 − 𝑒𝑖,2 the difference between the two errors for the sample i and 𝑑 =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1 . It is 

then possible to define a 95 % confidence interval for the true difference in biases: 

(𝑏𝑖𝑎𝑖𝑠1 − 𝑏𝑖𝑎𝑖𝑠2)  ± 𝑡𝑛−1,0.025 × 𝑆𝑑            (eq. 6) 

with 𝑡𝑛−1,0.025 the upper 2.5% point of a t distribution on n - 1 degrees of freedom. You can find this 

value in any statistics book that offers tables of t-values. Then this interval would be expected to 

include the true difference in biases 95% of the time if we repeat the prediction. As a consequence, if 

the interval we have just calculated includes zero, then the biases are considered as not significantly 

different at the 5% level. Generally speaking, we build good models with good quality data which 
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potentially do not present any real bias and which therefore quite often will not be significantly dif-

ferent. However, this is the occasion to insist on the interest of checking the bias of a constructed 

model because a systematic error is not acceptable. So we understand that the most important step is 

now the comparison of the SEP values of the two models. The idea is again to find a confidence 

interval. To do this, we need to calculate the parameters K and L: 

𝐾 = 1 +
2(1−𝑟2)𝑡𝑛−2,0.025

2

𝑛−2
    and    𝐿 = √𝐾 + √𝐾2 − 1       (eq. 7) 

with 𝑟 the correlation coefficient between the two sets of prediction errors and 𝑡𝑛−2,0.025 the upper 

2.5% point of a t distribution on n - 2 degrees of freedom. Then, we can say that the lower and the 

upper limits of a 95% confidence interval for the ratio of the two SEP values are respectively  
𝑆𝐸𝑃1

𝑆𝐸𝑃2
×

1

𝐿
 

and  
𝑆𝐸𝑃1

𝑆𝐸𝑃2
× 𝐿. So if we calculate this interval and it contains the value 1, we can say that 𝑆𝐸𝑃1 and 

𝑆𝐸𝑃2 are not significantly different at the 5% level. In these conditions, we will not be able to say that 

one model is better than the other, even if we observe two different numerical error values. A matlab 

code (named quanti_sig.m) is provided in supplementary material in order to statistically test differ-

ences between two quantitative models. 

Statistical strategy to compare two classification models 

Assume now two classification models (denoted model1 and model2) that have been developed 

to predict a class membership of a sample from LIBS spectral information. As for the previous section, 

these two classification models may have been developed using very different supervised methods 

such as k-NN, SIMCA, PLS-DA, shallow neural networks, deep neural networks and much more. Of 

course these two classification models can also have been developed with the same method but using 

for example different parameters or even different preprocessing. Additionally, these two classifica-

tion models may have used different spectral information. In a natural way, the evaluation of a classi-

fication model accuracy is obtained by predicting the class of the samples of a test set having of course 

never been seen by the model during its development. A common figure of merit we use to estimate 

the potential of a classification model is the classification rate, which is the percentage of correct 
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classifications for all the samples in the test set. It then seems logical to directly compare the classifi-

cation rates resulting from the analysis of the same test set for the two models we consider. We will 

see now that it is not exactly what we will do with the proposed McNemar’s test in order to compare 

two classification models [16]. This statistical test was introduced by Qinn McNemar in 1947  in order 

to compare paired nominal data which is the case here for the prediction obtained from two classifi-

cation models on the same test set. It is based on a  test with one degree of freedom. The null hy-

pothesis here is that model1 and model2 have the same percentage of well-predicted samples i.e. the 

same classification rate. As a first step, we present the prediction results of both model1 and model2 

through a single contingency table as described in table 1. 

Table 1: the contingency table used in a McNemar statistical test. 

 Number of test samples 

well classified by model2 

Number of test samples 

misclassified by model2 

Number of test samples 

well classified by model1 
 𝑎 𝑏  

Number of test samples 

misclassified by model1 
 𝑐 𝑑  

 

The McNemar’s test will only use two values in this table i.e. 𝑐 the number of test samples misclassi-

fied only by the model1 and 𝑏  the number of test samples misclassified only by the model2. We thus 

see that it does not focus on the predictive character of each of the classification models but on the 

differences that they could present during prediction. It is then written as follows: 

2 =
(|𝑏−𝑐|−1)

2

𝑏+𝑐
                  (eq. 8) 

This calculated  value is then compared with the  critical value with a 5% level of significance 

which is 3.8414. Then if the calculated  value is greater than 3.8414, the null hypothesis is false and 

the two classification models are significantly different. If the calculated  value is lower than 3.8414, 

the null hypothesis is true and the two classification models are not statistically different with a risk 

of 5% and this even if their classification rates seem to have different values. A matlab code (named 
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classi_sig.m) is also provided in supplementary material in order to statistically test differences be-

tween two classification models. 

Datasets description for quantitative analysis 

The comparison of quantitative models will be done as an example within the context of lith-

ium determination in rocks. Indeed, LIBS analysis is one of the unique techniques that can provide 

identification and quantification of light elements such as lithium [17,18]. For your information, all 

the spectra used in this study for developing and validating the models are accessible within an open-

source database [17]. They have been acquired using a handheld LIBS instrument [3,19,20] from ho-

mogeneous Li-bearing minerals such as spodumene (LiAlSi2O6), petalite (LiAlSi4O10), amblygonite 

or montebrasite (LiAl(PO4)(F,OH)), lepidolite (K2(Li,Al)5-6(Si6-7Al2-1O20)(OH,F)4), zinnwaldite 

(KLiFeAl(AlSi3)O10(OH,F)2) or altered Li-minerals, from natural rocks enriched in lithium and pow-

der pellets. A wavelength calibration of the spectra has also been implemented to ensure robust ele-

mental identification [17,21]. To account for the heterogeneity of the samples, we considered a mean 

spectrum obtained from analyzing 9 to 15 regions for each of them. The Li reference concentrations 

have been estimated using Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) 

and expressed in Li wt %. Thus, 76 mean spectra constituted the calibration set, and 21 others were 

used for the test set.  

Datasets description for classification 

In the context of utilizing artificial neural networks within the LIBS imaging framework, the 

focus will be on comparing classification models specifically for characterizing archaeological lime 

mortar [8]. Such materials result from the hardening of a mixture composed of a binder, various types 

aggregates and water. They are by nature highly heterogeneous and complex materials but rich in 

information for building archaeology. In this study, we have defined a total of 9 classes to represent 

all the material types that can be found in the majority of mortars. This includes the binder, as well as 

various aggregates used in the production process (carbonate, quartz, aluminosilicate, coal and tile). 

Besides, a class hole has also been added as well as a class resin to take into account the sample 

preparation. To take into account possible micro recrystallization, a postbinder class has also been 
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added. The reference spectra for each class were produced on a corpus of 27 samples. Several raw and 

resin-embbeded mortars were analyzed  as well as raw materials, such as ceramic (x3), quartz (x2), 

epoxy resin (x1), coal (x2), limestone (x2), marble (x4), speleothem (x1) and shell (x4).  For more 

information about the context of such study and the experimental procedures, the authors can referes 

to the folowing recent publications [8,22]. Table s1 also gives the distribution of spectra by class and 

by sample used for this neural network. Among the 1447 reference spectra associated to the 9 classes, 

80% were used for training (i.e. 1160) and 20% for the model test (i.e. 287).  

RESULTS AND DISCUSSION 

The first part of this section will focus on the statistical comparison of quantitative models 

within the framework of lithium dosage. Due to the natural heterogeneity of rock samples and the 

presence of potential matrix effects, it is quite logical to consider multivariate models such as Partial 

Least Squares regression (PLS), which is widely used in the LIBS community. As a reminder, PLS 

regression is based on the search for factors whose number needs to be optimized in order to achieve 

the best accuracy. This optimization was performed through a venitian blind cross-validation in this 

study. As we frequently do in chemometrics, it seemed interesting to us to develop an initial PLS 

model (denoted model1) using the 76 spectra from the calibration set without any corrections (i.e. no 

spectral pre-processing). Cross-validation then indicated an optimal number of 2 PLS factors. This 

model was then used to predict lithium concentrations for the 21 samples from the test set, resulting 

in a RMSEP1 value of 0.4464 Li wt %. At first glance, this error may seem significant given the con-

centration range of the calibration set, which extends from 0.10 to 3.54 Li wt %. However, this is not 

the case because these rock samples are particularly heterogeneous and are additionally analyzed using 

a handheld LIBS instrument that naturally has degraded characteristics compared to a benchtop one. 

The complexity of our samples and the laser-matter interaction often alter the relationship that exists 

between the measured signals and the concentration of an element of interest. That is why we often 

apply spectral preprocessing prior to using multivariate regression methods. We have thus developed 

a second PLS model (denoted model2) using the 76 calibration spectra corrected with the Standard 

Normal Variate (SNV) method, which is a type of normalization. Cross-validation indicated in this 
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case an optimal number of 5 PLS factors, which was then tested on the 21 samples of the test set, 

resulting in a RMSEP2 value of 0.4832 Li wt %. Without a statistical perspective, and as we can see in 

the vast majority of studies, almost all of us would conclude that model1 is the best since 0.4464 Li wt 

% is lower than 0.4832 Li wt %. The whole question boils down to whether we are justified in saying 

that model1 is indeed the best simply because its RMSEP value is the lowest, if we only consider the 

strict numerical value. The whole purpose of this publication is to show that a statistical approach is 

needed in order to determine whether these two models are different and, consequently, if one of them 

is indeed superior. As already explained in the Materials and Methods section, it is not possible to 

propose a statistical test that allows for comparing the RMSEP values of the two PLS models. We 

must first examine the calculation of bias in both models and then ensure that there are no statistically 

significant differences betwwen them. Based on the reference concentration values from the test set 

and the predicted values from both models, it is easy to calculate their biases (eq. 2 and 3) and then 

determine a 95 % confidence interval for the true difference in biases. The figure 1a provides a graph-

ical representation of this bias comparison between the two PLS models resulting from the use of the 

MATLAB code provided in the supplementary material (named quanti_sig.m).  
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Figure 1: statistical tests for a) bias comparison and b) SEP comparison considering the two PLS regressions 

We thus observe weak biases for models1 and models2 (-0.0135 and -0.0733 Li wt % respectively). 

The 95 % confidence interval for the true difference in biases (represented in red in Figure 1a) has 

then lower and upper limits of -0.1832 and 0.0593 Li wt % respectively. Since this interval contains 

the value zero (represented in blue in the figure), then bias1 and bias2 are considered as not signifi-

cantly different at the 5% level. Based on this assessment, we can now move on to the second step, 

which involves comparing the standard error of prediction errors (SEP) of the two models (Figure 1b). 

We observe SEP1 and SEP2 values equal to 0.4359 and 0.4893 Li wt %, respectively. Based on an 

estimated correlation coefficient between the two sets of prediction errors from the two models (r = 

0.8403), we can then calculate the parameter L, which is equal to 1.2936 in this case (see eq. 7). This 

final parameter ultimately allows calculating the lower and the upper limits of a 95% confidence in-

terval for the ratio of the considered SEP values, which have values of 0.6887 and 1.1525 in this case. 

This interval is represented in red in Figure 1b. With a value of 1 contained within it (represented in 

blue in the figure), there is no significant difference between SEP1 and SEP2. From a statistical stand-

point, we are therefore not allowed to say that model1 is better than model2. The question that naturally 

arises then is, what do we do now because we must indeed select a final model to use. The basic rule 

in statistics is to remember that the most robust model is usually the least complex one. Therefore, we 

should prioritize the use of the PLS model with the fewest components, namely the first one using 

only two PLS factors. It is now interesting to know under what conditions we would have a new model2 

that would become significantly different from model1. Assuming that the correlation coefficient be-

tween the two models remains equal to 0.8403, it would then be necessary for the SEP2 value to be 

greater than 0.5639 Li wt % (i.e. SEP1    L). We can see that the value of L is crucial in this search for 

significance of differences. Thus, the value of L must be as small as possible if we want to highlight a 

significant difference between two close SEP values. It is therefore appropriate to examine the evolu-

tion of L as a function of the number n of observations present in the test set and the correlation 

coefficient r between the two models being compared. Figure 2 provides a representation of this evo-

lution calculated from equation 7. For a given correlation coefficient, we observe that L decreases as 
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the number n increases. Therefore, we should always strive to have the maximum number of samples 

in the test set to properly evaluate models. Under these conditions, we will effectively be able to 

demonstrate that there is a significant difference, even if the SEP values of the two models are close. 

We also observe that as the correlation becomes weaker, the value of L increases for a fixed number 

of samples. However, this is a parameter that we do not control when comparing two models.  

 

Figure 2: Evolution of L as a function of the number n of observations present in the test set and the cor-

relation coefficient r 

Regarding the applicability of such a procedure for statistical comparison of quantitative models, it 

can only be considered with a number of test samples greater than 20. In fact, it would be unreasonable 

to go below this number to claim a meaningful statistical comparison. In order to continue this discus-

sion regarding the comparison of quantitative models, it seemed interesting to us to introduce a third 

predictive model (denoted model3), this time more traditional, as it is based on a simple linear regres-

sion by exploiting only a specific emission line of lithium located around 610 nm (instead of the whole 

spectral range used by the two previous PLS models). Based on our pairwise procedure, the idea was 

to compare, this time, model1 and model3 always on the same test set. Just like in the previous case, 
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providing reference values for the test samples and their predicted values by these two models, 

RMSEP1 was always egal to 0.4464 Li wt % when RMSEP3 was significantly larger with a value of 

0.6090 Li wt %. This is due to the fact that a simple linear model has little chance of being able to 

handle matrix effects. As we saw previously, we are not allowed to directly compare these two RMSEP 

values. Therefore, we begin by comparing the biases of these two models (Figure 3a). We once again 

have completely appropriate biases with bias1 and bias3 equal to -0.1353 and -0.1983 Li wt % respec-

tivly. Again in this case, the 95 % confidence interval for the true difference in biases contain the value 

zero and therefore the two biases are considered as not significantly different. We can now move on 

to the step of calculating and comparing the SEP values (Figure 3b).  

 

Figure 3: statistical tests for a) bias comparison and b) SEP comparison considering a PLS model and a 

univariate one. 

We observe SEP1 and SEP3 values equal to 0.4359 and 0.6009  Li wt % respectively, which intuitively 

might lead us to believe that such a numerical difference could finally highlight a significant statistical 

difference. However the 95% confidence interval for the ratio of the considered SEP values contains 

the value of 1 indicating that SEP1 and SEP3 are not statistically different. This may seem strange 

considering the observed results for the two first models (model1 and model2), but we have here a 
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correlation coefficient r that has significantly decreased, as it is now only 0.6481, which has mechan-

ically increased the value of L to 1.4304. From a statistical standpoint, we cannot say that the Partial 

Least Squares (PLS) model is better than the univariate model using a single wavelength in this par-

ticular case. If we take a closer look, it is true that we were not far from highlighting a significant 

difference between the two SEP values. In fact, we can see in Figure 3b that the blue triangle repre-

senting the value 1 is very close to the confidence interval limit, but it is not enough. In fact, consid-

ering the same correlation coefficient r, the univariate model should have had a higher SEP value than 

0.6235 (i.e. SEP1    L ) in order to be considered different from the PLS model. In any case, the three 

models compared here are not statistically different under the chosen experimental conditions. Once 

again, our quest for robustness would lead us to choose simple linear regression, which corresponds 

to the least complex model. If such a conclusion were to bother experimenters, the only way for them 

to demonstrate the superiority of one of these models would be to increase the number of samples in 

the test set. The entire calculation procedure would, of course, need to be redone for these new condi-

tions. 

 This second part of the discussion will now focus on the comparison of classification models. 

We will see that this procedure is a bit faster as it operates in a single step, unlike the comparison of 

quantitative models. As an example, we will focus here on the use of neural networks, which are 

known for their strong prediction capabilities, particularly for nonlinear modeling problems. Never-

theless, we must not lose sight of the fact that for the implementation of such an approach, we always 

need to have a high number of spectra available to train the network while simultaneously attempting 

to minimize the number of neurons in its architecture (i.e. the number of weights to optimize). In our 

case, we do have a significant training dataset as it consists of 1160. However, the spectral domain 

consists of 3x2048 wavelengths (i.e. 3 spectrometers were used simulatenously), and it is not feasible 

to use all of them as input to a network. Indeed, this would naturally result in (3  (2048 + 9)  h) 

weights to optimize considering a single hidden layer with h neurons and 9 output ones, which would 

be too high. As a consequence, the first two neural networks that we trained only used 27 wavelengths 

from the spectral domain, corresponding to emission lines from specific elements. Details regarding 
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this list of selected emission lines can be found in [8]. Thus these two networks had 27 neurons in the 

input layer. The predictive capacity of a neural network is also dependent on the number of neurons 

in the hidden layer. Therefore, we have developed two different architectures. The first neural network 

had 50 hidden neurons, and the second one had 200 hidden neurons (referred to as model1 and model2, 

respectively). The training of these two networks being completed, we then assessed their predictive 

power by predicting the classes of the 287 spectra in the test set, and comparing them to the reference 

classes. Thus, model1 accurately predicted the class of 275 spectra out of the total 287, resulting in a 

percentage of correct predictions equal to 95.82%. On its part, model2 accurately predicted the class 

of 269 spectra, resulting in a rate of 93.73%. The goal is therefore naturally to determine whether these 

two models are statistically different, and if so, whether we can say that model1 is better. As we have 

seen in the Materials and Methods section, the McNemar’s test will not specifically address the num-

ber of spectra correctly classified by each model. Instead, it will focus on the spectra that are correctly 

classified by one model and incorrectly classified by the other, and vice versa. The contingency table 

provided in Table 2 presents the count of these correct or incorrect predictions when considering both 

models simultaneously.    

Table 2: the contingency table used in a McNemar statistical test to compare a first ANN with 50 hidden neurons 

(model1) and a second one with 200 neurons (model2). 

 Number of test samples 

well classified by model2 

Number of test samples 

misclassified by model2 

Number of test samples 

well classified by model1 
 268 7  

Number of test samples 

misclassified by model1 
 1 1  

 

From the values in the contingency table and equation 8, it is possible to calculate a  value equal to 

3.125. This value being lower than the critical value of 3.841, we demonstrate that there is no sig-

nificant difference between the predictions of these two neural networks. At first glance, we could thus 

choose one of the two networks, but our quest for robustness in prediction compels us to select, as 
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usual, the less complex model. In the context of neural networks, this means favoring the structure 

with fewer weights, and therefore here, the model utilizing 50 neurons in the hidden layer (i.e., 

model1). Having done this, we then wondered if it was possible to have a neural network that could 

use fewer neurons in the input layer by selecting only 9 wavelengths while keeping the number of 

hidden neurons at 50. This new model, named model3, would then be compared to our model1. As in 

the previous step, following the training of this new network, the class of the 287 spectra in the test  

were predicted. However, the class labels of only 259 spectra in the test set were accurately predicted, 

resulting in a classification rate of 90.24%. From a strictly numerical perspective, we observe a greater 

difference between model1 and model3, here, and the question is whether it is significant. From the 

new contingency table (Table 3), we then calculate a value of 12.5 that is now higher than the critical 

value. The two networks model1 and  model3 are therefore significantly different from a statistical point 

of view, and as a result, we can say that model1 is better than model3.   

Table 3: the contingency table used in a McNemar statistical test to compare a first ANN using 27 input neurons 

(model1) and another one using 9 input neurons (model3)  both using 50 hidden neurons 

 Number of test samples 

well classified by model3 

Number of test samples 

misclassified by model3 

Number of test samples 

well classified by model1 
 258 17  

Number of test samples 

misclassified by model1 
 1 1  

 

CONCLUSION  

The aim of this publication was to introduce statistical procedures for comparing the predictive 

power of quantitative and qualitative models. We felt it was important to provide such a tutorial be-

cause we often observe model choices being made based solely on a single observation of the numer-

ical value of an RMSEP error or a classification rate in numerous studies. Thus, even though some 

readers may initially be intimidated by the implementation of statistical tests on their data, the pro-

posed procedures are actually quite straightforward, especially considering that Matlab codes are made 
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available to the community. We aim through this work to primarily raise awareness among researchers 

about the importance of statistically comparing the chemometric models they construct. This step is 

crucial because the selection of a model believed to be the best inevitably has repercussions on the 

subsequent progress and utilization of our research. It was also an opportunity to emphasize that the 

simplest models are the most robust ones when it comes to handling variations in spectroscopic meas-

urements that they may encounter throughout their lifespan, which is a fundamental principle of sta-

tistics. Finally, we have also shown that the best way to evaluate a quantitative or classification model 

is to try to have as many samples as possible in the test set, in order to be able to observe real statistical 

differences even between small SEP values or classification rates. 
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