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Abstract: Limestone is a popular building stone worldwide. In Baku in Azerbaijan, local limestones
have been used in construction, including in the walled historic city centre (Old City, Icherisheher).
Located in a seismically-active area, Baku is prone to post-earthquake fires that can damage buildings
and monuments. Here, we test the fire resistance of local limestone by measuring its physical
(connected porosity, permeability, P-wave velocity, thermal properties) and mechanical (uniaxial
compressive strength, Young’s modulus) properties before and after thermal-stressing to temperatures
up to 600 ◦C. Our results show that connected porosity and permeability increase and that P-
wave velocity, thermal conductivity, thermal diffusivity, specific heat capacity, uniaxial compressive
strength, and Young’s modulus decrease as a function of increasing temperature. Microstructural
analyses show that these changes are the result of thermal microcracking. Samples heated to 800 ◦C
disintegrated due to the formation of portlandite following decarbonation. The data presented
herein will assist damage assessments of limestone buildings and monuments in Baku following the
unfortunate event of fire.

Keywords: limestone; Absheron Peninsula; fire; porosity; permeability; thermal properties; P-wave
velocity; uniaxial compressive strength

1. Introduction

The use of limestone in construction is not only found all over the globe but it has
also been used as a building material for more than four thousand years. Limestone has
been used to construct ancient monuments and Wonders of the World, such as the Great
Sphinx and Pyramids of Giza in Egypt [1,2], and modern monuments, such as the Arc de
Triomphe in Paris (France) and the Lincoln Memorial in Washington (USA). As a result of
this widespread use, in both space and time, understanding the susceptibility of limestone
to damage is important for the conservation and preservation of many buildings and
monuments worldwide.

Baku, the capital of Azerbaijan, is located on the southern coast of the Absheron
Peninsula, a 30 km wide peninsula that extends into the Caspian Sea and represents the
easternmost part of the Caucasus Mountains (Figure 1a). The abundance of limestone
on the Absheron Peninsula has led to its wide use in the construction of buildings and
monuments in the Baku area, including the walled historic city centre of Baku (Old City,
Icherisheher; Figure 2; location shown in Figure 1b). Baku is located in a seismically-
active region [3,4]. Alongside damage associated with earthquakes and aftershocks, post-
earthquake fires in urbanised areas can also result in widespread damage to buildings
and monuments [5]. Here, therefore, we present a study in which we investigated the
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influence of high temperature on the physical and mechanical properties of limestone used
in construction in the Baku area.
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Figure 1. (a) Map of Azerbaijan showing neighbouring countries, and the location of the Ab-
sheron Peninsula, the Caucasus Mountains, and Baku (latitude and longitude of Baku: 40.4093◦ N,
49.8671◦ E). (b) Zoomed-in map of the Baku area showing the location of the quarry at Guzdak (red
circle) and the Icherisheher.
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Figure 2. Photographs of limestone building materials in Icherisheher in Baku (location shown in
Figure 1b). (a) The Maiden Tower monument (16.5 metres in diameter at the base). (b) The wall of an
inner street (pencil for scale; pencil is 15 cm long). (c) Zoom in on one of the building blocks of an
inner house wall (metal hooks are 10 cm long).

Although no experimental studies exist for limestone from the Baku area, previous
studies have sought to understand the influence of high temperature on the physical and
mechanical properties of other limestones.

In terms of porosity, Zhang et al. [6] found that the connected porosity of low-porosity
(porosity of 0.002) limestone from Longde (Ningxia Province, China) increased from ~0.002
to ~0.03 as the temperature was increased from 20 to 600 ◦C. Meng et al. [7] found that the
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porosity of a low-porosity (porosity of 0.0125) limestone from Xuzhuo (Jiangsu Province,
China) increased from ~0.0125 to ~0.035 as the temperature was increased from 20 to
800 ◦C. Heap et al. [8] found that the connected porosity of two limestones from Sicily
(Italy) increased from ~0.18 and ~0.25 to ~0.22 and ~0.58 following exposure to temperatures
of 600 and 800 ◦C, respectively.

In terms of permeability, Lion et al. [9] found that the permeability of two samples of
porous (porosity of 0.19) limestone from Bourgogne (France) increased from 4.45 × 10−16 to
4.65 × 10−16 m2 as the thermal-stressing temperature was increased from 25 to 150 ◦C, and
increased from 4.40 × 10−16 to 4.80 × 10−16 m2 as the thermal-stressing temperature was
increased from 25 to 250 ◦C. Homand-Etienne and Troalen [10] found that the permeability
of two limestones with a porosity of ~10% and ~0% was increased by a factor of 1.5 and 4.4,
respectively, following exposure to 700 ◦C.

In terms of P-wave velocity, Zhang et al. [6] found that the P-wave velocity of low-
porosity (porosity of 0.002) limestone from Longde decreased from ~6.5 to ~1.5 km/s as
the temperature was increased from 20 to 900 ◦C. Meng et al. [7] found that the P-wave
velocity of low-porosity (porosity of 0.0125) limestone from Xuzhuo decreased from ~3.5 to
~1.25 km/s as the temperature was increased from 20 to 800 ◦C. Heap et al. [8] found that
the P-wave velocity of two limestones from Sicily (Italy) decreased from ~4.5 to ~2 km/s as
the temperature increased from 20 to 800 ◦C. Hu et al. [11] found that the P-wave velocity
of limestone collected near the city of Shijiazhuang (China) decreased from ~5.2 km/s at
100 ◦C to ~2.9 km/s at 500 ◦C. The P-wave velocity of two limestones from Adana (Turkey)
was reduced from ~5 km/s at 650 ◦C to ~2.5 km/s at 1050 ◦C [12]. Finally, Homand-Etienne
and Troalen [10] found that the P-wave velocity of two limestones with a porosity of ~10%
and ~0% was reduced by ~50% and ~80%, respectively, following exposure to 700 ◦C.

In terms of thermal properties, Zhang and Lv [13] showed that the thermal conductiv-
ity and specific heat capacity of limestone from Shandong Province (China) were reduced
as a function of increasing temperature. For example, thermal conductivity was reduced
from ~1.5 W/mK at 20 ◦C to ~0.9 W/mK at 600 ◦C [13]. The thermal conductivity of
low-porosity (porosity of 0.006) limestone from Chenghe coal mine (Shaanxi Province,
China) was found to decrease from ~3.0 to ~0.8 W/mK as the temperature was increased
from 20 to 1000 ◦C [14]. These authors also showed that the exposure to high-temperature
decreased and increased the thermal diffusivity and specific heat capacity, respectively,
of the same limestone. Hu et al. [11] found that the thermal conductivity of limestone
collected near the city of Shijiazhuang decreased from ~3.0 W/mK at 100 ◦C to ~1.9 W/mK
at 500 ◦C.

In terms of rock mechanical properties, Zhang et al. [15] found that the uniaxial
compressive strength and Young’s modulus of low-porosity (porosity of 0.002) limestone
from Linyi (Shandong Province) decreased as a function of increasing temperature. These
authors found, for example, that uniaxial compressive strength decreased from ~150 to
~75 MPa as the temperature was increased from 20 to 600 ◦C [15]. Mao et al. [16] found
that the uniaxial compressive strength and Young’s modulus of limestone from Xuzhuo
decreased as a function of increasing temperature and that the decrease in these properties
was large above a temperature of 600 ◦C, above the temperature required for decarbonation.
Similar results for limestone from Xuzhuo were found by Meng et al. [17]. Heap et al. [8]
found that the uniaxial compressive strength of two limestones from Sicily decreased by
~35% and ~10%, respectively, at the maximum thermal stressing temperature (650 and
700 ◦C, respectively). Meng et al. [7] also showed that the rate of decrease in the strength of
limestone from Xuzhuo as a function of increasing temperature did not appreciably change
under confining pressures up to 30 MPa. Castagna et al. [18] found that temperature did
not appreciably influence the compressive strength of Comiso limestone (Italy; porosity of
~0.09) at a confining pressure of 15 MPa at temperatures up to 450 ◦C, but that compressive
strength was reduced from ~160 to ~130 MPa as the temperature was increased to 600 ◦C.
At a confining pressure of 50 MPa, Comiso limestone transitioned from brittle to ductile
behaviour at temperatures ≥ 400 ◦C [19]. The tensile strength of limestone from Shandong
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Province was reduced from ~7 MPa at 20 ◦C to ~3.5 MPa at 600 ◦C [13]. Hu et al. [11] found
that the tensile strength of limestone collected near the city of Shijiazhuang decreased from
~6.5 MPa at 100 ◦C to ~4.3 W/mK at 500 ◦C.

The above-mentioned studies have shown that the porosity and permeability of lime-
stone increase and that the P-wave velocity, thermal properties, uniaxial compressive
strength, and Young’s modulus of limestone decrease, as a function of increasing temper-
ature. Changes to the physical and mechanical properties of limestone as a function of
temperature in these studies have generally been interpreted as a result of thermal microc-
racking at low temperatures (<600 ◦C) and decarbonation at high temperatures (>600 ◦C).
However, not only have limestones commonly used in construction in and around Baku
not been assessed in terms of their fire resistance, the majority of previous experimental
studies have investigated the influence of high temperature on low-porosity limestones. By
contrast, the limestones used in construction in the Baku area are often very porous and
composed of small (<1 mm) shells (Figure 2). Here, therefore, we present the results of
an experimental study designed to understand the influence of high temperature (up to
800 ◦C) on the physical and mechanical properties of limestone used in construction in and
around Baku.

2. Materials and Methods
2.1. Sample Description and Microstructural Characterisation

The block of limestone used for this study was collected from a quarry in Guzdak,
a village about 20 km west of Baku (Figure 1b). The limestone is a porous, shelly oolitic
limestone (Figure 3). The ooids and shells within the limestone (typically <1 mm) are
surrounded by sparry calcite cement (Figure 3). The ooids are typically round in shape,
whereas the shells are characterised by low aspect ratios (minor grain axis divided by the
major grain axis) (Figure 3).
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Figure 3. Photograph of a 25 mm diameter core sample (left) and an optical microscope image of the
studied limestone (right).

To characterise the microstructural heterogeneity of the studied limestone, we provide
here a grain size and shape analysis. To do so, we manually drew around all the grains
within a selected optical microscope image using open-source vector graphics program
Inkscape. We then analysed these grains using open-source image analysis software ImageJ.
Using ImageJ, we determined the equivalent grain diameter and the grain aspect ratio of
each grain (n = 623). The equivalent grain diameter, d, was calculated using d = 3/2(dF),
where dF is the average Feret diameter. The aspect ratio of each grain was calculated as
the minor grain axis divided by the major grain axis (an aspect ratio of unity therefore
represents a perfect circle). The results of this microstructural characterisation are shown
in Figure 4.
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The data in Figure 4 show that the grains within the studied limestone are large
(Figure 4a) and vary widely in terms of their shape (Figure 4b). Figure 4a shows that the
majority of grains are between an equivalent diameter of ~250 to ~1250 µm, with a mean
diameter of 820 µm. Some grains, however, are a couple of mm in diameter (Figure 4a).
Figure 4b shows that the majority of grains have an aspect ratio between 0.2 and 0.9, with a
mean aspect ratio of 0.53. The large variation in the aspect ratio seen in Figure 4b is the
result of the circular or subcircular ooids and the elongated and flattened shells within the
studied limestone (Figure 3).

2.2. Sample Preparation and Experimental Methods

Twelve cylindrical samples, 25 mm in diameter and nominally 60 mm in length, were
prepared from the block collected. All samples were cored in the same direction. These
samples were then washed with water and dried in a vacuum oven at 40 ◦C for at least
48 h. The experimental work was split into two parts. First, we measured the physical
properties (bulk density, connected porosity, permeability, P-wave velocity, and thermal
properties) of the intact samples. Second, we thermally stressed ten of the samples to
different temperatures (two each at 100, 200, 400, 600, and 800 ◦C, keeping two samples
intact to serve as a reference) in an electronic high-temperature furnace and remeasured
their physical properties. Finally, we performed uniaxial compressive strength (UCS) tests
on the samples (those thermally stressed and the two samples that were kept intact) to
obtain Young’s modulus and UCS.

2.2.1. Bulk Density and Connected-Porosity Measurements

Dry bulk sample density, ρb, was calculated using the dry mass (measured using
an electric balance) and the dimensions (measured using digital calipers) of each sample.
Connected porosity, φc, was calculated using the sample volume, Vb, measured using
digital calipers, and the skeletal (connected) volume measured using a helium pycnometer
(Mircomeritics AccuPyc II), Vs, where φc = 1 − (Vs/Vb). Total porosity, φt, was also
determined using the dry bulk sample density and the density of calcite, ρcalcite (taken
as 2700 kg/m3), where φt = 1 − (ρb/ρcalcite). This latter method assumes that the rock
is composed entirely of calcite and was used to determine the mineral content of the
studied limestone.

2.2.2. Permeability Measurements

Permeability was measured using a benchtop gas (nitrogen) permeameter (see schemat-
ics in [20,21]) at ambient temperature and under a confining pressure of 1 MPa using either
the steady-state method (for high-permeability samples) or the pulse-decay method (for
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low-permeability samples). For the steady-state experiments, steady-state volumetric flow
rates were measured (using a gas flowmeter) for six different pore pressure differentials
(measured using a pressure transducer). Pulse-decay measurements were performed by
monitoring the decay of a pressure differential over time (measured using a pressure trans-
ducer). These data were used to calculate permeability using Darcy’s law. When necessary,
the data were corrected using the Klinkenberg or Forchheimer corrections. For more details
on the experimental procedure and the equations involved, see Heap et al. [22].

2.2.3. P-Wave Velocity Measurements

P-wave velocity was measured along the sample axis of dry samples at ambient
pressure and temperature. The samples were held in a custom-built jig (see schematic
in Heap et al. [23]) under an axial stress of 1 MPa to ensure a good contact between the
sample and the endcaps containing the piezoelectric sensors. The frequency of the signal,
generated using a waveform generator, was set at 700 Hz, and the travel time was measured
using a digital oscilloscope.

2.2.4. Thermal Property Measurements

Thermal conductivity and thermal diffusivity were measured using a Hot Disk® TPS
500 Thermal Constants Analyser using the transient plane source (TPS) method [24–26].
For the thermal property measurements, the samples were grouped into pairs of similar
porosity (or, following thermal stressing, samples that were thermally stressed to the same
temperature). Thermal conductivity and thermal diffusivity were measured using a sensor
sandwiched between the two samples, consisting of two 10 µm thick nickel foil spirals
(radius of 3.189 mm) encased and insulated by 30 µm thick Kapton. The samples were
held in place using a screw positioned at the top of the sample jig, which ensured good
contact between the sensor and the surface of the samples. All measurements were made
at ambient pressure and temperature. For more details on the experimental procedure,
including schematics of the device, see Heap et al. [25,26].

2.2.5. Uniaxial Compressive Strength (UCS) and Young’s Modulus

Uniaxial compressive strength was measured using a uniaxial load frame (see schematic
in Heap et al. [23]). Dry samples were deformed at ambient temperature at an axial strain
rate of 10−5 s−1 until macroscopic failure. Axial displacement and axial force were mea-
sured during the experiment using a linear variable differential transducer and a load
cell, respectively, and were converted to axial strain and axial stress using the sample
dimensions. Static Young’s modulus was calculated using the stress-strain data from the
elastic portion of the experiments (as per the method outlined in Heap et al. [25]).

3. Results
3.1. Physical Property Data for Intact Samples

The average connected porosity of the studied limestone was measured to be 0.28
(Table 1). The connected porosity of the ten samples did not vary greatly: the highest
and lowest values of connected porosity were 0.27 and 0.29, respectively (Table 1). More
sample-to-sample variability was observed for P-wave velocity, thermal conductivity,
thermal diffusivity, and specific heat capacity (Table 1). P-wave velocity varied from 4.00 to
4.48 km/s (average of 4.20 km/s), thermal conductivity from 1.188 to 1.374 W/mK (average
of 1.299 W/mK), thermal diffusivity from 0.670 to 1.094 mm2/s (average of 0.921 mm2/s),
and specific heat capacity from 0.622 to 0.914 kJ/kgK (average of 0.739 kJ/kgK) (Table 1).
A large sample-to-sample variability was observed for permeability, which varied from
1.83 × 10−18 to 8.83 × 10−16 m2 (average of 2.26 × 10−16 m2) (Table 1). We find that the
total porosity, calculated using the density of calcite, is essentially the same as the connected
porosity, suggesting that the studied limestone is composed of 100%, or close to 100%,
calcite (as a result, we only show connected porosity in Table 1).
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Table 1. Physical property measurements on intact (i.e., not thermally stressed) limestone (BL1
to BL12).

Sample Bulk Sample
Density (kg/m3)

Connected
Porosity

Permeability
(m2)

P-Wave
Velocity
(km/s)

Thermal
Conductivity

(W/mK)

Thermal
Diffusivity

(mm2/s)

Specific Heat
Capacity
(kJ/kgK)

BL1 1951.2 0.27 1.47 × 10−17 4.23 1.329 ± 0.076 1.094 ± 0.067 0.622 ± 0.068
BL2 1927.2 0.29 8.83 × 10−16 4.01 1.329 ± 0.076 1.094 ± 0.067 0.630 ± 0.068
BL3 1953.1 0.27 6.39 × 10−18 4.18 1.267 ± 0.160 0.992 ± 0.139 0.654 ± 0.173
BL4 1947.8 0.28 1.30 × 10−17 4.00 1.267 ± 0.160 0.992 ± 0.139 0.656 ± 0.173
BL5 1940.2 0.28 8.22 × 10−16 4.23 1.188 ± 0.109 0.670 ± 0.103 0.914 ± 0.060
BL6 1949.6 0.29 4.55 × 10−17 4.23 1.188 ± 0.109 0.670 ± 0.103 0.909 ± 0.060
BL7 1946.7 0.28 4.37 × 10−16 4.12 1.329 ± 0.032 0.893 ± 0.088 0.764 ± 0.073
BL8 1952.7 0.28 1.83 × 10−18 4.14 1.329 ± 0.032 0.893 ± 0.088 0.762 ± 0.073
BL9 1960.1 0.27 4.74 × 10−17 4.48 1.374 ± 0.019 0.852 ± 0.027 0.823 ± 0.016

BL10 1944.2 0.28 1.44 × 10−17 4.10 1.374 ± 0.019 0.852 ± 0.027 0.830 ± 0.016
BL11 1957.1 0.28 3.82 × 10−16 4.41 1.308 ± 0.056 1.026 ± 0.099 0.652 ± 0.080
BL12 1954.9 0.28 3.89 × 10−17 4.23 1.308 ± 0.056 1.026 ± 0.099 0.652 ± 0.080

3.2. Thermal Stressing the Limestones

Photographs of an intact sample and samples thermally stressed to 100, 200, 400, and
600 ◦C are shown in Figure 5. The original cream colour of the limestone changed to red at
400 ◦C (Figure 5d) and grey at 600 ◦C (Figure 5e). The two samples thermally stressed to
800 ◦C turned white and, following several hours outside of the high-temperature furnace,
expanded considerably and disintegrated. As a result, we do not report physical and
mechanical property measurements for the samples thermally stressed to 800 ◦C in the
following subsections.
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3.3. Physical Property Data for Thermally Stressed Samples

Connected porosity, permeability, and P-wave velocity are shown as a function of
thermal stressing temperature in Figure 6. We plot in Figure 6 the absolute value of
connected porosity (Figure 6a), permeability (Figure 6b), and P-wave velocity (Figure 6c)
(data are also available in Table 2) but, because these physical properties varied for the
intact samples (Table 1), we also provide the relative change of the three properties in
Figures 6d, 6e and 6f, respectively. We find that the connected porosity of the samples
increases, but not significantly, as a function of thermal stressing temperature (Figure 6a,d).
For example, samples heated to 600 ◦C have increased in connected porosity by about 0.01
(Table 2). Despite this modest increase in connected porosity, permeability (Figure 6b,e) and
P-wave velocity (Figure 6c,f) increased and decreased, respectively, as a function of thermal
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stressing temperature. Permeability increased by a factor of more than 200 (Figure 6e), and
P-wave velocity decreased by a factor of 2 (Figure 6f). For both permeability and P-wave
velocity, notable changes were observed following exposure to temperatures at or above
400 ◦C; at temperatures below 400 ◦C, changes were either small or insignificant.
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Thermal conductivity, thermal diffusivity, and specific heat capacity are shown as a
function of thermal stressing temperature in Figure 7. We plot in Figure 7 the absolute
value of thermal conductivity (Figure 7a), thermal diffusivity (Figure 7b), and specific
heat capacity (Figure 7c) (data are also available in Table 2) but, because these physical
properties varied for the intact samples (Table 1), we also provide the relative change of the
three properties in Figures 7d, 7e and 7f, respectively. We find that thermal conductivity,
thermal diffusivity, and specific heat capacity all decrease as a function of increasing thermal
stressing temperature (Figure 7; Table 2). For all three thermal properties, notable decreases
were observed following exposure to temperatures at or above 400 ◦C; at temperatures
below 400 ◦C, decreases were either small or insignificant.
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Table 2. Physical property measurements on intact (i.e., not thermally stressed) limestone (BL1 and
BL2) and limestone thermally stressed to 100 ◦C (BL3 and BL4), 200 ◦C (BL5 and BL6), 400 ◦C (BL7
and BL8), and 600 ◦C (BL9 and BL10). Samples heated to 800 ◦C (BL11 and BL12) disintegrated and
could not be remeasured.

Sample
Bulk Sample

Density
(kg/m3)

Connected
Porosity

Permeability
(m2)

P-Wave
Velocity
(km/s)

Thermal
Conductivity

(W/mK)

Thermal
Diffusivity

(mm2/s)

Specific Heat
Capacity
(kJ/kgK)

BL1 1951.2 0.27 1.47 × 10−17 4.23 1.329 ± 0.076 1.094 ± 0.067 0.622 ± 0.068
BL2 1927.2 0.29 8.83 × 10−16 4.01 1.329 ± 0.076 1.094 ± 0.067 0.630 ± 0.068

BL3 (100 ◦C) 1960.6 0.26 5.81 × 10−18 4.12 1.271 ± 0.126 1.029 ± 0.112 0.630 ± 0.110
BL4 (100 ◦C) 1949.3 0.27 1.79 × 10−17 4.00 1.271 ± 0.126 1.029 ± 0.112 0.634 ± 0.110
BL5 (200 ◦C) 1942.5 0.29 9.18 × 10−16 4.14 1.178 ± 0.108 0.678 ± 0.135 0.895 ± 0.101
BL6 (200 ◦C) 1955.3 0.29 4.42 × 10−17 4.20 1.178 ± 0.108 0.678 ± 0.135 0.889 ± 0.101
BL7 (400 ◦C) 1940.1 0.29 7.16 × 10−16 3.27 1.230 ± 0.099 0.899 ± 0.045 0.705 ± 0.073
BL8 (400 ◦C) 1946.8 0.29 9.42 × 10−18 3.36 1.230 ± 0.099 0.899 ± 0.045 0.703 ± 0.073
BL9 (600 ◦C) 1921.0 0.30 3.41 × 10−15 2.23 1.084 ± 0.025 0.746 ± 0.023 0.756 ± 0.028
BL10 (600 ◦C) 1943.5 0.30 3.25 × 10−15 2.13 1.084 ± 0.025 0.746 ± 0.023 0.747 ± 0.028
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Figure 7. (a) Thermal conductivity as a function of thermal stressing temperature. (b) Thermal
diffusivity as a function of thermal stressing temperature. (c) Specific heat capacity as a function of
thermal stressing temperature. Panels (d–f) show the relative change in thermal conductivity, thermal
diffusivity, and specific heat capacity, respectively.
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3.4. Mechanical Property Data for Thermally Stressed Samples

UCS and Young’s modulus are shown as a function of thermal stressing temperature
in Figure 8. We plot in Figure 8 the absolute value of UCS (Figure 8b) and Young’s modulus
(Figure 8d) (data are also available in Table 3). We also provide the relative change of
UCS and Young’s modulus in Figure 8c,e (here, we used the average value of the two
measurements for each thermal stressing temperature). We also provide representative
uniaxial stress-strain curves for experiments performed on samples from each thermal
stressing temperature in Figure 8a. We find that UCS (Figure 8b,c) and Young’s modulus
(Figure 8d,e) decrease as a function of increasing thermal stressing temperature. For
example, at the maximum thermal stressing temperature, UCS (Figure 8c) and Young’s
modulus (Figure 8e) decreased by ~20% and ~60%, respectively.
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Figure 8. (a) Uniaxial stress-strain curves for intact limestone and limestones thermally stressed to
temperatures of 100, 200, 400, and 600 ◦C. (b) Uniaxial compressive strength as a function of thermal
stressing temperature. (c) The relative change of uniaxial compressive strength (UCS) as a function of
thermal stressing temperature. (d) Young’s modulus as a function of thermal stressing temperature.
(e) The relative change of Young’s modulus as a function of thermal stressing temperature.
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Table 3. Mechanical property measurements on intact (i.e., not thermally stressed) limestone (BL1
and BL2) and limestone thermally stressed to 100 ◦C (BL3 and BL4), 200 ◦C (BL5 and BL6), 400 ◦C
(BL7 and BL8), and 600 ◦C (BL9 and BL10). Samples heated to 800 ◦C (BL11 and BL12) disintegrated
and could not be measured.

Sample Young’s Modulus (GPa) Uniaxial Compressive Strength (MPa)

BL1 14.7 18.6
BL2 7.4 12.0
BL3 11.5 16.7
BL4 7.7 11.3
BL5 13.6 17.2
BL6 8.8 13.3
BL7 8.8 12.0
BL8 8.3 13.0
BL9 4.1 13.7

BL10 3.7 9.6

4. Discussion
4.1. Interpretation of the Physical and Mechanical Property Data

Our data show that connected porosity and permeability increase and that P-wave
velocity, thermal conductivity, thermal diffusivity, specific heat capacity, uniaxial com-
pressive strength, and Young’s modulus decrease as a function of increasing temperature
(Figures 6–8). Typically, changes to the physical and mechanical properties of the limestone
are more pronounced at temperatures of 400 ◦C and above (Figures 6–8). To understand
why these changes occurred, we prepared thin sections of samples thermally stressed to
temperatures of 400 and 600 ◦C (Figure 9). The optical microscope images provided in
Figure 9 show that the sample heated to 400 ◦C contains microcracks within the grains
forming the rock (Figure 9a) and, at 600 ◦C, we observe more microcracks (Figure 9b). These
microcracks formed due to the build-up of stress at the contacts between neighbouring
grains resulting from their thermal expansion at high temperature [27]. The formation
of microcracks following the thermal stressing of rock has previously been observed to
increase permeability [28,29] and porosity and decrease P-wave velocity [29,30], thermal
properties [31], uniaxial compressive strength [32,33], and Young’s modulus [33].
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Figure 9. Optical microscope images of samples, taken using reflected light, of the studied limestone
exposed to 400 ◦C (a) and 600 ◦C (b).

The samples heated to 800 ◦C turned white and, following several hours outside of
the high-temperature furnace, expanded considerably and disintegrated. We note that
800 ◦C is above the temperature required for decarbonation, a process that converts calcium
carbonate to calcium oxide and carbon dioxide gas [34,35]. The calcium oxide then reacts
with atmospheric water to form portlandite (calcium hydroxide) [36]. The formation of
portlandite is exothermic and results in a considerable volume increase. This volume
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increase resulted in the expansion and disintegration of the sample, as also observed by
Heap et al. [8] for limestone samples heated above their decarbonation temperatures.

4.2. Comparisons with Previously Published Data

We compare our new data for limestone from Baku with those previously published
in Figure 10. We find that the relative changes in P-wave velocity (Figure 10b), thermal
conductivity (Figure 10d), uniaxial compressive strength (Figure 10e), and Young’s modulus
(Figure 10e) of our limestone are very similar to those reported for limestone in the literature,
despite their differences in porosity and microstructural parameters (such as, for example,
grain size).
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Figure 10. Connected porosity change (a), P-wave velocity change (b), permeability change (c),
thermal conductivity change (d), uniaxial compressive strength (UCS) change (e), and Young’s
modulus change (f) as a function of thermal stressing temperature. The panels show data from this
study (black circles) and data from previously published studies (grey symbols, [6–8,10,11,13,14]).

The relative change in connected porosity, however, appears to depend on the initial
porosity of the limestone (Figure 10a). The relative change in the connected porosity of
limestones with a low porosity (the porosity of the limestones studied in Zhang et al. [6]
and Meng et al. [7] were 0.002 and 0.0125, respectively) increased significantly as a function
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of thermal stressing temperature, while the connected porosity change for high-porosity
limestones (the porosity of the limestones studied in Heap et al. [8] were ~0.18 and ~0.25),
including the limestone studied herein (porosity of ~0.28), increased by less than a factor of
2 (Figure 10a). This difference can be explained by the fact that if, for example, thermally
stressing a rock to 600 ◦C increases the porosity by 0.01, the relative change in porosity for
an initially low-porosity rock will be higher than that for an initially high-porosity rock.
Therefore, the data shown in Figure 10a does not necessarily suggest that, following thermal
stressing, the volume of microcracks that form in low-porosity limestones is higher than the
volume of microcracks that form in high-porosity limestones. This assertion is supported
by the fact that the evolution of the physical and mechanical properties of limestones with
different porosities as a function of thermal stressing temperature is similar (Figure 10).

Finally, we highlight that the permeability of our limestone increases significantly
following thermal stressing (by a factor of more than 200; Figure 10c), whereas the perme-
ability of two other limestones only increased by a factor of ~1.5 and ~4.5, respectively
(Figure 10c). This, however, cannot be explained by differences in their initial permeability
because the two limestones measured by Homand-Etienne and Troalen [10] have initial
porosities and permeabilities of ~0.1 and ~0 and 10−16 and 10−20 m2, respectively. We
interpret this as the result of the poor initial connectivity of the porosity within the lime-
stone from Baku. Compared to similarly porous limestones, the limestone measured here is
characterised by a very low permeability. For example, the permeability of Leitha limestone
(Austria), with a porosity of 0.3, is >10−12 m2 [37], whereas the limestone from Baku, with
a porosity of ~0.28, has a permeability of ~10−16 m2 (Table 1). The low permeability of the
limestone from Baku, despite its high porosity, highlights the poor connectivity of the pore
space within the rock. We hypothesise that the microcracks that form as a result of exposure
to high temperature (Figure 9) do not greatly increase the porosity (Figure 10a), but greatly
increase the connectivity of the porosity. This increase in pore space connectivity, thanks
to the thermal microcracks, results in a large increase in sample permeability, as shown in
Figure 10c.

4.3. Implications for Building and Monument Restoration

Our petrophysical data (Figures 6–8 and 10) suggest that, where and when possible,
building and monument fires should be kept at temperatures below 400 ◦C. At tempera-
tures below 400 ◦C, changes to the physical and mechanical properties of the limestone
are modest (Figures 6–8 and 10). Thermal stressing also induces colour changes of the
limestone samples starting at 400 ◦C (Figure 5), which coincide with the notable change in
both physical and mechanical properties (Figures 6–8 and 10). This superficial evolution
has been observed by other authors for limestones at the same temperature [38–40]. Tuff, a
type of volcanic rock, is also known to change colour following exposure to high tempera-
ture [41,42]. Therefore, colour changes could be used to assess the structural integrity of
buildings and monuments and could, as a result, be used as part of a preliminary damage
investigation. Indeed, knowing which dimension stones are compromised following ex-
posure to high temperature will help the rescue team know which part of the building is
safe to enter, and knowing which stones need to be replaced will also help guide building
restoration. Improved strategies for rescue teams and construction crews following fire
damage could help save time, money, and lives.

5. Conclusions

Baku is located in a seismically-active region and is, therefore, at risk to post-earthquake
fires that can result in widespread damage to buildings and monuments. Here, therefore,
we assessed the fire resistance of a limestone commonly used in construction in Baku and
the surrounding area. We found that the physical and mechanical properties of the lime-
stone deteriorate following exposure to high temperature, and particularly at temperatures
above 400 ◦C. Microstructural work shows that the physical and mechanical property
changes at temperatures of 400 ◦C and above are the result of the formation of thermal
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microcracks. These thermal microcracks formed due to the build-up of stress at the contacts
between neighbouring grains resulting from their thermal expansion at high temperature.
We further note that the samples heated to 400 and 600 ◦C turned red and grey in colour,
respectively. At a temperature of 800 ◦C, the decarbonation of the calcium carbonate in
the limestone, followed by the reaction between calcium oxide and atmospheric water,
resulted in a white-coloured sample that expanded significantly and disintegrated. Using
the petrophysical data provided herein, changes in colour following exposure to high
temperature could therefore be used as an indicator as to the severity of post-fire damage,
which could help improve restoration strategies in limestone buildings and monuments in
Baku and the surrounding area in the unfortunate event of fire.
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