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Abstract

In the last years, Multi-Robot Systems (MRS) have experienced considerable
recognition due to various possible real-world applications. Multi-Robot Task
Allocation (MRTA) is among the most interesting MRS problems. This prob-
lem concerns the situation when a set of given tasks must be performed by a
team of mobile robots with the intention of optimizing an objective function
(e.g., minimizing the mission time). This paper aims to present MRTA ap-
plications and categorizes methods into market-based, behavior-based, and
optimization-based approaches. The paper focus on the latter and review
several works in order to point out their advantages and limitations and to
identify possible future research opportunities. Furthermore, a statistical
analysis is provided to identify the most used methods and the evolution of
the topic over the years.
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1. Introduction

The main thrust in the improvement of robotic systems is their capacity
for replacing humans in monotonous work and reducing their presence in risky
environments. In addition, in order to perform complex tasks, robots need to
cooperate, and thus Multi-Robot Systems (MRS) are preferred rather than
single-robot systems. Over the last few years, MRS have been employed in
different fields for a variety of applications including agriculture [1], surveil-
lance [2–4], search and rescue [5–7], target detection [8, 9], product pick-up
and delivery in distribution centers [10, 11], and health care [12]. Mainly,
there are two approaches for multi-robot collaboration: intentional cooper-
ation, and emergent cooperation [13]. In regards to emergent approaches,
collective behavior is based on robots that interchange with each other and
with the environment (e.g., swarm robotics which is inspired by bee’s behav-
ior). It deals generally with a fleet of homogeneous robots aiming to perform
numerous repetitions of the same activity over a wide region, such as mon-
itoring a large area. In the case of intentional coordination approaches, the
problem becomes more difficult since a set of heterogeneous robots must per-
form several distinct tasks where each co-worker is only qualified for some
given tasks. So, robots cooperate explicitly intending to maximize the overall
performance of the team.

The problem of deciding which robot should execute a given task is called
Multi-Robot Task Allocation (MRTA) (Figure 1) and is the main focus of
this paper. MRTA aims to coordinate a large number of robots in order to
complete a set of tasks with specific constraints. Intentional cooperation ap-
proaches are more appropriate for MRTA problems [14]. It can be viewed as
a supervisory level in the robot’s control architecture by giving intelligence
to the system from a high-level perspective in order to perform concurrent
tasks through their collective behavior. There are three main types of mo-
bile robots. The first type is land-based robots that can be wheeled, tracked,
or legged such as Automated Guided Vehicle (AGV) or Unmanned Ground
Vehicle (UGV). Then, there are air-based robots such as planes, blimps, or
drones that we refer to as Unmanned Aerial Vehicles (UAVs). Finally, water-
based robots that operate on the surface of the water such as Autonomous
Underwater Vehicle (AUV), and Unmanned Surface Vehicle (USV) repre-
sent the third type. Mobile robots can deliver items, perform measurements,
distribute survival kits to potential victims, remove debris to reach them, etc.
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Allocation ?

Figure 1: MRTA problem presentation

MRTA assigns tasks to robots in order to maximize or minimize a given
objective function. It operates in an imperfect environment where the infor-
mation may be inaccurate and incomplete. Moreover, the failure of robots,
dynamic tasks, moving obstacles, unknown environments, or other unex-
pected events can bring the problem to a higher level of difficulty. So, task
allocation in dynamic environments [15, 16] is one of the most challenging
aspects of this problem since it requires handling several constraints that
may appear during task execution. In the last few years, the interest in dy-
namic task allocation research has increased significantly. Therefore, robust
and scalable algorithms must be developed in terms of communication and
learning between robots to handle unpredicted events.

This paper aims to survey optimization-based strategies to solve MRTA
problems to provide a global view of the problem and give some future work
directions. This study analyzes significant recent contributions from the per-
spectives of application, problem taxonomy, and optimization method. It
provides a new perspective compared to some papers that have been pre-
sented in the past [17–20] and focuses on the possible strategies that can
be adopted. In [14], Gerkey and Matarić present a taxonomy that classifies
MRTA problems according to the robot’s abilities, task requirements, and
time. Further, Korash, Dias, and Stentz [21] extend the last taxonomy by
adding a classification layer according to dependencies between tasks. More-
over, authors in [22] present a new taxonomy that classifies MRTA problems
according to temporal constraints (deadlines of tasks, priority, and so on).
Other surveys focus on MRTA aspects from a robotic point of view [23], and
strategies for dynamic environments [24]. In this study, conferences and jour-
nal papers published from 2006 to 2022 are considered. Contributions have
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been selected based on their relevance to the MRTA subject, combinatorial
optimization, and scheduling methods.

This paper is organized as follows: Section 2 introduces the main ap-
proaches used in combinatorial optimization. Then, it presents MRTA prob-
lem taxonomies, categorizations, and connected optimization problems from
the literature. Section 3 presents the different possible techniques to solve
MRTA problems. Sections 4 and 5 provide successively a technical view of
the most relevant works from the literature and a detailed discussion about
these researches. In Section 6, we conclude with the main results of this
study.

2. MRTA Problem

2.1. Combinatorial optimization
MRTA is a combinatorial optimization problem. It is generally modeled

using methods from operations research, that makes use of mathematical
models to improve complex systems. It is a wide field that incorporates
techniques from artificial intelligence, machine learning, software engineer-
ing, applied mathematics, and computer sciences. Using machine learning
and artificial intelligence approaches can autonomously assign tasks to robots
while learning from mistakes and adapting to changing conditions. Software
engineering concepts are also important. For this purpose, applied mathe-
matics and computer science are required to design effective algorithms and
implement the robot control software.

MRTA can be viewed as a branch of discrete optimization where problems
are dealing with graph structures. Most of the approaches are based on a
mathematical model. A given combinatorial optimization problem consists
in finding the best solution among a finite number of feasible ones according
to an objective function whose domain is discrete and has a large search
space. Moreover, a set of conditions or properties called constraints must be
satisfied by all the feasible solutions. To solve this type of problem, resolution
methods have been classified into two main categories: exact approaches and
approximate approaches [25].

An exact approach is defined as a method that provides one or several
optimal solutions for an optimization problem. It consists generally in listing
implicitly all the solutions in the search space to find the optimal one that
will be assessed according to the performance criteria set by the controller.
Among these methods, the simplex algorithm can obtain the optimal solution
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of a problem by traversing the convex closure of the search set by passing
from vertex to vertex [26]. However, it can only be applied to problems
having the property of convexity, and problems with continuous or integer
variables. Further, dynamic programming is a practical technique for solv-
ing MRTA problems. It is particularly well-suited for problems that can be
decomposed into smaller sub-problems. The recursive nature of this method
enables solving these sub-problems by separating them into smaller and more
manageable sub-problems and then combining their solutions to obtain the
optimal solution for the original problem. Dynamic programming has been
applied to a wide range of MRTA problems including MRTA with uncer-
tainty and communication constraints [27]. Observe that there is also the
Branch and Bound (BnB) that may identify the best solution to a given
optimization. It generates dynamically sub-problems during the execution
of the algorithm and iteratively solves their real-valued linear programming
(LP) relaxations. The algorithm then branches on the resulting solutions
based on the integrality of the LP’s solution [28].

For example, considering a set of n tasks T = {T1, . . . , Tj, . . . , Tn} that
must be executed by a set of n mobile robots R = {R1, . . . , Ri, . . . , Rn} and
a matrix that defines each robot-task cost Cij. The goal is to assign suitable
robots to the tasks in a way that minimizes the total cost of the mission
under the constraints that impose exactly one robot per task and each robot
will be assigned to one task. This specific MRTA problem can be formulated
by an Integer Linear Program (ILP) model as follows (the variable of decision
xij = 1 if the robot i is assigned to accomplish the task j, otherwise xij = 0).

min
∑
i

∑
j

Cijxij (1)

s.t.
∑
j

xij = 1 ∀i ∈ R (2)∑
i

xij = 1 ∀j ∈ T (3)

xij ∈ {0, 1} ∀i ∈ R , ∀j ∈ T (4)

Approximate methods represent an alternative to deal with large-size op-
timization problems in which an optimal solution cannot be obtained in a
reasonable time. This type of method is also useful for problems requiring
a real-time solution on large numerical instances. They can also be used to

5



initialize an exact method. Approximate methods can be divided into two
categories: heuristics-based methods and metaheuristics-based methods. On
the one hand, heuristics are mental shortcuts for quickly solving problems
based on experience. On the other hand, the majority of metaheuristics
solve a problem from a population of feasible solutions or from a randomly
generated initial population of candidates with an iterative process that im-
proves progressively the population [29]. The list below presents the main
approximate methods.

• Constructive method (Greedy Algorithm) [30].

• Local search algorithms (Simulated Annealing (SA), Tabu Search) [31].

• Evolutionary algorithms (Genetic Algorithm (GA), Particle Swarm Op-
timization (PSO), Ant Colony Optimization (ACO), Bee Colony Opti-
mization (BCO)) [32].

2.2. MRTA Taxonomies
Defining the type of tasks is a key mechanism for modeling a MRTA

problem. In general, there are two main types of tasks [33]. A task in the
first type is performed by one robot, whereas a task in the second type is
decomposed into sub-tasks being performed by different robots. Elemental
or Atomic task cannot be decomposed to sub-tasks. Further, a simple
task is either an elemental task or a task that can be decomposed into sub-
tasks that must be allocated to the same robot. Besides, compound tasks
are decomposed into sub-tasks, and each one is performed by a different
robot. A compound task has a single decomposition. Finally, a complex
task is a task with several possible decompositions and at least, one of these
decompositions can be allocated to robots. Moreover, each of its sub-tasks
can be simple, compound, or complex.

In order to categorize a MRTA problem, Gerkey and Matarić [14] suggest
a taxonomy based on robots’ capabilities, task requirements, and time.

• Single-task robots (ST) / Multi-task robots (MT): Robots can
execute only one task at a time / Robots are capable of executing
multiple tasks at a time.

• Single-robot tasks (SR) / Multi-robot tasks (MR): Tasks require
exactly one robot to be accomplished / Tasks require multiple robots
to be accomplished.
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• Instantaneous assignment (IA) / Time-extended assignment
(TA) : Each robot performs one task, there is no future planning / A
sequence of tasks can be assigned to a robot over a planning horizon.

Consequently, a given MRTA problem can be characterized according to
the three previous features. For example, MT-SR-IA is a problem where
robots can execute multiple tasks at a time, tasks require exactly one robot,
and the allocation is instantaneous. Therefore, there are eight types of MRTA
problems as shown in Figure 2.

MRTA problems

ST-SR-IA ST-SR-TA ST-MR-IA ST-MR-TAMT-SR-IA MT-SR-TA MT-MR-IA MT-MR-TA

Figure 2: Classification of MRTA problems

Korash, Dias, and Stentz [21] propose another taxonomy based on inter-
related utilities (costs) and task constraints. It is called iTax and can be
considered as an extension of Gerkey and Matarić’s taxonomy by adding a
new feature corresponding to the interdependence of the robots-tasks costs.
There are four types of dependencies.

• No Dependencies (ND): The cost of a given pair robot-task is in-
dependent of all others.

• In-Schedule Dependencies (ID): The cost of a given pair robot-task
depends on the other tasks assigned to this robot. It is intra-schedule
dependencies.

• Cross-Schedule Dependencies (XD): The cost of a given pair robot-
task depends not only on the other tasks assigned to this robot but also
on other robots’ schedules. It is inter-schedule dependencies.

• Complex Dependencies (CD): The cost of a given pair robot-task
depends on other robots’ schedules, which have dependencies for com-
plex tasks. It is a combination of task decomposition and task alloca-
tion.
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Nunes et al. [22] suggest a taxonomy that develops Time Extended assign-
ment (TA) into two sub-problems with temporal and ordering constraints as
shown in Figure 3. It is called MRTA-TOC taxonomy. It expresses temporal
constraints as Time Windows (TW), and ordering constraints as Synchroni-
sation and Precedence constraints (SP).

A TW is a time interval expressing the start and end time of a task.
Both times can have lower and upper bound values considering the earliest
start/finish time and the latest start/finish time. For example, deadline con-
straints can be modeled using the latest time robots can perform a given
task. On the other side, precedence constraints impose an order in which
tasks must be accomplished. Therefore, it creates cross-schedule dependen-
cies between robots.

Time Extended

Assignment (TA)

Temporal

Ordering
constraints

Time window (TW)

Synchronisation and
Precedence constraint

(SP)

constraints

Figure 3: MRTA-TOC Taxonomy

2.3. MRTA Related problems
MRTA problems have been studied since the 90’s [22]. Such problems

concern several research areas such as computer science, mathematics, op-
erations research, robotics, and artificial intelligence. The authors of [22]
summarize the related problems:

2.3.1. Multiple Traveling Salesman Problem (mTSP)
mTSP is an extension of the popular Traveling Salesman Problem (TSP)

which consists of solving allocation and optimizing a set of routes for m sales-
men aiming to visit n cities by starting and ending at the same city (depot)
[34–36]. Since the appearance of mTSP, several variations have appeared in
the literature, such as allowing multi-depots and adding specific constraints
including scheduling and the maximum number of cities each salesman can
visit [19]. If we replace the salesmen with robots and the cities by tasks, the
multiple traveling salesman problem becomes a MRTA problem (ST-SR-TA
problem specifically) [37, 38].
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2.3.2. Vehicle Routing Problem (VRP)
VRP is a problem that aims to solve allocation and find a set of optimal

trajectories for a fleet of homogeneous vehicles to deliver items to clients [39].
To deal with this problem, a cost function subjected to several constraints
must be minimized. Many variations of the VRP have been introduced in-
cluding the Capacitated Vehicle Routing Problem (CVRP) which does not
impose a maximum number of deliveries per vehicle and the Vehicle Rout-
ing Problem with Time Windows (VRPTW) where temporal constraints are
considered. In VRP, robots may be heterogeneous with different capabilities
and capacities [40, 41], they may start at different depots, and they may need
to communicate with each other. Moreover, VRP considers that an infinite
number of homogeneous vehicles is available [42]. The only MRTA problem
that can be modeled as a VRP is ST-SR-TA.

2.3.3. Location Routing Problem (LRP)
LRP consists of the location of facilities (depots) and the determination

of an optimal set of vehicle trajectories in order to deliver items to customers
[43]. The LRP extends the VRP by including decisions regarding the loca-
tion of facilities, such as warehouses or distribution centers, as well as the
routing of vehicles. The goal is to find the facilities’ ideal locations and the
vehicles’ matching routes while minimizing the overall cost. The main vari-
ation of LRP is the Capacitated Location Routing Problem (CLRP) where
it is assumed that an infinite number of locations is accessible [44].

2.3.4. Job Scheduling Problem (JSP)
JSP consists of allocating a group of jobs to a set of machines to min-

imize the cost function of accomplishing all the jobs [45]. Classical JSP
models may not be able to fully capture the difficulties of MRTA problems,
especially those that involve location-dependent travel times. JSP models
frequently make the assumption that the processing times for each job re-
main constant, the machine locations are fixed, and the processing power
is fixed. MRTA problems, on the other hand, entail dynamic, spatially dis-
tributed agents with a range of abilities and travel times. However, some
JSP model extensions, like those that take into account sequence-dependent
setup times [46], can be used to model particular aspects of MRTA problems,
like the amount of time needed for a robot to switch between tasks or travel
between locations. These additions make scheduling more flexible and can
more accurately reflect the difficulty of MRTA scenarios.
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2.3.5. Linear Assignment Problem (LAP)
LAP consists of optimally assigning n jobs to n workers with at most one

worker to each job and at most one job to each worker. It can be described
as a bipartite graph G = (V,W,E) where the vertex set V corresponds to
workers and the vertex set W corresponds to jobs [47, 48]. In MRTA, the ST-
SR-IA problem can be modeled as LAP. In this case, the workers correspond
to the robots and the jobs correspond to the tasks that need to be performed.

2.4. MRTA Topologies

Strongly centralized coordination

Hierarchical decentralized coordination

After

Weakly centralized coordination

Distributed decentralized coordination

a while

Figure 4: Centralized vs. Decentralized coordination

MRS algorithms can be classified into two categories [13]: centralized and
decentralized approaches (Figure 4).

• Centralized methods: The coordination between robots is controlled
through a leader (a server) based on the information of the system.
There are two types of centralized approaches [49]: weakly central-
ized and strongly centralized. When it comes to weakly centralized
approaches, the system can change the leader during the mission ac-
cording to specific criteria such as environment, robot battery, etc. In
the case of strongly centralized methods, a unique leader is in charge of
the whole mission. In terms of robustness, weakly centralized methods
are more robust since the leader can be replaced in case of trouble.
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• Decentralized methods: There are two types of decentralized ap-
proaches: hierarchical and distributed [49]. The system is locally cen-
tralized in hierarchical approaches which means it has several leaders,
and that robots are divided into groups, each group performs a set of
tasks. In the case of distributed techniques, robots decide which tasks
to do autonomously without the need for a leader. The robots can en-
ter and leave the plant during operation. Thus, the number of robots
in the team may change during the mission. In terms of robustness,
distributed methods are more robust since the system does not have
a single decision-maker (if a robot fails, other robots will perform its
tasks) [12]. However, hierarchical approaches can be performed with
less numerical complexity and communication cost.

In MRTA algorithms, Gerkey and Matarić [14] identified three types of
assignments: offline, iterated, and online assignments.

• Offline assignment deals with the allocation of tasks that are known
in advance and can be assigned before the beginning of the robots’
mission. Hence, when the environment is stable and the mission can
be scheduled in advance, this type of assignment is ideal. It is important
to note that offline methods are unsuitable for dynamic environments
as they cannot handle the inclusion of new tasks during the mission.

• Iterated assignment deals with the allocation of new coming tasks.
Once a new task is added, the algorithm discharges the robots from
their previous tasks without checking if the task has been already per-
formed and then assigns them to perform the remaining tasks.

• Online assignment also deals with the allocation of new coming tasks.
But, robots do not cancel their earlier assigned tasks, they receive new
tasks after the completion of the previous ones.

3. MRTA Related works

MRTA problems can be formulated in many ways and various domains
in order to achieve a given optimization objective. It can be solved using one
of the three strategies represented in Figure 5 [50].

Market-based approaches are inspired by market trading and thus provide
functional solutions for MRTA problems. It has been proposed for several
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Market-based
approaches

MRTA Strategies Behaviour-based
approaches

Optimization-based
approaches

Figure 5: Classification of MRTA strategies

resource allocation and optimization problems because of the similarities be-
tween economic systems and distributed computer systems [51]. It is based
on a process where goods are sold to the highest bidder. In MRTA, robots
bid for tasks according to some specific criteria. A central agent (server or
robot) is responsible for receiving bids and allocating tasks to robots. Robots
can also communicate with each other in order to solve conflicts and allocate
tasks. Thus, these methods rely on a robust communication network.

The auction algorithm is a market-based approach and has been widely
adopted in MRTA literature [52, 53]. In [54, 55], the multi-robot task al-
location problem with task deadline constraints has been solved optimally
using a distributed auction algorithm. The objective function is to maximize
the total payoff of assigning tasks to robots while respecting the deadlines
and the limited number of tasks each robot can perform. The authors of
[56] have introduced a distributed market-based algorithm with a polyno-
mial time complexity that surpasses the classic auction algorithm. Based
on the latter, Choi et al. have developed a Consensus-Based Bundle Algo-
rithm (CBBA) which associates auction properties and a consensus routine
to establish a conflict-free allocation [57]. CBBA can provide optimal or
sub-optimal solutions near some optimization-based approaches. This work
has motivated researchers in [58–62], to propose other algorithms that can
outperform CBBA. Moreover, authors in [63] have extended CBBA to deal
with communication issues. Among other primary market-based algorithms
for MRTA, we find MURDOCH algorithm [64] which deals with tasks ran-
domly injected into the system over time, Traderbots [65], M+ [66], which
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are distributed multi-robot coordination-approach in dynamic environments,
and S+T [67] which deals with robots coalition formation to execute tasks.

When it comes to Behavior-based approaches [68, 69], tasks are divided
into behaviors. A behavior must motivate a robot to perform a given task
according to some specific criteria. Moreover, behaviors must have a rule
of prioritization or combination. ALLIANCE [70, 71] and BLE [72] are the
pioneering algorithms in this category. The first one aims to allocate a sched-
ule of tasks to robots to minimize the time taken by a robot to perform its
assigned activities, and the second algorithm considers the allocation when
tasks are dynamically appearing in the environment. Furthermore, Markov
decision processes can also be used to solve some specific class of MRTA
where tasks have dependencies and temporal window validity [73].

Optimization-based approaches are the third possible strategy to solve
MRTA problems. It was found in [74, 75] that optimization-based strategies
outperform other strategies in terms of performance and numerical complex-
ity. In this study, we focus on this category by reviewing and discussing most
of the solutions detailed in the literature.

4. Optimization methods for MRTA problems

MRTA can be solved by various optimization approaches such as ILP,
heuristics, and metaheuristics algorithms. This section provides an overview
of recent research works that are summarized in Table 1. A detailed expla-
nation of the papers with the largest number of citations is provided.

Table 1: Overview of research works on optimization techniques for MRTA

References Application Problem type Method Optimization objective Topology Architecture

[32] Non-specific ST-SR-IA GA + ACO Minimize travel distance Centralized Offline

[75–79] Non-specific ST-SR-IA HA Minimize travel distance Decentralized Offline

[80] Houseworks ST-SR-IA MILP + GA Minimize mission time Centralized Offline

[81–83] Non-specific ST-SR-IA ACO Minimize travel distance Decentralized Offline

[84, 85] Non-specific ST-SR-IA BCO Maximize task completion Decentralized Offline

[86] Non-specific ST-SR-IA PSO Minimize mission time Decentralized Online

and energy consumption

[87] Non-specific ST-SR-IA Iterative search Minimize travel distance Decentralized Online

[88] Non-specific ST-SR-IA Game theory Maximize task completion Decentralized Offline

[89–92] Warehouse ST-SR-TA HA Minimize travel distance Centralized Iterated

Continued on next page

13



Table 1 – continued from previous page

References Application Problem type Method Optimization objective Topology Architecture

automation

[93, 94] Orchestral floor ST-SR-TA HA Minimize travel distance Decentralized Iterated

[95–99] Monitoring ST-SR-TA GA Minimize travel distance Centralized Offline

[100] Warehouse ST-SR-TA GA Minimize mission time Centralized Offline

automation and energy consumption

[101] Assembly of ST-SR-TA MILP Minimize mission time Centralized Offline

airplanes

[28] Non-specific ST-SR-TA GA + BnB Minimize travel distance Centralized Offline

[30] Non-specific ST-SR-TA PSO + Greedy Minimize travel distance Centralized Offline

Algorithm

[31] Non-specific ST-SR-TA SA Minimize travel distance Centralized Offline

[102] Search and rescue ST-SR-TA Clustering + GA Maximize task completion Centralized Offline

[103] Exploration ST-SR-TA GA + Q-learning Minimize travel distance Centralized Offline

[104, 105] Disaster response ST-SR-TA ILP Maximize task completion Decentralized Online

[106] Targets detection ST-SR-TA MILP Maximize task completion Decentralized Offline

[107] Non-specific ST-SR-TA Clustering + GA Minimize travel distance Centralized Offline

[108] Targets detection ST-SR-TA Clustering + SA Minimize travel distance Centralized Offline

[109] Monitoring ST-SR-TA Nearest neighbour- Minimize travel distance Centralized Offline

based clustering

[110] Disaster response ST-SR-TA Reinforcement Maximize task completion Decentralized Offline

learning

[111] Non-specific ST-SR-TA Monte carlo tree Minimize travel distance Centralized Offline

search

[112] Non-specific ST-SR-TA Iterative search Maximize task completion Decentralized Offline

[113] Monitoring ST-SR-TA GA Minimize travel distance Decentralized On-line

[114, 115] Inspection ST-SR-TA ILP Minimize mission time Centralized Offline

[116] Non-specific ST-SR-TA Clustering + Game Maximize task completion Centralized Offline

theory

[117] Non-specific ST-SR-TA Clustering + Minimize travel distance Centralized Offline

Auction + Balancing the work

loads among robots

[118] Warehouse MT-SR-IA Clustering Minimize travel distance Decentralized Offline

automation

[119] Non-specific MT-SR-IA Clustering Minimize travel distance Decentralized Offline

[120] Inspection MT-SR-TA Beam search Minimize travel distance Centralized Offline

[121] Non-specific MT-SR-TA PSO + Clustering Minimize travel distance Decentralized Offline

Continued on next page
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Table 1 – continued from previous page

References Application Problem type Method Optimization objective Topology Architecture

[122] Disaster response ST-MR-IA PSO Maximize task completion Centralized Offline

[123] Non-specific ST-MR-IA Clustering Minimize travel distance Centralized Offline

[124] Non-specific ST-MR-TA MinStepSum Minimize travel time Centralized Offline

+ Local search + task execution time

+ waiting time

[125, 126] Non-specific ST-MR-TA Game theory Maximize task completion Centralized Offline

[127] Search and rescue ST-MR-TA MILP Minimize travel distance Centralized Offline

[128, 129] Non-specific ST-MR-TA GA Minimize travel time Centralized Offline

+ task execution time

+ waiting time

[130] Non-specific ST-MR-TA Q-learning Maximize task completion Centralized Offline

[131] Non-specific MT-MR-IA Invariant Maximize task completion Decentralized Offline

theory

The Hungarian Algorithm (HA) is among the most used algorithms
to solve MRTA problems. H. W. Kuhn [132] proposed this computational
method to solve LAP optimally with O(n3) complexity. Further, this al-
gorithm has been improved by Munkres to deal with the case where the
number of workers is not the same as the number of jobs [133, 134]. In the
MRTA context, Cai et al. [89–92] has demonstrated the steps of modeling
and controlling a warehouse using mobile robots by combining a discrete-
event system model with the HA. The authors have applied the assignment
algorithm iteratively to deal with new coming tasks during the mission. In
[76], the authors have developed a decentralized version of the HA where
a centralized controller is not available. Therefore, robots execute indepen-
dently different steps of the algorithm according to the data received from
each other (each robot knows its distance to the targets in the environment).
Ismail et al. [75] have proposed another decentralized version of the HA for
assignment problems. It was demonstrated that it outperforms the CBAA
in terms of numerical complexity and optimality. Furthermore, the authors
of [77, 78] have proposed a distributed HA-based approach for unmanned
aerial systems that can be implemented for search and rescue, mobile-target
tracking, and surveillance applications. Later, they extended this algorithm
to deal with uncertainty in the robot states [79]. Chopra et al. [94] have
solved a class of “spatiotemporal” multi-robot routing problems where a dis-
tributed version of the HA computes a sequence of assignments iteratively to
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obtain sub-optimal routes for the robots aiming to perform different musical
pieces. However, this method has several limitations, in particular, it cannot
efficiently handle situations where the number of tasks exceeds the number
of robots. So, the algorithm will solve the assignment iteratively in order
to allocate the remaining tasks. In this case, we lose the optimality of the
solution [91, 92, 94]. Consequently, the HA is more suitable for problems
that fall within the scope of ST-SR-IA.

Another notable approach in addressing the problem is the use of ILP
or Mixed Integer Linear Programming (MILP) models. These frame-
works all include mathematical formulations that enable the optimization of
the objective function while taking both discrete and continuous variables
into account. The authors of [104, 105] have considered task allocation for
disaster response where the tasks are modeled as the distribution of survival
kits to potential victims. The algorithm aims to maximize the number of
delivered kits (maximizing the number of performed tasks) with respect to
several constraints such as task deadlines, and robots’ limited payload. The
authors have developed an ILP formulation of the problem and implemented
an online method based on the weighted matching of bipartite graphs. The
Karp maximum matching algorithm was used to solve the assignment as a
weighted matching problem (this algorithm outperforms the HA in terms of
computational complexity). Mathematical models such as linear or dynamic
programming can be implemented to find the optimal solution according to
a given objective function. In [106], a MILP solution was proposed to co-
ordinate robots for covering areas of interest in an unknown environment.
Likewise, the study in [127] develops a MILP algorithm in order to solve task
allocation, scheduling, and path planning for search and rescue in disaster
areas. However, the big complication of these approaches is the computation
time for large-scale problems. The determination of the optimal solution for
a scenario where a large fleet of heterogeneous robots must perform a lot of
tasks may have a large numerical complexity.

Bio-inspired methods have emerged as a promising approach to tackle
the MRTA problem. Drawing inspiration from biological systems and natural
processes, these techniques aim to simulate the efficiency and adaptability
found in nature. The study of [95–98] has considered heuristic methods to
solve allocation and routing for 3 robots that must inspect multiple fixed loca-
tions in a known environment. The authors used a GA for assignment and A*
algorithm to find the shortest trajectories in a centralized manner. Besides,
Li et al. [98] have solved allocation and path-planning for multiple robots
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using GA with collision detection (a collision penalty term was included).
Saeedvand et al. [102] have discussed the MRTA problem as Multi-Humanoid
Robots Task Allocation (MHTA) problem where humanoids robots replace
humans to rescue, explore, and defend in dangerous environments. They use
in the first phase constraint k-medoids algorithms to cluster tasks according
to the available robots and then perform GA in the second phase to solve
allocation and routing with respect to robots’ energy consumptions. In [103],
tasks over a set of points were distributed into sub-regions in order to explore
the environment (each robot is responsible for the tasks inside its region). In
this work, the Generalized Voronoi Diagram was used for partitioning, then
GA and Q-learning approaches were implemented for routing. Likewise, the
authors in [107] have implemented k-means clustering to divide the envi-
ronment according to the number of robots, then assign robots to clusters
and finally execute a GA for each cluster to optimize the robots’ routing.
Partitioning the environment leads to reducing the size of the state space,
then solving reasonable-size sub-problems instead of solving a large-size one.
Choi et al. [113] have presented a decentralized task assignment based on
GA and communication between multiple UAVs. It aims to compute for each
UAV a solution set that follows a specified order of tasks that minimizes the
cumulative flight time of all UAVs. The GA was also used in robots’ coali-
tion formation where a task needs the cooperation of multiple robots to be
accomplished (multi-robot tasks) [128, 129]. In [128], multi-robot coalition
formation was solved using GA. Further, the work in [129] can be viewed as
an extension of [128] since a set of homogeneous robots must perform several
tasks with precedence constraints. The objective function is considered as
the sum of the total traveled time taken by the robots to complete the tasks,
the time taken for each task, the waiting time for other robots to arrive in or-
der to perform a task that requires cooperation, and the waiting time when
a robot remains unassigned for a while because of precedence constraints.
Other Bio-inspired algorithms such as ACO, BSO, and PSO are also used to
solve MRTA problems [81, 84]. The study of [32] shows that GA outperforms
ACO in terms of performance. However, GA needs more time to converge
to the solution. In these approaches, each robot starts from a random or a
given location and constructs its solution by moving to the unvisited vertices
in the graph according to pheromone and heuristic information. Once a so-
lution is computed, the pheromone information is updated according to the
quality of the result. This process is iteratively applied until a termination
criterion is met. The study in [30] provides a MRTA method that combines
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the greedy algorithm and PSO. The suggested approach tries to maximize
the work distribution over several robots while reducing the mission time
and improving the system’s overall effectiveness. The PSO method is used
to find the best allocation, while the greedy algorithm is used to refine it.

Clustering methods are also among the strategies used to solve MRTA
problems. This technique is based on grouping the tasks into clusters accord-
ing to some specific criteria and then allocating them to robots. K-means
clustering is the most used for task allocation problems [107, 117]. The au-
thors in [117] have tackled the issue of balancing the workload among robots
along with minimizing the traveled distance. The tasks are grouped using
k-means clustering and the assignment is done using an auction mechanism.
In [107], a k-means clustering approach is proposed to solve a large-scale
problem by partitioning the state space. Once the tasks are divided into
clusters, the HA allocates robots to clusters optimally, and then GA is ap-
plied in each cluster. Moreover, nearest neighbor algorithms can be used to
improve the results of clustering [109, 118]. The authors of [109] have con-
sidered border patrolling as a LRP of multiple drones. So, the optimization
problem concerns drone base stations and flying paths for surveying each tar-
get. The clustering will allocate every target to its nearest station and then
the nearest-neighbor algorithm will improve the solution. Besides, the work
in [119] has combined a fuzzy clustering approach with a bipartite graph to
solve robots assignment. The Fuzzy C-Means clustering algorithm is a soft
clustering, in which each task can be part of more than one cluster. It aims
to reduce the state space of the problem and then compute the optimal task
sequence for each agent.

5. Discussion

This section presents a detailed discussion of the state-of-the-art of op-
timization approaches in the context of MRTA. Some preliminary general
comments can be found in Table 1.

• Several variables, including the number of robots, the number of tasks,
and the size of the environment in which the robots operate, can be
used to quantify the size of a MRTA problem. It is significantly influ-
enced by the number of robots in the system. The size of the problem
grows exponentially as the number of robots rises. This adds more pos-
sible robot-task assignments since each additional robot expands the
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problem’s dimensions. Likewise, the number of tasks in the system can
have an impact on the size of the problem. Finding an optimal or sub-
optimal solution may get increasingly challenging since the number of
possible task assignments grows exponentially as the number of tasks
increases. For instance, the problem becomes more challenging if task
execution timing must be considered with temporal limits on the tasks,
such as deadlines or time slots. Finally, the size of the environment has
also an impact on the problem’s size. For example, some algorithms
may require the calculation of distances or travel times between robots
and tasks, which can be computationally expensive if the navigation
environment is large. The combination of these factors generally deter-
mines the size of a MRTA problem, and solving larger problems might
need extensive computational resources.

• The performance of optimization strategies is assessed based on many
criteria, including optimality, scalability, consistency, and appropriate-
ness. The approach should first be able to determine the optimal solu-
tion. However, in some cases, finding the exact optimal solution might
be computationally expensive or even infeasible. In such situations,
sub-optimal solutions that are sufficiently close to the optimal solution
are sought. Additionally, consistency is also crucial, which means that
the method should produce consistent results when applied repeatedly
to solve the same problem scenario. Finally, the method’s appropri-
ateness is related to the fair distribution of tasks among robots while
taking their workloads and capacities into account.

• The numerical complexity is a crucial factor in MRTA problems. The
quantity of potential robot-task assignments can be utilized to evaluate
how complex an MRTA scenario is. So, it becomes more challenging as
the size of the problem increases. In this manner, researchers should
develop novel optimization approaches while reducing computational
requirements and making them more scalable for real-world applica-
tions. However, in most reviewed papers in this survey, the numerical
complexity of the algorithms is insufficiently addressed. So, it is diffi-
cult to determine whether it is justified by the quality of the solutions
or whether it is reduced.

• Observe that the performance of the result may not always be cor-
related with the algorithm’s numerical complexity. In some circum-
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stances, more complicated algorithms could be needed to address this
issue and produce effective solutions. Acceptable solutions are the ones
that lead to a trade-off between performance and computational com-
plexity.

• Finding a suitable method to solve a certain MRTA problem is chal-
lenging. In this manner, Table 2 provides a summary of the advantages
and disadvantages of the papers cited in Chapter 4. While certain ap-
proaches are fast and scalable for some specific problems, others can
be used in dynamic contexts with uncertainties. However, certain al-
gorithms might not offer the best results, have limited scalability, or
necessitate parameter fine-tuning. So, it is important to keep in mind
that no single algorithm is ideal for all applications and researchers
have to carefully consider the trade-offs between advantages and dis-
advantages when choosing a MRTA algorithm.

• It is found that there is a lack of work in dynamic task allocation i.e.
online and iterated approaches that deal with new coming tasks, unex-
pected events, and environmental uncertainties. This can be explained
by the difficulty of determining a real-time adaptable cost function to
handle such dynamic situations. Thus, researchers have orientated the
works of dynamic task allocation towards multi-objective optimization
that requires more than one objective function to be optimized simul-
taneously [129].

• Multi-robot communication networks may be affected by external fac-
tors such as interference, signal attenuation, and network congestion
and thus they may face errors. Subsequently, to ensure reliable and ef-
fective communication among the robots, novel approaches in the field
must take into account potential communication problems.

• Furthermore, despite a large number of research works in this field,
there is a huge gap between simulation and experimentation. The
developed algorithms need validation through a real-time robotic ex-
periment. In this study, only 7 papers from all the reviewed ones have
presented results from an experimental validation involving real robots.
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Table 2: Pros and cons of the reviewed articles

References Advantages Disadvantages

[75–79] Fast and scalable allocation. Limited to a certain class of MRTA
problems.

[30–32, 80,
81, 84, 85]

Applicable to dynamic environ-
ments
Simple and easy to implement

No guarantee on optimality
May exhibit slow convergence

[82, 83] Efficiently handles large-scale coop-
erative tasks
Simple and easy to implement

No guarantee on optimality
Performance may be affected by
complex precedence constraints

[87, 111,
112]

Fast and scalable allocation
Simple and easy to implement

Does not take into account delays in
communication

[88, 116,
125, 126]

Considers strategic interactions
among robots

Limited robustness

[89–92] Ability to adjust to dynamic envi-
ronments

Necessitates a model depicting the
dynamics of the system
Computationally expensive

[93, 94] Suitable for handling large-scale sys-
tems

Computationally expensive

[95–99] Effective for multiple objectives op-
timization
Effective for systems of small to
medium sizes
Robust to communication errors

Require a fine-tuning of parameters
May not handle large-scale systems

[28, 100,
128, 129]

Effective for multiple objectives op-
timization
Effective for systems of small to
medium sizes
Considers precedence constraints
and cooperation

Require a fine-tuning of parameters
May exhibit slow convergence

[103] Efficient exploration of unknown en-
vironments

Computationally expensive

[101] Ensures optimal solutions
Addresses real-world constraints
and large-scale coordination

Computationally expensive

[104, 105] Considers dynamic tasks
Minimizes communication workload

No guarantee on optimality
Computationally expensive

[106] Provides optimal solution Computationally expensive

Continued on next page
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Table 2 – Continued from previous page

References Advantages Disadvantages

[102, 107,
108, 123]

Suitable for dynamic environment
Suitable for handling large-scale sys-
tems

Limited clustering accuracy

[109] Real-world implementation in bor-
der surveillance

Not applicable for dynamic environ-
ments or uncertainties

[110, 130] Incorporates machine learning tech-
niques into task allocation
Offers adaptability and learning ca-
pabilities

Performance may depend on the
availability and quality of training
data

[113] Handles dynamic environments Does not take into account delays in
communication or failures in sensors

[114, 115] Real-world implementation in
power transmission line inspection
Considers fault-tolerance and
robots’ failures

Not applicable for dynamic environ-
ments or uncertainties

[117] Simple and effective approach No guarantee on optimality

[118] Suitable for handling large-scale sys-
tems

Not applicable for dynamic environ-
ments or uncertainties

[119] Suitable for handling large-scale sys-
tems
Provides robustness to incomplete
or inaccurate data

No guarantee on optimality

[120] Addressing the problem of per-
forming multiple measurement tasks
based on robots capabilities

Require a fine-tuning of parameters

[86, 121,
122]

Utilizes swarm intelligence and so-
cial learning

May require additional optimization
for large-scale problems

[124] Considers precedence constraints Lack of comparison with other
methods

[127] Uses coordination architecture that
facilitates collaboration among
robots

Limited scalability

[131] Achievement of multitasking in
multi-robot tasks

Lack of specific details on the ap-
proach

We provide quantitative analysis for a selection of 61 articles reviewed
in this survey (Table 1). This analysis is realized from the perspectives of
(i) Gerkey and Matarić MRTA taxonomy; (ii) optimization approaches; (iii)
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applications. Figure 6 presents the number of research works among the se-
lection for each MRTA problem category. The MRTA problem configurations
are reported on the x-axis from the less complex one to the most complex
one.
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Figure 6: Number of papers in terms of problem configuration

It is worth noting that most researchers focus their works on problems
that fall within the scope of ST-SR. This can be explained by the fact that
most real-world applications belong to this category. Moreover, there is a lack
of research that belongs to other configurations. Further, Figure 7 shows the
variation in function of the time for the works that belong to the three domi-
nant configurations seen in Figure 6: ST-SR-IA, ST-SR-TA, and ST-MR-TA.
The number of research works has increased significantly over the years for
ST-SR problems. Besides, ST-MR-TA configuration began to attract the
research community since in the past few years there has been a tendency
to study coalition formation problems i.e. situations for which tasks require
the coordination between robots.

In regards to the optimization approaches used for MRTA, GA is the most
used by researchers as shown in Figure 8 (21% of papers). Then, clustering
and the HA are in the same position (15% of papers). Exact approaches
like BnB and HA can give the optimal solution for a few cases. The first
method cannot deal with large instances problems, and the second one is
only suitable for ST-SR-IA problems when there are no dependencies between
tasks (the only MRTA configuration that is not NP-hard [14]). Consequently,
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Figure 7: Number of papers in terms of publication years

Meta-heuristic and heuristic techniques have been widely used to propose
efficient solutions in a reasonable time. Although GA is the most used,
other approaches such as ACO, BCO, PSO, and SA began to attract the
research community since they offer results in a reasonable execution time.
However, these methods become unsuitable for large-size problems and real-
time applications since the execution time becomes too long. Therefore,
researchers have proposed to combine a clustering algorithm with a meta-
heuristic technique to solve a MRTA problem [107]. The problem is then
divided into two parts such that the first part concerns task assignment and
the second part concerns task planning and scheduling. So, the clustering
partitions the environment according to the number of robots then assigns
each robot to a cluster, and then the meta-heuristic solves the routing in
each cluster. Although this approach might not give the optimal solution,
it reduces the computational complexity. Moreover, the scheduling part can
be solved by using a local search or a TSP algorithm (e.g., 2-opt algorithm
[109]) instead of a meta-heuristic.

Figure 9 evaluates the proportions of real-world applications considered
in the reviewed papers. It is found that 55% of contributions do not mention
a specified application and present general contributions suitable for various
real-world employments.

Figure 10 refines the previous analysis by detailing how often each class of
optimization method is used for the three MRTA configurations previously
mentioned. It is seen that GA is the most used technique, especially for
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ST-SR-TA and ST-MR-TA problems. The HA is the most used for ST-
SR-IA problems since it is an exact approach. Then, it comes to clustering
that is coupled with a meta-heuristic to complete the routing procedure for
ST-SR-TA problems.

6. Conclusion

This paper analyzes MRTA optimization-based approaches by giving a
global view of the possible optimization strategies, for various classes of
problems and real-world applications. In particular, we examine a selec-
tion of papers to provide a quantitative analysis of the relevant literature.
It was found that a significant amount of MRTA works focus on ST-SR-TA
problems. GA approach is the most used in this context and the majority of
the papers do not consider a specified application. In addition, the numer-
ical complexity of the algorithms is not sufficiently studied in the literature
and few methods consider an online assignment to deal with dynamic en-
vironments. It was also found that the performances can be improved by
the combination of different approaches either by refining an approximate
solution or by dividing the problem into two parts: task assignment and task
planning.

Collision avoidance between robots, uncertainty such as sensor malfunc-
tion, and robots’ kinematic constraints are other important issues that should
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Figure 10: Distribution of methods for the most used configurations

be considered as future directions of research since most of the existing works
do not consider such issues for simplification. Moreover, communication is-
sues such as latency and throughput limitations may prevent the achieve-
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ment of the multi-robot mission. Therefore, the fifth-generation technology
standard for broadband cellular networks (5G) can handle such issues by
offering higher speed and greatly reducing latency [135]. In summary, all
the specifications mentioned previously must be satisfied to be able to ex-
perimentally validate the developed algorithms and to face down progress in
mobile robotics.
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