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Introduction

This paper deals with interior point methods for optimal control problems with pure state and mixed constraints. Interior point methods in optimal control have been studied in numerous papers [START_REF] Graichen | Incorporating a class of constraints into the dynamics of optimal control problems[END_REF][START_REF] Weiser | Interior point methods in function space[END_REF][START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF][START_REF] Lasdon | An interior penalty method for inequality constrained optimal control problems[END_REF][START_REF] Malisani | An interior penalty method for optimal control problems with state and input constraints of nonlinear systems[END_REF][START_REF] Malisani | Interior point methods in optimal control problems for affine systems: Convergence results and solving algorithms[END_REF], however, unlike their counterpart in numerical optimization, they have not yet been fully theorized. In [START_REF] Lasdon | An interior penalty method for inequality constrained optimal control problems[END_REF][START_REF] Graichen | Incorporating a class of constraints into the dynamics of optimal control problems[END_REF], the authors study interior point methods in optimal control with pure state constraints and prove the convergence of state and control variables using three strong assumptions. The first of these assumptions is the uniqueness of the optimal solution, the second is the strong convexity of the problem, and the last is the interiority of optimal trajectories with respect to the constraints. In [START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF], the authors show the convergence of the adjoint state, the state, and the control for problems with control constraints of the form a ≤ u(t) ≤ b and for nonlinear systems affine in the control variable. The proof of convergence in [START_REF] Bonnans | Using logarithmic penalties in the shooting algorithm for optimal control problems[END_REF] also relies on an assumption of uniqueness of the solution and on an assumption of strong convexity of the problem. In [START_REF] Weiser | Interior point methods in function space[END_REF], the authors show the convergence of interior point methods in optimal control, with a primal-dual implementation, for problems with control constraints and using a strong Legendre-Clebsch condition which, in this case, is equivalent to a strong convexity assumption [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF][START_REF] Bonnans | Second-order sufficient conditions for strong solutions to optimal control problems[END_REF]. In [START_REF] Malisani | An interior penalty method for optimal control problems with state and input constraints of nonlinear systems[END_REF], the authors establish sufficient conditions on the state and control penalties to ensure that the solutions of a penalized optimal control problem strictly satisfy the constraints and prove the convergence of state and control variables using an assumption of uniqueness of the optimal solution and a strong convexity assumption. More recently, in [START_REF] Malisani | Interior point methods in optimal control problems for affine systems: Convergence results and solving algorithms[END_REF], the author proves the convergence of interior point methods for the primal variables (state and control), the adjoint state, and the multipliers associated with the pure state and mixed constraints. This proof of convergence is established without using a strong convexity assumption but for nonlinear systems and mixed constraints affine in the control. This paper generalizes [START_REF] Malisani | Interior point methods in optimal control problems for affine systems: Convergence results and solving algorithms[END_REF] to a general class of dynamics and mixed constraints and does not require any additional assumptions. Some results presented in this paper, mainly the uniform L 1 -boundedness of the derivatives of the penalty functions, were already established in [START_REF] Malisani | Interior point methods in optimal control problems for affine systems: Convergence results and solving algorithms[END_REF]. However, these results and their proofs are recalled here for this paper to be completely self-contained. The paper is organized as follows. Section 2 contains the problem statement, the main assumptions, and the paper's main results. Some preliminary technical results are recalled in section 3. In section 4, we prove both the uniform boundedness properties of the derivatives of the penalty functions and the interiority of penalized trajectories when using logarithmic penalties. In section 5, we prove that any sequence of locally optimal solutions of penalized problems contains a converging subsequence using classical boundedness and compactness arguments. In section 6, we prove that the limit point of the aforementioned converging subsequences is a stationary point of the original optimal control problem, i.e., the limit point satisfies the first-order conditions of optimality [START_REF] Hartl | A survey of the maximum principles for optimal control problems with state constraints[END_REF][START_REF] Maurer | First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems[END_REF]. Section 7 presents primal and primal-dual solving algorithms. Finally, in section 8, two challenging numerical examples are treated numerically, the Robbins problem [START_REF] Robbins | Junction phenomena for optimal control with state-variable inequality constraints of third order[END_REF] and the Goddard problem [START_REF] Seywald | Goddard problem in presence of a dynamic pressure limit[END_REF]. Their corresponding python source codes are available at [START_REF] Malisani | Python source code for "Interior point methods in optimal control[END_REF].

Notations: We denote R -(resp. R + ) the set of non-positive (resp. non-negative) real numbers. We denote N * (resp. R * ) the set of non-zero natural integers (resp. real numbers). Given p ∈ [1, +∞], we denote L p (A; B) (or L p ) the Lebesgue spaces of functions from A to B and we denote . L p the corresponding p-norm. In addition, we also denote meas(.) the Lebesgue measure on R. Given p ∈ [1, +∞], we denote W 1,p (A; B) the Sobolev space of measurable functions from A to B with weak derivative in L p (A; B). Given n ∈ [0, +∞], we denote C n (A; B) (or C n ) the set of n-times continuously differentiable functions from A to B. We denote BV(A), the set of functions with bounded variations from A to R. We also denote M(A) the set of Radon measures on A ⊂ R. The topological dual of a topological vector space E is denoted E * . Given a topological vector space E, we denote σ(E, E * ) the weak topology on E and σ(E * , E) the weak * topology on E * . Let x n , x ∈ E, we denote x n

x the weak convergence in σ(E, E * ) and let y n , y ∈ E * , we denote y n * y the weak * convergence in σ(E * , E). For x * ∈ E * and x ∈ E, we denote x * , x , the duality product. Given f ∈ C k≥1 (R n ; R) we denote f (.) the gradient of the function. Given f ∈ C k≥1 (R n × R m ; R p ), we denote f x (x, y) := ∂f ∂x (x, y) ∈ R p×n (resp.f y (x, y) := ∂f ∂y (x, y) ∈ R p×m ) and we denote f i,x := ∂fi ∂x (x, y) (resp. f i,y := ∂fi ∂y (x, y)). Given f ∈ C k≥1 (R n × R m ; R), we denote f x,i (x, y) := (f x (x, y)) i (resp. f y,i (x, y) := f y (x, y) i ). We also denote f xy (x, y) := ∂ 2 f ∂y∂x (x, y). Let G : X → Y with X, Y Banach spaces, we denote DG(x) the derivative of the mapping G at point x ∈ X. The finite dimensional euclidean norm is denoted

. and the scalar (resp. matrix) product between x, y ∈ R n (resp. x ∈ R m×n , y ∈ R n ) is denoted x.y. Given a set E, we denote |E| its cardinal. We also denote B N (x, r) the closed ball of radius r centered in x for the topology induced by norm N . We denote x[u, x 0 ] (or x[u] if x 0 is fixed) the solution of the differential equations ẋ = f (x, u) with initial condition x 0 . Finally, we denote const(.) a positive finite constant depending on the parameters in argument.

2 Problem statement and main result

Optimal control problem

The problem we are interested in consists in finding a solution (x, u) of the following Constrained Optimal Control Problem (COCP) min

(u,x)∈U×X J(x, u) := ϕ(x(T )) + T 0 (x(t), u(t))dt (1a) ẋ(t) = f (x(t), u(t)) (1b) 0 = h(x(0), x(T )) (1c) 0 ≥ g(x(t)), ∀t (1d) 0 ≥ c(x(t), u(t)), a.e. ( 1e 
) U := L ∞ ([0, T ]; R m ) (1f) X := W 1,∞ ([0, T ]; R n ) (1g)
where the time horizon T > 0 is fixed. In this setting, fixed final time is not a limitation since free end-time problems can be written as Problem eq. ( 1) using the classical change in time variable τ := t/T ∈ [0, 1] and an augmented state whose dynamics writes ẋ(τ ) Ṫ (τ ) = T (τ )f (x(τ ), u(τ )) 0 .

Definition 1. We denote V ad ⊂ U × R n the set of admissible controls and initial conditions as follows

V ad := (u, x 0 ) ∈ U × R n s.t. eqs. (1b)to (1e) holds (2) 
The set V ad is endowed with the following norm

(u, x 0 ) V ad := u L 1 + x 0 (3) 
And, given n ∈ N * , we denote Vad (n) the following set

Vad (n) := (u, x 0 ) ∈ V ad s.t. g(x[u, x 0 ](t)) < 0, ∀t ess sup t c(x[u, x 0 ](t), u(t)) ≤ -1 n (4)

Main assumptions and technical definitions

Assumption 1. The functions : R n × R m → R, f : R n × R m → R n , g : R n → R ng , c : R n × R m → R nc , h : R n × R n → R n h
are at least twice continuously differentiable. In addition, and c are convex with respect to their second argument, i.e., the control variable. Assumption 2. Any locally optimal solution (x[ū, x0 ], ū) such that (ū, x0 ) ∈ V ad satisfies the following interiority accessibility assumption

(ū, x0 ) ∈ V ad ∞ := cl . V ad lim inf n Vad (n) ( 5 
)
where cl . V ad stands for the closure in the . V ad -topology.

Assumption 2 is essential for using IPMs in optimal control. If this assumption is not satisfied locally optimal solutions might not be accumulation points of strictly interior sequences and thus cannot be computed using IPMs. This assumption might not hold if, for example, the multipliers of Problem eq. ( 1) are singular.

Assumption 3. The set of admissible initial-final states

h -1 ({0}) ⊂ R n × R n from eq. (1c) is closed and bounded. Assumption 4. There exists R v ∈ (0, +∞) such that (u, x 0 ) V ad ≤ R v , ∀(u, x 0 ) ∈ V ad (6)
and for all R v ∈ (0, +∞), there exists R x ∈ (0, +∞) such that

x[u, x 0 ] L ∞ ≤ R x , ∀ (u, x 0 ) V ad ≤ R v (7) 
Definition 2 (Sets of near state-saturated times and near-saturated indices). For all (u, x 0 ) ∈ V ad from definition 1, for all δ ≥ 0, and for all n ∈ N * , we define the set of near state-saturated times (resp. mixed-saturated times), denoted S g u,x 0 (resp. S c u,x 0 ), as follows

S g u,x 0 (δ) := t ∈ [0, T ] s.t. max i g i (x[u, x 0 ](t)) ≥ -δ (8) 
S c u,x 0 (n) := t ∈ [0, T ] s.t. max i c i (x[u, x 0 ](t), u(t)) ≥ - 1 n (9) 
In addition, we define the set of near state-saturated indices (resp. mixed-saturated indices), denoted I g u,x 0 (resp. I c u,x 0 ) , as follows

I g u,x 0 (t, δ) := i ∈ {1, . . . , n g } s.t. g i (x[u, x 0 ](t)) ≥ -δ (10) 
I c u,x 0 (t, n) := i ∈ {1, . . . , n c } s.t. c i (x[u, x 0 ](t), u(t)) ≥ - 1 n (11) 
Assumption 5. For all (u, x 0 ) ∈ V ad , the mixed constraints eq. (1e) satisfy the following qualification condition. There exists γ > 0 and n ∈ N * such that

γ ξ ≤ c I c u,x 0 (t,n),u (x[u, x 0 ](t), u(t)) .ξ , ∀ξ ∈ R |I c u,x 0 (t,n)| , a.a. t ∈ [0, T ] (12) 
Assumption 6. Let (u, x 0 ) ∈ V ad and denote

G : U × R n → C 0 ([0, T ]; R ng ), C : U × R n → L ∞ ([0, T ]; R nc ) and Z 0T : U × R n → R n×n the constraints mapping defined by G(v, y 0 ) := g(x[u + v, x 0 + y 0 ]), C(v, y 0 ) := c(x[u + v, x 0 + y 0 ], u + v)
and the linear mapping Z 0T (v, y 0 ) := (z(0), z(T )) where z : [0, T ] → R n is the unique solution of the following linearized state equation

ż(t) = f x (x[u, x 0 ](t), u(t)).z(t) + f u (x[u, x 0 ](t), u(t)).v(t) z(0) = y 0 (13) 
There exists > 0 such that the following Robinson's constraints qualification conditions holds.

B C 0 ×L ∞ ×R n h (0, ) ⊂   G(u, x 0 ) C(u, x 0 ) 0   +   C 0 ([0, T ], R ng -) L ∞ ([0, T ], R nc -) {0}   +   DG(u, x 0 ) DC(u, x 0 ) Dh(x[u, x 0 ](0), x[u, x 0 ](T ))Z 0T   .(U × R n ) (14)
As a consequence, the set of singular multipliers for Problem eq. ( 1) is empty [5, section 2.3.4., pp. 67]. Remark 1. Interested readers can refer to [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF] for sufficient conditions on pure-state and mixed constraints such that assumption 6 holds. The mixed constraints qualification condition presented here is the same as in [START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF].

Definition 3 (State-constraint measure). For all (u, x 0 ) ∈ U × R n , and for all E ⊂ R, we denote m[u, x 0 , g i ] the push-forward g i -measure of E defined as follows

m[u, x 0 , g i ](E) := meas g i • x[u, x 0 ] -1 (E) (15) 

First-order necessary conditions of stationarity

This section recalls the first-order necessary conditions of optimality for Problem eq. ( 1). First, let us introduce the pre-Hamiltonian function.

Definition 4 (pre-Hamiltonian). Using assumption 5, the set of singular multipliers is empty. Therefore, the pre-Hamiltonian H : R n × R m × R n → R of Problem eq. (1) writes

H(x, u, p) := (x, u) + p.f (x, u) (16) 
Definition 5 (Stationary point). The trajectory (x, ū) with associated multipliers (p, μ, ν, λ)

∈ BV([0, T ]; R) n × BV([0, T ]) ng × L ∞ ([0, T ]; R nc + ) × R n h , is a stationary point for Problem (1) if it satisfies ẋ(t) =f (x(t), ū(t)) (17a) -dp(t) = H x (x(t), ū(t), p(t)) + nc i=1 c i,x (x(t), ū(t))ν i (t) dt + ng i=1 g i (x(t))dμ i (t) (17b) 0 =H u (x(t), ū(t), p(t)) + nc i=1 c i,u (x(t), ū(t))ν i (t) (17c) 0 =h(x(0), x(T )) (17d) 0 =p(0) + h x(0) (x(0), x(T )) . λ (17e) 0 =p(T ) -ϕ (x(T )) -h x(T ) (x(0), x(T )) . λ (17f) 0 = T 0 g i (x(t))dμ i (t), i = 1, . . . , n g (17g) 0 = T 0 c i (x(t), ū(t))ν i (t)dt, i = 1, . . . , n c (17h) 0 ≤dμ i (t), i = 1, . . . , n g (17i)
0 ≤ν i (t), i = 1, . . . , n c (17j)

0 =μ i (T ), , i = 1, . . . , n g (17k) 
It is a well-established result [START_REF] Maurer | First and second-order necessary and sufficient optimality conditions for infinitedimensional programming problems[END_REF][START_REF] Bonnans | Second-order analysis for optimal control problems with pure state constraints and mixed control-state constraints[END_REF] that any local solution of Problem eq. ( 1) is a stationary point as defined in definition 5. Unfortunately, solving Problem eq. ( 17) is a difficult task. Indeed, the dual variable dμ associated with the state constraints appearing in eqs. (17b), (17g), (17i) and (17k) is a Radon measure, therefore, in full generality, it can be decomposed in an absolutely continuous measure with respect to the Lebesgue measure, a discrete and finally a singular part. Computing this measure discrete and singular parts can be dramatically complex.

Penalized Optimal Control Problem (POCP)

To solve Problem eq. ( 1), we use an interior point method based on log-barrier functions defined as follows.

Definition 6 (log-barrier function). The log-barrier function ψ : R → R is defined as follows

ψ(x) := -log(-x) ∀x < 0 +∞ otherwise (18) 
The penalized optimal control problem associated to eq. ( 1) is defined as follows min

(x,u)∈X×U J (x, u) := J(x, u) + T 0 ng i=1 ψ • g i (x(t)) + nc i=1 ψ • c i (x(t), u(t)) dt (19a) ẋ(t) = f (x(t), u(t)) (19b) 0 = h(x(0), x(T )) (19c) 
The pre-Hamiltonian associated with this penalized problem is defined here after Definition 7 (Penalized pre-Hamiltonian). The penalized pre-Hamiltonian

H ψ : R n × R m × R n × R → R of POCP eq. ( 19 
) is defined by

H ψ (x, u, p, ) := H(x, u, p) + ng i=1 ψ • g i (x) + nc i=1 ψ • c i (x, u) (20) 
Definition 8 (Penalized stationary point). The trajectory (x , ū ) with associated multipliers (p , λ ) 

∈ W 1,1 ([0, T ]; R n )× R n h , is a penalized stationary point for Problem (19) if it satisfies ẋ (t) =f (x (t), ū (t)) (21a) ṗ (t) = -H ψ x (x (t), ū (t), p (t), ) (21b) 
0 =H ψ u (x (t), ū (t), p (t), ) (21c) 
0 =h(x (0), x (T )) (21d) 0 =p (0) + h x(0) (x (0), x (T )) . λ (21e) 0 =p (T ) -ϕ (x (T )) -h x(T ) (x (0), x (T )) . λ ( 

Contribution of the paper

The main contribution of the paper is a convergence theorem for interior point methods for optimal control problem using logarithmic penalty functions.

Theorem 1. Let ( n ) be a sequence of decreasing positive parameters with n → 0. The associated sequence of penalized stationary points (x n , ū n , p n , λ n ) n as defined in definition 8 contains a subsequence converging to a stationary point (x, ū, p, μ, ν, λ) of the original problem as defined in definition 5. The convergence is as follows

ū n k -ū L 1 → 0 (23a) x n k -x L ∞ → 0 (23b) h x n k (0), x n k (T ) -h (x(0), x(T )) → 0 (23c) J n k (x n k , ū n k ) -J(x, ū) → 0 (23d) λ n k -λ → 0 (23e) p n k -p L 1 → 0 (23f) n k ψ • c i (x n k , ū n k ) -νi L 1 = 0, i = 1, . . . , n c (23g) 
n k ψ • g i (x n k )dt * dμ i , i = 1, . . . , n g (23h)
3 Preliminary results

This section gathers useful definitions and preliminary results, which will be recurrently used throughout the paper. The proofs of these results are given in appendix A.

Proposition 1. For all (u 1 , x 0 1 ), (u 2 , x 0 2 ) ∈ B . V ad (0, R v ), where R v is defined in assumption 4, there exists const(f ) < +∞ such that x[u 1 , x 0 1 ] -x[u 2 , x 0 2 ] L ∞ ≤ const(f )( u 1 -u 2 L 1 + x 0 1 -x 0 2 ) (24) 
Proof. See appendix A.1

Proposition 2. For all (u, x 0 ) ∈ B . V ad (0, R v ), where R v is defined in assumption 4, and for all Lebesguemeasurable set E ⊆ g i • x[u, x 0 ]([0, T ]), the state-constraint measure from definition 3 is lower bounded as follows

m[u, x 0 , g i ](E) ≥ const(f, g)meas(E) (25) 
Proof. See appendix A.2

Proposition 3. For all δ > 0, there exists G δ , C δ ∈ (0, +∞) such that for all (u,

x 0 ) ∈ V ad ∞ , there exists (v, y 0 ) ∈ B . V ad ((u, x 0 ), δ) ∩ V ad satisfying the following conditions sup t g i (x[v, y 0 ](t)) ≤ -2G δ , i = 1, . . . , n g (26) 
ess sup

t c i (x[v, y 0 ](t), v(t)) ≤ -2C δ , i = 1, . . . , n c (27) 
and we also have

g i (x[v, y 0 ](t)) ≤ g i (x[u, x 0 ](t)) -G δ , ∀t ∈ S g u,x 0 (G δ ), i = 1, . . . , n g (28) c i (x[v, y 0 ](t), v(t)) ≤ c i (x[u, x 0 ](t), u(t)) -C δ , a.a. t ∈ S c u,x 0 (C δ ), i = 1, . . . , n c (29) 
Proof. See appendix A.3.

4 Uniform L 1 -boundedness and interiority analysis of penalized optimal solutions

In this section, we prove that the sequences of the derivative of penalty functions (ψ •c(x n , ū n )) n and (ψ •g(x n )) n associated to the sequence (x n , ū n ) n of locally optimal solutions of the penalized problem eq. ( 19) are both uniformly L 1 -bounded. This uniform L 1 -boundedness property allows proving that the sequence of penalized adjoint state (p n ) n , solution of eq. (21b), is, in turn, uniformly L ∞ -bounded. In addition, we also prove that the sequence (x n , ū n ) n of locally optimal solutions of eq. ( 19) strictly satisfy the state and mixed constraints. In section 4.1, we prove the L 1 -boundedness of state constraint penalties and the interiority of state constraints. In section 4.2, we prove the L 1 -boundedness of mixed constraint penalties, the uniform L ∞ -boundedness of the sequence of adjoint state (p n ) n and the interiority of mixed constraints.

State constraints analysis

In the following, we present an interior point optimal control problem to handle pure state constraints, which writes:

min (x,u) J 1 (x, u) := ϕ(x(T )) + T 0 (x(t), u(t)) + ng i=1 ψ • g i (x(t)) dt (30a) ẋ(t) = f (x(t), u(t)) (30b) h(x(0), x(T )) = 0 (30c) c(x(t), u(t)) ≤ 0 (30d)
Lemma 1. For all > 0, any associated locally optimal solution (x[u , x 0 ], u ) of Problem eq. (30) satisfies

g i (x[u , x 0 ](t)) < 0, ∀t ∈ [0, T ], i = 1, . . . , n g (31) 
and ∃K g < +∞ such that ∀ ∈ (0, 0 ) we have

ψ • g i (x[u , x 0 ]) L 1 ≤ K g , i = 1, . . . , n g (32) 
Proof. It is sufficient to prove for n g = 1, that is to say, for just one state constraint. Assume (u , x 0 ) ∈ V ad ∞ is a locally optimal solution of Problem eq. (30) satisfying

sup t g(x[u , x 0 ](t)) = 0 (33) From proposition 3, ∀δ > 0, ∃(v δ , x 0 δ ) ∈ B . V ad ((u , x 0 ), δ) ∩ V ad and G δ > 0 such that g(x[v δ , x 0 δ ](t)) ≤ -2G δ , ∀t ∈ [0, T ] (34a) g(x[v δ , x 0 δ ](t)) ≤ g(x[u , x 0 ](t)) -G δ , ∀t ∈ S g u ,x 0 (G δ ) (34b) with S g u ,x 0 (G δ ) = ∅.
In the following, to alleviate the notations, we denote

z δ := (v δ , x 0 δ ) (35) z := (u , x 0 ) (36) ∆z := z δ -z (37) ∆x := x[z δ ] -x[z ] ( 38 
) ∆g := g(x[z δ ]) -g(x[z ]) (39) 
Now, one can exhibit an upper-bound on the difference

J 1 (x[z δ ], v δ ) -J 1 (x[z ], u ) as follows J 1 (x[z δ ], v δ ) -J 1 (x[z ], u ) := ∆ 1 + ∆ 2 (40) 
where

∆ 1 := ϕ(x[z δ ](T )) -ϕ(x[z ](T )) + T 0 [ (x[z δ ](t), v δ (t)) -(x[z ](t), u (t))] dt (41) ∆ 2 := T 0 [ψ • g(x[z δ ](t)) -ψ • g(x[z ](t))] dt (42) 
Now, let us upper-bound ∆ 1 . From assumption 4, we have

∆ 1 ≤ T 0 const( ) ( x[z δ ](t) -x[z ](t) + v δ (t) -u (t) ) dt + const(ϕ) ∆x L ∞ (43) ≤const( , T, ϕ) ∆x L ∞ + const( ) v δ -u L 1 ≤ const( , f, g, ϕ, T, R v , R x ) (44) 
Now, let us upper-bound ∆ 2 . To do so, let us introduce the following useful subsets of [0; T ]

E 1 := (g • x[z ]) -1 ((-∞, -G δ ]) (45) E 2 (ρ) := (g • x[z ]) -1 ((-G δ , -ρ]) (46) 
E 3 (ρ) := (g • x[z ]) -1 ((-G δ , -ρ)) (47) 
Given eq. ( 33), for all ρ ∈ [0, G δ ), these sets are not empty and ∀t /

∈ (E 1 ∪ E 2 (ρ)) we have ψ • g(x[z δ ](t)) -ψ • g(x[z ](t)) < 0 which yields ∆ 2 ≤ E1 ψ • g(x[z δ ](t)) -ψ • g(x[z ](t))dt + E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ](t))dt (48)
By convexity of the log-penalty, i.e. ψ, we have

E1 ψ • g(x[z δ ](t)) -ψ • g(x[z ](t))dt ≤ E1 ψ (G δ ) ∆g L ∞ dt := const(T, f, g, G δ ) (49) 
In addition, ∀t ∈ E 2 (ρ), we have

E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ](t))dt = E2(ρ) 1 0 ψ (g(x[z ](t) + s∆g(t))ds ∆g(t)dt (50) Since ∀t ∈ E 2 (ρ), ∆g(t) < -G δ , we also have E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ](t))dt ≤ -G δ E2(ρ) 1 0 ψ (g(x[z ](t)) + s∆g(t))ds dt (51)
From the mean value theorem, ∀t ∈ E 2 (ρ), ∃σ t such that

ψ (g(x[z ](t)) + σ t ∆g(t)) = 1 0 ψ (g(x[z ](t)) + s∆g(t))ds (52) 
Since for all t ∈ E 2 (ρ), we have g(x[z ](t)) -g(x[z δ ](t)) ≥ G δ and since ψ is strictly increasing we have σ t ∈ (0, 1) and

ψ • g(x[z δ ](t)) < ψ (g(x[z ](t)) + σ t ∆g(t)) < ψ • g(x[z ](t)) (53) 
From the intermediate value theorem, ∃σ ∈ (0, 1) such that ∀t ∈ E 2 (ρ) we have

ψ (g(x[z ](t)) + σ t ∆g(t)) ≥ (1 -σ)ψ • g(x[z ](t)) + σψ • g(x[z δ ](t)) (54) 
Gathering eqs. ( 51), ( 52) and (54) yields

E2(ρ) ψ • g(x[z δ ](t)) -ψ • g(x[z ](t))dt ≤ -G δ E2(ρ) (1 -σ)ψ • g(x[z ](t)) + σψ • g(x[z δ ](t)) dt ≤ -G δ (1 -σ) E2(ρ) ψ • g(x[z ](t))dt + const(σ, ψ, T, g, G δ ) (55) 
Gathering eqs. ( 49) and (55) we have

∆ 2 ≤ const(T, f, g, G δ , 0 , ψ, σ) -G δ (1 -σ) E2(ρ) ψ • g(x[z ](t))dt (56) 
Now, let us prove that any optimal solution is strictly interior with respect to the state constraint. The proof is by contradiction. Using definition 3, one can make the following change in measure

E3(ρ) ψ • g(x[z ](t))dt = -ρ -G δ ψ (s)m[z , g](ds) (57) 
Then, using proposition 2 and eqs. ( 46) and (47) yields

E2(ρ) ψ • g(x[z ](t))dt ≥ E3(ρ) ψ • g(x[z ](t))dt ≥ const(f, g) -ρ -G δ ψ (s)ds = const(f, g) (ψ(-ρ) -ψ(-G δ )) (58) 
Gathering eqs. (40), (44), ( 56) and (58) yields that, for all ρ > 0, we have

J 1 (z δ ) -J 1 (z ) ≤ const( , f, g, ϕ, T, 0 , ψ, G δ , R v , R x , σ) -G δ const(f, g, σ) (ψ(-ρ) -ψ(-G δ )) (59) 
For ρ small enough, this yields J 1 (z δ ) < J 1 (z ) and contradicts the local optimality of z and proves eq. ( 31). Thus, we have (g

(x[z ])) -1 ({0}) = ∅ which yields [0, T ] = lim ρ→0 (g(x[z ])) -1 ((-∞, ρ)) (60) 
Hence, using definition 3, one has

ψ • g(x[z ]) L 1 = T 0 ψ • g(x[z ](t))dt := lim ρ→0 -ρ -∞ ψ (s)m[z , g](ds) (61) 
Now, let us prove eq. ( 32) by contradiction and assume that

∀K g > 0, ∃ > 0 s.t. ψ • g(x[z ]) L 1 > K g (62)
Then, from eqs. (45), ( 46) and ( 60), one has

lim ρ→0 -ρ -G δ ψ (s)m[z , g](ds) > K g - -G δ -∞ ψ (s)m[z , g](ds) > K g - 0 T G δ (63) 
Gathering eqs. ( 44), ( 56) and (63) yields

∆ 1 + ∆ 2 ≤ const( , f, g, ϕ, T, 0 , ψ, G δ , R v , R x , σ) -G δ (1 -σ)K g (64) 
Since G δ (1 -σ) > 0, ∃K g > 0 such that ∆ 1 + ∆ 2 < 0 which contradicts the optimality of z , proves eq. ( 32) and concludes the proof.

Mixed constraints interiority analysis

Lemma 2. There exists a constant K c < +∞ such that for all > 0 and for any (x[u , x 0 ], u ) locally optimal solution of Problem eq. ( 19), the following holds

ψ • c i (x[u , x 0 ], u ) L 1 ≤ K c , i = 1, . . . , n c (65) 
Proof. It is sufficient to prove the case where n c = 1, i.e., when there is a single mixed constraint. From proposition 3,

∀δ > 0, ∃(v δ , x 0 δ ) ∈ B . V ad ((u , x 0 ), δ) ∩ V ad and C δ > 0 such that c(x[v δ , x 0 δ ](t), v δ (t)) ≤ -2C δ , a.a. t ∈ [0, T ] (66a) c(x[v δ , x 0 δ ](t), v δ (t)) ≤ c(x[u , x 0 ](t), u (t)) -C δ , ∀t ∈ S c u ,x 0 (C δ ) (66b) 
with S c u ,x 0 (C δ ) = ∅. In the following, to alleviate the notations, we denote

z δ := (v δ , x 0 δ ) (67) z := (u , x 0 ) (68) ∆z := z δ -z (69) ∆x := x[z δ ] -x[z ] ( 70 
) ∆g := g(x[z δ ]) -g(x[z ]) (71) ∆c := c(x[z δ ], v δ ) -c(x[z ], u ) (72) 
In addition, From lemma 1, and by continuity of the mapping z → x[z] one can chose δ > 0 such that the following holds

sup t g(x[z δ ](t)) < 0 (73) ψ • g(x[z δ ]) L 1 ≤ 2 ψ • g(x[z ]) L 1 ≤ 2K g (74) 
Now, one can exhibit an upper-bound on the difference

J (x[z δ ], v δ ) -J (x[z ], u ) as follows J (x[z δ ], v δ ) -J (x[z ], u ) = ∆ 1 + ∆ 2 + ∆ 3 (75) 
where

∆ 1 := ϕ(x[z δ ](T )) -ϕ(x[z ](T )) + T 0 [ (x[z δ ](t), v δ (t)) -(x[z ](t), u (t))] dt (76) ∆ 2 := T 0 i [ψ • g i (x[z δ ](t)) -ψ • g i (x[z ](t))] dt (77) ∆ 3 := T 0 [ψ • c(x[z δ ](t), v δ (t)) -ψ • c(x[z ](t), u (t))] dt (78) Now, let us upper-bound ∆ 1 ∆ 1 ≤ T 0 const( ) ( x[z](t) -x[z ](t) + v(t) -u (t) ) dt + const(ϕ) ∆x L ∞ ≤ const( , f, g, ϕ, T, R v , R x ) (79) Now, let us upper-bound ∆ 2 . ∆ 2 = T 0 i [ψ • g i (x[z δ ](t)) -ψ • g i (x[z ](t))] dt = i T 0 1 0 ψ [g i (x[z ](t)) + s∆g i (t)] ∆g i (t)dsdt (80)
From the mean value theorem, eqs. ( 73) and (74),

∃θ t ∈ [0, 1] such that ∆ 2 = i T 0 ψ • g i (x[z ](t) + θ t ∆g(t))∆g(t)dt ≤ i 2K g ∆g L ∞ ≤ const(f, g, K g , R x , T ) (81) 
Now, let us upper-bound ∆ 3 defined in eq. ( 78). To do so, let us introduce the following useful subsets of [0, T ]

E 1 := (c(x[z ], u )) -1 ((-∞, -C δ ]) (82) 
E 2 := (c(x[z ], u )) -1 ((-C δ , 0]) (83) 
Let us decompose ∆ 3 as follows ∆ 3 := ∆ 3,1 + ∆ 3,2 , with

∆ 3,i := Ei ψ • c(x[z δ ](t), v δ (t)) -ψ • c(x[z ](t), u (t))dt, i = 1, 2 (84) 
By convexity of the log penalty, i.e. ψ, we have

∆ 3,1 ≤ E1 ψ (C δ ) ∆c L ∞ dt ≤ const(T, f, c, ψ, C δ ) z δ -z V ad ≤ const(T, f, c, ψ, C δ , R v ) (85) 
In addition, we have

∆ 3,2 = E2 1 0 ψ (c(x[z ](t), u (t)) + s∆c(t))∆c(t)ds dt (86) Since ∀t ∈ E 2 , ∆c(t) < -C δ , we also have ∆ 3,2 ≤ -C δ E2 1 0 ψ (c(x[z ](t), u (t)) + s∆c(t))ds dt (87) From the mean value theorem, ∀t ∈ E 2 , ∃σ t ∈ [0, 1] such that ψ (c(x[z ](t), u (t)) + σ t ∆c(t)) = 1 0 ψ (c(x[z ](t), u (t)) + s∆c(t))ds (88) 
Since for all t ∈ E 2 , we have c(x[z )(t), u (t)) -c(x[z δ ](t), v δ (t)) ≥ C δ and since ψ is strictly increasing we have σ t ∈ (0, 1) and

ψ • c(x[z δ ](t), v δ (t)) < ψ (c(x[z ](t), u (t)) + σ t ∆c(t)) < ψ • c(x[z ](t), u (t)) (89) 
From the intermediate value theorem, ∃σ ∈ (0, 1) such that ∀t ∈ E 2 we have

ψ (c(x[z ](t), u (t)) + σ t ∆c(t)) ≥ (1 -σ)ψ • c(x[z ](t), u (t)) + σψ • c(x[z δ ](t), v δ (t)) (90) 
Gathering eqs. ( 87), ( 88) and (90) yields

∆ 3,2 ≤ -C δ E2 (1 -σ)ψ • c(x[z ](t), u (t)) + σψ • c(x[z δ ](t), v δ (t)) dt (91) ≤ -C δ (1 -σ) E2 ψ • c(x[z ](t), u (t))dt + const(σ, ψ, T, c, C δ ) (92) 
Gathering eqs. ( 85) and (92) we have

∆ 3 ≤ const(T, f, c, C δ , 0 , ψ, σ, R v ) -C δ (1 -σ) E2 ψ • c(x[z ](t), u (t))dt (93) 
Gathering eqs. ( 79), ( 81) and (93) yields

J (z δ ) -J (z ) = ∆ 1 + ∆ 2 + ∆ 3 ≤ const( , f, g, ϕ, T, K g , R v , R x , C δ , c, 0 , ψ, σ) -C δ (1 -σ) E2 ψ • c(x[z ](t), u (t))dt (94)
Now let us prove eq. ( 65) by contradiction and assume that

∀K c > 0, ∃ > 0 s.t. ψ • c(x[z ], u ) L 1 > K c (95) 
From the definition of E 1 and E 2 , we have

ψ (c(x[z ], u ) L 1 = E1 ψ (c(x[z ](t), u (t))dt + E2 ψ (c(x[z ](t), u (t))dt (96) 
which, in turns yields

E2 ψ (c(x[z ](t), u (t))dt > K c -0 ψ (C δ )T ( 97 
)
gathering eqs. ( 94) and (97) yields

J (z δ ) -J (z ) ≤ const( , f, g, ϕ, T, K g , R v , R x , C δ , c, 0 , ψ, σ) -C δ (1 -σ)K c (98) 
For K c large enough, J (z δ )-J (z ) < 0, which contradicts the optimality of (x[z ], u ), proves eq. ( 65) and concludes the proof.

In addition, using lemma 1 and lemma 2, one can also prove a uniform boundedness property for the adjoint state p from definition 8.

Corollary 1. Let (ū , x ) be a locally optimal solution of Problem eq. ( 19) and let (p , λ ) be the corresponding adjoint state and initial-final constraint multiplier, then there exists K p < +∞ such that p L ∞ ≤ K p .

Proof. First, using eq. (21b) one has

p (T ) -p (s) ≤ T s ( x (x , ū ) L ∞ + f x (x , ū ) L ∞ p (t) ) dt + i g i (x ) L ∞ ψ • g i (x ) L 1 + i c i,x (x , ū ) L ∞ ψ • c i (x , ū ) L 1 (99)
From the continuity of x , f x , g i , c i,x and since x and ū are bounded, we have x (x , ū ) L ∞ < const( , f ) and

f x (x , ū ) L ∞ < const(f ).
In addition, the terms on the right-hand side of eq. ( 21f) are bounded which yields that p (T ) ≤ const(f, h). The derivatives of the penalty functions being uniformly L 1 -bounded one can use Grönwall Lemma which proves that ∃K p < +∞ such that ∀s ∈ [0, T ] we have p (s) ≤ K p which concludes the proof.

Lemma 3. There exists a constant K c < +∞ such that for all > 0, any (x , ū ) locally optimal solution of Problem eq. (

) satisfies c(x (t), ū (t)) ≤ -/K c , a.e. ( 19 
) 100 
Proof. For all K c > 0, assume that there exists E ⊆ [0, T ] of strictly positive measure such that

I c ū ,x (0) (t, K c / ) = ∅ for all t ∈ E. Now, let us denote C(t) := c I c ū ,x (0) 
(t,Kc/ ),u (x , ū ) and let us define v as follows

v(t) := -C(t) C(t)C(t) -1 .e v , ∀t ∈ E 0 otherwise (101) 
where

R |I c ū ,x (0) (t,Kc/ )|
e v := /K c . . . /K c . Since ū is a locally optimal solution of Problem eq. ( 19), and using definition 7, we have for almost all t ∈ E H ψ (x (t), ū (t) + v(t), p (t), ) -H ψ (x (t), ū (t), p (t), ) = H(x (t), ū (t) + v(t), p (t)) -H(x (t), ū (t), p (t))

+ i∈I c ū ,x (0) (t,Kc/ ) log c i (x (t), ū (t)) c i (x (t), ū (t) + v(t)) (102) 
From the mean value theorem, ∃s ∈ [0, 1] such that

H ψ (x (t), ū (t) + v(t), p (t), ) -H ψ (x (t), ū (t), p (t), ) ≤ H u (x (t), ū (t) + sv(t), p (t)).v(t) - i∈I c ū ,x (0) (t,Kc/ ) log(2) (103)
Since , f are at least C 2 and since C(t) is L ∞ -bounded by some constant M , from corollary 1 we have

H ψ (x (t), ū (t) + v(t), p (t), ) -H ψ (x (t), ū (t), p (t), ) ≤   const( , f, T, R v , R x , K p , M ) K c - i∈I c ū ,x (0) (t,Kc/ ) log(2)   (104) 
which is negative for K c large enough, contradicts the local optimality of ū and proves the result.

Existence of converging sequences

This section contains intermediate convergence results. Indeed, we will prove that the sequence of penalized stationary control (ū n ) n contains a weakly converging subsequence to some ū, that the associated state sequence (x n ) n contains a uniformly converging subsequence and that the associated sequence of adjoint state (p n ) n contains a L 1 -converging subsequence. In addition, we will also prove that the sequences of the derivative of penalty functions also contain converging subsequences whose limit points belong to the dual space of their respective constraints. However, these convergence results are called intermediate mainly because the limit point of the sequence (x n , p n ) n can be different from (x, p), that is to say, that the limit point of the sequence might not satisfy eqs. (17a) and (17b). Nevertheless, these intermediate convergence results are used in section 6 to prove the main result of the paper, namely, theorem 1. Finally, to alleviate the notations, we will use the following notations throughout the remaining of the paper

λ gi n := n ψ • g i (x n ) ( 105 
)
λ ci n := n ψ • c i (x n , ū n ) (106)

Existence of limit point for the sequence of penalized stationary points

Lemma 4. There exists (ȳ, ū, q, λ) 

∈ C 0 ([0, T ]; R n ) × L 2 ([0, T ]; R m ) × BV([0, T ]) n × R n h such
x n k -ȳ L ∞ = 0 (108) lim k→+∞ λ n k -λ = 0 (109) lim k→+∞ p n k -q L 1 = 0 (110)
Proof. The sequence (ū n , x0 n ) n associated with (x n , ū n ) n is L 2 × R n bounded. Therefore, there exists a weakly converging subsequence to (ū, x0 ) ∈ L 2 × R n which proves eq. (107). To alleviate the notation we denote (ū n , x0 n ) n the converging subsequence. Using this notation, we have

x[ū n , x0 n ](t 2 ) -x[ū n , x0 n ](t 1 ) := t2 t1 f (x[ū n , x0 n ](t), ū n (t))dt (111) 
First, ∀t 1 , t 2 ∈ [0, T ], and from Hölder inequality, we have

x[ū n , x0 n ](t 2 ) -x[ū n , x0 n ](t 1 ) ≤ sup n f (x[ū n , x0 n ], ū n ) L 2 |t 1 -t 2 | (112)
Therefore, the sequence (x[ū n , x0 n ]) n is bounded and equicontinuous. From Arzela-Ascoli [11, Theorem 1.3.8, p.33], it contains a uniformly converging subsequence to some ȳ which proves eq. ( 108). In addition, eq. ( 109) is a direct consequence of the boundedness of the sequence ( λ n ) n . Now, let us prove eq. ( 110). Identifying any element of the sequence (H ψ x,i (x n , ū n , p n , n )) n with Ξ i n ∈ M([0, T ]) the linear form on L ∞ ([0, T ]; R) defined as follows

Ξ i n : L ∞ ([0, T ]; R) v → T 0 v(t)H ψ x,i (x n (t), ū n (t), p n (t), n )dt ∈ R (113) 
From lemma 1 and lemma 2, the sequence (H ψ x,i (x n , ū n , p n , n )) n is uniformly L 1 -bounded, thus, there exists

K Ξ < +∞ such that |Ξ i n k (v)| ≤ K Ξ v L ∞ (114) which, in turn, yields ∀ n , Ξ i n ∈ B M([0,T ]) (0, K Ξ ) (115) 
From the weak * compactness of the unit ball of M([0, T ]) (see [START_REF] Brézis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem 3.16]), there exists a subsequence

Ξ i n k k∈N
and a measure dm i ∈ M([0, T ]) such that lim k→+∞ Ξ i n k * dm i , i = 1, . . . , n. Now, let us define q ∈ BV([0, T ]) n as follows q(T ) -q(t) :

= T t dm(s) (116a) q(T ) := ϕ (ȳ(T )) + h x(T ) (ȳ(0), ȳ(T )) . λ (116b)
Then we have

lim k→+∞ p n k (T ) -p n k (t) -q(T ) + q(t) = lim k→+∞ T t H ψ x (x n k (s), ū n k (s), p n k (s), n k )ds -dm(s) = 0 (117)
Using eqs. (21f), ( 108), ( 109) and ( 116), we also have lim k p n k (T ) -q(T ) = 0, which yields lim k p n k (t) -q(t) = 0 and proves that (p n k ) k pointwise converges to q. From corollary 1, the sequence (p n k ) k is uniformly L ∞ -bounded which yields, from Lebesgue-Vitali's Theorem [1, Theorem 4.5.4., pp. 268]

lim k→+∞ p n k -q L 1 = 0 (118)
which proves eq. ( 110) and concludes the proof.

Remark 2. At this point, it is important to emphasize that the limit point ȳ (resp. q) of the sequence x n k (resp. p n k ) can be different from x[ū, x0 ] (resp. p) i.e., non linearity destroys weak convergence.

Convergence of pure state and mixed constraints multipliers sequences

Convergence of pure state constraints multipliers sequences

Lemma 5. There exists μ ∈ BV([0, T ]) ng , with μ(T ) = 0 such that any sequence (λ gi n ) n as defined in eq. (105) contains a subsequence (λ gi n k

) k such that eq. (23h) holds.

Proof. Identifying any element of the sequence (λ gi n ) n with a linear form on continuous functions

Λ gi n ∈ M([0, T ]) defined as follows Λ gi n : C 0 ([0, T ], R) v → T 0 v(t)λ gi n (t)dt ∈ R.
From lemma 1 and eq. ( 32) we have

|Λ gi n k (v)| ≤ K g v L ∞ , thus ∀ n , Λ gi n ∈ B M([0,T ]) (0, K g ) (119) 
From the weak * compactness of the unit ball of M([0, T ]) (see [START_REF] Brézis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]Theorem 3.16]), there exists a subsequence Λ gi 

which proves eq. (23h) and concludes the proof.

Convergence of mixed constraints multipliers sequences

Proposition 4. Let (x , ū ) be a locally optimal solution of eq. ( 19), then the following holds

λ c n ∈ L ∞ ([0, T ]; R nc + ) (121) 
where

λ c n := λ c1 n . . . λ cn c n .
Proof. The proof of this result consists in proving that the mapping

Λ c : L 1 ([0, T ]; R nc ) w → T 0 λ c (t).w(t)dt ∈ R (122) 
is a continuous linear form on L 1 ([0, T ]; R nc ). From lemma 3, c(x , ū ) is strictly negative (not active) almost everywhere. Therefore the Hamiltonian minimization condition of the Pontryagin maximum principle writes H ψ u (x , ū , p , ) = 0 for almost all time. Then, for all v ∈ L ∞ ([0, T ]; R m ), one has

T 0 nc i=1 λ ci (t)c i,u (x (t), ū (t)).v(t)dt ≤ H u (x , ū , p ) L ∞ v L 1 ≤ const(f, , h) v L 1 (123) 
Now, let us denote C(t) := c I c ū ,x 0 (t,n),u (x , ū ) and for all w ∈ L ∞ ([0, T ]; R nc ), let us define v ∈ L ∞ ([0, T ]; R m ) as follows

v(t) := C(t) C(t)C(t) -1 w I c ū ,x 0 (t,n) (t) if I c ū ,x 0 (t, n) = ∅ 0 otherwise (124) Since C(t) is L ∞ -bounded, there exists M ∈ (0, +∞) such that v L 1 ≤ M w L 1 In addition, let us define θ ∈ L 1 ([0, T ]; R nc ) as follows θ ,i (t) := λ ci (t) if i ∈ I c ū ,x 0 (t, n) 0 otherwise (125) 
Gathering eqs. ( 123) to (125) yields

T 0 nc i=1 λ ci (t)c i,u (x (t), ū (t)).v(t)dt = T 0 θ (t).w(t)dt (126) 
Gathering eqs. ( 123) and (126) we have

T 0 θ (t).w(t)dt ≤ const(f, , h, M ) w L 1 . Since L ∞ ([0, T ]; R nc ) is dense in L 1 ([0, T ]; R nc ), we have θ ∈ L ∞ ([0, T ]; R + ), thus λ ci ∈ L ∞ ([0, T ]; R + ) which concludes the proof.
Lemma 6. There exists ν ∈ L ∞ ([0, T ]; R nc + ) such that any sequence (x n , ū n ) n of locally optimal solution of eq. ( 19) contains a subsequence such that the following holds

lim k→+∞ λ ci n k * νi (127)
Proof. From lemma 3 and proposition 4, λ ci n ∈ B L ∞ (0, K c ), thus there exists a subsequence and a function νi ∈ L ∞ ([0, T ]; R + ) such that eq. ( 127) holds.

Proof of theorem 1

So far, in lemma 4, lemma 5 and lemma 6, we already proved the existence of μ ∈ BV([0, T ]) ng and λ ∈ R n h such that eqs. (23e) and (23g) hold. In addition we have proved the existence of ν ∈ L ∞ ([0, T ]; R nc + ) as a weak * limit point of a subsequence of the multipliers of the mixed constraints. To complete the proof it remains to prove:

• The convergence of state and control variables, i.e., that eqs. (23a) and (23b) hold. This is the object of section 6.1

• The convergence of the initial-final conditions and of the cost variable, i.e., that eqs. ( 23c) and (23d) hold. This is the object of section 6.2.

• The L 1 -convergence of the mixed constraints multipliers, i.e., that eq. ( 23g) holds. This is the object of section 6.3.

• The convergence of the adjoint state, i.e., that eq. ( 23f) holds. This is the object of section 6.4.

• That the limit point of the sequences of locally penalized optimal solution satisfy the complementarity conditions, i.e., that eqs. (17g) to (17j) hold. This the object of section 6.5.

• That the limit point of the sequences of locally penalized optimal solution satisfy the Hamiltonian stationarity conditions, i.e., that eq. ( 17c) holds. This is the object of section 6.6.

Strong convergence of control and state variables

Using assumption 7 and from the convexity of c(x, u) with respect to u and since the penaly function eq. ( 18) is strictly increasing, we have ∀n > 0, for a.e. 

: k = n, . . . , N (n)}) n satisfying N (n)
k=n α[n] k = 1 and such the sequence (v n ) n defined as follows

v n := N (n) k=n α[n] k u k (131)
converges in L 2 -norm to ū. Therefore, there exists a subsequence denoted (v m ) m converging almost everywhere to ū. Now, for almost all t ∈ [0, T ], we have

ū(t) -û(t) = lim m→+∞ v m (t) -û(t) ≤ lim m→+∞ N (m) k=m α[m] k ū m (t) -û(t) = 0 (132)
which proves that û = ū almost everywhere. As a consequence, there exists a subsequence(ū n k ) k which converges almost everywhere to ū. In addition, (ū n k ) k being L ∞ -bounded, using Lebesgue-Vitali's Theorem yields

ū n k -ū L 1
→ 0 wich proves eq. (23a). In addition, using proposition 1 we have

x n k -x L ∞ → 0 (133)
which proves eq. (23b).

Convergence of initial-final conditions and optimal cost

From eq. ( 133) and from the continuity of h we have h(x n k (0), x n k (T )) -h(x(0), x(T )) → 0, which proves eq. (23c). In addition, eq. ( 23d) is a direct consequence of the Lipshitz continuity over compact sets of and ϕ, of the L 1 -convergence of the control and of the uniform convergence of the state.

L 1 -convergence of the mixed constraints multipliers

From lemma 3 and proposition 4 the sequence

λ ci n := n ψ • c i (x n , ū n ) is uniformly L ∞ -bounded.
The mapping ψ being differentiable, it is Lipschitz on bounded sets. Then, from the almost everywhere convergence of x n and ū n we get the almost everywhere convergence of λ ci n . From the density of L 2 ([0, T ]; R) in L 1 ([0, T ]; R) and from proposition 4, ∀f ∈ L 2 ([0, T ]; R), we have λ ci n -νi , f → 0. Thus, λ ci n νi in the weak L 2 -topology. Using Mazur's lemma and the same argument as in section 6.1 yields that there exists a subsequence λ ci n k converging almost everywhere to νi and since both are bounded we have

lim k→∞ λ ci n k -νi L 1 = 0 (134)
which proves eq. (23g).

Convergence of adjoint state sequence

Let us denote q n ∈ BV([0, T ]) n the solution of

-dq n (t) = x (x n (t), ū n (t)) + f x (x n (t), ū n (t)).q n (t) + nc i=1 c i,x (x n (t), ū n (t))ν i (t) dt + ng i=1 g i (x n (t))dμ i (t) (135a) q n (0) = -h x(0) (x n (0), x n (T )) . λ (135b) q n (T ) = ϕ (x n (T )) + h x(T ) (x n (0), x n (T )) . λ (135c)
The functions , f, g, c, h and ϕ being C 2 and (x n , ū n ) n being uniformly bounded, the mapping (ū n ,

x n (0)) → q n is a continuous mapping from L 1 ([0, T ]; R m ) × R n → BV([0, T ]) n , hence, from the strong L 1 -convergence (resp. L ∞ -convergence) of (ū n ) n (resp. (x n ) n ), we have lim n→+∞ q n -p BV = 0 (136) 
In addition, since q n (T ) = p n (T ), we have

q n (t) -p n (t) ≤ T t f x (x n (s), ū n (s)).(q n (s) -p n (s))ds + ng i=1 T t g i (x n (s)) dμ i (s) -λ gi n (s)ds + nc i=1 T t c i,x (x n (s), ū n (s)) νi (s) -λ ci n (s) ds (137) ≤const(f 
) T t q n (s) -p n (s) ds + ng i=1 T t g i (x n (s)) dμ i (s) -λ gi n (s)ds + nc i=1 T t c i,x (x n (s), ū n (s)) νi (s) -λ ci n (s) ds (138) 
Now, let us define

h n ∈ L 1 ([0, T ]; R + ) as follows h n (t) := ng i=1 T t g i (x n (s)) dµ i (s) -λ gi n (s)ds + nc i=1 T t c i,x (x n (s), ū n (s)) νi (s) -λ ci n (s) ds (139) thus q n (t) -p n (t) ≤ const(f ) T t
q n (s) -p n (s) ds + h n (t). From Grönwall inequality [9, Lemma A.1, p.651], we have q n (t) -p n (t) ≤ const(f, T ) T t h n (s)ds. Using the weak * convergence of dμ and ν together with the L ∞ -convergence (resp. L 1 -convergence) of x n (resp. ū n ) yields the pointwise convergence of h n → 0. In addition, from the boundedness of (h n ) n there exists a subsequence such that

lim k→+∞ q n k (t) -p n k (t) ≤ const(f, T ) T t lim k→+∞ h n k (s)ds = 0 (140) 
q n k pointwise converges to p n k and since both are bounded, from Lebesgue-Vitali's Theorem, we have

lim k→+∞ q n k -p n k L 1 = 0
Gathering with eq. ( 136) yields p -p n k L 1 → 0 (141) which proves eq. (23f).

6.5 Complementarity conditions satisfaction for the limit point of the sequence of penalized stationary points

Up to this point, we have proved convergence of the control, the state, the adjoint state and the constraints multipliers. Let us prove that this limit point satisfies the complementarity conditions from the first-order conditions of optimality eqs. (17g) to (17j).

Complementarity conditions for state constraints

Now, let us prove that μ satisfies conditions eqs. (17g) and (17i). From lemma 1 and eq. ( 31) and from eq. ( 105), we have λ gi

n k > 0, ∀t ∈ [0, T ] and ∀ n k > 0. Therefore, ∀φ ∈ C 0 ([0, T ]; R + ) one has T 0 φ(t)dμ i (t) = lim k→+∞ T 0 φ(t)λ gi n k (t)dt ≥ 0 ⇒ dμ i (t) ≥ 0 (142) 
which proves that μ satisfies the non negativity condition eq. (17i). Finally, let us prove that μ satisfies the complementarity condition eq. (17g). From eq. (105), we have

g i (x n k (t))λ gi n k (t) = -n k hence lim k→+∞ T 0 g i (x n k (t))λ gi n k (t)dt = lim k→+∞ -n k T = 0 (143) 
From the continuity of g i , the sequence (g i (x n k )) k uniformly converges to g i (x). In addition, from lemma 1 and eq. ( 32), the sequence

λ gi n k (t) is uniformly L 1 -bounded, hence lim k→+∞ T 0 g i (x(t)) -g i (x n k (t)) λ gi n k (t)dt ≤ lim k→+∞ g i (x) -g i (x n k ) L ∞ λ gi n k L 1 = 0 (144) 
Gathering eqs. ( 143) and (144) yields

lim k→+∞ T 0 g i (x(t))λ gi n k (t)dt = lim k→+∞ T 0 g i (x n k (t))λ gi n k (t)dt = 0 (145) 
which in turns gives

T 0 g i (x(t))dμ i (t) = lim k→+∞ T 0 g i (x(t))λ gi n k (t)dt = lim k→+∞ T 0 g i (x n k (t))λ gi n k (t)dt = 0 (146) 
and proves that μ satisfies the complementarity condition eq. (17g).

Complementarity conditions for mixed constraints

Now, let us prove that ν satisfies conditions eqs. (17h) and (17j). From lemma 2 and lemma 3, we have λ ci n k > 0, ∀t ∈ [0, T ] and ∀ n k > 0 which proves that ν satisfies the non negativity condition eq. (17j). Finally, let us prove that ν satisfies the complementarity condition eq. (17h). From eq. (106), we have

c i (x n k (t), ū n k (t))λ ci n k (t) = -n k hence lim k→+∞ T 0 c i (x n k (t), ū n k (t))λ ci n k (t)dt = lim k→+∞ -n k T = 0 (147) 
From the Lipshitz-continuity of c i over compact sets, the sequence (c i (x n k , ū n k )) k L 1 -converges to c i (x, ū). In addition, from lemma 3 and proposition 4, the sequence

λ ci n k is uniformly L ∞ -bounded, hence lim k→+∞ T 0 c i (x(t), ū(t)) -c i (x n k (t), ū n k (t)) λ ci n k (t)dt ≤ lim k→+∞ c i (x, ū) -c i (x n k , ū n k ) L 1 λ ci n k L ∞ = 0 (148)
Gathering eqs. ( 147) and (148) yields

lim k→+∞ T 0 c i (x(t), ū(t))λ ci n k (t)dt = lim k→+∞ T 0 c i (x n k (t), ū n k (t))λ ci n k (t)dt = 0 (149)
which in turns gives

T 0 c i (x(t), ū(t))ν i (t)dt = lim k→+∞ T 0 c i (x(t), ū(t))λ ci n k (t)dt = lim k→+∞ T 0 c i (x n k (t), ū n k (t))λ ci n k (t)dt = 0 (150)
which proves that ν satisfies the complementarity condition eq. (17h).

6.6 Stationarity condition of H u for the limit points of the sequence of penalized stationary points

Finally, the last step of the proof of theorem 1 consists in proving that the limit point of the sequence of penalized stationary points satisfies the Hamiltonian stationarity conditions eq. (17c).

lim n→+∞ H ψ u (x n , ū n , p n , n ) -H u (x, ū, p) -c u (x, ū).ν L 1 ≤ lim n→+∞ u (x n , ū n ) -u (x, ū) L 1 + f u (x n , ū n ) .p n -f u (x, ū) .p L 1 + nc i=1 λ ci n c i,u (x n , ū n ) -νi c i,u (x, ū) L 1 (151) 
Since all the terms in the right-hand side of eq. ( 151) converges to zero, using eq. (21c) proves eq. (17c) and concludes the proof.

7 Solving Algorithms

Primal solving algorithm

In theorem 1 we have proved that any sequence of solutions of eq. ( 21) contains a converging subsequence. In the following, we denote S P ( ) := (x , p , ū , λ ) any solution of eq. ( 21). Now, the primal solving algorithm writes as follows 1: Define 0 > 0, α ∈ (0, 1), tol = o(1), k = 0 2: while k > tol do 3:

S P ( k+1 ) ←solution of eq. ( 21) initialized with S P ( k )

4:

k+1 ← α k 5:
k ← k + 1 6: end while 7: return S P ( k ) Algorithm 1: Primal algorithm for optimal control problems

Primal-dual solving algorithm

Before describing the primal-dual solving algorithm, we need the following convergence result, which is a direct consequence of theorem 1.

Corollary 2. Let ( n ) be a sequence of decreasing positive parameters with n → 0 and let

(x n , ū n , p n , λg n , λc n , λ n ) n ∈ W 1,∞ ([0, T ]; R n ) × U × W 1,1 ([0, T ]; R n ) × L 1 ([0, T ]; R ng + ) × L ∞ ([0, T ]; R nc + ) × R n h (152)
be a solution of the following Primal Dual TPBVP

ẋ n (t) =f (x n (t), ū n (t)) (153a) ṗ n (t) = -H x (x n (t), ū n (t), p n (t)) - ng i=1 λg n ,i (t)g i (x n (t)) - nc i=1 λc n,i (t)c i,x (x n (t), ū n (t)) (153b) 0 =H u (x n (t), ū n (t), p n (t)) + nc i=1 λc n ,i (t)c i,u (x n (t), ū n (t)) (153c) 0 = λg n,i (t) -g i (x n (t)) -λg n ,i (t) 2 + g i (x n (t)) 2 + 2 n (153d) 0 = λc n,i (t) -c i (x n (t), ū n (t)) -λc n,i (t) 2 + c i (x n (t), ū n (t)) 2 + 2 n (153e) 0 =h(x n (0), x n (T )) (153f) 0 =p n (0) + h x(0) (x n (0), x n (T )) . λ n (153g) 0 =p n (T ) -ϕ (x n (T )) -h x(T ) (x n (0), x n (T )) . λ n (153h)
Then (x n , ū n , p n , λg n , λc n , λ n ) n contains a subsequence converging to a stationary point of the original problem (x, ū, p, μ, ν, λ) as follows

ū n k -ū L 1 → 0 (154a) x n k -x L ∞ → 0 (154b) |J(x n k , ū n k ) -J(x[ū, x0 ], ū)| → 0 (154c) λ n k -λ → 0 (154d) p n k -p L 1 → 0 (154e) λc n -ν L 1 = 0 (154f) λg n dt * dμ (154g)
Proof. From lemma 1 and lemma 3, we have g i (x n (t)) < 0 and c i (x n (t), ū n (t)) < 0 for all n > 0. Therefore eq. ( 153d) is equivalent to λg n ,i (t) =n /g i (x n (t)) and eq. ( 153d) is equivalent to λc n ,i (t) =n /c i (x n (t), ū n (t)). Combining with eqs. (153b) and (153c) proves that any solution of eq. ( 153) is also solution of eq. ( 21) and using theorem 1 concludes the proof.

Let us denote S P D ( ) := (x , ū , p , λg , λc , λ ) any solution of eq. ( 153), the primal-dual algorithm is described in algorithm 2. The numerical example and the Differential Algebraic Equations (DAEs) solver used in this section are freely available at [START_REF] Malisani | Python source code for "Interior point methods in optimal control[END_REF]. The solver is a two point boundary differential algebraic equations solver adapted from [START_REF] Kierzenka | A bvp solver based on residual control and the maltab pse[END_REF] to solve index-1 differential algebraic equations.

Robbins problem

The robbins problem [START_REF] Robbins | Junction phenomena for optimal control with state-variable inequality constraints of third order[END_REF] consists in solving the following optimal control problem min

x,u 6 0

x 1 (t)dt (155a)

ẋ1 (t) = x 2 (t) (155b) ẋ2 (t) = x 3 (t) (155c) ẋ3 (t) = u(t) (155d) 
x 1 (0) = 1 (155e)

x 2 (0), x 3 (0) = 0 (155f) 0 ≥ -x 1 (t) (155g) u ∈ [-1, 1] (155h) 
This problem is challenging to solve due to the Fuller-like behaviour of the optimal control and of the first coordinate of the optimal adjoint-state p1 . For this problem, conditions eqs. (21e) and (21f) are equivalent to eq. (155e), eq. ( 155f) and p(6) = 0. This problem is solved using algorithms 1 and 2. The settings of the algorithms, their initialization variable (S P ( 0 ), S P D ( 0 )) and their execution time are displayed on table 1. The primal-dual method, compared to the primal one, allows using a smaller decay rate α, which translates into a smaller execution time despite the greater number of variables to compute. In addition, the primal-dual algorithm allows for reaching lower tolerance values without encountering numerical problems. This is a well-known behavior in numerical optimization that we also meet in the context of interior point methods in optimal control. The sequences of penalized stationary points (x , ū , p ) computed with algorithm 1 are displayed on figs. (1, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) α 0.8 0.5 tol 10 -8 10 -9 execution time (s) 0.97 0.20

Goddard's problem

In this section, we will solve the Goddard's problem [START_REF] Seywald | Goddard problem in presence of a dynamic pressure limit[END_REF] described as follows min

u,T T 0 -v(t)dt (156a) ḣ(t) = v(t) (156b) v(t) = u(t) -310v(t) 2 exp(500(1 -h(t))) m(t) - 1 h(t) 2 (156c) ṁ(t) = -2u(t) (156d) h(0) v(0) m(0) m(T ) = 1 0 1 0.6 (156e) 0 ≥ 6200v(t) 2 exp(500(1 -h(t))) -10 (156f) u(t) ∈ [0, 3.5] (156g) 
To transform this free final-time problem into a fixed end-time problem, we use the following change of variable s := t/T and consider T as a state variable satisfying Ṫ = 0. The fixed end-time problem is then min

u 1 0 -T (s)v(s)ds (157a) ḣ(s) = T (s)v(s) (157b) v(s) = T (s) u(s) -310v(s) 2 exp(500(1 -h(s))) m(s) - 1 h(s) 2 (157c) ṁ(s) = -2T (s)u(s) (157d) Ṫ (s) = 0 (157e) h(0) v(0) m(0) m(T ) = 1 0 1 0.6 (157f) 0 ≥ 6200v(s) 2 exp(500(1 -h(s))) -10 (157g) u(s) ∈ [0, 3.5] (157h) 
This problem is challenging because the control trajectory consists of a sequence made of a bang-bang arc, a singular arc, a state-constrained arc, and finally, a bang-bang arc. For this problem, the initial-final conditions eqs. (21e) and (21f) are equivalent to ph (1) = pv (1) = pT (0) = pT (1) = 0 (158)

Again, this problem is solved using algorithms 1 and 2. The settings of the algorithms, their initialization variable (S P ( 0 ), S P D ( 0 )) and their execution time are displayed on table 1. The primal-dual method, compared to the primal one, allows using a smaller decay rate α, which translates into a substantially smaller execution time despite the greater number of variables to compute. In addition, the primal-dual algorithm allows for reaching lower tolerance values without encountering numerical problems. This smaller tolerance value allows us to reach a slightly higher final altitude, that is to say, a smaller optimal value for the problem. The sequences of penalized stationary points (x , ū , p ) computed with algorithm 1 are displayed on figs. 1 to 6. One can see that the bangbang, singular and constrained arcs are well computed, which proves the efficiency of the proposed algorithm even on complex cases. The sequences of penalized stationary points (x , ū , p , λg , λc ) computed with algorithm 2 are displayed on figs. 23 to 32. One can see that the optimal control and the state-constraint multiplier (ū , λ ) exhibit a strong oscillatory behavior along the singular-arc. The code used in this paper is available online in a Gitlab repository: https://ifpen-gitlab.appcollaboratif. fr/detocs/ipm_ocp [START_REF] Malisani | Python source code for "Interior point methods in optimal control[END_REF].

A Proofs of section 3

A.1 Proof of proposition 1

From assumption 4, x[u, x 0 ] ∈ B L ∞ (0, R x ). In addition, f being C 2 there exists const(f ) < +∞ such that for all (u 1 , x 0 1 ), (u 2 , x 0

2 ) ∈ B . V ad (0, R v ) we have ẋ[u 1 , x 0 1 ](t) -ẋ[u 2 , x 0 2 ](t) ≤ const(f ) x[u 1 , x 0 1 ](t) -x[u 2 , x 0 2 ](t) + u 1 (t) -u 2 (t) (159) 
Using Grönwall inequality [9, Lemma A.1, p.651], there exists const(f )

< +∞ such that x[u 1 , x 0 1 ] -x[u 2 , x 2 0 ] L ∞ ≤ const(f )( u 1 -u 2 L 1 + x 0 1 -x 0 2 ).

A.2 Proof of proposition 2

Assume that assumption 4 holds, then for all (u, x 0 ) ∈ B . V ad (0, R v ) we have

|g i (x[u, x 0 ](t)) -g i (x[u, x 0 ](s))| ≤ const(g) x[u, x 0 ](t) -x[u, x 0 ](s) = const(g) t s f (x[u, x 0 ](τ ), u(τ )) dt ≤ const(f, g)|t -s|
To prove the proposition, we only need to prove the lower bound holds on any interval (α 1 , α 2 ) ⊆ E. From the continuity of g i , ∃t 1 , t 2 such that g Sequence of optimal penalized control u Sequence of optimal penalized state-constraint multiplier g Sequence of optimal penalized second mixed-constraint multiplier c 2, Sequence of optimal penalized state x 1, Sequence of optimal penalized control u Sequence of optimal penalized adjoint state p 1, Sequence of optimal penalized state-constraint multiplier g Sequence of optimal penalized altitude h Sequence of optimal penalized velocity v Sequence of optimal penalized mass m Sequence of optimal penalized thrust u Sequence of optimal penalized state-constraint multiplier g Sequence of optimal penalized state-constraint multiplier g 

i (x[u, x 0 ](t 1 )) = α 1 , g i (x[u, x 0 ](t 2 )) = α 2 and such that (t 1 , t 2 ) ⊆ g i (x[u, x 0 ]) -1 ((α 1 , α 2 )) and m[u, x 0 , g i ]((α 1 , α 2 )) ≥ |t 1 -t 2 | ≥ const(f, g)|g i (x[u, x 0 ](t 1 )) -g i (x[u, x 0 ](t 2 ))| ≥ const(f, g)|α 1 -α 2 | ( 

  μi ∈ BV([0, T ]) with μi (T ) = 0 such that lim k→+∞ λ gi n k dt * dμ i , i = 1, . . . , n g

1 : 7 :

 17 Define 0 > 0, α ∈ (0, 1), tol = o(1), k = 0 2: while k > tol do 3: S P D ( k+1 ) ←solution of eq. (153) initialized with S P D ( k ) return S P D ( k ) Algorithm 2: Primal-dual algorithm for optimal control problems 8 Numerical examples

Sequence of optimal penalized state x 1 ,Figure 1 :

 11 Figure 1: Sequence of optimal penalized states x1, n for primal Robbins problem.

Figure 2 :Sequence of optimal penalized adjoint state p 1 ,Figure 3 :

 213 Figure 2: Sequence of optimal penalized controls ū n for primal Robbins problem.

Figure 4 :Figure 5 :

 45 Figure 4: Sequence of optimal penalized state-constraint dual variables λg n for primal Robbins problem.

Figure 6 :

 6 Figure 6: Sequence of optimal penalized lower control constraint dual variables λc 2, n for primal Robbins problem.

Figure 7 :

 7 Figure 7: Sequence of optimal penalized states x1, n for primal-dual Robbins problem.

Figure 8 :

 8 Figure 8: Sequence of optimal penalized controls ū n for primal-dual Robbins problem.

Figure 9 :

 9 Figure 9: Sequence of optimal penalized adjoint states p1, n for primal-dual Robbins problem.

Figure

  Figure 10: Sequence of optimal penalized state-constraint dual variables λg n for primal-dual Robbins problem.

Figure 13 :

 13 Figure 13: Sequence of optimal penalized altitudes h n for Goddard primal problem.

Figure 14 :

 14 Figure 14: Sequence of optimal penalized velocities v n for Goddard primal problem.

Figure 15 :

 15 Figure 15: Sequence of optimal penalized masses m n for Goddard primal problem.

Figure 16 :Sequence of optimal penalized adjoint state p 3 ,Figure 19 :

 16319 Figure 16: Sequence of optimal penalized thrusts ū n for Goddard primal problem.

Figure 20 :Sequence of optimal penalized adjoint state p 3 ,Figure 29 :

 20329 Figure 20: Sequence of optimal penalized state-constraint dual variables λg n for Goddard primal problem.

Figure 30 :

 30 Figure 30: Sequence of optimal penalized state-constraint dual variables λg n for Goddard primal-dual problem.

  that any sequence (x n , ū n , p n , λ n ) n of penalized stationary point as defined in definition 8 for Problem eq. (19) contains a subsequence satisfying

	lim k→+∞	ū n k	ū	(107)
	lim k→+∞			

  Now, since the sequence (ū n ) n weakly converges to ū, from Mazur's lemma[17, lemma 10.19, pp. 350], there exists a function N : N → N and a sequence of sets of real positive numbers ({α[n] k

		0	(128)
	From the implicit function theorem [19, Theorem 9.27, pp. 224-225], for almost all time, there exists a mapping λ t
	such that		
		ū n (t) := λ t (x n (t), p n (t), n )	(129)
	By continuity of λ t and using lemma 4 (x n ) n (resp. (p n ) n ) contains a pointwise converging subsequence, thus
	(ū n ) n contains a subsequence pointwise converging to some û ∈ BV([0, T ]) m satisfying	
	û(t) = lim n→+∞	λ t (x n (t), p n (t), n ) = λ t (ȳ(t), q(t), 0), a.e.	(130)

t ∈ [0, T ], H ψ uu (x n (t), ū n (t), p n (t), n ) >

Table 1 :

 1 1 to 6. The sequences of penalized stationary points (x , ū , p , λg , λc ) computed with algorithm 2 are displayed on figs. 7 to 12. Algorithm settings and optimization results for the Robbins problem Primal solving algorithm Primal-dual solving algorithm

	0	0.1	0.1
	S P ( 0 )(t) / S P D ( 0 )(t)		

Table 2 :

 2 Algorithm settings and optimization results for the Goddard problem Primal solving algorithm Primal-dual solving algorithm

	0	0.1	0.1
	S P ( 0 )(t) / S P D ( 0 )(t) (1.2, 0.05, 1, 0.3, 0, 1, 1)	(1.2, 0.05, 1, 0.3, 0, 1, 1, 0, 0, 0)
	α	0.75	0.5
	tol	10 -7	10 -8
	final time	0.204048	0.204046
	final altitude	1.01271760	1.01271766
	execution time (s)	17.5	4.2
	9 Data availability statement	

  10: Sequence of optimal penalized state-constraint dual variables λg n for primal-dual Robbins problem.

		1.008 1.010 1.012	iter = 7 iter = 14 iter = 21 iter = 28 iter = 35 iter = 42 iter = 49							
	h(t)	1.006								
		1.004								
		1.002								
		1.000								
	[h]	0.000	0.025	0.050	0.075	0.100 time	0.125	0.150	0.175	0.200

A.3 Proof of proposition 3

Let δ > 0, and for all (u, x 0 ) ∈ V ad ∞ let us denote γ δ (u, x 0 ) := inf v∈B . V ad ((u,x 0 ),δ)∩V ad sup t g(x[v, y 0 ](t))

From assumption 2, we have γ δ (u, x 0 ) < 0. Then, ∀(u, x 0 ) ∈ V ad ∞ , ∃(v, y 0 ) ∈ B . V ad ((u, x 0 ), δ) ∩ V ad such that sup t g(x[v, y 0 ](t)) ≤ γ δ (u, x 0 ) ≤ sup

In addition, if S g u,x 0 (G δ ) = ∅ , then ∀t ∈ S g u,x 0 (G δ ) we have

Now, let us denote

From assumption 2, for all (u,

In addition, if S c u,x 0 (C δ ) = ∅ , then ∀t ∈ S c u,x 0 (C δ ) we have Sequence of optimal penalized first mixed-constraint multiplier c 1, Sequence of optimal penalized second mixed-constraint multiplier c 2,

Figure 12: Sequence of optimal penalized lower control constraint dual variables λc Sequence of optimal penalized velocity v Sequence of optimal penalized mass m Sequence of optimal penalized thrust u Sequence of optimal penalized adjoint state p Sequence of optimal penalized first mixed-constraint multiplier c 1, Sequence of optimal penalized second mixed-constraint multiplier c 2,

Figure 32: Sequence of optimal penalized upper control constraint dual variables λc 2, n for Goddard primal-dual problem.