
HAL Id: hal-04191510
https://hal.science/hal-04191510

Submitted on 30 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qualification of Complex Pre-existing Software for
Safety-critical Automotive Systems

Jan Toennemann

To cite this version:
Jan Toennemann. Qualification of Complex Pre-existing Software for Safety-critical Automotive Sys-
tems. SAFECOMP 2023, Position Paper, Sep 2023, Toulouse, France. �hal-04191510�

https://hal.science/hal-04191510
https://hal.archives-ouvertes.fr


Qualification of Complex Pre-existing Software
for Safety-critical Automotive Systems

Jan Toennemann
Department of Embedded Systems

Vector Informatik GmbH
Stuttgart, Germany

jan.toennemann@vector.com

Abstract—Development of safety-related systems and of the
software therein is required to adhere to specific process require-
ments. Appropriate re-use of existing software, either of legacy
in-house projects or open-source solutions, is a reasonable desire
among OEMs and suppliers alike. Unfortunately the hurdles are
often so paramount that an entire re-engineering of the pre-
existing software element results in less overall effort.

We are aggregating information regarding the largest chal-
lenges in this domain to combine them with novel approaches to
enable the overall use of pre-existing software for safety-critical
automotive systems. This ties in with the efforts made in scope
of the ISO/AWI PAS 8926 ”Qualification of pre-existing software
products for safety-related applications” to cause a shift in the
industry and dissipate barriers that are in the way of progress,
especially with regard to cross-company collaboration on shared
libraries. The intention is to provide at least the same amount of
safety evidence as is achieved using conventional development ap-
proaches by leveraging the strengths of distributed development
processes and modern tooling designed for use in collaborative
environments utilizing version control.

Index Terms—functional, safety, automotive, legacy, open-
source, pre-existing, software, architecture, qualification

I. INTRODUCTION

Software re-use offers significant advantages in meeting
the domain-specific requirements of the automotive industry.
It enables accelerated development, cost savings, improved
efficiency, and enhanced quality. Legacy software, with its
established track record, brings reliability and compatibility,
while open-source software benefits from community col-
laboration, customizability, and flexibility. Leveraging both
legacy and open-source software components allows auto-
motive manufacturers and suppliers to achieve efficiency,
reduce development costs, and accelerate innovation within
this industry. The practice of software re-use plays a pivotal
role in addressing the unique challenges and demands of the
automotive domain, providing a pathway to meet customer
expectations and achieve business objectives.

Software for use in safety-critical systems requires tailoring
to meet specific requirements and unless the software was
explicitly developed for these use cases, additional work
needs to be put into achieving compliance. Manufacturers can
modify and adapt existing components to suit their unique
needs, ensuring the seamless integration of safety functions
within the overall vehicle architecture. While this requires
use case-specific adjustments for application-level functions,

libraries and - in more general terms - basic software can be
qualified to meet the requirements of a large scope of potential
use cases.

Open-source software offers a cost-effective alternative to
proprietary solutions, reducing the burden of licensing fees
and enabling organizations to allocate resources towards other
critical areas. By leveraging the collective knowledge and
expertise of developers worldwide, automotive manufacturers
and suppliers can tap into a vast pool of talent, accelerating
innovation and facilitating the exchange of best practices.
The open-source model encourages community-driven devel-
opment, ensuring that cutting-edge advancements and bug
fixes are shared and improved upon rapidly. In the highly com-
petitive automotive industry, where profit margins are often
razor-thin, the cost savings achieved through the utilization
of open-source software can provide a significant advantage.
This practice is already common in areas like infotainment,
but work needs to be put in to ensure that this software can
be used in more critical systems without compromising on
safety, security, or quality.

The international standard ISO 26262 [1] outlines the
functional safety requirements for automotive systems. It pro-
vides a framework for developing software in safety-critical
automotive systems, with the goal of ensuring the safety of
passengers, pedestrians, and the overall environment. However,
achieving ISO 26262 compliance poses several challenges
for software engineers. With the first version of the standard
published back in 2011, there already are several established
routes in effect to achieve compliance, focusing on both
process as well as technical measures to meet the standard’s
requirements.

With regard to the specific topic of software re-use, work
is currently ongoing to finalize and publish the ISO/AWI
PAS 8926 [2], intending to provide a framework for the
qualification of pre-existing software elements for safety-
related applications. The focus lies on providing an extensive
guide to integrate existing software elements into the systems
architectures for safety-critical vehicle projects. In its current
draft state, process steps include an impact analysis with
respect to the intended use case, a suitability evaluation of the
pre-existing software element including a classification based
on structured properties as well as a determination of required
verification activities to achieve ISO 26262 compliance.



II. SUCCESSFUL IMPLEMENTATIONS OF OPEN-SOURCE
SOFTWARE IN THE AUTOMOTIVE INDUSTRY

The automotive industry has already witnessed successful
deployments of open-source software in various domains,
demonstrating its viability and potential for safety-critical sys-
tems. Open-source platforms such as Android Automotive and
Linux-based systems have gained traction in the development
of in-vehicle infotainment systems [3]–[6]. These platforms
offer customizable user interfaces, support for smartphone
integration, and the ability to leverage a vast ecosystem of
applications and services, enhancing the overall development
experience.

Open-source software frameworks like ROS (Robot Op-
erating System) have emerged as a cornerstone for devel-
opment of automotive vehicles [7]. ROS provides a robust
foundation for sensor integration, perception, motion planning,
and control, enabling collaborative development and foster-
ing interoperability among different hardware and software
components. Existing implementations suited for the use in
safety-critical systems are still based on proprietary forks of
the open-source repositories, investing substantial amounts of
work into achieving standards compliance that is not provided
back to the upstream repository. While contracted support is
typically required for software used in safety-related systems
and would need to come from companies with a proven track
record, the qualification artefacts could be made part of the
public repositories; in addition, the need for a fork results
in a divergence between the safety-compliant version of the
framework and the open-source implementation, requiring a
migration that is not as seamless as developers typically intend
it to be.

III. SOFTWARE RE-USE

Software re-use plays a crucial role in modern software
development, offering numerous benefits such as reduced de-
velopment time, cost savings, improved quality, and increased
productivity. However, the process of reusing software, partic-
ularly when considering libraries developed for different use
cases, presents several challenges that need to be addressed.

When reusing software libraries developed for another use
case, ensuring the alignment of requirements can be a signifi-
cant undertaking. The original library may have been designed
to meet specific functional and non-functional requirements
that differ from those of the new use case. As a result,
additional engineering effort is required to analyze, modify,
and adapt the library to satisfy the specific requirements of
the new application.

Integrating a library developed for a different use case into
a new software system requires careful consideration of the
overall system design. The reusability of the library depends
on its compatibility with the architecture, interfaces, and
data models of the new system. Incompatibilities may arise,
necessitating architectural adjustments or the development of
adapters and middleware to bridge the gaps between the library
and the new system. This integration effort can add complexity
and overhead to the reusability process.

Ensuring the reliability and correctness of reused software
libraries is crucial, as they directly impact the overall quality,
safety, and security of the new system. Reused libraries may
require extensive testing and validation to verify their function-
ality, performance, and compatibility with the new use case.
Testing efforts may include specifying additional test cases,
conducting integration testing, and performing system-level
verification to ensure that the library functions as intended
within the new context.

Proprietary legacy software may lack active development
support and sufficient documentation. This scarcity of avail-
able resources can hinder the reusability process, as developers
may face difficulties in understanding the inner workings of
the software and its potential integration challenges. This
limitation may result in increased engineering effort to analyze
and adapt the software for the new use case.

IV. ADDITIONAL CHALLENGES IN SAFETY-RELATED
SYSTEMS DEVELOPMENT

Safety-related systems in automobiles must adhere to rigor-
ous certification processes and comply with industry standards.
Incorporating open-source or legacy software software intro-
duces additional complexity in demonstrating compliance, as it
requires comprehensive verification and validation procedures
to ensure the reliability and safety of the integrated software
components.

Developing ISO 26262-compliant software necessitates a
comprehensive understanding of the system’s safety require-
ments and potential hazards. Conducting a thorough risk
assessment and defining safety goals are crucial steps. Chal-
lenges arise in accurately identifying and evaluating potential
risks, as well as setting appropriate safety goals that align with
the system’s intended functions and safety requirements.

The functional safety concept forms the basis for achieving
ISO 26262 compliance. Developing a robust functional safety
concept involves determining the necessary safety functions,
defining safety mechanisms, and allocating safety require-
ments to software components. Challenges emerge in ensuring
that the functional safety concept adequately addresses all
potential hazards and satisfies the standard’s requirements.

Capturing, analyzing, and managing safety-related software
requirements in a clear and unambiguous manner can be chal-
lenging. It requires aligning functional requirements as well as
safety requirements, maintaining traceability, and ensuring that
respective requirements are testable. Designing the software
architecture to implement safety functions and meet safety re-
quirements poses challenges in terms of selecting appropriate
design patterns, ensuring fault tolerance and redundancy, and
managing the complexity of the system. Developing software
that adheres to ISO 26262 standards involves activities such as
ensuring adherence to coding guidelines, managing code com-
plexity, as well as incorporating fault-detection mechanisms.
Validating the safety-related software components through
testing, verification, and validation is a complex and time-
consuming process. Challenges include specifying and de-
veloping comprehensive test cases, performing fault injection



testing, and ensuring the proper integration and compatibility
of software components.

Several established routes can be undertaken to achieve
ISO 26262 compliance. Automotive SPICE (Software Process
Improvement and Capability Determination) is a framework
for assessing and improving software development processes
in the automotive industry. Aligning with Automotive SPICE
guidelines can provide a structured baseline to meet ISO
26262 compliance. Utilizing established safety standards and
best practices, such as MISRA C for coding guidelines or
AUTOSAR for the automotive software architecture, can help
in aligning the development process with ISO 26262 require-
ments to a certain extent. Employing development tools that
specifically support ISO 26262 compliance, such as safety
analysis tools, static analysis tools, and automated testing
frameworks, can aid in meeting the standard’s requirements.
Collaborating with third-party assessors who specialize in
ISO 26262 compliance can provide expert guidance, assist in
ensuring adherence to the standard, and in conducting audits.

There still is no systematic approach to resolve the delta
between the outputs of existing, non-compliant development
process and the requirements imposed upon software for
safety-critical automotive systems. While qualification has
been successfully performed for several open-source libraries,
larger and more complex projects typically present hurdles
that have not yet been overcome. Efforts to engineer an ASIL-
compliant Linux distributions have been ongoing for around
a decade, yet there is still no public release of such an
operating system available. Current ASIL-compliant POSIX
implementations are based on closed-source implementations,
e.g. BlackBerry QNX, sysgo PikeOS, Wind River vxWorks,
or GreenHills INTEGRITY.

Challenges in qualification are not only related to processual
difficulties, e.g. providing evidence of standards-compliant de-
velopment, proper issue reporting, or adherence to open-source
licenses, but also on architectural level. With the software
primarily being developed for use outside of safety-critical
systems, requirements on architectural complexity, specifica-
tion, design, and test coverage are typically not complied with.

V. RESEARCH OVERVIEW

The presented problem is neither new nor limited to the
automotive domain. Efforts have been performed in the past
already attempting to certify legacy automotive software as
well as open-source software for use in automotive systems
[8], [9]. A systematic mapping of open-source software in
safety-critical systems had already been performed after the
initial release of the ISO 26262 [10]. Research into these
domains is not scoped to open-source software exclusively,
but also takes into account pre-existing, uncertified software
in general [11]. Similar challenges exist in related domains
as well, e.g. aerospace (cp. e.g. [12], [13]), railway (cp. e.g.
[14], [15]), the process industry (cp. e.g. [16]), as well as the
medical domain (cp. e.g. [17]–[19]).

With regard to the challenges present in the engineering
of safety-related systems within the automotive domain, ex-

isting efforts have done well to describe the general process
requirements for the engineering [20], [21] as well as the
requirements on building a comprehensive safety case, both
within ISO 26262 definitions [22] as well as in pre-ISO 26262
development [23].

There has been research on refactoring of existing software
in parallel to development to achieve compliance [24], on
incremental verification of systems [25] and methods to re-
use safety case argumentations [26]. Especially with regard
to software initially intended for other use cases but also for
general process improvement, automatic generation of some
of the required artefacts has been examined for automotive
[27], rail [28] and adjacent domains. Bridging the gap between
safety and security, cross-domain approaches like coverage-
guided fuzz testing have also gained traction for the semi-
automated verification of safety-related systems [29].

Gaps exist in publicly available research especially with
regard to structured approaches on qualification of complex
pre-existing software. While the ISO/AWI PAS 8926 intends
to close that gap for systems engineering, we are not aware of
work focusing on the domain of providing re-usable safety
cases for software initially - and potentially in parallel -
developed for different use cases. One key point that we have
addressed as currently unresolved is how to prevent divergence
from repositories that are publicly maintained and where
implementation and documentation changes are in control
of a larger group representing different interests. It appears
inevitable to maintain a dedicated fork for safety-related use,
but with it being publicly available and potentially only a short
time period behind the release of the main repository, there is
potential to unify the working modes that previously appeared
to be contradictory.

With open-source software relying on the sharing of code
and community contributions, concerns are raised regarding
intellectual property rights and security vulnerabilities [30].
Suppliers and manufacturers must establish robust gover-
nance frameworks, implement rigorous code reviews, and have
mechanisms in place to identify and mitigate potential security
risks associated with any used open-source components. Main-
taining forked branches helps with overcoming these potential
issues to a large extent.

VI. CONCLUSION

Open-source software holds immense promise for the ad-
vancement of safety-critical automotive systems. With col-
laborative development, cost-effectiveness, and customization
capabilities, it has the potential to drive innovation and accel-
erate safety-related development in the automotive industry.
However, challenges related to certification, compliance, in-
tellectual property, and security must be effectively addressed
to fully leverage the benefits of open-source software in safety-
related systems.

Software re-use offers numerous advantages in terms of ef-
ficiency and productivity. However, reusing software libraries
developed for different use cases poses challenges in terms of
requirements alignment, design integration, and testing efforts.



Open-source software provides advantages such as commu-
nity support, transparency, and flexibility, which can mitigate
some of these challenges. In contrast, proprietary legacy
software may present additional hurdles related to incomplete
artefacts, licensing, and limited support. When considering
software re-use, engineers must carefully evaluate the char-
acteristics and constraints of both open-source and proprietary
legacy software to determine the most suitable approach based
on the project-specific requirements and circumstances.

Developing ISO 26262-compliant software for safety-
critical automotive systems presents significant challenges.
These encompass proper risk assessment, derivation of safety
goals, a solid functional safety concept, and the complexities
associated with requirements engineering, architectural design,
coding, and verification/validation activities. Meeting these
challenges is essential to ensure the safety, security, and
reliability of software in safety-critical automotive systems.

We are certain that these hurdles can be overcome and
are actively working on strategies towards a consistent and
unified engineering and development approach that enables
re-use of both pre-existing as well as open-source software
within safety-related systems in the automotive domain.

REFERENCES

[1] ISO, “ISO 26262: Road vehicles – Functional safety,” 2018.
[2] ——, “ISO/AWI PAS 8926: Road vehicles — Functional safety — Qual-

ification of pre-existing software products for safety-related applications
(draft version),” 2023.

[3] Aptiv, “Android Automotive Transforms Vehicle Infotainment,”
https://www.aptiv.com/docs/default-source/white-papers/2020-aptiv-
whitepaper-native-google-android-v.pdf?sfvrsn=833c43d 15, Tech.
Rep., 2020.

[4] P. Sivakumar, R. S. Sandhya Devi, A. Neeraja Lakshmi, B. VinothKu-
mar, and B. Vinod, “Automotive Grade Linux Software Architecture for
Automotive Infotainment System,” in 2020 International Conference on
Inventive Computation Technologies (ICICT), 2020, pp. 391–395.

[5] S. Usorac and B. Pavkovic, “Linux container solution for running
Android applications on an automotive platform,” in 2021 Zooming
Innovation in Consumer Technologies Conference (ZINC), 2021, pp.
209–213.

[6] S. Usorac, D. Bogdanovic, D. Peric, and Z. Lukac, “Adding Android
capabilities in automotive Linux infotainment: available virtualization
technologies,” in 2021 29th Telecommunications Forum (TELFOR),
2021, pp. 1–4.

[7] N. Puthoff, “How to Achieve Production-Grade Deployment with
ROS 2 and RTI Connext,” https://content.rti.com/whitepaper-how-to-
achieve-production-grade-deployment-with-ros-2-and-rti-connext, RTI,
Tech. Rep., 2022.

[8] S. Kochanthara, Y. Dajsuren, L. Cleophas, and M. van den Brand, “Paint-
ing the landscape of automotive software in GitHub,” in Proceedings
of the 19th International Conference on Mining Software Repositories.
ACM, May 2022.

[9] S. Alcaide, G. Cabo, F. Bas, P. Benedicte, F. Fuentes, F. Chang,
I. Lasfar, R. Canal, and J. Abella, “SafeX: Open Source Hardware and
Software Components for Safety-Critical Systems,” in 2022 Forum on
Specification & Design Languages (FDL). IEEE, Sep. 2022.

[10] S. M. Sulaman, A. Orucevic-Alagic, M. Borg, K. Wnuk, M. Host,
and J. L. de la Vara, “Development of Safety-Critical Software Sys-
tems Using Open Source Software – A Systematic Map,” in 2014
40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, Aug. 2014.

[11] M. Cinque, L. D. Simone, and A. Marchetta, “Certify the Uncerti-
fied: Towards Assessment of Virtualization for Mixed-criticality in the
Automotive Domain,” in 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE, Jun. 2022.

[12] Z. Assaad, N. Derwort, and K. A. Daniell, “Considerations for Assuring
Software Systems of Autonomous Aircraft,” in 2020 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, Dec. 2020.

[13] H. Espinoza, A. Ruiz, M. Sabetzadeh, and P. Panaroni, “Challenges
for an Open and Evolutionary Approach to Safety Assurance and
Certification of Safety-Critical Systems,” in 2011 First International
Workshop on Software Certification, 2011, pp. 1–6.

[14] D. Streitferdt, A. Zimmermann, J. Schaffner, and M. Kallenbach,
“Component-wise software certification for safety-critical embedded de-
vices,” in 2017 8th Annual Industrial Automation and Electromechanical
Engineering Conference (IEMECON), 2017, pp. 175–180.

[15] A. Bilbao, I. Yarza, J. L. Montero, M. Azkarate-askasua, and N. Gon-
zalez, “A railway safety and security concept for low-power mixed-
criticality systems,” in 2017 IEEE 15th International Conference on
Industrial Informatics (INDIN), 2017, pp. 59–64.

[16] R. Pietrantuono and S. Russo, “Robotics Software Engineering and
Certification: Issues and Challenges,” in 2018 IEEE International Sym-
posium on Software Reliability Engineering Workshops (ISSREW), 2018,
pp. 308–312.

[17] H. Bagheri, E. Kang, and N. Mansoor, “Synthesis of Assurance Cases
for Software Certification,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER), 2020, pp. 61–64.

[18] N. Hrgarek, “Certification and regulatory challenges in medical device
software development,” in 2012 4th International Workshop on Software
Engineering in Health Care (SEHC), 2012, pp. 40–43.

[19] R. Adler, S. Kemmann, D. de Melo Carvalho Filho, and J. A. O. Neto,
“Safety assessment of software-intensive medical devices: Introducing a
safety quality model approach,” in 2013 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW), 2013, pp.
217–222.

[20] P. Stirgwolt, “Effective management of functional safety for ISO 26262
standard,” in 2013 Proceedings Annual Reliability and Maintainability
Symposium (RAMS). IEEE, Jan. 2013.

[21] K. Wallace, “Safe and secure: re-engineering a software process set for
the challenges of the 21st century,” in 9th IET International Conference
on System Safety and Cyber Security (2014). Institution of Engineering
and Technology, 2014.

[22] R. Palin, D. Ward, I. Habli, and R. Rivett, “ISO 26262 safety cases:
compliance and assurance,” in 6th IET International Conference on
System Safety 2011. IET, 2011.

[23] S. Wagner, B. Schatz, S. Puchner, and P. Kock, “A Case Study on Safety
Cases in the Automotive Domain: Modules, Patterns, and Models,”
in 2010 IEEE 21st International Symposium on Software Reliability
Engineering. IEEE, Nov. 2010.

[24] P. Jurnecka, M. Barabas, P. Hancek, M. Henzl, and M. Kacic, “A method
for parallel software refactoring for safety standards compliance,” in 8th
IET International System Safety Conference incorporating the Cyber
Security Conference 2013. Institution of Engineering and Technology,
2013.

[25] B. Chimdyalwar, A. Jana, S. Kumar, A. Khadsare, and V. Ghime,
“Identifying Relevant Changes for Incremental Verification of Evolving
Software Systems,” in 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, Mar. 2022.

[26] A. Agrawal, S. Khoshmanesh, M. Vierhauser, M. Rahimi, J. Cleland-
Huang, and R. Lutz, “Leveraging Artifact Trees to Evolve and Reuse
Safety Cases,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, May 2019.

[27] M. Li, B. Meng, H. Yu, K. Siu, M. Durling, D. Russell, C. McMillan,
M. Smith, M. Stephens, and S. Thomson, “Requirements-based Auto-
mated Test Generation for Safety Critical Software,” in 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC). IEEE, Sep. 2019.

[28] H. Zheng, J. Feng, W. Miao, and G. Pu, “Generating Test Cases from
Requirements: A Case Study in Railway Control System Domain,”
in 2021 International Symposium on Theoretical Aspects of Software
Engineering (TASE). IEEE, Aug. 2021.

[29] S. Sheikhi, E. Kim, P. S. Duggirala, and S. Bak, “Coverage-Guided
Fuzz Testing for Cyber-Physical Systems,” in 2022 ACM/IEEE 13th
International Conference on Cyber-Physical Systems (ICCPS). IEEE,
May 2022.

[30] H. Y. Yun, Y. J. Joe, and D. M. Shin, “Method of license compliance
of open source software governance,” in 2017 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
2017, pp. 83–86.

https://www.aptiv.com/docs/default-source/white-papers/2020-aptiv-whitepaper-native-google-android-v.pdf?sfvrsn=833c43d_15
https://www.aptiv.com/docs/default-source/white-papers/2020-aptiv-whitepaper-native-google-android-v.pdf?sfvrsn=833c43d_15
https://content.rti.com/whitepaper-how-to-achieve-production-grade-deployment-with-ros-2-and-rti-connext
https://content.rti.com/whitepaper-how-to-achieve-production-grade-deployment-with-ros-2-and-rti-connext

	Introduction
	Successful Implementations of Open-Source Software in the Automotive Industry
	Software Re-Use
	Additional Challenges in Safety-related Systems Development
	Research Overview
	Conclusion
	References

