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Abstract—Improving safety in model-free Reinforcement
Learning is necessary if we expect to deploy such systems
in safety-critical scenarios. However, most of the existing con-
strained Reinforcement Learning methods have no formal guar-
antees for their constraint satisfaction properties. In this paper,
we show the theoretical formulation for a safety layer that
encapsulates model epistemic uncertainty over a distribution of
constraint model approximations and can provide probabilistic
guarantees of constraint satisfaction.

Index Terms—Reinforcement Learning, Safe AI, CMDP

I. INTRODUCTION

With the recent advancements of Deep Learning, Reinforce-
ment Learning (RL) has resurfaced in the field of Artificial
Intelligence (AI) and achieved remarkable accomplishments in
challenging tasks such as playing complex video games and
controlling robotic systems. RL enables agents to learn optimal
behaviors through interactions with dynamic environments,
without requiring explicit supervision or predefined rules and
holds the promise of revolutionizing decision-making and
control systems across a wide range of domains. However, to
unlock this potential, safety considerations become paramount
for instilling confidence and trust in RL-based systems, espe-
cially in applications where the impact of failures or incorrect
decisions can have catastrophic consequences. Safety in this
paper refers to the assurance of reliable and secure operation
to protect individuals, the environment, and assets from harm
or damage. The need for safety in RL is not only necessary to
protect human lives and the surrounding environment but also
to fulfill the regulatory and ethical requirements that demand
responsible and accountable deployment of AI technologies.

There are different approaches for tackling safety within
the RL landscape. Safe exploration refers to the process of
actively exploring the environment while avoiding actions that
pose a risk of significant harm. Risk awareness contemplates
algorithms that can evaluate potential risks associated with
its actions, taking measures to minimize the likelihood and
severity of adverse outcomes. Adversarial robustness aims at
designing agents able to defend against adversarial attacks
that could otherwise compromise the agent’s performance or
integrity. Online monitoring and verification involves the in-
tegration of real-time monitoring and verification mechanisms
to assess the agent’s behavior during runtime, allowing for
timely intervention or corrective measures to prevent potential
harm.

We will rather consider the constraint satisfaction paradigm,
which focuses on RL systems able to adhere to safety
specifications in the form of constraints. Safety constraints
can represent physical limits, legal and ethical considera-
tions, operational constraints, resource limitations, etc. More
specifically, we consider environments that are modeled as a
constrained Markov Decision Process (CMDP) [1], defined as
a tuple M := (S,A, γ, R, P, c), where S is the set of states,
A is the set of actions, R : S × A × S 7→ R is the reward
function, P : S × A× S 7→ [0, 1] is the transition probability
function, γ ∈ (0, 1) is the discount factor, and c : S 7→ R is
the safety cost function. To simplify the notation, c(st) will be
represented as an immediate cost ct. The safety cost dynamics
is given by the function f : R× S ×A 7→ R, with

ct+1 = f(ct, st, at). (1)

The RL goal in a CMDP is to find the policy π : S 7→ A
that optimizes the long-term cumulative reward while keeping
the cost bounded by a safe threshold h ∈ R, as shown in
eq. (2).

max
π∈Π

E

[ ∞∑
t=0

γtR (st, π (st))

]
s.t. ct ≤ h, ∀t ≥ 0. (2)

II. CMDPS AND RL - RELATED WORK

When considering constrained RL methods that can solve
continuous control problems, a popular approach is to use
the Lagrangian operator and transform the problem into an
unconstrained optimization problem, as done in [2] and [3].
Constrained Policy Optimization (CPO) is another popular
algorithm and was the first policy gradient method to solve
the CMDP problem [4]. [5] and [6] look at the problem from
a different perspective, which consists in integrating a safety
layer that projects potentially unsafe actions produced by a
Deep Neural Network (DNN) into a safe set. The safety layer
is composed of linear approximations to the constraint models,
with the safe actions calculated by solving a constrained least
squares problem.

It is important to notice that, as mentioned in [7], much
of the work available in this direction is limited to simplistic
simulated tasks, indicating that enabling RL to be applied in
real-world constrained systems is not trivial and remains a
challenge to overcome. Additionally, [7] defines three levels of



safety in control systems1 and show how existing constrained-
RL algorithms are only able to tackle the most basic level
of safety, with stronger safety guarantees only being possible
when prior knowledge about the system dynamics is embedded
into the controller.

III. DETERMINISTIC SAFETY LAYER

Among the previous attempts to solve the CMDP problem
using RL, we build on top of the safety filter approaches from
[5] and [6] to achieve better constraint satisfaction properties.
The underlying constraint dynamics from eq. (1) can be
approximated by the first-order Taylor expansion, shown in
eq. (3).

ct+1 ≈ ct + gϕ(st)
⊤at, (3)

where gϕ(st) is a DNN, parametrized by weights ϕ, that
approximates the system’s constraint dynamics.

A safe action at∗ can be obtained through the optimization
problem shown below.

at
∗ = argmin

x

1

2
∥x− at∥2

s.t. ct + gϕ(st)
⊤x ≤ h.

(4)

IV. PROBABILISTIC SAFETY LAYER

One limitation of eq. (4) is its dependency on the accuracy
of the approximated dynamics model gϕ(st). To address this,
as solution we propose replacing the deterministic constraint
model with a distribution over models or trained weights,
allowing to achieve robustness in the face of epistemic un-
certainty. The new constraint criterion becomes guaranteeing
that the predicted safety signal ct+1 for a model ψ(·) sampled
from the distribution stays below the given threshold with
probability p:

Probψ(·)∼Nk(µ,Σ)

[
ct + ψ(st)

⊤at ≤ h
]
≥ p, (5)

where Nk(µ,Σ) represents the multivariate normal distribution
of a k-dimensional random vector, the same dimension as the
action vector at, parameterized by the mean vector µ ∈ Rk
and the covariance matrix Σ ∈ Rk×k. Since the random
vector is linearly independent, Σ is a diagonal matrix, i.e.,

Σ =

σ1 ... 0
... ... ...
0 ... σk

k×k.

The dot product ψ(st)⊤at =
∑k
i=1 ψiai, which is a sum

of normal distributions, can be substituted by an univariate
random variable z, resulting in the following equivalent dis-
tribution2:

Probz∼N(
∑k

i=0 µiai,
∑k

i=0 σ
2
i a

2
i )
[ct + z ≤ h] ≥ p. (6)

1Safety Level I comprises systems that encourage constraint satisfaction
with no formal guarantee, Safety Level II considers algorithms that satisfy
constraints with probability p, and Safety Level III represents controllers able
to guarantee hard constraint satisfaction.

2consider that the sum of n independent random variables Y = c1X1 +
...+cnXn with means µ1...µn and variances σ2

1 ...σ
2
n is a normal distribution

with mean c1µ1 + ...+ cnµn and variance c21σ
2
1 + ...+ c2nσ

2
n.

Now converting eq. (6) to a standard normal distribution:

Probz∼N (0,1)

ct + z

√√√√ k∑
i=0

σ2
i a

2
i +

k∑
i=0

µiai ≤ h

 ≥ p.

(7)
This probability can be calculated with the standard normal

cumulative distribution function (CDF), Φ(·). Rearranging the
terms in eq. (7) results in

Φ

h− ct −
∑k
i=0 µiai√∑k

i=0 σ
2
i a

2
i

 ≥ p. (8)

Finally, after applying the inverse CDF operator and with the
appropriate manipulation, the probabilistic constraint criterion
is obtained:

ct +Φ−1(p)

√√√√ k∑
i=0

σ2
i a

2
i +

k∑
i=0

µiai ≤ h. (9)

V. CONCLUSION

The lack of safety guarantees prevents existing RL systems
from becoming a viable alternative for controlling complex
control systems. Existing safe RL approaches primarily focus
on encouraging safe policies but lack robust evidence for
building a solid safety case. In this work, we introduced a
novel safety layer formulation able to solve CMDPs with
probability p that, in our view, can help to overcome this
limitation by providing probabilistic guarantees to model-free
constrained-RL.

The theoretical findings presented in this paper must be
backed by empirical results obtained through experimentation.
The outlined next steps involve: (i) consider the benefits and
limitations of different approaches to obtain distributions over
constraint models, (ii) test the proposed method’s performance
in existing simulation benchmarks, and (iii) compare it to
existing constrained-RL methods.
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