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SPHERICAL ACTIONS ON LOCALLY FACTORIAL FANO
VARIETIES OF DIMENSION ≤ 4 AND RANK ≤ 2

THIBAUT DELCROIX AND PIERRE-LOUIS MONTAGARD

Abstract. We obtain the exhaustive list of 337 faithful spherical actions of rank two
or less on locally factorial Fano manifolds of dimension four or less. As a preliminary
step, we determine the explicit list of spherical homogeneous spaces of dimension four
or less, together with their combinatorial data. Then we classify the possible locally
factorial G/H-reflexive polytopes for each such spherical homogeneous space G/H.
From the combinatorial data gathered in this article, one can easily read off the Picard
rank (even the Picard group), Fano index, anticanonical volume of the underlying
locally factorial Fano variety, etc.

1. Introduction

Kollr, Miyaoka and Mori proved boundedness of smooth Fano manifolds of a given
dimension over C [KMM92, Kol96], in particular, that there is only a finite number of
deformation classes of Fano manifolds of a given dimension. This number of deformation
classes is expected to grow very fast, but the classification of Fano threefolds (up to
deformations) was obtained through the combined work of Iskovskikh [Isk77, Isk78],
Mori and Mukai [MM82, MM03]: there are 105 deformation classes. Furthermore, their
geometry is quite well understood, with various descriptions available.

The full classification in dimension four is still unknown and challenging. It is thus
desirable to have at least partial classification results, and in this direction, to consider
subclasses of Fano manifolds. Almost-homogeneous Fano manifolds form a natural such
subclass. These are the manifolds which admit a large group of automorphism, acting
with an open and dense orbit. The most well-known among these are toric manifolds,
when there is an algebraic torus of automorphisms acting with an open and dense orbit.

More importantly, this additional data of a group action is very important in the
study of various geometric questions. We thus switch to the goal of classifying almost-
homogeneous, faithful actions of connected reductive groups on Fano fourfolds. This
remains widely unknown to our knowledge, and we must restrict to a more reasonable
class of actions.

Toric manifolds are fully encoded by combinatorial data, and in particular, toric Fano
manifolds are encoded by a class of polytopes with integral vertices up to unimodular
transformations, namely smooth reflexive polytopes. Batyrev, Watanabe and Watanabe,
and Sato used this combinatorial correspondence to classify toric Fano manifolds in
dimension three [Bat81, WW82] and four [Bat99, Sat00]. More generally, a huge step
forward in the study of equivariant embeddings of homogeneous spaces (in other words,
almost-homogeneous varieties) under the action of a connected reductive algebraic group
was achieved by Luna and Vust [LV83]. In the case when the homogeneous space is
spherical (that is, when not only the group but also any of its Borel subgroups act with
an open and dense orbit), there is a combinatorial classification of embeddings, vastly

Date: August 30, 2023.
1



2 THIBAUT DELCROIX AND PIERRE-LOUIS MONTAGARD

generalizing the case of toric varieties [Kno91]. Furthermore, spherical homogeneous
spaces themselves are uniquely determined by combinatorial data [Los09].

While great effort was put on understanding the classification of spherical varieties,
it appears that very little was done in an approach via small dimensions. Motivated by
earlier work of Hofscheier in his PhD thesis, we initiate this approach by classifying all
spherical homogeneous spaces of dimension less than four, then all their locally factorial
Fano embeddings in rank two or less. The rank of a spherical variety being less than
the dimension, rank three and four remain, but rank four corresponds to the toric case
obtained by Batyrev and Sato.

Theorem 1.1. There are 337 faithful spherical actions on locally factorial Fano varieties
of dimension four or less, and rank two or less. The combinatorial data of these actions
are described in the body of the paper.

dim 1 2 3 4

rank = 0 1 2 6 9
rank = 1 1 5 13 57
rank = 2 0 5 44 194

rank ≤ 2 2 12 63 260

We leave the rank three case for future work, as it most likely requires computer
assistance (see however Section 5 for a characterization of the polytopes to classify, and
some examples). We learned, as this preprint was almost fully written, that Girtrude
Hamm is working out the classification of all canonical spherical Fano fourfolds of rank
three, from which it should be easy to read off the locally factorial ones. Note that
canonical toric Fano varieties of dimension three were classified by Kasprzyk [Kas10]
using computer assistance, yielding an astounding list of 674 688 integral polytopes up
to GL3(Z)-action.

It must be noted, and obvious in view of the cases of dimension one, two and three,
that a given locally factorial Fano variety may be equipped with several different faith-
ful actions of connected reductive groups. These different structures can be useful in
different settings, so it is important to classify these. As a basic example, P1 × P1

is
homogeneous under the action of SL

2
2, but if one considers the diagonal action of SL2,

one is able to consider the pairs (P1 × P1
, ε(diagP1)) and study their geometry with

tools from the theory of spherical varieties.
In a few exceptional cases, there are two faithful actions of different groups, but one

action factors through the other and the orbits are the same. This is obviously the
least interesting case of our classification. The only examples that we are aware of in
our list (apart from the action on the left of the connected normalizer of the isotropy

group, which will always be taken into account), are the homogeneous space P3
under

the action of Sp4, as well as the natural Fano P1
-bundles built from it PP3(O ⊕ O(k))

for 0 ≤ k ≤ 3, and the Fano cone over it, which is P4
.

Toric varieties form, as already mentioned, the best-known subclass of spherical vari-
eties. Toric varieties are often used to provide tractable examples of higher complexity
actions by so-called downgrading the action: one considers a smaller dimensional torus
acting, and obtains the combinatorial data for this smaller group action from the com-
binatorial data of the toric variety. In the list of spherical varieties, quite a few consist,
to the opposite, of upgradings of toric varieties: the connected reductive group is of rank
four, so that the maximal torus action provides the structure of toric variety, but as a
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(horo)spherical variety the rank is lower. In particular, moment polytopes of upgradings
of toric varieties are of a strictly smaller dimension than the dimension of the variety.

Despite these comments, we should highlight that many examples in our classification
are neither homogeneous nor toric under a larger group action. In fact, this was already
known in the case of smooth Fano threefolds: there are 18 smooth Fano threefolds that
admit a toric structure, 5 that are homogeneous, 3 of which being at the intersection of
both classes, some of these admit spherical structures that are neither toric nor homo-
geneous, and there are nine Fano threefolds that admit only spherical structures which
are neither toric nor homogeneous. For Fano fourfolds, there are many more examples.

Let us finally comment on the locally factorial assumption. We started this introduc-
tion discussing smooth Fano manifolds, but switched for our main statement to locally
factorial Fano varieties. This is because, for spherical varieties, the criterion for being
locally factorial is much easier to deal with than the criterion for being smooth. For
toric varieties the two conditions are in fact equivalent. For spherical varieties in general
it is not true, but it is still the case for toroidal spherical varieties. This observation,
added to the various explicit descriptions given throughout the paper and some pre-
viously known classifications, allows one to show, with little effort, that all but 16 of
our varieties are smooth. Among the 16 remaining, we know for sure that three are
singular, and leave it to the interested reader to work out which of the 13 remaining
Fano varieties are smooth. Combinatorial smoothness criterions for spherical varieties
are available [Bri91, Gag15], but their application is somewhat involved in general. Let
us also mention that a method to classify smooth Fano polytopes for spherical varieties
under the action of a given group is described in [CFPVS20]. We do not rely on this
approach here.

The paper is organized as follows. In Section 2, we review the definitions needed for
spherical homogeneous spaces and locally factorial Fano embeddings of such homoge-
neous spaces, as well as the fundamental properties that will be needed. We conclude
that section with a very quick review of how one can recover plenty of geometric infor-
mation on the embeddings directly from the combinatorial data provided in the paper.
In Section 3, we carry out the classification of spherical homogeneous spaces of dimen-
sion four or less. The key ingredient, that severely restricts the possible groups acting
faithfully on fourfolds, is the local structure theorem for spherical homogeneous spaces.
Without this ingredient, one should a priori consider all reductive groups of rank four or
less (as there cannot be a faithful action of a torus of dimension strictly more than four
on a fourfold). With the local structure theorem, together with the known classifica-
tion of rank one spherical homogeneous spaces, one is essentially reduced to considering
spherical subgroups of SL2×G

3
m, SL

2
2×G

2
m and SL3×G

2
m. For these, we rely on the

known classification of Lie subalgebras to conclude.
The remaining of the paper provides, for each spherical homogeneous space of di-

mension four or less, the combinatorial data, as well as the list of locally factorial Fano
embeddings of rank two or less, and dimension four or less. After introducing our con-
ventions in Section 4, we start with the case when the group is of the form SL2×G

n
m in

Section 5. Since fourfolds would be of rank three, we do not classify fourfolds in this case,
but we do recover the classification results in the PhD theses of Pasquier [Pas06] and
Hofscheier for threefolds. In Section 6, we deal with spherical varieties under the action
of SL

2
2×G

n
m. This is where there are more diverse cases in rank two. Some special cases

were known thanks to the work of Ruzzi [Ruz12] for embeddings of symmetric spaces.
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Finally, we deal with the case of SL3×G
n
m in Section 7, then with the remaining rank

one cases in Section 8.
In the appendices we provide big tables providing information on each spherical action

and the underlying Fano variety. For threefolds we identify the underlying Fano threefold
in each case, while for the case of Fano fourfolds we leave it for later refinement. We
however do provide geometrical data such as the Picard rank, anticanonical degree, and
we determine if they admit Khler-Einstein metrics. These invariants alone allow us
to affirm (by comparing with the data from [Bat99, Sat00]) that at least 117 different
underlying locally factorial Fano fourfolds appear, among which at least 42 non toric
fourfolds. A natural next step, that we leave for the future, would be to compute the
Cox rings using [Gag14]. This would give in particular a way to identify the underlying
Fano varieties.

Another natural next step to this paper would be to relax the assumptions on the
singularities, to classify Gorenstein/terminal/canonical spherical Fano fourfolds. Part of
our paper (the determination of spherical homogeneous spaces and their combinatorial
data) is still applicable, but the determination of all possible polytopes may be more
involved.

Finally, one of the first author’s motivation is naturally the quest for canonical Khler
metrics. Again, up to the issue of identifying isomorphic underlying Fano fourfolds, we
solved here the question of existence of Khler-Einstein metrics, obtaining at least 24
Khler-Einstein fourfolds, and at least 93 non Khler-Einstein fourfolds. The existence
of many other canonical Khler metrics could be settled using our data, by applying for
example [Del23a, Del23b] for cscK metrics, and [LLW22] for weighted solitons.

The article is written with lots of details when the first notions appear, with lots
of examples. In the later sections, we give less details on how the classifications are
obtained to keep the article not excessively long.

Acknowledgements. The first author is partially funded by ANR-21-CE40-0011 JCJC
project MARGE and ANR-18-CE40-0003 JCJC project FIBALGA. We thank Girtrude
Hamm for informing us of her upcoming work. We thank Stphanie Cupit-Foutou, Liana
Heuberger, Alexander Kasprzyk, Laurent Manivel, Naoto Yotsutani and Xiaohua Zhu
for their interest and comments on our work.

2. Preliminaries on spherical varieties

2.1. Notation. Throughout the article, we work over the field of complex numbers C.
Let G be a connected complex linear reductive group. Fix a Borel subgroup B of G

(recall that any two Borel subgroups are conjugate) and a maximal torus T ⊂ B. We
denote by X

∗(B) the group of characters of B, usually denoted additively (we will use
the same notation for other groups, for example X

∗(G) is the group of characters of G,
reduced to {0} if G is semisimple).

Let R ⊂ X
∗(T ) denote the root system of G with respect to T , and let R

+
and

S = {α1, . . . , αrank(G)} ⊂ R
+
⊂ R denote the set of positive roots and the set of simple

roots associated to the Borel subgroup B. Let {$1, . . . , $rank(G)} denote the fundamental
weights associated to the simple roots. The integer rank(G) is called the rank of G.

When G = G1 × ⋯ × Gn, we fix T = T1 × ⋯ × Tn and B = B1 × ⋯ × Bn where
Ti is a maximal torus of Gi and Bi is a Borel subgroup of Gi containing Ti. We al-
ways assume that the simple roots and fundamental weights are ordered consistently
with the product: the roots α1, . . . , αrank(G1) are the simple roots of G1, the roots
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αrank(G1)+1, . . . , αrank(G1)+rank(G2) are the simple roots of G2, etc. When we explicitly
write G = G1 ×Gn

m where G1 is a semisimple group, we denote by χi the projection to
the i-th Gm factor. These define characters of G.

A character λ of T may, depending on the context, be defined on various groups,
either subgroups of T or groups containing T . We distinguish these when necessary by
indicating the domain we are considering as λ∣•. For example, if G = G1 × Gm, χ1

may be considered as the identity character χ1∣{1}×Gm on Gm, as a character χ1∣G of the

group G, or as an element χ1∣T ∈ X∗(T ).
Standard parabolic subgroups of G are the subgroups of G that contain B. They are

parametrized by the set of subsets of S. More precisely, for I ⊂ S, we denote by PI
the (unique) parabolic subgroup containing B such that $i extends to PI for i ∈ I. We
may thus write, with the convention above, $i∣PI ∈ X

∗(PI). Beware that some authors
rather associate the finite set S \ I with PI . Note that any parabolic subgroup of G is
conjugate to a standard parabolic subgroup, which is of the form PI .

Let B
−

denote the Borel subgroup opposite to B. We denote also by QI the (unique)
parabolic subgroup containing B

−
such that $i ∈ X

∗(QI) for i ∈ I.

2.2. Spherical homogeneous spaces.

Definition 2.1. An algebraic subgroup H ⊂ G is spherical if B acts with an open orbit
in the homogeneous space G/H. The homogeneous space G/H itself is also called a
spherical homogeneous space.

Equivalently, an algebraic subgroup is spherical if and only if the action of H on G/B
has an open orbit. Note that this condition reads on the Lie algebras: an algebraic
subgroup H is spherical if there exists a g ∈ G such that g = b + Ad(g)(h).
Example 2.2. We start with a trivial example for reference later in the paper. Consider
the case where G ≃ Gn

m is a torus. Then algebraic subgroups are all of the form H =

⋂k

i=1 ker(χi ∶ G → Gm) where {χi} ⊂ X
∗(G) is a family of Z-linearly independent

characters of G. Any such subgroup is spherical, since B = G in this case, hence the
action of B on G/H is surjective.

Example 2.3. An algebraic subgroup H of SL2 is spherical if it acts with an open orbit
on SL2 /B = P1

. As a consequence, any positive dimensional algebraic subgroup of SL2

is spherical. The classification of subgroups of SL2 up to conjugation is well known: a
positive dimensional algebraic subgroup H of SL2 is either: H = SL2, H = T a maximal
torus, H = NSL2

(T ) its normalizer, or H = kerχ ⊂ B where B is a Borel subgroup
of SL2 and χ is a character of B. Note that the group X

∗(B) of characters of B is
isomorphic to Z, and that χ and −χ define the same algebraic subgroup ker(χ), hence
the latter infinite family of subgroups is parametrized by Z≥0.

From now on, we fix H, a spherical subgroup of G. The group G acts on the vector
space C(G/H) of rational functions on G/H by (g ⋅ f)(x) = f(g−1

x).
Definition 2.4. The weight lattice M = M(G/H) of G/H is the subset of X

∗(B)
formed by all eigenvalues for the action of B on C(G/H), that is, λ ∈M if there exists
0 ≠ f ∈ C(G/H) such that for all b ∈ B, b ⋅ f = λ(b)f . The rank rank(G/H) of G/H
is the rank of the lattice M(G/H).
Example 2.5. If G is a torus and H is the trivial subgroup, then M = X

∗(G) since
any character of G defines a B = G-semi-invariant rational function on G.
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Example 2.6. By the Bruhat decomposition, a parabolic subgroup Q of G is spherical.
Furthermore, since the unipotent subgroup B

u
also acts with an open dense orbit on

G/Q, any B-eigenvector is constant. Hence M(G/Q) = {0} and rank(G/Q) = 0.
Conversely, if rank(G/H) = 0 then there is an open dense orbit of B

u
in G/H, and by

Lie algebra considerations, H must contain a Borel subgroup of G, i.e. H is a parabolic
subgroup of G.

Example 2.7. Let G = SL2 and H = T the maximal torus of diagonal matrices. Since
we are interested in rational functions, we may as well work on a nice projective model
of G/H. Consider the diagonal action of SL2 on P1 × P1

, by

[a b
c d

] ⋅ ([x1 ∶ y1], [x2 ∶ y2]) = ([ax1 + by1 ∶ cx1 + dy1], [ax2 + by2 ∶ cx2 + dy2]).

Then there are two orbits: the diagonal embedding of P1
and its complement, which is

G-equivariantly isomorphic to G/H (H is the stabilizer of the point ([1 ∶ 0], [0 ∶ 1]).
Let B be the Borel subgroup of upper triangular matrices. One easily checks that the

rational function f ∶ ([x1 ∶ y1], [x2 ∶ y2])↦ x1
y1
− x2

y2
is B-semi-invariant with weight the

character [a b

0 a
−1] ↦ a

−2
, which is the negative root −α1 = −2$1. As a consequence,

we have α1Z ⊂M .
Conversely, let λ ∈ M and let f be a B-semi-invariant rational function with weight

λ. Then since −I2 acts trivially on P1 × P1
, we have −I2 ⋅ f = f = λ(−I2)f , hence

λ ∈ α1Z.

Example 2.8. For G = SL2 and H = N(T ), we obtain a projective model by considering
the projectivization P2

of size two symmetric matrices, equipped with the action of SL2

by congruences. Writing such a matrix as [x y
y z

], and homogeneous coordinates as

[x ∶ y ∶ z], the action is given by

[a b
c d

] ⋅ [x ∶ y ∶ z] = [a2
x + 2aby + b

2
z ∶ acx + (ad + bc)y + bdz ∶ c2

x + 2cdy + d
2
z]

The rational function f ∶ [x ∶ y ∶ z] ↦ y
2−xz
z2

is semi-invariant under the action of the

Borel subgroup B of upper-triangular matrices, with weight −4$1 ∶ [
a b

0 a
−1] ↦ a

−4
.

Hence 4$1Z ⊂M .
This is actually an equality. Indeed, note that the equation y

2 − xz = 0 defines the
prime SL2-stable divisor in P2

which is the complement of the open orbit SL2 /N(T ). If
M was larger than 4$1Z, then there would be a B-semi-invariant rational function r on
P2

with weight −2$1. Its square r
2

would be a B-semi-invariant rational function on P2

with weight −4$1 hence by the spherical property, r
2
= Cf for some constant C ∈ C.

This is inconsistent since the order of vanishing of f along the divisor {y2 − xz = 0} is
one, while the order of vanishing of r

2
along this divisor is an even integer.

A fundamental result in the theory of spherical homogeneous spaces and their equi-
variant embeddings is the local structure theorem of Brion, Luna and Vust [BLV86]. We
only state the result for homogeneous spaces in order to derive some simple consequences.

Definition 2.9. The adapted parabolic subgroup associated to G/H is the stabilizer P
of the open B-orbit in G/H.
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Proposition 2.10. [BLV86] Assume that BH is open in G. Then there exists a Levi
subgroup L of the adapted parabolic subgroup P , with connected center Z, such that
P∩H = L∩H contains [L,L], and that the map P

u×Z/(Z∩H)→ B/(B∩H), (p, x)↦
p ⋅ x is an isomorphism. In particular, M = X

∗(Z/(Z ∩H)).

Note that we can always reduce to the case when BH is open in G, by replacing H or
B with a conjugate. Anyway we will mostly use the following consequence, which does
not require conjugating H or B.

Corollary 2.11. Let P be the adapted parabolic subgroup of G. Then dim(G/H) =
rank(G/H) + dim(G/P ). Furthermore, if P contains a simple factor of G, then this
factor acts trivially on G/H.

2.3. Valuation cone. A valuation on G/H is a group morphism ν ∶ C(G/H)∗ → Q
such that ν takes value zero on constant functions, and ν(f1 + f2) ≥ min(ν(f1), ν(f2))
whenever f1, f2 and f1 + f2 are in C(G/H). Given a valuation ν on G/H, let ρ(ν)
denote the morphism M → Q which sends λ ∈ M to ν(fλ) where fλ is an eigenvector
of B in C(G/H) corresponding to the eigenvalue λ. Set N ∶= Hom(M,Z), and let ⟨⋅, ⋅⟩
denote the duality bracket between M ⊗Q and N ⊗Q.

Proposition 2.12. [BP87]

• The map ρ induces an isomorphism from the set of all G-invariant valuations on
G/H to a closed cosimplicial convex cone V in N ⊗Q.

• The cone V is the cone of elements x ∈ N ⊗ Q such that ⟨σ, x⟩ ≤ 0 for all σ

such that there exist two simple G-sub-modules of C[G](H)
, M1 and M2, and B-

eigenvectors f1 ∈ M1, f2 ∈ M2 and f ∈ M1M2, such that σ is the B-eigenvalue
of f1f2f

−1
.

Definition 2.13. The cone V is called the valuation cone of G/H. The (finite) set Σ
of primitive elements of M such that V = {x ∈ N ⊗ Q ∣ ⟨σ, x⟩ ≤ 0} is called the set of
spherical roots of G/H.

Example 2.14. Consider the case G = SL2 and H = T . We write an element of G as

[a b
c d

]

and choose as usual B the subgroup of upper triangular matrices, and T the subgroup
of diagonal matrices. Consider the regular functions on G defined by

f1 ∶ [
a b
c d

]↦ d

and

f2 ∶ [
a b
c d

]↦ c

By direct computation, these two functions are B-semi-invariant (on the right) with
weight $1, and T -semi-invariant (on the left). Let M1 and M2 the simple G-sub-modules

of C[G](T )
with B-stable line generated by f1 and f2. Consider now the function

f = f1 ([
0 1
−1 0

] ⋅ f2) − ([ 0 1
−1 0

] ⋅ f1) f2 ∈M1M2

f ∶ [a b
c d

]⟼ da − bc ≡ 1
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Since f is constant, it is a B-eigenvector, and the B-eigenvalue of f1f2f
−1

is equal to
2$1 = α1.

Recall from Example 2.7 that M = α1Z, and let ξ ∈ N be the primitive generator of N
such that ⟨ξ, α1⟩ = 1. From the above we deduce that α1 ∈ Σ, and thus V ⊂ ξQ≤0. But
from Example 2.7 again, we know that V ≠ {0} since the order of vanishing along the
diagonal in P1×P1

is a non-trivial G-invariant valuation. Thus V = ξQ≤0 and {α1} = Σ.

From that description of the valuation cone, Brion and Pauer derive strong conditions
on the possible spherical roots.

Proposition 2.15. [BP87] Choose a maximal torus T ⊂ B. An element of Σ is, up to
multiple, either a positive root or the sum of two strongly orthogonal positive roots of G.

Example 2.16. When G = SL2, or more generally SL2×G
n
m, then either Σ = ∅ or Σ is

the singleton whose element is the primitive multiple of α1 in M .

2.4. Colors.

Definition 2.17. A codimension one orbit of B in G/H is called a color of G/H. We
will often identify the orbit with its orbit closure, which is a prime divisor in G/H, or its
closure in a given embedding X of G/H, which is a prime divisor in X. The set of colors
of G/H is denoted by D(G/H). There are two maps associated to colors. The first is
the restriction of the map ρ to D(G/H), identified with the set of divisorial valuations
induced by the colors. The second is the map ζ from D(G/H) to the set P(S) of
parabolic subgroups of G containing B, which sends a color to its stabilizer in G. For
simplicity we identify PI with I in the notations when it does not create confusions.

Beware that the valuations associated to colors are not G-invariant, hence the color
map ρ ∶ D(G/H)→ N is not injective in general. Note also that the adapted parabolic
is PI where I = ⋃D∈D ζ(D).
Example 2.18. We go on with Example 2.7, with the same notation. It follows from the
description of the action that there are two colors D+ and D− of SL2 /T whose equations
are given by y1 = 0 and y2 = 0. We have ζ(D±) = {α1}, that is, the stabilizer of each
color is the Borel subgroup itself. The order of the function f ∶ ([x1 ∶ y1], [x2 ∶ y2]) ↦
x1
y1
− x2

y2
=

x1y2−x2y1
y1y2

on D± is −1 for i = 1, 2. Hence ρ(D±) is the morphism defined by

ρ(D±)(α1) = 1.

Definition 2.19. The combinatorial data associated toG/H is the triple (M,Σ, (D, ρ, ζ))
where M ⊂ X

∗(B) is the weight lattice, Σ ⊂ M is the set of spherical roots, and D is
the set of colors, thought of as an abstract set equipped with two maps ρ ∶ D → N =

Hom(M,Z) and ζ ∶ D → P(S).
In the above definition, stating that D is an abstract set means that the description of

elements of D as B-orbits in G/H can be totally forgotten. In other words, we may write
(D1, ρ1, ζ1) = (D2, ρ2, ζ2) if there exists a bijection f ∶ D1 → D2 such that ρ1 = ρ2 ◦ f
and ζ1 = ζ2 ◦ f .

Proposition 2.20. [Los09] The combinatorial data (M,Σ, (D, ρ, ζ)) fully encodes the
spherical subgroup H up to conjugacy.

Example 2.21. Let αi be a simple root, and Q{αi} the maximal parabolic subgroup

of G containing B
−

and with $i ∈ X
∗(Q{αi}) as introduced in the notations section.

By the Bruhat decomposition, there are two B-orbits in G/Q{αi}: an open orbit, and a
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codimension one orbit Dαi . In particular, Q{αi} is a spherical subgroup, D(G/Q{αi}) =
{Dαi} and ζ(Dαi) = P{αi}.

More generally, for I ⊂ P(S), let QI denote the associated parabolic subgroup con-
taining B

−
and for i ∈ I, let πi ∶ G/QI → G/Q{αi} denote the projection induced by the

inclusion QI ⊂ Q{αi}. By the Bruhat decomposition again, the parabolic subgroup QI is

a spherical subgroup, D(G/QI) = {π−1
i (Dαi) ∣ i ∈ I} ≃ I and ζ(π−1

i (Dαi)) = {αi}.
Recall from Example 2.6 that M(G/QI) = {0}. As a consequence, Σ = ∅ and

ρ ∶ D(G/QI) → {0} is the zero map. We have fully described the combinatorial data
for spherical homogeneous spaces of rank 0.

2.5. Parabolic induction of spherical homogeneous spaces.

Definition 2.22. If there exists a proper parabolic subgroup Q of G, a connected
reductive group G0, a spherical subgroup H0 ⊂ G0 and an epimorphism π ∶ Q→ G0 such
that G/H is the quotient (G ×G0/H0) /Q under the action q ⋅ (g, x) = (gq−1

, π(q) ⋅ x),
then we say that G/H is obtained by parabolic inductionl from G0/H0.

Remark 2.23. Note that H ⊂ Q, and Q
u
⊂ H. In fact, this characterizes spherical

homogeneous spaces that are obtained by parabolic induction, and this can be read off
from the Lie algebras of G and H alone.

We place ourselves in the setting of the previous definition and assume furthermore
that Q contains the Borel subgroup B

−
opposite to B. Hence Q = QI for some subset I

of simple roots. Let B0 be the image of Q ∩B by π. It is a Borel subgroup of G0. The
projection from Q ∩B to B0 induces an inclusion X

∗(B0) ⊂ X∗(Q ∩B) = X∗(B).
The following result allows to recover the combinatorial data of the spherical homo-

geneous space G/H, obtained by parabolic induction, from the combinatorial data of
G0/H0 and the data of I alone.

Proposition 2.24. The combinatorial data (M,Σ, (D, ρ, ζ)) and (M0,Σ0, (D0, ρ0, ζ0))
of G/H and G0/H0 satisfy the following relations:

M =M0 ∀αi ∈ I, ρ(αi) = α∨i ∣M ρ∣D0
= ρ0

Σ = Σ0 ∀αi ∈ I, ζ(αi) = {αi} ζ∣D0
= ζ0

D ≃ D0 ⊔ I

Proof. All statements but that about ζ are directly contained in [Tim11, Proposi-
tion 20.4]. Let us just recall a bit how the colors can be described to justify the expression
of ζ.

For each αi ∈ I, the associated B-stable prime divisor in G/H is the pullback of the
closed B-orbit in G/Qαi under the projection G/H → G/Qαi induced by the inclusion
H ⊂ QI ⊂ Qαi . The stabilizer of this divisor is thus exactly Pαi .

Given aB0-stable prime divisorD0 ofG0/H0, the correspondingB-stable prime divisor
is G×D0

Q
of G/H. It follows that ζ(D) = ζ0(D). Note that this equality makes sense

since the set of simple roots of G0 with respect to B0 is a subset of the set of simple
roots of G with respect to B under the inclusion π

∗
. �

Definition 2.25. A spherical homogeneous space G/H obtained by parabolic induction

from a torus (G0 = Gk
m, H0 = {id}) is called a horospherical homogeneous space.

Remark 2.26. It follows from the definition and Example 2.2 that a horospherical
homogeneous space is defined by the data of a parabolic subgroup Q and of a finite
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set {χ1, . . . , χk} ⊂ X
∗(Q) of Z-linearly independent characters of Q. Note also that

Q = NG(H) and that one recovers the horospherical subgroup H as the intersection of

kernels H = ⋂k

i=1 ker(χi).
Example 2.27. Let I ⊂ S and let {χ1, . . . , χk} be a Z-linearly independent family in

X
∗(QI). Let H = ⋂k

i=1 ker(χi ∶ QI → Gm) be a horospherical subgroup. Then by
Proposition 2.24, M is the lattice generated by the χi, Σ = ∅, D ≃ I, ζ(αi) = {αi} and
ρ(αi) = α∨i ∣M .

By Example 2.3, apart from the torus and its normalizer, all spherical subgroups of
SL2 are horospherical.

2.6. Equivariant automorphism group.

Proposition 2.28. [BP87, Section 5] The group Aut
G(G/H) = NG(H)/H of G-

equivariant automorphisms of G/H is diagonalizable. Its neutral component is a torus
of dimension d = dim(V∩(−V)), the dimension of the linear part of the valuation cone.

Remark 2.29. Note that a spherical homogeneous space G/H is thus also spherical

under the action of the connected reductive group G × Aut
G,0(G/H), and under the

action of its image in Aut(G/H).
Corollary 2.30. [BP87, Corollaire 5.4] A spherical homogeneous space G/H is horo-
spherical if and only if the valuation cone is V = N ⊗Q, equivalently, Σ = ∅.

Combining this characterization with Proposition 2.15, we can get a description of
the spherical roots when there are few options available.

Corollary 2.31. Assume that G = SL2×G
n
m for some n ∈ Z≥0, and that G/H is not

horospherical. Then Σ is the singleton formed by the primitive positive multiple of α1 in
M .

2.7. Fano embeddings and G/H-reflexive polytopes. We recall the combinatorial
caracterization of Fano Gorenstein spherical embeddings of G/H obtained from [Bri89,
Bri97] in [GH15a], adding in the locally factorial condition.

Let κ be the sum of all roots of the adapted parabolic P . For D ∈ D, set mD ∶= 1 if

ζ(D) ∩ (Σ ∪ 1

2
Σ) ≠ ∅, and mD ∶= ⟨α∨, κ⟩ for α ∈ ζ(D) otherwise.

Definition 2.32. A polytope Ω ⊂ N ⊗ Q with set of vertices V (Ω) is called locally
factorial G/H-reflexive if:

(1) 0 ∈ Int(Ω),
(2) ∀D ∈ D, ρ(D)

mD
∈ Ω,

(3) V (Ω) ⊂ ((N ∩ V) ∪ {ρ(D)
mD

, D ∈ D}),

(4) for every facet F of Ω such that Cone(F ) ∩ Int(V) ≠ ∅, let DF = {D ∈ D ∣
ρ(D)
mD

∈ F}, then

(a) ρ ∶ DF → Cone(F ) is injective,

(b) V (F ) = {ρ(D)
mD

∣ D ∈ DF} ∪ CF , and CF ∪ ρ(DF ) forms a basis of N .

Remark 2.33. In [GH15a, Definition 2.10], with their notation, the colored cone associ-
ated to a supported cone spanned by a facet F of the polytope should read (Cone(F ), {Di ∣
ρ(Di)
mi

}) instead of (Cone(F ), ρ−1(F )) (compare [Pas08, Remarque 3.3]).



SPHERICAL FANO VARIETIES OF DIMENSION ≤ 4 AND RANK ≤ 2 11

Proposition 2.34. [GH15a, Theorem 1.9] The set of isomorphism classes of locally
factorial Fano spherical embeddings of G/H is in bijection with the set of locally factorial
G/H-reflexive polytopes.

Example 2.35. For SL2-varieties, the possible normal equivariant embeddings are well
known, and it is easy to check which among them are locally factorial Fano. In the non-
horospherical case, the only examples are P1 × P1

and P2
, which are smooth and Fano.

In the horospherical case, apart from the rank zero P2
, one gets two embeddings for each

choice of horospherical subgroup H = ker(a$1 ∶ B
−
→ Gm) for a ∈ Z>0: the weighted

projective plane P(1, 1, a) and the P1
-bundle PP1(O⊕O(a)). The only examples that are

Fano and locally factorial are for a = 1: P2
= P(1, 1, 1) and Blpoint P

2
≃ PP1(O ⊕O(1)).

This last statement can be recovered quickly from Gagliardi and Hofscheier’s result:
consider the case H = ker(a$1). One has M = a$1Z. We let ξ denote the generator
of N such that ξ(a$1) = 1. Let Ω be a locally factorial G/H-reflexive polytope, then
Ω = [dξ, eξ] ⊂ N ⊗Q and from the definition, we have the following conditions:

(1) d < 0 < e
(2) a

2
≤ e

(3) d ∈ Z and e ∈ Z ∪ {a
2
}

(4) (a) no condition
(b) d = −1 and e = 1 ≠ a

2
or a = 1 = 2e

To exclude a ≥ 2 we first focus on the last condition: it excludes a = 2 and imposes
e = 1 if a > 2. But if e = 1 we have by the second condition a = 1 or 2, thus a = 2, a
contradiction. One easily checks that the conditions are satisfied if a = 1.

Example 2.36. In the toric case G = Gn
m, H = {1}, we recover the definition of a

smooth Fano polytope: a polytope in M ⊗ Q with vertices in M , which contains the
origin as an interior point, and such that the collection of vertices of any facet is a basis
of M .

2.8. Geometry of the associated Fano manifold. For each of the locally factorial
Fano embeddings obtained, one can read off from the locally factorial G/H-reflexive
polytope some aspects of its geometry, such as a description of its Picard group, Fano
index, moment polytope, anticanonical degree and K-stability. This is possible thanks
to the following combinatorial translations of these data for spherical varieties.

Let X be a locally factorial Fano spherical embedding of G/H, and let ∆ be the
corresponding locally factorial G/H-reflexive polytope. Then it follows from [GH15a]
that G-stable prime divisors in X correspond to vertices of ∆ which are in the valuation

cone, and are not of the form
ρ(D)
mD

. Let I denote this set of divisors, and let us denote

by Dv the G-stable prime divisor associated to the vertex v.
From [Bri89], since X is locally factorial, the Picard group of X is generated by D∪I,

and the relations are given by

∑
D∈D

⟨ρ(D), λ⟩D + ∑
Dv∈I

⟨v, λ⟩Dv = 0

for λ ∈M .
From [Bri97], we know a B-stable anticanonical divisor: it is given by

−KX = ∑
D∈D

mDD + ∑
Dv∈I

Dv
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with the same notation mD as in the previous section. Using these two results, we
can easily recover the Fano index of X from its associated combinatorial data. Note
that these results obviously predate Gagliardi and Hofscheier’s characterization of Fano
spherical embeddings and are used as essential ingredients in [GH15a].

By [Bri89] combined with [Bri97], we further know the anticanonical moment polytope

∆
+(X,K−1

X ) of X and the anticanonical degree (K−1
X )dim(X)

of X. Namely, the moment
polytope is given by

∆
+(X,K−1

X ) = κ + {m ∈M ⊗ R ∣ ∀D ρ(D)
mD

(m) + 1 ≥ 0}

where κ still denotes the sum of all roots of the adapted parabolic, D runs over all
B-stable prime divisors in X, and a divisor is identified with its associated divisorial
valuation. This is the translate by κ of the polytope dual to the locally factorial G/H-
reflexive polytope Ω.

Let RPu denote the set of positive roots of the unipotent radical of P . The anticanon-
ical degree is given by

degree(X) ∶= (K−1
X )(dim(X))

= (dim(X))!∫
−κ+∆+

∏
α∈RPu

{κ + p, α}
{%, α} dλ(p)

where dλ denotes the Lebesgue measure on M ⊗ R normalized by M , {, } denote the
Killing form and % denotes the half sum of all positive roots of G.

Finally, it follows from [Del20] that (X,K−1
X ) is K-semistable if and only if the point

∫
−κ+∆+

p ∏
α∈RPu

{κ + p, α}
{%, α} dλ(p) ∈M ⊗ R

is in the closed convex cone generated by Σ. Furthermore, it is K-stable, hence X admits
a Khler-Einstein metric, if and only if the above point is in the relative interior of the
cone generated by Σ.

To make the above quantities easily computable, we will give an explicit description
of the function

f ∶M ⊗ R→ R, p↦ ∏
α∈RPu

{κ + p, α}
{%, α}

when describing the combinatorial data of spherical homogeneous spaces.

3. Spherical homogeneous spaces of dimension four or less

In this section, we classify all possible spherical homogeneous spaces of dimension four
or less, regardless of whether or not they admit Fano embeddings.

3.1. Classification assumptions and first consequences. For the purpose of the
classification, we will make the following assumptions on G and G/H.

Assumption 3.1. We assume that G = G
sc × C where G

sc
is a semisimple, simply

connected group and C ≃ Gn
m is a torus. We assume that the action of G

sc
on G/H has

finite kernel and that the action of C on G/H is faithful.

We derive some first consequences of these assumptions for later use.

Remark 3.2. From Proposition 2.10, we obtain that the rank of G/H is at least dim(C)
if Assumption 3.1 is satisfied.
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Proposition 3.3. Under Assumption 3.1, assume furthermore that dim(C) = rank(G/H).
Then G/H is horospherical. Conversely, if G/H is horospherical, then there exists a
torus C̃ such that dim(C×C̃) = dim(G/H)−dim(G/P ), and G×C×C̃ acts transitively
on G/H satisfying the above assumptions.

Proof. Assume that dim(C) = rank(G/H). Since C acts faithfully on G/H, we have

dim(Aut
G(G/H)) ≥ dim(C) = rank(G/H). By Proposition 2.28, we deduce that V ∩

−V = N ⊗Q, and thus by Corollary 2.30, that G/H is horospherical.
The converse follows from applying Corollary 2.30 and Proposition 2.28 in the reverse

order. �

Remark 3.4. For a G-variety X, any orbit of G in X is locally closed. If G = T is
a torus and the action is faithful, then there is an orbit isomorphic to T as a variety.
In particular, the dimension of T must be less than that of X, and if X is normal and
dim(T ) = dim(X), then X is a toric variety. In particular, under Assumption 3.1, we
have rank(G) = dim(C)+ rank(Gsc) ≤ dim(G/H), and equality implies that X is toric
under the action of a maximal torus of G.

3.2. Idea of the classification. Let G = G
sc × C be a connected complex reductive

group and let G/H be a spherical homogeneous space satisfying Assumption 3.1. There
are two ingredients in the classification of spherical homogeneous spaces of low dimen-
sion:

(1) the consequences of the local structure theorem in Corollary 2.11, which together
with Assumption 3.1 allows to put strong restrictions on the possible groups G

(2) the classification of Lie subalgebras of low rank complex semisimple groups
[DR16a, DR16b] .

In order to use Corollary 2.11 to its full extent, we first recall the classification of
projective homogeneous spaces of dimension less than four in Table 1, which exhaust
the possibilities for G/P where P is the adapted parabolic subgroup. The notation W
denotes the variety of full flags in C3

, and Q
n

denotes the quadric of dimension n.
As a first consequence of Corollary 2.11, we know that if dim(G/H) ≤ 4, then G

sc

is one of the groups appearing in the first column of Table 1. More precisely, and
more generally, we have the following consequence on spherical varieties of arbitrary
dimension, but with rank close to the dimension.

Proposition 3.5. Assume that rank(G/H) = dim(G/H). Then P = G = C and H is
trivial.

Proposition 3.6. Assume that rank(G/H)+ 1 = dim(G/H). Then G
sc
= SL2 and the

adapted parabolic subgroup is equal to the Borel subgroup P = B.

Proposition 3.7. Assume that rank(G/H) + 2 = dim(G/H). Then G
sc
∈ {SL3, SL

2
2}.

Moreover, if G
sc
= SL3 then the adapted parabolic P is the maximal parabolic subgroup

(there is only one choice up to outer automorphism), and if G
sc
= SL

2
2, then P = B.

Proposition 3.8. Assume that rank(G/H) + 3 = dim(G/H). Then

G
sc
∈ {SL4, Sp4, SL3× SL2, SL

3
2, SL3}.

One could go on further using the classification of projective homogeneous spaces
of higher dimensions, but as the difference between the rank and the dimension grows
larger, the number of possibilities grows very fast.
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G X = G/P dim pic degree

SL2 P1
1 1 2

SL3 P2
2 1 9

SL
2
2 P1 × P1

2 2 8

SL3 W 3 2 48

Sp4 Q
3

3 1 54

Sp4 P3
3 1 64

SL
3
2 P1 × P1 × P1

3 3 48

SL3× SL2 P2 × P1
3 2 54

SL4 P3
3 1 64

SL3× SL2 W × P1
4 3 384

Sp4× SL2 Q
3 × P1

4 2 432

Sp4× SL2 P3 × P1
4 2 512

SL4 Q
4

4 1 512

SL
4
2 P1 × P1 × P1 × P1

4 4 384

SL3× SL
2
2 P2 × P1 × P1

4 3 432

SL
2
3 P2 × P2

4 2 486

SL4× SL2 P3 × P1
4 2 512

SL5 P4
4 1 625

Table 1. Projective homogeneous spaces of dimension ≤ 4

Under the assumption that dim(G/H) ≤ 4, a spherical homogeneous space which
satisfies rank(G/H) + 3 = dim(G/H) is of rank zero or one. Since the classification of
rank one spherical homogeneous spaces of arbitrary dimensions is well known [Akh83], we
can use it to treat this case. In the following subsections, we deal with the homogeneous
spaces under groups with G

sc
∈ {SL2, SL

2
2, SL3}, then with the remaining rank one cases.

3.3. Spherical homogeneous spaces with G
sc
= SL2. We wish to classify spherical

subgroups of SL2×G
n
m up to conjugation, with n ≤ 3 (see Remark 3.4). Since it is not

significantly different to treat the general case, we allow n > 3 as well.

Remark 3.9. This is essentially treated in the case n = 1 in [NvdPT08], where all
algebraic subgroups of GL2 up to conjugation are classified. We note however that there
is a minor mistake in the case H = γ(D∞) in the notations of that paper, as the group
D∞ itself does not appear in the classification.

Proposition 3.10. Let H be an algebraic subgroup of SL2×G
n
m whose projection to the

SL2 factor is of positive dimension. Then H is of one of the following forms:

(1) H = SL2×H2 where H2 is an algebraic subgroup of Gn
m,

(2) H ⊂ B is a horospherical subgroup,
(3) H is an algebraic subgroup of T ,
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(4) H = ⟨T1 ×K2, ([
0 −1
1 0

] , c)⟩ where K2 is an algebraic subgroup of Gn
m, c is a

primitive 2
l
-th root of unity in Gn

m for some l ≥ 0, c
2
∈ K2 and c ∉ K2 unless

l = 0.

Since we will work a bit at the Lie algebra level, we recall the following fact on Lie
algebras of algebraic subgroups [CT45, Che43] (actually, it is a property of the slightly
larger class of quasi-algebraic Lie subalgebras).

Remark 3.11. Let H be an algebraic subgroup of G. For any element in its Lie algebra
h ∈ h with Jordan-Chevalley decomposition h = t + u (where t is a semisimple element
of g and u is a nilpotent element of g), we have t ∈ h and u ∈ h.

Proof. We recalled in Example 2.3 the classification of spherical subgroups of SL2 up
to conjugation, that is, all positive dimensional algebraic subgroups of SL2. As a con-
sequence an algebraic subgroup H of SL2×G

n
m is spherical if and only if its image H1

under the projection to SL2 is positive dimensional.
We first work at the Lie algebra level. Recall that sl2 is generated as a complex vector

space by one semisimple element e0 and two nilpotent elements e+ and e− satisfying
the relation e0 = [e+, e−]. We identify these elements with elements of g, and we may
assume that e+ ∈ b.

Assume that H1 = SL2. Then by Remark 3.11, e+ and e− are in h, thus e0 = [e+, e−]
as well. Hence SL2×{1} ⊂ H ⊂ SL2×G

n
m, that is, H = SL2×H2 for some algebraic

subgroup of Gn
m.

Assume now that H1 is a Borel subgroup of SL2. Then by Remark 3.11, e+ ∈ h, thus
B
u
⊂ H ⊂ B, and H is a horospherical subgroup.

If H1 = T1, then H is a subgroup of the torus T = T1 ×Gn
m.

Finally we deal with the case H1 = NSL2
(T1). Fix for the moment a ∈ C∗. Set

n = [0 −1
1 0

] and t = [a 0

0 a
−1] .

As H1 = NSL2
(T1), there exists b and c ∈ Gn

m such that (t, b) ∈ H and (n, c) ∈ H. We
then have the following commutator in H:

(t, b)(n, c)(t, b)−1(n, c)−1
= (tnt−1

n
−1
, 1) = ([a

2
0

0 a
−2] , 1) .

Since a↦ a
2

is surjective on C∗, we conclude that T1 × {1} ⊂ H ⊂ NSL2
(T1) ×Gn

m.
Consider the kernel K of the surjective morphism H → NSL2

(T1)/T1 ≃ Z/2Z. It is of
the form T1×K2 for some algebraic subgroup K2 of Gn

m. The group H is fully determined
by one preimage (n, c) of the non-trivial element in Z/2Z: H = ⟨T1 ×K2, (n, c)⟩ is the
subgroup generated by T1 ×K2 and this preimage. Note that c is the square root of an
element of K2. If it is an element of K2, then actually H = NSL2

(T1) ×K2 and we may
take c = 1. If c is not an element of K2, then it is of finite order since K2 is algebraic. In

that case, to avoid redundancy, we may as well assume that c is a primitive 2
l
-th root

of unity in Gn
m for some l > 0. �

Corollary 3.12. Under Assumption 3.1, if G = SL2×G
n
m with n ≥ 1, then up to

equivariant isomorphism, there exists a character χ1 and thus a decomposition Gn
m =

Gm ⊕ kerχ1∣Gnm = Gm ×Gn−1
m such that either:

(1) H = ker((a1$1 + χ1)∣T1×Gm) × {1Gn−1m
} for some aZ≥0
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(2) H = ⟨T1 × {1Gm}, ([
0 −1
1 0

] , c)⟩ × {1Gn−1m
} where c ∈ {1,−1}

(3) H = ker((a1$1 + χ1)∣B1×Gm) × {1Gn−1m
} for some a ∈ Z≥0

Remark 3.13. It should be noted that the character χ1 and thus the decomposition
Gn
m = Gm×G

n−1
m are not uniquely determined up to equivariant isomorphism. As follows

from the proof, if a1 > 0, then one may replace χ1 with χ1 +∑n

i=2 aiχi for any (n − 1)-
tuple of integers (ai), where (χ2, . . . , χn) is a basis of characters for the factor Gn−1

m . If
a = 0 or c = +1, then we may actually replace χ1 by any primitive character of X

∗(Gn
m):

the spherical homogeneous space is the product of an SL2-spherical homogeneous space
with a factor, such that the factors of the group act only on the respective factors of the
homogeneous space.

Proof. We examine successively all cases of Proposition 3.10.
If H satisfies the first case in Proposition 3.10, then Assumption 3.1 is not satisfied.
In the fourth case, Assumption 3.1 is satisfied if and only if l = 0 or l = 1. If l = 1,

choose a primitive character λ1 of Gn
m such that λ1(c) = −1, then complete it into a

Z-basis (λ1, λ2, . . . , λn) of X
∗(Gn

m) such that λi(c) = 1 for i ≥ 2. Then under the
automorphism SL2×G

n
m → SL2×G

n
m given by (idSL2

, λ1, . . . , λn), we arrive to item (2)
of the statement.

In the third case of Proposition 3.10, H writes H = ⋂k

i=1 ker(λi) for a family of Z-
linearly independent characters λi ∈ X

∗(T ). For the action of Gn
m on G/H to be faithful,

the family {χi}i ⊂ X∗(Gn
m) of projections of the λi ∈ X

∗(T ) = X∗(T1)⊕X∗(Gn
m) must

be a Z-basis of X
∗(Gn

m). Hence the λi write as λi = ai$1⊕χi for some ai ∈ Z. However,

we may write H = ⋂k

i=1 ker(λ′i) for any other Z-basis {λ′i} of the Z-module generated by
the λi. Since the action of GLn(Z) is transitive on primitive vectors in Zn ≃ X

∗(Gn
m),

we may find a such a Z-basis {λ′i} with λ1 = a$1 + χ
′
1 and λi = χ

′
i for i ≥ 2, for some

a ∈ N and some Z-basis {χ′i} of X
∗(C). The automorphism SL2×G

n
m → SL2×G

n
m given

by (idSL2
, χ

′
1, . . . , χ

′
n) takes us to item (1) of the statement.

The horospherical case is dealt with in the same way and leads to item (3). �

3.4. Spherical homogeneous spaces with G
sc
= SL

2
2.

Proposition 3.14. Let G = SL
2
2×G

n
m and G/H satisfy Assumption 3.1, with dim(G/H) ≤

4. Then we are in one of the following situations (up to G-equivariant isomorphism):

(1) n = 0 and H is one of the following:
(a) diag(SL2)
(b) N(diag(SL2))
(c) diag(B1)
(d) N(diag(B1))
(e) T1 × T2

(f) N(T1) × T2

(g) diagN(T1)
(h) N(T1) ×N(T2)

(2) n = 1 and H is one of the following:
(a) diag(SL2) × {1}
(b) ⟨diag(SL2), (I2,−I2,−1)⟩
(c) N(diag(SL2)) × {1}

(3) G/H is obtained by parabolic induction.
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Proof. By Assumption 3.1 and Corollary 2.11, the adapted parabolic subgroup is P =

B1 × B2 × Gn
m. Then dim(G/P ) = 2 and by Corollary 2.11 again, rank(G/H) =

dim(G/H) − 2. Furthermore, by dim(G/H) ≤ 4, Remark 3.2 and Remark 3.4, n ≤

rank(G/H) = dim(G/H) − 2 ≤ 2.
We first deal with the case n = 0. The Lie subalgebras, up to conjugation, of sl2⊕ sl2,

are classified in [DR16b]. There are several restrictions to take into account here. First,

the Lie algebra of a spherical subgroup of SL
2
2 must be of dimension at least two, and more

precisely, the projection to each summand sl2 must have positive dimension. Second, by
Remark 3.11, the subalgebras K

3
2 and K

5
2 in Douglas and Repka’s notations cannot be

the Lie algebras of spherical subgroups. Third, by Assumption 3.1, the Lie algebra of H
cannot contain one of the sl2 summand.

Finally, using Remark 2.23, we deduce from Douglas and Repka’s classification that
the possible Lie algebras of spherical subgroups of SL

2
2 that are not obtained by parabolic

induction are the following: t1 ⊕ t2, diag(sl2) and diag(b1). These yield item (1) in the
statement.

Assume now that n = 1. We then have 4 ≥ dim(G/H) ≥ 3.
If dim(G/H) = 3, then rank(G/H) = 1. On the other hand, since the Gm factor acts

faithfully, we have dim(Aut
G(G/H)) ≥ 1, and by Proposition 3.3, G/H is horospherical.

In particular, it is obtained by parabolic induction.
Assume now that dim(G/H) = 4, thus H is a spherical subgroup of SL

2
2×Gm of

dimension 3. Let H1 be the projection of H to SL
2
2. It is a spherical subgroup of SL

2
2.

In view of the description in the previous case, there are few situations to consider:

• If H1 is a parabolic induction, then by Remark 3.11, H is a parabolic induction
as well.

• If h1 = t1⊕t2, then H ⊂ N(T1)×N(T2)×Gm and, by dimension, T1×T2×Gm ⊂ H.
But then the action of Gm on G/H is not faithful.

• Similarly, if h1 = diag(b1) then H ⊂ N(diag(B1)) × Gm but by dimension, we
then have diag(B1)×Gm ⊂ H. Again, in this case, the action of Gm on G/H is
not faithful.

• Finally, we deal with the case h1 = diag(sl2). Denote, as in the proof of Propo-
sition 3.10, by (e+, e−, e0) a basis of sl2 such that e± are nilpotent, e0 is semisim-
ple and [e+, e−] = e0. Since (e+, e+) (e−, e−) ∈ h1, by Remark 3.11, we ac-
tually have (e+, e+, 0) and (e−, e−, 0) ∈ h, and their brackets as well. Thus
diag(SL2)× {1} ⊂ H. Under the assumption of faithful action of the Gm factor,
there are only three possibilities for H which are the three in item (2) of the
statement.

Finally, if n = 2 then dim(G/H) = 4 and rank(G/H) = 2. By Proposition 3.3 again
G/H is horospherical, hence obtained by parabolic induction. �

Proposition 3.15. Let G = SL
2
2×G

n
m and let G/H satisfy Assumption 3.1, with dim(G/H) ≤

4. Assume that G/H is obtained by parabolic induction, and that the image of G in

Aut(G/H) contains Aut
G,0(G/H). Then up to G-equivariant isomorphism, we have

the following possibilities:

(1) n = 0 and H = B
−

(2) n = 0 and H = B
−
1 × T2

(3) n = 0 and H = B
−
1 ×N(T2)

(4) n = 1 and H = ker((a1$1 + a2$2 + χ1)∣B−) for some a1, a2 ∈ Z with a1 ≥ ∣a2∣.
(5) n = 1 and H = ker((a1$1 + a2$2 + χ1∣)T1×B−

2×Gm) with a1 ∈ Z≥0 and a2 ∈ Z



18 THIBAUT DELCROIX AND PIERRE-LOUIS MONTAGARD

(6) n = 1 and H = ⟨T1 × ker((a2$2 + χ1)∣B−
2×Gm), ([

0 −1
1 0

] , [ξ 0

0 ξ
−1] , ε)⟩ where

a2 ∈ Z≥0, ε = ±1, ξ is a primitive 2
l
-th root of 1, and either 2

l
divides a2 if

ε = −1, or ε = 1, 2
l

divides 2a2 and 2
l

does not divide a2 unless l = 0.
(7) n = 2 and H = ker((a1$1 + a2$2 + χ1)∣B−) ∩ ker((b2$2 + χ2)∣B−) where either

a2 = b2 = 0 and 0 ≤ a1, or 0 < a1 ≤ a2 ∧ b2, and 0 ≤ a2 < b2.

Remark 3.16. As in Remark 3.13, we note that in case 7 of Proposition 3.15, if a2 =

b2 = 0, we may replace a1$1 + χ1 with a1$1 + χ1 + λχ2 for any λ ∈ Z without changing
the subgroup H. This is in fact directly explained by Remark 3.13, since in this case, the
homogeneous space is a product of P1

with a horospherical homogeneous space under
SL2×G

2
m. If furthermore a1 = 0, then the homogeneous space is a product of P1 × P1

with a torus and obviously any basis (χ1, χ2) may be chosen.
In case 4 of Proposition 3.15, the conditions on ai still allow some G-equivariant

isomorphisms as well: in case of equality a1 = a2, one may exchange the two SL2 factors.

Proof. There are two possibilities for the proper parabolic subgroup involved in the
parabolic induction: a Borel subgroup or a maximal parabolic subgroup (up to exterior
automorphism there is only one).

We start with the first case. Since any quotient of a Borel subgroup is a torus,
we only obtain horospherical subgroups. In view of our assumption on G, G/H and

Aut
G,0(G/H), we have the following possibilities.

If n = 0 then H = B
−
.

If n = 1 then H is the kernel of a character a1$1 + a2$2 + a3χ1 of B
−

for some
integers a1, a2 and a3. By Assumption 3.1, we have a3 = ±1, and up to G-equivariant
isomorphism, we can further assume that a3 = 1 and a1 ≥ ∣a2∣.

If n = 2 then H is the intersection of the kernels of two characters a1$1 + a2$2 + χ1

and b1$1 + b2$2 + χ2 of B
−

for some integers a1, a2, b1, b2, and by Assumption 3.1,
(χ1, χ2) is a basis of X

∗(G2
m). We may replace (χ1, χ2) with another basis of X

∗(G2
m),

which corresponds to replacing [a1 b1

a2 b2
] with an element of its GL2(Z)-orbit on the

right. We may thus assume that this matrix is in Hermite normal form. We may also
exchange the two SL2 factors or reorder the two characters. We may thus assume either
that a2 = b2 = b1 = 0 and 0 ≤ a1, or that b1 = 0, 0 < a1 ≤ a2 ∧ b2, and 0 ≤ a2 < b2.

We now consider the case of a parabolic induction with respect to a maximal parabolic
subgroup. Then the basis of the parabolic induction is P1

and the fiber G0/H0 is
a spherical homogeneous space of dimension less than three, with G0 a quotient of
SL2×G

n
m. We reason according to the rank. With Assumption 3.1, the only possibilities

for the rank are one and two. Indeed, the adapted parabolic must be the Borel subgroup
since it cannot contain a simple factor (which would act trivially) hence the rank is at
most two. For the same reasons, G/H cannot be horospherical: if it were, then one of
the SL2 factor would be in H, thus act trivially since this factor is a normal subgroup
of G. In particular it cannot have rank zero.

Assume that the rank is one. Since G/H is not horospherical, we must have n = 0

and Aut
G,0(G/H) = {1}. The fiber G0/H0 of the parabolic induction must thus be a

spherical homogeneous space G0/H0 of rank one and dimension at least two and we can
assume G0 = SL2. This means that H = T1 ×B2, or H = NSL2

(T1) ×B2.
Assume finally that the rank is two (hence n = 0 or 1). Since G/H is not horospherical,

the fiber G0/H0 must be a spherical homogeneous space of dimension three under G0 =
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SL2×G
1+n
m (one could of course take a quotient but it is more convenient to consider the

largest possible group here). In particular, dim(H0) = n + 1, and by Proposition 3.10,
we know the possible H0. Furthermore, we note that H0 cannot contain the SL2-factor
or a maximal unipotent subgroup of this SL2-factor, otherwise either the faithfulness
assumptions would be violated, or we would actually recover a horospherical example of
the previous case obtained by parabolic induction with respect to a Borel subgroup. In

view of the remaining cases in Proposition 3.10, we have dim Aut
G,0(G/H) ≥ 1 hence

n = 1 since we assume that the image of G in Aut(G/H) contains Aut
G,0(G/H).

In view of Assumption 3.1, we finally obtain that either H0 = ker((a1$1 + a2$2 +

χ1)∣T1×T2×Gm) with a1 ∈ Z≥0 and a2 ∈ Z, or H0 = ⟨T1 ×K2, ([
0 −1
1 0

] , c)⟩ where

K2 = ker((a2$2 + χ1)∣T2×Gm) for some a2 ∈ Z≥0, and c = (d, ε) ∈ T2 ×Gm where d is a

primitive 2
l
-th root of unity, and either ε = 1, 2

l−1
divides a2 but 2

l
does not, or ε = −1

and 2
l

divides a2. �

3.5. Spherical homogeneous spaces with G
sc
= SL3.

Proposition 3.17. Let G = SL3×G
n
m and G/H satisfy Assumption 3.1, with dim(G/H) ≤

4. Then either n = 0 and H = S(GL2×GL1) ⊂ SL3 or G/H is obtained by parabolic
induction.

Proof. Depending on the adapted parabolic subgroup P , we have dim(G/P ) = 2 or 3.
As a consequence, n ≤ 2, and if n = 2, by Proposition 3.3, G/H is horospherical, hence
obtained by parabolic induction.

Lie subalgebras of sl3 up to conjugation have been classified in [DR16a]. From exam-
ining the list of Lie subalgebras of dimension at least four, keeping in mind Remark 3.11,
we see that either G/H is obtained by parabolic induction, or h ≃ sl2 ⊕ C embedded
as a Lie subalgebra of block-diagonal matrices in sl3 with a block of size two and a
block of size one. Since the image of this subalgebra in SL3 by the exponential map is
S(GL2×GL1) and this group is self-normalizing, we obtain the statement for n = 0.

It remains to show that if n = 1, G/H is obtained by parabolic induction. Assume that
H is a spherical subgroup of SL3×Gm. If dim(G/H) = 3 then 1 = n ≤ rank(G/H) ≤
3 − dim(G/P ) ≤ 1 hence by Proposition 3.3, G/H is horospherical. Assume now that
dim(G/H) = 4, hence dim(H) = 5. Let H1 be the projection of H to the SL3 factor.
In view of the case n = 0, either H1 is a parabolic induction, in which case H is as well
by Remark 3.11, or H1 = S(GL2×GL1) (up to conjugation). In the latter case, H is
a 5-dimensional subgroup of S(GL2×GL1) ×Gm, hence equal to S(GL2×GL1) ×Gm.
This subgroup however, does not satisfy Assumption 3.1. �

Proposition 3.18. Let G = SL3×G
n
m and let G/H satisfy Assumption 3.1, with dim(G/H) ≤

4. Assume that G/H is obtained by parabolic induction, and that the image of G in

Aut(G/H) contains Aut
G,0(G/H). Then up to G-equivariant isomorphism, we are in

one of the following cases:

(1) n = 0 and H = B
−

(2) n = 0 and H = Q
(3) n = 0 and H = ⟨Qu

, T ⟩
(4) n = 0 and H = N(⟨Qu

, T ⟩)
(5) n = 1 and H = ker(a1$1 + χ1)∣Q for some a1 ∈ Z≥0

(6) n = 1 and H = ker(a1$1 + a2$2 + χ1)∣B− for some a1 and a2 ∈ Z with a1 ≥ ∣a2∣
(7) n = 2 and H = ker((a1$1 + χ1)∣Q) ∩ ker(χ2∣Q) for some a1 ∈ Z≥0,
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Remark 3.19. As in Remark 3.13, we note that, in case 7 of Proposition 3.18, we may
replace χ1 with χ1 + λχ2 for any λ ∈ Z without changing the subgroup H. Again, if
a1 = 0, the homogeneous space is the product of P2

with a torus G2
m. Then the basis

(χ1, χ2) of X
∗(G2

m) can be chosen arbitrarily.

Proof. Up to G-equivariant isomorphism, there are two possibilities for the parabolic
subgroup involved in the parabolic induction: B

−
and Q.

Let us first deal with the case when it is B
−
. Since any reductive quotient of B

−
is a

torus, G/H is horospherical. Furthermore, since G/B−
is of dimension three, the rank

of G/H is zero or one. If the rank is zero, then H = B
−
. If the rank is one, then n = 1

since Aut
G,0(G/H) contains a one dimensional torus, and H is the kernel of a single

character of B
−
, which may be written as a1$1 + a2$2 + c1χ1 for some integers a1, a2,

c1. Assumption 3.1 show that c1 = ±1, and up to G-equivariant isomorphism, we can
reorder the fundamental weights. Hence we may assume a1 ≥ ∣a2∣ and c1 = 1.

Let us now deal with parabolic inductions with respect to the parabolic subgroup Q.
Since G/Q ≃ P2

, the rank may be zero (then H = Q), one, or two.
If the rank is two, then since the fiber G0/H0 of the projection G/H → G/Q is of

dimension two, it is a torus. Hence G/H is horospherical, and under our assumptions,
n = 2. The subgroup H is then defined as the intersection of the kernels of two Z-
independent characters a$1 + χ1 and b$1 + χ2 of Q, under Assumption 3.1. Since the
action of GL2(Z) is transitive on primitive vectors in Z2

, up to G-equivariant isomor-
phism, we may assume that a ∈ N and b = 0.

Assume now that rank(G/H) = 1. If n = 1, then by Proposition 3.3, G/H is horo-
spherical, of dimension three. The subgroup H writes as the kernel of a character
a1$1 + χ1 for some integer a1 and up to G-equivariant isomorphism, we may assume
that a1 ∈ N.

Finally, if rank(G/H) = 1 and n = 0, then the fiber G0/H0 under G/H → G/Q is
a rank one, non horospherical homogeneous space of dimension two under the action of
a quotient of SL2×Gm. In view of their classification, we deduce that we can choose
G0 = PSL2 andH0 a maximal torus of PSL2, or its normalizer. This yields the description
of the remaining items (3) and (4) in the statement. �

3.6. Remaining rank one spherical homogeneous spaces of dimension 4. We
now deal with the remaining rank one spherical homogeneous spaces of dimension 4. We
need some specific conventions. For G = Sp4×Gm we let α1 be the short simple root, and

α2 be the long simple root, so that G/Q{α1} ≃ P3
and G/Q{α2} ≃ Q

3
. For G = SL4×Gm

we let α1 be a simple root such that G/Q{α1} ≃ P3
. When there is only one choice up to

G-equivariant isomorphism, we denote by Qi a maximal parabolic subgroup of Gi.

Proposition 3.20. Let G and G/H satisfy Assumption 3.1, with dim(G/H) ≤ 4. As-

sume furthermore that the image of G in Aut(G/H) contains Aut
G,0(G/H), and that

G
sc
∉ {SL2, SL

2
2, SL3}. Then up to G-equivariant isomorphism, we are in one of the

following cases:

(1) G = Sp4, H = SL2× Sp2

(2) G = Sp4, H = NSp4
(SL2× Sp2)

(3) G = SL
3
2, H = B

−
1 × diag(SL2)

(4) G = SL
3
2, H = B

−
1 ×NSL2

2
(diag(SL2))

(5) G = SL
3
2, H = B

−
1 ×B

−
2 × T3
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(6) G = SL
3
2, H = B

−
1 ×B

−
2 ×NSL2

(T3)
(7) G = SL3× SL2, H = Q1 × T2

(8) G = SL3× SL2, H = Q1 ×NSL2
(T2)

(9) G = SL
3
2×Gm, H = ker(a1$1 + a2$2 + a3$3 + χ1)∣B− with a1 ≥ ∣a2∣ ≥ ∣a3∣

(10) G = SL3× SL2×Gm, H = ker(a1$1 + a3$3 + χ1)∣Q{α1} with a1 ≥ 0

(11) G = Sp4×Gm, H = ker(a1$1 + χ1)∣Q{α1} with a1 ≥ 0

(12) G = Sp4×Gm, H = ker(a2$2 + χ1)∣Q{α2} with a2 ≥ 0

(13) G = SL4×Gm, H = ker(a1$1 + χ1)∣Q{α1} with a1 ≥ 0

Proof. There is a general classification result for rank one spherical homogeneous spaces
by Akhiezer [Akh83], which states that any such homogeneous space is obtained by par-
abolic induction from a homogeneous space G0/H0 in a list of primitive cases described
explicitly in [Akh83]. It is easy to extract the elements of this list of dimension less than

four: they are Gm, SL2 /GL1, SL2 /NSL2
(GL1), SL

2
2 / diag SL2, SL

2
2 /NSL2

2
(diag SL2),

SL3 /GL2, Sp4 / SL2× Sp2 and Sp4 /NSp4
(SL2× Sp2).

The last three are of dimension 4, so cannot be involved in a parabolic induction.
Furthermore, SL3 /GL2 already appeared in the previous section since in this case G

sc
=

SL3. We now study the possible parabolic inductions for each of the other elements of the
list. Note first that if dim(G/H) ≤ 3 then G

sc
∈ {SL2, SL

2
2, SL3} so the corresponding

homogeneous spaces were already considered in previous sections.
In the case G0/H0 = SL

2
2 / diag SL2, or SL

2
2 /NSL2

2
(diag SL2), the fiber of the parabolic

induction has dimension three, hence the basis is P1
. But then one must have G = SL

3
2,

the parabolic induction is with respect to a maximal parabolic subgroup Q, containing
two of the SL2-factors, and the morphism Q → G0 must kill the action of the Borel
subgroup of the remaining factor. The parabolic induction is thus actually a product of
P1

with an embedding of SL
2
2 / diag SL2, or SL

2
2 /NSL2

2
(diag SL2).

We now deal with the case when the fiber is SL2 /GL1 or SL2 /NSL2
(GL1). The basis

is then of dimension 2 so it is P1×P1
or P2

. Once again, if it is P1×P1
, then the group G

must be SL
3
2, and the parabolic induction is actually a product P1 × P1 ×G0/H0. If the

basis is P2
, then G is either SL3 or SL3× SL2, but in the latter case again, the parabolic

induction is a product. If G = SL3, then G/H already appeared in the previous section.
Finally, we deal with the case when the fiber is Gm, equivalently, we consider horo-

spherical homogeneous spaces of rank one. Recall from Remark 2.26 that such a ho-
mogeneous space G/H is fully determined by the data of a parabolic subgroup Q of G
and a character λ ∈ X

∗(Q), by H = ker(λ ∶ Q → Gm). The possible simply connected
semisimple groups G

sc
acting were determined in Proposition 3.8, using the fact that

dim(Gsc/Q) = 3. We already dealt with the case G
sc
= SL3 in the previous section. By

considering the action of the equivariant automorphism group, we have G = G
sc ×Gm.

Assume that G = SL
3
2×Gm. In that case, the parabolic subgroup Q is B

−
, so that

G/Q = (P1)3
. The character λ writes a1$1 + a2$2 + a3$3 + cχ where the $i are

fundamental weights for each factor, and by Assumption 3.1, c = ±1. Up to rearranging
the factors and replacing χ with its opposite, we may assume that a1 ≥ ∣a2∣ ≥ ∣a3∣ and
c = 1.

Assume that G = SL3× SL2×Gm. Then the parabolic subgroup is the product of a
maximal parabolic subgroup Q1 of SL3 with a Borel subgroup B

−
2 of SL2 (and with the

Gm-factor), so that G/Q = P2×P1
. Then λ = a1$1+a3$3+χ and we may only assume

a1 ≥ 0 by changing χ to −χ.
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Assume that G = SL4×Gm. Then Q = Q{α1}, so that G/Q ≃ P3
, and λ = a1$1 + χ

for some a1 ≥ 0.
Finally, assume that G = Sp4×Gm. Then there are two possible choices for the

parabolic subgroup Q, which in any case is a maximal parabolic subgroup. For G/Q we
have either P3

or Q
3
. If $ denotes the fundamental weight of Sp4 such that $ ∈ X

∗(Q),
then λ = a$ + χ for some a ≥ 0. �

4. Conventions, and dimension two

To make the conventions in the following sections precise, and warm up, we recall the
spherical actions in dimension two (in dimension one, it is obvious that there are only

the rank zero homogeneous structure on P1
and the toric structure on P1

).
In the following sections, we will work our way to the classification by considering each

group successively. Then for each corresponding spherical homogeneous space G/H,
we will determine the combinatorial data (M , Σ, (D, ρ, ζ)), then the possible locally
factorial G/H-reflexive polytopes. Concerning the combinatorial data, we will give a
basis for the lattice M , in terms of the basis of X

∗(T ) given in our conventions by the
$i and χj. Given this basis, we will identify M with Zr, the dual N with Zr using the
dual Z-basis, and M ⊗ R with Rr

, equipped with coordinates (x1, . . . , xr). This will
allow to describe the color map ρ ∶ D → N , and the Duistermaat-Heckman polynomial
f ∶M⊗R→ R concisely. Finally, the set of colors will be denoted abstractly as a subset
of {♣,♥,♦,♠} to emphasize that only the abstract set and maps matter.

We will next identify the possible locally factorial G/H-reflexive polytopes (up to
equivalences corresponding to G-equivariant isomorphisms), and will draw these. In the
pictures, we will draw the polytopes themselves, highlight the lattice, and indicate the
images of the colors. Under each polytope, we will indicate an identifier dim-rank-
number, and some geometrical data associated to the corresponding embedding will be
summarized in the appendix in a big table.

We first illustrate these conventions with the dimension two case. Assume that G/H
is of dimension two, then the rank is at most two, and the group acting is G2

m if the rank
is two, SL2×G

n
m if the rank is one, with n ∈ {0, 1}, and SL3 or SL2× SL2 if the rank is

zero, in which case, we have the rational homogeneous surfaces P2
and P1 × P1

. We will
not say more about the rank zero case. For the other cases, we have essentially gathered
the information needed in Section 2, we illustrate in the remainder of the section our
conventions and summarize the classification.

Proposition 4.1. Let G = G2
m and H = {1}, then the combinatorial data of G/H is as

follows.

M = ⟨χ1, χ2⟩ Σ = ∅ D = ∅

κ = 0 f = 1

The corresponding polytopes, up to equivalences, are given by the five smooth Fano
polygons.

+

2-2-1

+

2-2-2

+

2-2-3

+

2-2-4

+

2-2-5
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Proposition 4.2. Let G = SL2 and H = T , then the combinatorial data of G/H is as
follows.

M = ⟨α1⟩ ζ(♣) = ζ(♥) = {α1}
Σ = {α1} ρ(♣) = ρ(♥) = 1
D = {♣,♥}
κ = α1 f = 2(1 + x1) m♣ = m♥ = 1

There is a unique locally factorial G/H-reflexive polytope:

+ ♣
♥2-1-1

Proposition 4.3. Let G = SL2 and H = N(T ), then the combinatorial data of G/H is
as follows.

M = ⟨2α1⟩ ζ(♣) = {α1}
Σ = {2α1} ρ(♣) = 2
D = {♣}
κ = α1 f = 2(1 + 2x1) m♣ = 1

There is a unique locally factorial G/H-reflexive polytope:

+ ♣
2-1-2

There are finally three horospherical actions of SL2×Gm, one is the product of the
homogeneous P1

under SL2 with the toric P1
under Gm, which we identify as 2-1-3.

Proposition 4.4. Let G = SL2×Gm and H = ker($1 + χ1)∣B−, then the combinatorial
data of G/H is as follows.

M = ⟨$1 + χ1⟩ ζ(♣) = {α1}
Σ = ∅ ρ(♣) = 1
D = {♣}
κ = α1 f = 2 + x1 m♣ = 2

The two possible locally factorial G/H-reflexive polytope are as follows.

+ ♣
2-1-4

+ ♣
2-1-5

identifier pic degree KE? description group type

2-1-1 2 8 y P1 × P1
SL2 symmetric

2-1-2 1 9 y P2
SL2 symmetric

2-1-3 2 8 y P1 × P1
SL2×Gm horospherical

2-1-4 2 8 n F1 SL2×Gm horospherical

2-1-5 1 9 y P2
SL2×Gm horospherical

2-2-1 1 9 y P2 G2
m toric

2-2-2 2 8 n F1 G2
m toric

2-2-3 2 8 y P1 × P1 G2
m toric

2-2-4 3 7 n Bl2 pts P
2 G2

m toric

2-2-5 4 6 y Bl3 pts P
2 G2

m toric
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5. Locally factorial Fano spherical SL2×G
n
m-manifolds of rank ≤ 2

As spherical fourfolds under SL2×G
n
m must be of rank three, we will not classify these

in the present paper. We will however recover the full classification of (almost) faithful
spherical actions of SL2×G

n
m on locally factorial Fano threefolds.

5.1. Case when H1 = T1.

5.1.1. Combinatorial data.

Proposition 5.1. Let G = SL2×G
n
m and H = ker(a1$1+χ1)∣T1×Gm × {1Gn−1m

} for some
a1 ∈ Z≥0. Then the combinatorial data of the spherical homogeneous space G/H is as
follows. If a1 is even, then:

M = ⟨α1, χ1, . . . χn⟩ ζ(♣) = ζ(♥) = {α1}
Σ = {α1} ρ(♣) = (1, a1/2) ρ(♥) = (1,−a1/2)
D = {♣,♥}
κ = α1 f = 2 + 2x1 m♣ = m♥ = 1

If a1 is odd, then:

M = ⟨$1 + χ1, $1 − χ1, χ2, . . . , χn⟩ ρ(♥) = (1−a1
2
, a1+1

2
)

Σ = {α1} ρ(♣) = (a1+1

2
, 1−a1

2
)

D = {♣,♥} ζ(♣) = ζ(♥) = {α1}
m♣ = m♥ = 1 f = 2 + x1 + x2 κ = α1

Proof. Since G/H is a product of a SL2×Gm homogeneous space with the tori (C∗)n−1
,

it suffices to prove the result when n = 1. When a1 = 0, the homogeneous space is a
product, the result is immediate. Assume now that a1 ≥ 1. Let P(1, 1, a1) denote the
weighted projective space, defined as the quotient of C3

under the action of Gm given
by t ⋅ (x, y, z) = (tx, ty, ta1z). Consider the action of SL2×Gm on P1 × P(1, 1, a1) given
by

([a b
c d

] , s) ⋅ ([u ∶ v], [x ∶ y ∶ z]) =

([au + bv ∶ cu + dv], [ax + by ∶ cx + dy ∶ sz])

Then the stabilizer of ([1 ∶ 0], [0 ∶ 1 ∶ 1]) is precisely H.
In fact, we can easily describe the five G-orbits:

O = {([u ∶ v], [x ∶ y ∶ z]) ∣ [x ∶ y] ≠ [u ∶ v], z ≠ 0}
I1 = {([x ∶ y], [x ∶ y ∶ z]) ∣ z ≠ 0}
I2 = {([u ∶ v], [x ∶ y ∶ 0]) ∣ [x ∶ y] ≠ [u ∶ v]}
C1 = {([u ∶ v], [0 ∶ 0 ∶ 1])}
C2 = {([x ∶ y], [x ∶ y ∶ 0])}

The open orbit is O. The codimension one orbits are I1 and I2 and the codimension two
orbits are C1 and C2. The closure of I1 is I1 ∪ C1 ∪ C2, it is a prime G-stable divisor
whose equation is xv− yu = 0. The closure of I2 is I2∪C2, it is a prime G-stable divisor
whose equation is z = 0.
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Consider now the action of the Borel subgroup B = {([a b
0 1/a] , s)}. It acts with

two codimension one orbits in O:

D1 = {([u ∶ 1], [1 ∶ 0 ∶ z]) ∣ z ≠ 0}
and

D2 = {([1 ∶ 0], [x ∶ y ∶ z]) ∣ [1 ∶ 0] ≠ [x, y], z ≠ 0} .
The equation for (the closure of) D1 is y = 0 and the equation for D2 is v = 0. As a
consequence, we have D = {D1, D2} and ζ(Di) = {α1} for i = 1 or 2.

The rational functions

f1 ∶ ([u ∶ v], [x ∶ y ∶ z])⟼
y
m

z
and

f2 ∶ ([u ∶ v], [x ∶ y ∶ z])⟼
vy

xv − yu
are well-defined and B-semi-invariant with B-weight a1$1 + χ and 2$1. To prove that
these two weights generate M ⊂ $1Z ⊕ χZ, it suffices to check that $1 ∉ M . It is the
case indeed: since (−I2, (−1)a1) is central and acts trivially on G/H, the weight of any
B-semi-invariant rational function must vanish on it, hence $1 ∉M .

By Corollary 2.31, Σ = {α1} = {2$1}. The description of images of colors by ρ
follows readily from our explicit description of equations of the colors and rational B-
semi-invariant functions whose weights generate M . �

5.1.2. Polytopes. We denote the coordinates on N⊗R by (y1, . . . , yn+1), in the dual basis
to the given Z-basis of M , which depends on the parity of a1. We will give, for later
use, a purely combinatorial characterization of locally factorial G/H-reflexive polytopes
which is closer to the usual notions for toric varieties. Before that, let us thus recall some
of the relevant definitions when considering polytopes of singular Fano toric varieties.

Definition 5.2. A polytope Ω with integral vertices in Zn+1
, containing the origin in

its interior, is called:

• smooth Fano if for any facet F of Ω, the vertices of F form a basis of Zn+1
,

• terminal Fano if the only integral points in Ω are its vertices and the origin,
• canonical Fano if the only interior integral point in Ω is the origin.

A facet of a canonical polytope is called non-smooth if its vertices do not form a basis
of Zn+1

.

Proposition 5.3. Assume that a1 = 0. Then Ω is a locally factorial G/H-reflexive
polytope if and only if Ω is a smooth Fano polytope such that (1, 0, . . . , 0) is a vertex,
all other vertices are in the half-space H− = {y1 ≤ 0} and all the facets containing
(1, 0, . . . , 0) are fully contained in the half-space H+ = {y1 ≥ 0}. Locally factorial Fano
embeddings of G/H correspond uniquely to such polytopes up to the action of GLn(Z)
on the last n coordinates.

Proof. The statement essentially follows from the definition of locally factorial G/H-
reflexive polytopes, Proposition 5.1 and our identification of the lattice N with Zn+1

.
There are two particular things to note. First, both colors have the same image, so the

corresponding points
ρ(Di)
mDi

= (1, 0, . . . , 0) cannot be in a facet that intersects the interior

of the valuation cone. Second, if a facet contains (1, 0, . . . , 0) (necessarily as a vertex),
then the other vertices are on the hyperplane H− ∩H+ and form a face of codimension
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two, which must belong to another facet, contained in H−. Since the vertices of that
second facet must form a basis of Zn+1

, the vertices in H−∩H+ form a basis of {0}×Zn.
As a consequence, the original facet containing (1, 0, . . . , 0) is a smooth facet.

The last sentence of the statement follows from Remark 3.13. �

Proposition 5.4. Assume that a1 ≥ 2 is even. Then Ω is a locally factorial G/H-
reflexive polytope if and only if Ω is a canonical Fano polytope such that (1, a1

2
, 0 . . . , 0)

and (1,−a1
2
, 0 . . . , 0) are vertices, all other vertices are in the half-space H− = {y1 ≤ 0},

any non-smooth facet of Ω contains both points (1,±a1
2
, 0 . . . , 0) and is fully contained

in the half-space H+ = {y1 ≥ 0}.
Furthermore, any non-smooth facet of Ω has n+1 ≤ m ≤ n+2 vertices, and m+a1−1

integral points, and integral points which are not vertices are in the interior of the one-
dimensional face [(1, a1

2
, 0 . . . , 0), (1,−a1

2
, 0 . . . , 0)].

Locally factorial Fano embeddings of G/H correspond uniquely to such polytopes up to
the action of the subgroup of GLn+1(Z) that fixes (1, 0, . . . , 0) and stabilizes both Z2×{0}
and the hyperplane H− ∩H+.

Proof. In this case, the colors have different images, so they can be involved in the
polytope. If a facet has (1, a1

2
, 0 . . . , 0) as vertex but not (1,−a1

2
, 0 . . . , 0), then the same

argument as in the previous proof shows that the facet is spanned by a basis of Zn+1
. If

a facet F has (1, a1
2
, 0 . . . , 0) and (1,−a1

2
, 0 . . . , 0) as vertices, then its other vertices are

on H−∩H+ since the facet cannot be smooth. These other vertices lie in another facet of
Ω, which cannot contain both (1, m

2
, 0 . . . , 0) and (1,−m

2
, 0 . . . , 0), so these vertices are

part of a basis of Zn+1
. As a consequence, there cannot be any interior integral point in

Ω∩H− ∩H+. Finally, there cannot be any integral interior points in the facet F , since
it would have non integral coordinate x0. We deduce that Ω is canonical. The other
consequences are easily deduced from the above. The last sentence of the statement
again follows from Remark 3.13. �

Adapting the arguments to the case when a1 is odd yields the following characteriza-
tion.

Proposition 5.5. Assume that a1 is odd. Then Ω is a locally factorial G/H-reflexive
polytope if and only if Ω is a canonical Fano polytope such that (a1+1

2
, 1−a1

2
, 0 . . . , 0) and

(1−a1
2
, a1+1

2
, 0 . . . , 0) are vertices, all other vertices are in the half-space H− = {y2 ≤ −y1},

any non-smooth facet of Ω contains both points (a1+1

2
, 1−a1

2
, 0 . . . , 0) and (1−a1

2
, a1+1

2
, 0 . . . , 0)

and is fully contained in the half-space H+ = {y2 ≥ −y1}.
Furthermore, any non-smooth facet of Ω has n+1 ≤ m ≤ n+2 vertices, and m+a1−1

integral points, and integral points which are not vertices are in the interior of the one-
dimensional face [(a1+1

2
, 1−a1

2
, 0 . . . , 0), (1−a1

2
, a1+1

2
, 0 . . . , 0)].

Locally factorial Fano embeddings of G/H correspond uniquely to such polytopes up to
the action of the subgroup of GLn+1(Z) that fixes (1, 1, 0 . . . , 0), and stabilizes Z2 × {0}
as well as the hyperplane H+ ∩H−.

Corollary 5.6. Assume that a1 = 1. Then Ω is furthermore a terminal Fano polytope,
and any non-smooth facet has n + 2 vertices.

Proof. It follows from the proof in the general case that integral points which are not
vertices or the origin can only lie on the dimension one face which is the segment between
the images of the two colors. In the case a1 = 1, this is the segment between (1, 0 . . . , 0)
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and (0, 1, 0 . . . , 0) which obviously does not contain any other integral points than its
endpoints. Furthermore, since (1, 0 . . . , 0) and (0, 1, 0 . . . , 0) form a basis of Z2 × {0}, if
a facet is contained in H+ and is a simplex, then it is actually smooth. �

Example 5.7. Assume that n = 2, and that Ω is a simplex. Then Ω cannot be a locally
factorial G/H-reflexive polytope if a1 ≠ 1. Indeed, note first that there cannot be two
facets fully contained in a half-space (otherwise by vertex count, the simplex would not
contain the origin in its interior). This directly prevents a1 = 0, as the color must be
in at least three facets, all contained in the same half space. If a1 ≥ 2, this implies
that at least one of the two facets containing the two colors must be smooth. But it is
impossible since the facets contains the edge between the two colors, which contains an
integral interior point.

Now focus on the case a1 = 1. Since all the facets of a simplex are simplices, all the
facets are smooth. Let us denote a third vertex of Ω by (x1, y1, 1). The simplex being
smooth, we know that the last vertex is (−1 − x1,−1 − y1,−1). Up to the action of
matrices of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 a
0 1 −a
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

we may assume that y1 = 0. Finally, the condition that the vertices other than the colors
are in H− implies that −2 ≤ x1 ≤ 0. The two cases x1 = 0 and x1 = 2 are related by the
matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1
1 0 −1
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

hence define the same embedding. In conclusion, we have found two locally factorial
G/H-reflexive for a1 = 1, corresponding to two different locally factorial, Fano, Picard
rank one embeddings.

5.1.3. Rank 2 locally factorial Fano embeddings. We now determine the polytopes when
n = 1, that is, when rank(G/H) = 2 and dim(G/H) = 3.

When a1 = 0 by Proposition 5.3, it suffices to go through the list of smooth Fano
polygons up to GL2(Z)-action (recalled in Section 4), and for each class, determine which
representative do satisfy the hypothesis. Assume that a representative Ω0 has (1, 0) as

a vertex, then the elements of GL2(Z) that fix this vertex are of the form [1 a
0 ±1

] for

some a ∈ Z. Thanks to the last sentence of Proposition 5.3, we can work up to reflection
with respect to the y1-axis, that is, we may assume ±1 = 1. Note that since all facets
containing (1, 0) must lie in H+, and the origin is in the interior, (0, 1) and (0,−1) are

vertices. Their images by [1 a
0 ±1

] are (a, 1) and (−a,−1), hence if a ≠ 0, one of these is

in H+. As a consequence, for every pair of a smooth Fano polytope and a vertex, there
is at most one representative which satisfy the hypotheses.

Going through the list of smooth Fano polytopes and the list of their vertices yields
the following list of three.
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+
♣
♥

3-2-1

+
♣
♥

3-2-2

+
♣
♥

3-2-3

Example 5.8. The embedding 3-2-1 is (P1)3
as the product of the embedding 2-1-1

with the toric P1
, while the embedding 3-2-3 is the blowup of (P1)3

along, for example,
the closed orbit diagP1 × {0}, if 0 denotes a torus fixed point in P1

.

When a1 = 1, using Proposition 5.6, it suffices again to go through the list of smooth
Fano polygons up to GL2(Z)-action, and for each class, determine which representative
do satisfy the hypothesis. Indeed, in dimension two, smooth and terminal Fano polygons
coincide. We obtain eight polytopes.

+ ♣

♥

3-2-4

+ ♣

♥

3-2-5

++ ♣

♥

3-2-6

+ ♣

♥

3-2-7

+ ♣

♥

3-2-8

+ ♣

♥

3-2-9

+ ♣

♥

3-2-10

+ ♣

♥

3-2-11

Example 5.9. The embedding 3-2-7 is the embedding P1×P(1, 1, 1) = P1×P2
used in

the proof to determine the combinatorial data. With the notations of the proof, 3-2-10
is the blowup of P1 × P2

along the curve C2 (which is isomorphic to P1
), and 3-2-8

is the blowup of P1 × P2
along the curve C1 (which is isomorphic to P1

as well). The
embedding 3-2-11 is the blowup along both curves.

Example 5.10. The embedding 3-2-5 is the variety W of complete flags in C3
, equipped

with the action of SL2×Gm induced by the action of GL2 on the first two coordinates
of C3

. There are three orbits of codimension two under this action: the orbit C1 of flags
with line generated by (0, 0, 1), the orbit C2 of flags with the plane stabilized by GL2,
and the orbit C3 of flags of the form ⟨(x, y, 0)⟩ ⊂ ⟨(x, y, 0), (0, 0, 1)⟩.

The embedding 3-2-8 can alternatively be recovered as the blowup of W along C1

or C2, and 3-2-11 as the blowup of W along both orbits. The embedding 3-2-9 on the
other hand, is obtained by blowing up C3.

When a1 = 2, using Proposition 5.4, it suffices to go through the list of canonical
Fano polygons up to GL2(Z)-action, and for each class, determine which representative
do satisfy the hypothesis. Canonical Fano polygons in dimension two coincide with
reflexive polygons, there are 16 such polytopes up to GL2(Z)-action. Among these, only
three have exactly one non-smooth facet with one integral interior point. We obtain the
following possibilities for locally factorial G/H-reflexive polytopes.
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+

♣

♥
3-2-12

+

♣

♥
3-2-13

+

♣

♥
3-2-14

Example 5.11. The embedding 3-2-12 is P3
, equipped with the following action:

SL2×Gm × C4
∋

⎛
⎜⎜⎜⎜⎜
⎝
[a b
c d

] , z,
⎛
⎜⎜⎜⎜⎜
⎝

x0

x1

x2

x3

⎞
⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟
⎠
↦

⎛
⎜⎜⎜⎜⎜
⎝

z(ax0 + bx1)
z(cx0 + dx1)
ax2 + bx3

cx2 + dx3

⎞
⎟⎟⎟⎟⎟
⎠

Indeed, the stabilizer of (1, 0, 0, 1) under this action is precisely the subgroup of T defined
by za

2
= 1.

The embedding 3-2-13 is obtained from P3
by blowing up one of the two closed orbits,

and the embedding 3-2-14 by blowing up both closed orbits.

When a1 ≥ 3, by Proposition 5.4, Proposition 5.5, and the list of reflexive Fano
polygons, there are no locally factorial G/H-reflexive embeddings.

5.2. Case when H1 = N(T1). In this section, we will use the slightly abusive notation

diag(N(T1)) × {1Gn−1m
} = ⟨T1 × {1}, ([0 −1

1 0
] ,−1)⟩ × {1Cn−1} for conciseness.

5.2.1. Combinatorial data.

Corollary 5.12. For H = N(T1) × {1}, the combinatorial data is:

M = ⟨2α1, χ1, . . . , χn⟩ ζ(♣) = {α1}
Σ = {2α1} ρ(♣) = (2, 0, . . . , 0)
D = {♣}
m♣ = 1 f = 2 + 4x1 κ = α1

For H = diag(N(T1)) × {1Gn−1m
}, the combinatorial data is as follows:

M = ⟨α1 + χ1, α1 − χ1, χ2 . . . , χn⟩ ζ(♣) = {α1}
Σ = {2α1} ρ(♣) = (1, 1, . . . , 0)
D = {♣}
m♣ = 1 f = 2 + 2x1 + 2x2 κ = α1

Proof. The spherical homogeneous spaces are obtained by quotienting the previous case
with a1 = 0. It is straightforward to deduce the spherical lattice, and the set of colors
(the two initial colors are exchanged by the action we quotient from). The spherical root
is changed as the lattice changes, but since we have α1 ∈

1

2
Σ, we still have mD1

= 1. �

5.2.2. Polytopes. We still denote by (y1, . . . , yn+1) the coordinates on N⊗R, in the basis
dual to the Z-basis of M given in the combinatorial data. We first consider the case
when H = N(T1) × {1Gnm},

Proposition 5.13. A polytope Ω is a locally factorial G/H-reflexive polytope if and
only if Ω is a polytope such that (2, 0, . . . , 0) is a vertex, all other vertices are primitive
elements in the half-space H− = {y1 ≤ 0}, all the facets containing (2, 0, . . . , 0) are fully
contained in the half-space H+ = {y1 ≥ 0}, and for any facet, the collection of primitive



30 THIBAUT DELCROIX AND PIERRE-LOUIS MONTAGARD

multiples of its vertices forms a basis of Zn+1
. Locally factorial Fano embeddings of

G/H correspond uniquely to such polytopes up to the action of GLn(Z) on the last n
coordinates.

Note that if we remove the vertex (2, 0, . . . , 0) to replace it with (1, 0, . . . , 0), we
obtain a smooth Fano polytope which satisfies the properties in Proposition 5.3. It is
not obvious that the reverse construction always works, although we will check that it
is the case if n = 1.

Proof. The statement essentially follows from the definition of locally factorial G/H-
reflexive polytopes, Proposition 5.1 and our identification of the lattice N with Zn+1

, as
in the previous cases. There are two particular things to note. First, the image of the

color ♣ is not primitive, and m♣ = 1, so the corresponding points
ρ(♣)
m♣

= (2, 0, . . . , 0)
cannot be in a facet that intersects the interior of the valuation cone. Second, if a
facet contains (2, 0, . . . , 0) (necessarily as a vertex), then the other vertices are on the
hyperplane H−∩H+ and form a face of codimension two, which must belong to another
facet, contained in H−. Since the vertices of that second facet must form a basis of
Zn+1

, the vertices in H− ∩ H+ form a basis of {0} × Zn. This basis, completed by
(1, 0, . . . , 0) = 1

2
(2, 0, . . . , 0) forms a basis of Zn+1

.
The last sentence of the statement follows from Remark 3.13. �

We now turn to the case when H = diag(N(T1)) × {1Gn−1m
}.

Proposition 5.14. A polytope Ω is a locally factorial G/H-reflexive polytope if and
only if Ω is a simplicial canonical Fano polytope such that (1, 1, 0 . . . , 0) is a vertex, all
other vertices are in the half-space H− = {y2 ≤ y1}, any non-smooth facet of Ω contains
(1, 1, 0 . . . , 0) and is fully contained in the half-space H+ = {y2 ≥ y1}. Furthermore,
any non-smooth facet contains at most one integral point which is not a vertex. Locally
factorial Fano embeddings of G/H correspond uniquely to such polytopes up to the action
of the subgroup of GLn+1(Z) that fixes (1, 1, 0 . . . , 0), and stabilizes both Z2 × {0} and
the hyperplane H+ ∩H−.

Proof. It suffices to describe the non-smooth facets, when they exist. If F is such a
facet, then it follows directly from the definition that it must be fully contained in H+,
and that (1, 1, 0, . . . , 0) is a vertex. By the same argument as in the previous proofs, the
other vertices of F form a basis of ⟨(1,−1, 0 . . . , 0), (0, 0) × Zn−1⟩, hence the facet is a
simplex and contains at most one integral point in its interior. The last sentence of the
statement always follows from Remark 3.13. �

Example 5.15. As in Example 5.7, there are no simplices that are locally factorial
G/H-reflexive for H = N(T1) × {1Gnm}. In the case H = diag(N(T1)) × {1Gn−1m

}, let us
just give an example showing that there are such simplices: when n = 2, consider the
simplex with vertices (1, 1, 0), (0,−1, 0), (0, 0, 1), (−1, 0,−1). It is a smooth simplex
which obviously satisfies all the conditions, hence provides an example of a Fano, locally
factorial, Picard rank one embedding of G/H. The determination of all locally factorial
G/H-reflexive simplices requires a finer analysis that we leave for subsequent work. Note
that already in the rank two case that follows, there are two possible locally factorial
G/H-reflexive simplices (3.18 and 3.20).

5.2.3. Rank 2 locally factorial Fano embeddings. We first deal with the case when H =

N(T1) × {1} ⊂ SL2×Gm = G. Using Proposition 5.13, we note that, if Ω is a lo-
cally factorial G/H-reflexive polytope, then by replacing the vertex (2, 0, . . . , 0) with
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(1, 0, . . . , 0), we obtain a bona fide smooth Fano polytope Ω
′
, such that all the facets

containing (1, 0, . . . , 0) are fully contained in {x0 ≥ 0}.
We can thus run through the list of smooth Fano polygons to obtain the list of poly-

topes. We obtain three possible embeddings.

♣

3-2-15

♣

3-2-16

♣

3-2-17

Example 5.16. The embedding 3-2-15 is the product of embeddings P2×P1
, and 3-2-

17 is its blowup along one closed orbit, a product of a quadric in P2
with a torus fixed

point in P1
.

We now deal with the case when H = diag(N(T1)) ⊂ SL2×Gm = G. By Proposi-
tion 5.14, it suffices to run through the list of 16 reflexive polygons up to GL2(Z)-action,
and determine which representatives satisfy the properties. We obtain:

♣

3-2-18

♣

3-2-19

♣

3-2-20

♣

3-2-21

♣

3-2-22

♣

3-2-23

Example 5.17. The embedding 3-2-18 is the quadric Q
3
, as explained in details in

[Del22] for example. The embedding 3-2-19 is obtained by blowing up a one dimensional
subquadric, while 3-2-23 is obtained by blowing up a zero dimensional subquadric. Since
a zero dimensional quadric consists of two distinct points, there is also an intermediate
embedding given by blowing up only one of these two points, this is 3-2-21.

Example 5.18. The embedding 3-2-20 is P3
. To describe the action, one may consider

the action of SL2 on C3
induced by the exceptional morphism SL2 → SO3. The action of

SO3 preserves a non-degenerate quadratic form on C3
, preserving in particular its level

sets. Throwing in the action of Gm on C3
by dilation, we obtain an action of SL2×Gm

on C3 with an open dense orbit formed by the union of non-zero level sets, and a closed
orbit formed by the affine quadric defined by the quadratic form. Compactifying into
P3

yields 3-2-20.
There are two closed orbits that may be blown up, yielding the embeddings 3-2-21

and 3-2-22.

5.3. Horospherical case (when H1 = B1).

5.3.1. Combinatorial data.

Proposition 5.19. Let H = ker(a1$1 + χ1)∣B1×Gm × {1Gn−1m
} for some a1 ∈ Z≥0. Then

the combinatorial data of the spherical homogeneous space G/H is as follows:

M = ⟨a1$1 + χ1, χ2, . . . , χn⟩ ρ(♣) = (a1, 0, . . . , 0)
Σ = ∅ ζ(♣) = {α1}
D = {♣}
κ = α1 f = 2 + a1x1 m♣ = 2

Proof. This follows straightforwardly from the definition of H and Proposition 2.24. �
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5.3.2. Locally factorial G/H-reflexive polytopes.

Proposition 5.20. Let Ω be a locally factorial G/H-reflexive polytope, where H =

ker(a1$1 + χ1)∣B1×Gm × {1Gn−1m
} for some a1 ∈ Z≥0. Then there are two possibilities:

(1) a1 ∈ {0, 1}, Ω is a smooth Fano polytope and (a1/2, 0, . . . , 0) ∈ Int(Ω), or
(2) a1 = 1, the vertices of Ω are in Zn ∪ {(1/2, 0, . . . , 0)}, 0 ∈ Int(Ω), and for any

facet F of Ω, the collection of primitive positive multiples of vertices of F forms
a basis of N .

Proof. Since G/H is horospherical, the interior of any facet meets the valuation cone. It
follows that the polytope cannot contain points of N except its vertices and the origin.

In particular, since
ρ(♣)
m♣

∈ Ω, we must have a1 ≤ 2. Furthermore, if a1 = 2, then
ρ(α1)

2
is

a vertex, but then ρ(α1) is not a primitive element of N , so cannot be part of a basis of
N , a contradiction. �

We determine the possible polytopes in rank two, that is, when dim(G/H) = 3.
When a1 = 0, we get all, and only get, the products of P1

with one of the five smooth
Fano toric surfaces, with the product action. We number these five examples 3-2-24 to
3-2-28.

When a1 = 1 and (1/2, 0, . . . , 0) is not a vertex, we have to determine where
(1/2, 0, . . . , 0) can lie in the interior of the polytope. It is an element of the lattice 1

2
Zn.

It suffices to go through the list of smooth Fano polygons up to GL2(Z) action. Once the

element of 1

2
Z2

corresponding to
ρ(♣)
m♣

is fixed, the GL2(Z) action reduces to the action

of matrices of the form [1 k
0 ±1

] for k ∈ Z. Thanks to Remark 3.13, we can work up to

this action. From the list of Fano polygons, we obtain the following nine possibilities.

+♣

3-2-29

+♣

3-2-30

+♣

3-2-31

+♣

3-2-32

+♣

3-2-33

+♣

3-2-34

+♣

3-2-35

+♣

3-2-36

+♣

3-2-37

Example 5.21. The embedding 3-2-36 is the product of embeddings P1×F1. It may be
blown up along one closed orbit to obtain either the embedding 3-2-31 or the embedding
3-2-30. Blowing up wisely two closed orbits yields 3-2-29.

Finally, we deal with the case when (1/2, 0, . . . , 0) is a vertex of the polytope. In
this case, we will show how to directly find the polytopes instead of relying on a known
classification result. A variant of the method used can essentially be used in all rank
two cases, and we will give less details in later occurrences.

By Remark 3.13, we may assume that (0, 1) is a vertex of a facet of Ω that contains
(1/2, 0, . . . , 0). An immediate consequence is that the whole polytope Ω lies under the
line y = 1 − 2x if (x, y) denote the coordinates in Q2

. We can be more precise by

observing that the other vertex adjacent to
ρ(α1)

2
must be of the form (l,−1) for some



SPHERICAL FANO VARIETIES OF DIMENSION ≤ 4 AND RANK ≤ 2 33

l ∈ Z. It lies strictly below the line y = 1 − 2x, hence l ≤ 0, and the whole polytope
Ω actually lies in the convex set defined by the two linear inequalities y ≤ 1 − 2x and
y ≥ −1 + 2x.

We now consider the next vertex (x3, y3)
(in counter-clockwise order) adjacent to
(0, 1). In order to form a basis with (0, 1),
we must have x3 = −1. In view of the re-
striction on Ω, its coordinate y3, which is
integral, must satisfy −3 ≤ y ≤ 2. We thus
have six possible choices for (x3, y3).

+♣

•

•

•

•

•

•

Assume that (x3, y3) = (−1, 2). Then consider the next adjacent vertex (x4, y4). In
view of the added known linear inequality y ≤ 1 − x defining Ω, with supporting facet
the hull of (0, 1) and (−1, 2), and since (−1, 2) and (x4, y4) must form a basis of Z2

, the
only possibilities are (x4, y4) = (−1, 1) and (x4, y4) = (0,−1). If (x4, y4) = (0,−1), then

it must also be the other vertex adjacent to
ρ(α1)

2
, and we have exhausted the vertices

of Ω. If (x4, y4) = (−1, 1), then there is no choice in adding a final integral vertex to
obtain a locally factorial G/H-reflexive polytope, and that vertex is (0,−1).

+♣

•

•

•

+♣

3-2-38

+♣

3-2-39

Similarly, if (x3, y3) = (−1, 1), then the next vertex (x4, y4) is either (−1, 0), in which
case, once must add the fifth vertex (0,−1) to get a locally factorial G/H-reflexive
polytope, or it is (0,−1) and one cannot add any vertex.

+♣

•

•

•

+♣

3-2-40

+♣

3-2-41

If (x3, y3) = (−1, 0), then the next vertex (x4, y4) is either (−1,−1) or it is (0,−1)
and one cannot add any vertex. If it is (−1,−1), the next vertex (x5, y5) is either (0,−1)
or

ρ(α1)
2

, yielding two possible polytopes.
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+♣•

• •

+♣

3-2-42

+♣

(3-2-41)

+♣

3-2-43

If (x3, y3) = (−1,−1), then the next vertex (x4, y4) is either (−1,−2), (0,−1) or
ρ(α1)

2
.

A quick analysis of the next vertices shows that there is only one corresponding polytope
in each case.

+♣
•

•

•

• +♣

(3-2-39)

+♣

(3-2-40)

+♣

3-2-44

Finally, if (x3, y3) = (−1,−2), there is no choice but to add the final fourth vertex
(0,−1).

+♣

(3-2-38)

In the above list of polytopes, we should work up to reflexion with respect to the
x-axis, hence we obtain only seven different locally factorial Fano embeddings of G/H.

Example 5.22. The embedding 3-2-42 is the product of embeddings P1 × P2
. The

embedding 3-2-41 is its blowup along a closed orbit which is the product of a torus
fixed point in P1

with a fixed line in P2
.

Example 5.23. The embedding 3-2-44 is P3
, equipped with the action

([a b
c d

] , z) ⋅ [x0 ∶ x1 ∶ x2 ∶ x3] = [ax0 + bx1 ∶ cx0 + dx1 ∶ z
−1
x2 ∶ x3]

By blowing up closed orbits, one may for example recover the embeddings 3-2-40 and
3-2-43.

The polytopes obtained in this section coincide with the list obtained by Pasquier in
his PhD thesis [Pas06].
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6. Locally factorial Fano spherical SL
2
2×G

n
m-fourfolds

We assume throughout that G = SL
2
2×G

n
m.

6.1. Group compactifications.

6.1.1. Combinatorial data.

Proposition 6.1. The combinatorial data associated to the homogeneous space SL
2
2 / diag SL2

is as follows.

M = ⟨$1 +$2⟩ ρ(♣) = 1
Σ = {$1 +$2} ζ(♣) = {α1, α2}
D = {♣}
κ = α1 + α2 f = (2 + x1)2

m♣ = 2

Proof. The rank of SL
2
2 is two, and the homogeneous space is obviously not horospherical,

hence it must have rank one, and Σ is a singleton consisting of a generator of M .
Consider the standard action of SL

2
2 on the space Mat2×2 of square two by two matrices

[a b
c d

] by left and right multiplication, in other words, the irreducible representation

with highest weight $1+$2. Consider the affine quadric {ad−bc = 1} in Mat2×2, that is,
the set SL2. As homogeneous space, it coincides with SL

2
2 / diag SL2. Under the action

of the Borel subgroup of pairs of upper triangular matrices, there are two orbits: the set
of upper triangular matrices and its complement. The set of upper triangular matrices,
defined by the equation c = 0, is thus the unique color in the homogeneous space. We
have obtained D and deduce easily ζ and κ.

There is a natural B-semi-invariant rational function, given by [a b
c d

]↦ c. It has B-

weight $1 +$2, and obviously vanishes to the order 1 on the color. As a consequence,
it is indivisible and we have our description of M , Σ and ρ. From Σ, we see that
mD1

= ⟨α∨1 , κ⟩ = 2. �

Corollary 6.2. The combinatorial data associated to the homogeneous space PGL
2
2 / diag PGL2

is as follows.
M = ⟨α1 + α2⟩ ρ(♣) = 2
Σ = {α1 + α2} ζ(♣) = {α1, α2}
D = {♣}
κ = α1 + α2 f = 4(1 + x1)2

m♣ = 2

Proof. Since it is obtained by quotienting the previous homogeneous space by the action
of (I2,−I2), and the unique color is necessarily stable under this action, we recover easily
the combinatorial data. One could also consider the projective model P(Mat2×2). �

Corollary 6.3. The combinatorial data associated to the homogeneous space GL
2
2 / diag GL2

is as follows.

M = ⟨$1 +$2 + χ1, $1 +$2 − χ1⟩ ρ(♣) = (1, 1)
Σ = {$1 +$2} ζ(♣) = {α1, α2}
D = {♣}
κ = α1 + α2 f = (2 + x1 + x2)2

m♣ = 2
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Proof. This is the only possibility between diag SL2×{1} and N(diag SL2)×{±1}, whose
combinatorial data we described above. �

6.1.2. Polytopes. In rank one there is only one complete equivariant embedding for
each, and it is smooth and Fano. We almost described them already: for SL

2
2 / diag(SL2),

it is the three dimensional quadric defined by ad − bc = e
2

in P4
with homogeneous

coordinates [a ∶ b ∶ c ∶ d ∶ e], where the affine chart e = 1 is identified with Mat2×2

equipped with the standard action of SL
2
2. There are only two orbits, the closed orbit

being the smooth quadric {ad−bc = 0} in the hyperplane at infinity {e = 0}, equivariantly
isomorphic to P1 × P1

. The corresponding polytope is:

+ ♣
3-1-1

For SL
2
2 /N(diag SL2) this is P(Mat2×2) equipped with the standard action. There

are only two orbits, the closed orbit being the projectivization of rank one matrices, also
equivariantly isomorphic to P1 × P1

. The corresponding polytope is:

+ ♣
3-1-2

In rank two, for H = diag SL2×{1}, we are considering equivariant compactification
of the group SL2×Gm. We determine the locally factorial G/H-reflexive polytopes using

the same method as in Section 5.3. The point
ρ(♣)
m♣

= (1/2, 0) must be a vertex for the

origin to be an interior point. Working up to reflection by Remark 3.16, we obtain
seven locally factorial Fano embeddings, corresponding to the following seven polytopes.
Another way to obtain these polytopes, and a more general result for Fano embeddings
of rank two symmetric spaces, was obtained by Ruzzi in [Ruz12]. In particular, it follows
from Ruzzi’s article that the last two are locally factorial and not smooth.

♣

4-2-1

♣

4-2-2

♣

4-2-3

♣

4-2-4

♣

4-2-5

♣

4-2-6

♣

4-2-7

Example 6.4. The embedding 4-2-5 is the product of embeddings Q
3 × P1

. Blowing
up a closed orbit yields 4-2-3.

In rank two, for H = N(diag SL2) × {1}, we are considering equivariant compacti-
fication of the group PGL2×Gm. We now determine the locally factorial G/H-reflexive

polytopes. The point
ρ(♣)
m♣

= (1, 0) must be a vertex for the origin to be an interior

point. Furthermore, since ρ(♣) is not primitive, any facet containing (1, 0 must be fully
contained in the half-space {(y1, y2) ∣ y1 ≥ 0}. As in previous cases, we observe that a
locally factorial G/H-reflexive polytope is also a smooth Fano polytope, so that we can
find all of these by going through the list of smooth Fano polytopes up to GL2(Z)-action.
We obtain the following three polytopes, and corresponding embeddings.
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♣

4-2-8

♣

4-2-9

♣

4-2-10

Example 6.5. The embedding 4-2-8 is the product of embeddings P3 × P1
. Blowing

up a closed orbit yields the embedding 4-2-10.

In rank two, for H = diag(N(diag SL2)), we are considering equivariant compactifi-
cation of the group GL2. We now determine the locally factorial G/H-reflexive polytopes

using the same method as in Section 5.3. The point
ρ(♣)
m♣

= (1, 0) must be a vertex for

the origin to be an interior point. Working up to reflection by Remark 3.16, we obtain
eight locally factorial Fano embeddings, corresponding to the following eight polytopes.

♣

4-2-11

♣

4-2-12

♣

4-2-13

♣

4-2-14

♣

4-2-15

♣

4-2-16

♣

4-2-17

♣

4-2-18

Example 6.6. The embedding 4-2-16 is the quadric Q
4
, as described in details in

[Del22]. The action factors through SO4× SO2. Blowing up a two dimensional sub-
quadric yields the embedding 4-2-15, while blowing up one or two points of a zero
dimensional subquadric yield 4-2-17 and 4-2-13.

Example 6.7. The embedding 4-2-18 is P4
. It is easily seen as a group compactification:

identify one affine chart C4
⊂ P4

with the space of two by two matrices, equipped with
the action of GL2×GL2 by equivalences. This linear action extends to P4

and provides
the equivariant group compactification. By blowing up smaller orbits, one can also
recover the embeddings 4-2-12, 4-2-17 and 4-2-13.

6.2. Diagonal Borel case.

Proposition 6.8. The combinatorial data for PGL
2
2 / diagB1 is

M = ⟨α1, α2⟩ ρ(♣) = (1,−1) ζ(♣) = {α1}
Σ = {α1, α2} ρ(♥) = (1, 1) ζ(♣) = {α1, α2}
D = {♣,♥,♦} ρ(♦) = (−1, 1) ζ(♦) = {α2}
κ = α1 + α2 f = 4(1 + x1)(1 + x2) m♣ = m♥ = m♦ = 1

and the combinatorial data for SL2 / diagB1 is

M = ⟨$1 +$2, $1 −$2⟩ ρ(♣) = (0, 1) ζ(♣) = {α1}
Σ = {α1, α2} ρ(♥) = (1, 0) ζ(♣) = {α1, α2}
D = {♣,♥,♦} ρ(♦) = (0,−1) ζ(♦) = {α2}
κ = α1 + α2 f = (2 + x1 + x2)(2 + x1 − x2) m♣ = m♥ = m♦ = 1
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Proof. We write the proof in detail in the case of PGL2, then deduce the result for SL2.
For now we thus assume G = PGL2.

Geometric realization. One geometric realization of the homogeneous space G/H
may be obtained by considering the space P3 × P1

= P(Mat2) × P1
of pairs of a two

by two matrix and a line in C2
. The action of PGL

2
2 to consider is then the action by

(g1, g2) ⋅ (M,d) = (g1Mg
−1
2 , g1d).

There are three PGL
2
2 orbits in P3×P1

. The obvious open orbit is that of pairs (M,d)
where M is invertible. The stabilizer of (I2, [1 ∶ 0]) is the subgroup H, hence P3 ×P1

is
an equivariant embedding of G/H. The complement to the open orbit is the projective
space of rank one matrices times the projective line. Note that the projective space
of rank one matrices may be identified with P1 × P1

by sending a rank one matrix to
the pair of lines in C2

formed by its kernel and its image. Under this identification,
the action of PGL

2
2 simply splits on the two factors (g1, g2) ⋅ (k, i) = (g2k, g1i). It is

now easy to check that there are two orbits in P1 × P1 × P1
under the PGL

2
2 action

(g1, g2) ⋅ (k, i, d) = (g2k, g1i, g1d): the diagonal in the last two entries {(k, i, i)} (of
dimension two) and its complement, of dimension three.

Colors. Let us now determine the colors of G/H, considered as the space of projec-
tivized two by two invertible matrices times P1

:

G/H = PGL2×P
1
⊂ P3

× P1

with the action (g1, g2) ⋅ (g, d) = (g1gg
−1
2 , g1d).

Let B0 × B0 denote the Borel subgroup of PGL
2
2 formed by pairs of upper triangular

matrices. The B0 orbits in P1
are {[1 ∶ 0]} and its complement, and the B0 ×B0 orbits

in PGL2 are B0 and its complement. As a consequence, the following subsets are stable
under the action of B0 ×B0, and it is not hard to check that they are actually orbits:

• B0 × {[1 ∶ 0]} of dimension two
• D1 ∶= PGL2 \B0 × {[1 ∶ 0]} of dimension 3
• D2 ∶= B0 × P1 \ {[1 ∶ 0]} of dimension 3
• D3 ∶= {(g, g([1 ∶ 0])) ∣ g ∈ PGL2 \B0} of dimension 3
• {(g, d) ∣ g ∈ PGL2 \B0, d ∈ P1 \ {[1 ∶ 0], g([1 ∶ 0])}} the open orbit.

In particular, we have D = {D1, D2, D3}.
Weight lattice. The weight lattice is the full weight lattice ofB0×B0 ⊂ PGL2×PGL2,

identified with Z2
via the basis (α1, α2). Indeed, we can find two rational functions whose

weights form a basis of this lattice. These functions are easily defined in homogeneous
coordinates on P3 × P1

as follows.

f(−1,0) ∶ ([
a b
c d

] , [x ∶ y])↦ xc − ay
cy

and

f(1,1) ∶ ([
a b
c d

] , [x ∶ y])↦ c
2

cb − ad
.

Let more generally f(m1,m2) = f
m2−m1

(−1,0) f
m2

(1,1) for (m1,m2) ∈ Z2
.

Since

[a1 b1

0 1
] [a b
c d

] [
1

a2

−b2
a2

0 1
] = [

a1a

a2
+ b1c

a2

−a1ab2
a2

+ −b1cb2
a2

+ a1b + b1d
c

a2

−cb2
a2
+ d

]
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one can check easily that for X ∈ PGL2×P
1
,

f(m1,m2) (([
a1 b1

0 1
] , [a2 b2

0 1
])

−1

⋅X) = am1

1 a
m2

2 f(m1,m2)(X)

Hence f(m1,m2) is an eigenfunction for the action of B, with weight m1α1 +m2α2.
Images of colors. To determine the color map, we consider the order of vanishing

of the functions f(m1,m2) along the B-stable divisors Di. Again, it is convenient to work

in homogeneous coordinates on P3 × P1
, associating to the class of a matrix [a b

c d
]

the homogeneous coordinates [a ∶ b ∶ c ∶ d] and to the line C [x
y
] the homogeneous

coordinates [x ∶ y]. One can then write down the equations of the divisors Di:

• D1 = {y = 0}
• D2 = {c = 0}
• D3 = {xc − ay = 0}

From the expression of f(m1,m2), one deduces that

• ord(D1)(f(m1,m2)) = m1 −m2

• ord(D2)(f(m1,m2)) = m1 +m2

• ord(D3)(f(m1,m2)) = −m1 +m2

Hence the description of ρ(Di) in the statement.
Valuation cone.
We use Proposition 2.12 to determine the valuation cone. Since PGL

2
2 / diag(B0) is

the quotient of SL
2
2 / diag(B0) by a central subgroup of order two, the valuation cones of

the two homogeneous spaces are the same. We compute it for SL
2
2 / diag(B0) for simpler

notation.
Consider the functions

f1 ∶ SL
2
2 → C, ([a1 b1

c1 d1
] , [a2 b2

c2 d2
])↦ c1c2

and

f2 ∶ SL
2
2 → C, ([a1 b1

c1 d1
] , [a2 b2

c2 d2
])↦ c1d2 − d1c2

It is easy to check that they are regular functions that are B-semi-invariant on the left
with weight $1 +$2 and diag(B0)-semi-invariant on the right. Let M1 and M2 be the
simple G-modules generated by f1 and f2. The functions

f ∶= diag([ 0 1
−1 0

]) ⋅ f1 × f2 − (I2, [
0 1
−1 0

]) ⋅ f1 × ([ 0 1
−1 0

] , I2) ⋅ f2

and

f̃ ∶= diag([ 0 1
−1 0

]) ⋅ f1 × f2 − ([ 0 1
−1 0

] , I2) ⋅ f1 × (I2, [
0 1
−1 0

]) ⋅ f2

are respectively in simple G-submodules in M1M2 of highest weight 2$2 and 2$1.
Since 2$1 + 2$2 − 2$2 = α1 and 2$1 + 2$2 − 2$1 = α2, by Proposition 2.12, we

deduce that the valuation cone V is included in {x ∈ N ⊗Q ∣ ⟨α1, x⟩ ≤ 0, ⟨α2, x⟩ ≤ 0}.
This is in fact an equality, by Proposition 2.15, and Σ = {α1, α2}.

The case G0 = SL2 follows directly. Since diag(−I2) ∈ diag(B0), we know that
M ⊂ ($1 + $2)Z ⊕ ($1 − $2)Z. But since both homogeneous spaces are related by
the quotient by (I2,−I2), we have α1Z ⊕ α2Z ⊂ M . This shows that Σ = {α1, α2}.



40 THIBAUT DELCROIX AND PIERRE-LOUIS MONTAGARD

Using the properties of colors by type (see e.g. [GH15b]), we see that necessarily all the
other combinatorial data are the same. To distinguish the two homogeneous spaces, the
weight lattices must be different, hence the result. �

We now determine the possible locally factorial G/H-reflexive polytopes. We first
note that, in view of the combinatorial data, we already know three vertices given by
the ρ(D)/mD = ρ(D) for D ∈ D.

Case H = diag(B). By considering the successive next vertices similarly as in Sec-
tion 5.3, we quickly obtain the classification of locally factorial G/H-reflexive polytopes:
there are only three, as follows.

+ ♥

♣

♦

4-2-19

+ ♥

♣

♦

4-2-20

+ ♥

♣

♦

4-2-21

Case H = N(diag(B)). We obtain the following two additional possibilities.

+

♣

♥♦

4-2-22

+

♣

♥♦

4-2-23

Example 6.9. As follows from the proof for the combinatorial data, or its obvious
variant, the embeddings 4-2-23 and 4-2-19 are P3 × P1

and Q
3 × P1

. Blowing up their
unique closed orbits yields the embeddings 4-2-22 and 4-2-21.

6.3. Symmetric varieties of type A1×A1. We consider the cases when n = 0 and the
Lie algebra of H is t1 ⊕ t2. There are four possible corresponding subgroups (satisfying
our assumptions). All but one are products, so that we can recover their combinatorial
data directly.

Proposition 6.10. The combinatorial data for H = T1 × T2 is as follows:

M = ⟨α1, α2⟩ ρ(♣) = ρ(♥) = (1, 0) ρ(♠) = ρ(♦) = (0, 1)
Σ = {α1, α2} ζ(♣) = ζ(♥) = {α1} ζ(♠) = ζ(♦) = {α2}
D = {♣,♥,♠,♦}
κ = α1 + α2 f = 4(1 + x1)(1 + x2) m♣ = m♥ = m♠ = m♦ = 1

Proposition 6.11. The combinatorial data for H = N(T1) × T2 is as follows:

M = ⟨2α1, α2⟩ ρ(♣) = (2, 0) ρ(♠) = ρ(♦) = (0, 1)
Σ = {2α1, α2} ζ(♣) = {α1} ζ(♠) = ζ(♦) = {α2}
D = {♣,♠,♦}
κ = α1 + α2 f = 4(1 + 2x1)(1 + x2) m♣ = m♠ = m♦ = 1

Proposition 6.12. The combinatorial data for H = N(T1) ×N(T2) is as follows:

M = ⟨2α1, 2α2⟩ ρ(♣) = (2, 0) ρ(♠) = (0, 2)
Σ = {2α1, 2α2} ζ(♣) = {α1} ζ(♠) = {α2}
D = {♣,♠}
κ = α1 + α2 f = 4(1 + 2x1)(1 + 2x2) m♣ = m♠ = 1
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Finally, for the remaining case H = diag(N(T1)), we can deduce its combinatorial
data from that the homogeneous space is obtained as the quotient of SL

2
2 /T1 × T2 by

the group generated by ([ 0 1
−1 0

] , [ 0 1
−1 0

]).

Proposition 6.13. The combinatorial data for H = diagN(T1) is as follows:

M = ⟨α1 + α2, α1 − α2⟩ ρ(♣) = (1, 1) ρ(♠) = (1,−1)
Σ = {2α1, 2α2} ζ(♣) = {α1} ζ(♠) = {α2}
D = {♣,♠}
κ = α1 + α2 f = 4(1 + x1 + x2)(1 + x1 − x2) m♣ = m♠ = 1

6.3.1. Polytopes. The conditions on locally factorial G/H-reflexive polytopes for these
four homogeneous spaces are very strong, yielding few embeddings. Note that there can

be facets containing a
ρ(D)
mD

only in the case H = diag(N(T1)), otherwise either
ρ(D)
mD

is not

primitive, or the color map has several antecedents of ρ(D). By considering successively
the possible next vertices, we arrive quickly to the following possibilities.

For H = T1 × T2, we obtain two polytopes, and two corresponding locally factorial
Fano embeddings.

♣♥

♦♠

4-2-24

♣♥

♦♠

4-2-25

For H = N(T1)×T2, we obtain two polytopes, and two corresponding locally factorial
Fano embeddings.

♣

♦♠

4-2-26

♣

♦♠

4-2-27

For H = N(T1) × N(T2), we obtain two polytopes, and two corresponding locally
factorial Fano embeddings.

♣

♠

4-2-28

♣

♠

4-2-29

Example 6.14. In the three previous choices of homogeneous spaces, the embeddings
obtained are the obvious product embeddings, and their blowups along the unique closed
orbit.

For H = diag(N(T1)), we obtain two polytopes, and two corresponding locally
factorial Fano embeddings.
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♣

♠
4-2-30

♣

♠
4-2-31

Example 6.15. The embedding 4-2-31 is the quadricQ
4
, and the action factors through

SO3× SO3 ⊂ SO6. This embedding is described in details in [Del22]. Blowing up a one-
dimensional subquadric yields the other embedding 4-2-30.

6.4. Parabolic inductions of type T. Let Q = Qα2
, G0 = SL2×Gm and let π ∶ Q →

G0 be the epimorphism given by (idSL2
, a2$2 + χ1) . Letting, as in the paragraph on

parabolic induction, B0 = π(B ∩Q), we have X
∗(B0) = Z$1 ⊕ Z(a2$2 + χ1).

Proposition 6.16. Assume that G/H is obtained by parabolic induction from G0/H0

with respect to π ∶ Q → G0 as above, with H0 = ker(a1$1 + a2$2 + χ)∣T0. If a1 is even,
the combinatorial data of G/H is as follows:

M = ⟨α1, a2$2 + χ1⟩ ρ(♣) = (1, a1/2) ζ(♣) = {α1}
Σ = {α1} ρ(♥) = (1,−a1/2) ζ(♥) = {α1}
D = {♣,♥,♦} ρ(♦) = (0, a2) ζ(♦) = {α2}
κ = α1 + α2 f = 2(1 + x1)(2 + a2x2) m♣ = m♥ = 1,m♦ = 2

If a1 is odd, the combinatorial data of G/H is as follows:

M = ⟨$1 + a2$2 + χ1, $1 − a2$2 − χ1⟩ ρ(♣) = (a1+1

2
, 1−a1

2
) ζ(♣) = {α1}

Σ = {α1} ρ(♥) = (1−a1
2
, a1+1

2
) ζ(♥) = {α1}

D = {♣,♥,♦} ρ(♦) = a2(1,−1) ζ(♦) = {α2}
f = (2 + x1 + x2)(2 + a2(x1 − x2)) κ = α1 + α2 m♣ = m♥ = 1,m♦ = 2

Proof. It follows straightforwardly from the Proposition 2.24, and the combinatorial data
for subgroups of SL2×G

n
m. �

According to our classifications, we may assume that a1 is a non-negative integer. We
now determine the possible locally factorial G/H-reflexive polytopes. Let Ω be such a
polytope. Note first that the two points ρ(♣) and ρ(♥) are vertices of Ω. If ρ(♦)/2 is
a vertex, then ρ(♦) must be primitive, hence a2 = 1. If it is not a vertex, then we must
have a2 ≤ 1.

Step 0: a2 = 0 In this case, any embedding is a product of P1
with a type T,

dimension three SL2×Gm-spherical variety, with the product action. There are 14 such
products, that we identify as 4-2-32 to 4-2-45.

From now on we assume that a2 = 1. As will be clear from the proof of the first few
cases, there are no possible Ω if a1 ≥ 3, we thus deal successively with the cases a1 = 0,
1 and 2.

Step 1: a1 = 0, ρ(♦)/2 is not a vertex Since ρ(♣) = ρ(♥), these vertices cannot
be vertices of a facet intersecting the relative interior of the valuation cone. As a con-
sequence, the primitive generators (0, 1) and (0,−1) of the valuation cone are vertices.
The vertex following (0, 1) in counter-clockwise sense must have first coordinate −1 (to
form a basis with (0, 1)), and must have second coordinate less than 1 (so that (0, 1)
remains a vertex of ∆). If it is (−1, 1), then the next vertex in counterclockwise sense
can only be (−1, 0) or (0,−1). If it is (−1, 0), then the next vertex in counterclockwise
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sense is either (−1,−1) or (0,−1). It is now easy to exhaust the rest of the possibilities.
Finally, there are five polytopes

♣
♥

♦

4-2-46

♣
♥

♦

4-2-47

♣
♥

♦

4-2-48

♣
♥

♦

4-2-49

♣
♥

♦

4-2-50

Example 6.17. The embedding 4-2-48 is the product of embeddings (P1)2×F1. Blow-
ing up one of the two closed orbits yields either 4-2-46 or 4-2-49.

Step 2: a1 = 0 and (0, 1

2
) is a vertex The same method yields the following

polytopes (with respect to the previous case, some vertices are not allowed as they
would lie on the same facet as the previous facet in counterclockwise order).

♣
♥

♦

4-2-51

♣
♥

♦

4-2-52

♣
♥

♦

4-2-53

Example 6.18. The embedding 4-2-52 is the product of embeddings (P1)2×P2
. Blow-

ing up (diagP1) ×H where H is the stable line in P2
yields the embedding 4-2-53.

Step 3: a1 = 1 and (1/2,−1/2) is not a vertex We obtain the following list of five
polytopes.

♣

♥

♦
4-2-54

♣

♥

♦
4-2-55

♣

♥

♦
4-2-56

♣

♥

♦
4-2-57

♣

♥

♦
4-2-58

Step 4: a1 = 1 and (1/2,−1/2) is a vertex Going the arguments above, we obtain
only two possibilities.

♣

♥

♦
4-2-59

♣

♥

♦
4-2-60

Example 6.19. The embedding 4-2-59 is P3 × P1
. The action of SL

2
2 to consider is

given by considering P3×P1
as P(C2

1⊕C2
2)×P(C2

1) where C2
1 and C2

2 denote the standard
representations of each of the SL2 factor. By successive well-chosen blowups, one can
obtain a precise description for all embeddings with a1 = 1 except 4-2-57.

Step 5: a1 = 2 Following the same steps as before, we easily see that (0, 1/2) cannot
be a vertex, and obtain only two polytopes.

♣

♥

♦

4-2-61

+

♣

♥

♦

4-2-62
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Step 6: a1 ≥ 3 From the same method as before, we obtain that there are no locally
factorial G/H-reflexive polytopes.

6.5. Parabolic inductions of type N. Let Q = Qα2
, G0 = SL2×Gm and let π ∶ Q →

G0 be the epimorphism given by (idSL2
, a2$2 + χ1) . Letting, as in the paragraph on

parabolic induction, B0 = π(B ∩Q), we have X
∗(B0) = Z$1 ⊕ Z(a2$2 + χ1).

Proposition 6.20. Assume that G/H is obtained by parabolic induction from G0/H0

with respect to π ∶ Q → G0 as above. If H0 = N(T1) × {1}, then the combinatorial data
is:

M = ⟨2α1, a2$2 + χ1⟩ ρ(♣) = (2, 0) ζ(♣) = {α1}
Σ = {2α1} ρ(♦) = (0, a2) ζ(♦) = {α2}
D = {♣,♦}
κ = α1 + α2 f = 2(1 + 2x1)(2 + a2x2) m♣ = 1,m♦ = 2

If H0 = diag(N(T1)), then the combinatorial data is:

M = ⟨α1 + a2$2 + χ1, α1 − a2$2 − χ1⟩ ρ(♣) = (1, 1) ζ(♣) = {α1}
Σ = {2α1} ρ(♦) = a2(1,−1) ζ(♦) = {α2}
D = {♣,♦}
f = 2(1 + x1 + x2)(2 + a2(x1 − x2)) κ = α1 + α2 m♣ = 1,m♦ = 2

Let us now classify the possible locally factorial G/H-reflexive polytopes. As previ-
ously, we observe that a2 ∈ {0, 1}, and if a2 = 0, then any embedding is a product of
P1

with a type N, dimension three spherical variety under SL2×Gm, with the product
action. There are nine such products, that we number as 4-2-63 to 4-2-71. We now
deal with the cases where a2 = 1.

We first assume that H0 = diag(N(T1))
If (1/2,−1/2) is not a vertex By applying the same exhaustion argument as before,

we obtain the following list of five polytopes.

♣

♦
4-2-72

♣

♦
4-2-73

♣

♦
4-2-74

♣

♦
4-2-75

♣

♦
4-2-76

If (1/2,−1/2) is a vertex By applying the same exhaustion argument as before, we
obtain the following list of six polytopes.

♣

♦
4-2-77

♣

♦
4-2-78

♣

♦
4-2-79

♣

♦
4-2-80

♣

♦
4-2-81

♣

♦
4-2-82

Example 6.21. The embedding 4-2-81 is P4
. The action of SL2× SL2 factors through

SO3× SL2 and is given by the standard action of this group on C3 × C2
. Blowing up

well-chosen successive orbits allows to recover all the above embeddings but 4-2-72 and
4-2-77.

We now assume that H0 = N(T1)×{1} Note that in this case, ρ(♣) is not primitive,
so it cannot be in a facet whose relative interior intersects the valuation cone.
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If (0, 1

2
) is not a vertex In this case, (0, 1) and (0,−1) must be vertices. By

exhaustion, we get the following list.

+ ♣
♦

4-2-83

+ ♣
♦

4-2-84

+ ♣
♦

4-2-85

+ ♣
♦

4-2-86

+ ♣
♦

4-2-87

If (0, 1

2
) is a vertex In this case, (0, 1/2) and (0,−1) must be vertices. By exhaustion,

we get the following list.

+ ♣
♦

4-2-88

+ ♣
♦

4-2-89

+ ♣
♦

4-2-90

Example 6.22. The embeddings 4-2-84 and 4-2-90 are the product of embeddings
P2 × F1 and P2 × P2

. Blowing up closed orbits allows to recover 4-2-83, 4-2-85 and
4-2-88.

6.6. Dimension three, horospherical rank one. We note that all horospherical
structures under SL2× SL2×G

n
m upgrade a toric structure under Gn+2

m .

Proposition 6.23. Let H = ker(a1$1+a2$2+χ1)∣B−. The combinatorial data of G/H
is as follows.

M = ⟨a1$1 + a2$2 + χ1⟩ ρ(♣) = a1 ζ(♣) = {α1}
Σ = ∅ ρ(♥) = a2 ζ(♥) = {α2}
D = {♣,♥}
κ = α1 + α2 f = (2 + a1x1)(2 + a2x2) m♣ = m♥ = 2

The conditions on
ρ(αi)

2
show that if there exists a locally factorial G/H-reflexive

polytope, then ai ∈ {−1, 0, 1}. If a2 = 0 then any embedding is a product of P1
with

an embedding of a rank one horospherical homogeneous space under SL2×Gm. There
are three such products, numbered as 3-1-3 to 3-1-5. Finally, if both are non-zero, we
obtain the following four polytopes.

+ ♣
♥3-1-6

+ ♣♥
3-1-7

+ ♣♥
3-1-8

+ ♣♥
3-1-9

Example 6.24. The first polytope corresponds to the embedding PP1×P1(O⊕O(1, 1)).
The last one corresponds to P3

equipped with the action of S(GL2×GL2) induced by
the block diagonal embedding of this group in SL4 and the linear action of SL4 on C4

.
There are three orbits under this action: the two projective lines given by vanishing
of the two first, or two last homogeneous coordinates, and the complement, which is
our spherical homogeneous space. Blowing up one line yields the embedding associated
to the third polytope above, while blowing up both lines yields the second, which may
alternatively be described as PP1×P1(O ⊕O(1,−1)).
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6.7. Dimension four, horospherical rank two. We note that all horospherical struc-
tures under SL2× SL2×G

n
m upgrade a toric structure under Gn+2

m .

Proposition 6.25. Let H = ker(a1$1 + a2$2 + χ1) ∩ ker(b2$2 + χ2) ⊂ B
−

. The
combinatorial data of G/H is as follows.

M = ⟨a1$1 + a2$2 + χ1, b2$2 + χ2⟩ ρ(♣) = (a1, 0) ζ(♣) = {α1}
Σ = ∅ ρ(♥) = (a2, b2) ζ(♥) = {α2}
D = {♣,♥}
κ = α1 + α2 f = (2 + a1x1)(2 + a2x1 + b2x2) m♣ = m♥ = 2

Note that if a2 = b2 = 0, then any embedding is the product of P1
with a rank

two, dimension three embedding of a horospherical homogeneous space under SL2×G
2
m.

There are 21 such products, numbered from 4-2-91 to 4-2-111.
We now assume that 0 < a1 ≤ a2 ∧ b2 and 0 ≤ a2 < b2. The conditions on the points

ρ(♣)
2

imply that a1 = 1, and the condition on
ρ(♥)

2
imply that (a2, b2) is primitive. When

none of these points are vertices, it suffices to identify where these (half-integral) points
may be located in a smooth Fano rank two polygon. We obtain the following list of
twelve possibilities.

+♣
♥

4-2-112

+♣
♥

4-2-113

+♣
♥

4-2-114

+♣
♥

4-2-115

+♣
♥

4-2-116

+♣
♥

4-2-117

+♣
♥

4-2-118

+♣
♥

4-2-119

+♣
♥

4-2-120

+♣
♥

4-2-121

+♣
♥

4-2-122

+♣
♥

4-2-123

Assume now that there is only one non-integral vertex. Without loss of generality,

we assume that
ρ(♣)

2
is a vertex. Then the conditions on locally factorial G/H-reflexive

polytopes are the same as for rank two horospherical threefolds under SL2×G
2
m, with

the added condition that (a2/2, b2/2) is in the interior of the polytope. We can thus go
through the list obtained previously, and obtain the following 16 possibilities.
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+♣
♥

4-2-124

+♣

♥

4-2-125

+♣
♥

4-2-126

+♣
♥

4-2-127

+♣
♥

4-2-128

+♣

♥

4-2-129

+♣
♥

4-2-130

+♣
♥

4-2-131

+♣
♥

4-2-132

+♣
♥

4-2-133

+♣
♥

4-2-134

+♣
♥

4-2-135

+♣
♥

4-2-136

+♣
♥

4-2-137

+♣
♥

4-2-138

+♣
♥

4-2-139

We now deal with the case when both
ρ(♣)

2
and

ρ(♥)
2

are vertices. There are infinitely

many possibilities for (a2, b2) that we need to rule out. For this, note that a locally
factorial G/H-reflexive polytope for this homogeneous space cannot contain integral
points different from its vertices or the origin. Since (0, 0) and (1/2, 0) are in the
polytope, and (1, 1) cannot be in the relative interior of one of its facets, the polytope
cannot contain any point (x, y) satisfying x ≤ y ≤ 2x − 1 except (1, 1) as a vertex. In
particular, if a2 > 2 we must have b2 > 2a2 − 1.

Furthermore, (1/2, 0) and (a2/2, b2/2) can be in the same facet only if (1, 0) and
(a2, b2) form a basis of Z2

, that is only if a2 = 0 (in which case b2 = 1). When a2 ≠ 0,
the vertex adjacent to (1/2, 0) in counterclockwise order is of the form (k, 1) for some
k ∈ Z>0. Assume that k > 1, then write (1, 1) = x(k, 1) + y(a2/2, b2/2). We have

y =
2(1−k)
a2−kb2

, and x + b2
2
y = 1. By the conditions on k, a2 and b2, we have y > 0.

Furthermore, b2 > a2 also implies that y < 2

b2
, hence x > 0. Finally, x + b2

2
y = 1 implies

that x + y ≤ 1 since 1 ≤ a2 < b2. As a consequence, (1, 1) is an integral point of the
polytope which is not a vertex, a contradiction. We have shown by contradiction that
(1, 1) must be the vertex adjacent to (1/2, 0) if a2 ≠ 0.

Keep assuming a2 ≠ 0, and consider now the point (1, 2). It is an integral point, so
it cannot be in the relative interior of any face of the polytope. Since (1, 1) and the
origin are in the polytope, we deduce that we cannot have b2 ≥ 2a2 for a2 ≥ 2. The
two inequalities obtained give 2a2 − 1 < b2 < 2a2 for a2 > 2, which does not have any
integral solution. We have thus shown that either (a2, b2) = (0, 1), or a2 = 1, or a2 = 2
and b2 = 3.

Finally, noting that the vertex adjacent to (1/2, 0) in clockwise order is of the form
(k,−1) with k ≤ −1, we have that (0, 1) is an integral point of the polytope which is
not vertex if a2 = 1 and b2 ≥ 4. Only four possibilities remain to be explored for (a2, b2):
(0, 1), (1, 2), (1, 3) or (2, 3).

For each of these cases, by examining the different possibilities for vertices, we quickly
reach a classification, with 19 polytopes for (a2, b2) = (0, 1), one polytope for (a2, b2) =
(1, 2) and (a2, b2) = (2, 3), and no polytope for (1, 3).
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+♣
♥

4-2-140

+♣
♥

4-2-141

+♣
♥

4-2-142

+♣
♥

4-2-143

+♣
♥

4-2-144

+♣
♥

4-2-145

+♣
♥

4-2-146

+♣
♥

4-2-147

+♣
♥

4-2-148

+♣
♥

4-2-149

+♣
♥

4-2-150

+♣
♥

4-2-151

+♣
♥

4-2-152

+♣

♥

4-2-153

+♣

♥

4-2-154

Example 6.26. The embedding 4-2-152 is P4
, where the action is induced by the linear

action on the affine chart C4
= C2×C2

given by the product of the standard actions for
each factor SL2. The orbits are: the fixed point {0} ⊂ C4

, the two C2 \ {0}× {0} factors
in C4 \ {0}, the complement of these three orbits in C4

which is our homogeneous space,
then the corresponding non-zero orbits on the hyperplane P3

at infinity.
Blowing up a closed orbit in the hyperplane at infinity yields the embedding 4-2-150.

Blowing up one C2 \ {0} × {0} yields the embedding 4-2-139, and blowing up both
yields 4-2-112. Blowing up the fixed point yields 4-2-140. Many other examples can
be obtained by wisely chosen blowups.

7. Locally factorial Fano spherical SL3×G
n
m-fourfolds

7.1. Dimension four, rank one symmetric.

Proposition 7.1. The combinatorial data for SL3 /S(GL1×GL2) is as follows.

M = ⟨α1 + α2⟩ ρ(♣) = 1 ζ(♣) = {α1}
Σ = α1 + α2 ρ(♥) = 1 ζ(♥) = {α2}
D = {♣,♥}
κ = 2α1 + 2α2 f = (2 + x1)3

m♣ = m♥ = 2

Proof. Since SL3 /S(GL1×GL2) is a rank one, Hermitian symmetric space, its combi-
natorial data is well known since [Vus90]. It is very quick to recover this data in this

case: consider the product P2 × P2
equipped with the action of SL3 induced by

A ⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

z1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, [x2 y2 z2]

⎞
⎟
⎠
=

⎛
⎜
⎝
A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

z1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, [x2 y2 z2]A−1⎞⎟

⎠

More geometrically, we consider an element of P2×P2
as the data of a line and a plane in

C3
, equipped with the natural linear action of SL3. The stabilizer of

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, [1 0 0]

⎞
⎟
⎠

is S(GL1×GL2), its orbit is open, and its complement is the SL3-orbit defined by
{x1x2 + y1y2 + z1z2 = 0}, which corresponds to flags in C3

.
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We consider now the action of the Borel subgroup B of upper triangular matrices.
The colors are easily identified as D1 = {x2 = 0} and D2 = {z1 = 0}, the numbering
being chosen so that ζ(Di) = {αi}. We deduce that the adapted parabolic is B, that
the rank is one, that κ = 2α1 + 2α2 and that mDi = 2.

Observe that the rational function

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

y1

z1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, [x2 y2 z2]

⎞
⎟
⎠
↦

x2z1

x1x2 + y1y2 + z1z2

is B-semi-invariant with weight α1 + α2. Since it vanishes to order 1 on the colors, we
deduce that its weight generates M as well as the images of the colors. �

In view of the combinatorial data, there is only one possible complete embedding.
It has already been described in the previous proof as P2 × (P2)∗ equipped with the
diagonal action. Its polytope is the following.

+ ♣
♥4-1-1

7.2. Dimension four, rank one horosymmetric. Consider the case of a non-trivial
parabolic induction from SL2 /T with respect to a maximal parabolic subgroup in SL3.
The combinatorial data is deduced from the case of SL2 /T and the parabolic induction
procedure.

Proposition 7.2. For H = ⟨Qu
, T ⟩, the combinatorial data is as follows.

M = ⟨α2⟩ ρ(♣) = −1 ζ(♣) = {α1}
Σ = α2 ρ(♥) = ρ(♦) = 1 ζ(♥) = ζ(♦) = {α2}
D = {♣,♥,♦}
κ = 2α1 + 2α2 f = (2 − x1)(1 + x1)(4 + x1) m♣ = 2, m♦ = m♥ = 1

There are two possible locally factorial G/H-reflexive polytopes:

+♣ ♥
♦

4-1-2
+♣ ♥

♦
4-1-3

The corresponding embeddings are easily identified: consider P2 × P2
equipped with

the diagonal action of SL3. Then there are two orbits: the diagonal embedding of P2

and its complement. It is easy to check that the complement is indeed our spherical
homogeneous space. Note that this embedding is colored, since the closed orbit has
codimension two, hence it corresponds to the first embedding. The second embedding
is the blowup X of P2 × P2

along the diagonal.
Consider now the case of non-trivial parabolic induction from SL2 /N(T ) with respect

to a maximal parabolic subgroup Q in SL3. The combinatorial data is deduced from the
case of SL2 /N(T ) and the parabolic induction procedure.

Proposition 7.3. For H = N(⟨Qu
, T ⟩), the combinatorial data is as follows.

M = ⟨2α2⟩ ρ(♣) = −2 ζ(♣) = {α1}
Σ = {2α2} ρ(♥) = 2 ζ(♥) = {α2}
D = {♣,♥}
κ = 2α1 + 2α2 f = 4(1 − x1)(1 + 2x1)(2 + x1) m♣ = 2, m♥ = 1

There are no locally factorial G/H-reflexive polytopes.
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7.3. Dimension three, rank one horospherical. The next proposition follows di-
rectly from Proposition 2.24.

Proposition 7.4. The combinatorial data of SL3×Gm/ ker(a1$1+χ1)∣Qα1 is as follows.

M = ⟨a1$1 + χ1⟩ ρ(♣) = a1 ζ(♣) = {α1}
Σ = ∅
D = {♣}

κ = 2α1 + α2 f =
(3+a1x1)2

2
m♣ = 3

We deduce easily the possible locally factorial G/H-reflexive polytopes and corre-
sponding embeddings. It suffices to note that the conditions imply that a1 = 1 if
ρ(α1)
mα1

= a1/3 is a vertex, and otherwise the fact that a1/3 is in the interior of the poly-

tope shows that a1 ∈ {0, 1, 2}. If a1 = 0 then the homogeneous space is the product
P2 ×Gm, yielding only one Fano embedding P2 × P1

, numbered as 3-1-10.
We obtain three non-product embeddings, corresponding to the following polytopes.

+♣
3-1-11

+ ♣
3-1-12

+♣
3-1-13

Example 7.5. The embeddings are easily identified as PP2(O ⊕ O(k)) for k ∈ {1, 2},
and P3

as the Fano cone over the Kodaira embedding of P2
in P3

via O(1).
7.4. Dimension four, rank one horospherical.

Proposition 7.6. The combinatorial data of SL3×Gm/ ker(a1$1 + a2$2 + χ1)∣B− with
ai ∈ Z and a1 ≥ ∣a2∣ is as follows.

M = ⟨a1$1 + a2$2 + χ1⟩ ρ(♣) = a1 ζ(♣) = {α1}
Σ = ∅ ρ(♥) = a2 ζ(♥) = {α2}
D = {♣,♥}
κ = 2α1 + 2α2 f =

(2+a1x1)(2+a2x1)(4+(a1+a2)x1)
2

m♣ = m♥ = 2

We now determine the possible locally factorial G/H-reflexive polytopes. The condi-

tions on
ρ(♣)

2
and

ρ(♥)
2

show that, if one is a vertex, a1 = 1 and a2 ∈ {0, 1}, and if it is

not, then (a1, a2) ∈ {(0, 0), (1, 0), (1, 1), (1,−1)}. Furthermore, if (a1, a2) = (0, 0), the
embedding 4-1-4 is the product W×P1

, where W = SL3 /B−
is the variety of full flags in

C3
. We deduce that there are six polytopes corresponding to non-product embeddings.

+ ♣
♥4-1-5

+ ♣♥
4-1-6

+ ♣♥
4-1-7

+ ♣♥
4-1-8

+ ♣♥
4-1-9

+ ♣♥
4-1-10

Example 7.7. The embeddings corresponding to 4-1-5, 4-1-6 and 4-1-8 are P1
-bundles

over W = SL3 /B−
of the form P(O ⊕ O(a1$1 + a2$2)) where O(a1$1 + a2$2) is the

homogeneous line bundle associated to the weight a1$1 + a2$2.

Example 7.8. The geometrical description for the embedding associated with 4-1-10
follows from [Pas09, Proposition 1.8]: consider P5

as the projectivization of the direct

sum of the representations C3
and (C3)∗ of SL3. Consider furthermore the quadratic

form on C3 ⊕ (C3)∗ given by the duality bracket. Then the embedding is the corre-
sponding quadric Q

4
⊂ P5

. Furthermore, as follows from the encoding of morphisms
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between spherical varieties, the variety corresponding to the penultimate polytope is the
blowup of Q

4
along the subvariety P2

= P({0}⊕ (C3)∗). Note that we may also recover
4-1-8 as the blowup of Q

4
along the two copies of P2

given by each subrepresentation
of C6

= C3 ⊕ (C3)∗.

7.5. Dimension four, rank two horospherical. In this case, we obtain upgradings
of toric structures.

7.5.1. Combinatorial data.

Proposition 7.9. Let H = ker(a1$1 + χ1) ∩ ker(χ2) ⊂ Qα1
⊂ G = SL3×G

2
m. The

combinatorial data of G/H is as follows.

M = ⟨a1$1 + χ1, χ2⟩ ρ(♣) = a1 ζ(♣) = {α1}
Σ = ∅
D = {♣}

κ = 2α1 + α2 f =
(3+a1x1)2

2
m♣ = 3

Proof. This follows directly from Proposition 2.24. �

7.5.2. Polytopes. When a1 = 0, the homogeneous space is the product of homogeneous
spaces P2×G2

m. All locally factorial embeddings are thus products of P2
with toric Fano

surfaces, there are 5 such embeddings, that we number from 4-2-155 to 4-2-159.
We now assume that a1 > 0. Recall that by Remark 3.19, we can work up to the

action of [1 k
0 ±1

] for k ∈ Z. If
ρ(♣)

3
= (a1

3
, 0) is a vertex, then ρ(α1) must be primitive,

hence a1 = 1. If it is not a vertex, it must be an interior point, hence we must have
ai ∈ {1, 2}.

If (a1
3
, 0) is not a vertex, then it suffices to go through the list of smooth Fano polytopes

up to GL2(Z), and find the representatives that work up to the action of [1 k
0 ±1

]. There

are nine possibilities for a1 = 2 and 17 for a1 = 1, given by the following possible locations

for
ρ(♣)

3
. To draw the polytopes, we change conventions a bit: we print only the lattice

1

3
Z2

, modify freely the representation by a unimodular representation for conciseness,

and display the possible locations for
ρ(♣)

3
by the number I such that the corresponding

embedding is labelled 4-2-I.

+ 160161

162

+ 163164

165

+ 166167

168

169

170

171

172

173
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+ 174175

176

177

178

179180 181

182

+ 183184

185

Let us now deal with the case when (1

3
, 0) is a vertex. By considering the possible suc-

cessive next vertices, and working up to (x, y)↦ (x,−y) which induces a G-equivariant
isomorphism, we obtain the following nine polytopes.

+♣

4-2-186

+♣

4-2-187

+♣

4-2-188

+♣

4-2-189

+♣

4-2-190

+♣

4-2-191

+♣

4-2-192

+♣

4-2-193

+♣

4-2-194

Example 7.10. The embedding 4-2-193 is P4
, and the action is induced by the standard

action of GL4 on an affine chart C4
, and the embedding of SL3×Gm in GL4 by block-

diagonal matrices. Blowing up one of the fixed points yields the embedding 4-2-190,
while blowing up the P2

at infinity yields 4-2-194. Blowing up {0}×C on the other hand
yields the embedding 4-2-160. Several examples can be obtained by further explicit
blowups of either one of these, or of 4-2-192, which is the product of embeddings
P3 × P1

.

8. Remaining rank one examples

8.1. Under Sp4. The combinatorial data of rank one spherical homogeneous spaces are
well-known, and by [Akh83], we know that for Sp4 /N(SL2× Sp2) there exists a unique

complete embedding, which is P4
and that we label 4-1-11, while Q

4
is the unique

complete embedding of Sp4 / SL2× Sp2, labelled as 4-1-12. We recall the combinatorial
data, and the details on the embeddings, which allows to recover the combinatorial data
easily.

Proposition 8.1. For H = N(SL2× Sp2), the combinatorial data is as follows.

M = ⟨2(α1 + α2)⟩ ρ(♣) = 2 ζ(♣) = {α2}
Σ = {2(α1 + α2)}
D = {♣}

κ = 3α1 + 3α2 f =
(3+2x1)3

3
m♣ = 3
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Proof. Consider the natural linear action of SO5 on C5
, where SO5 is realized in SL5 as

the group of matrices A such that A
T
KAK = I5, where

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
There are two orbits of SO5 on the induced projective space P4

: the three dimensional
quadric Q

3
= {x1x5 + x2x4 + x

2
3 = 0} = SO5 /Qα2

and its complement. Furthermore,
the stabilizer of a point in the complement is isomorphic to S(O(1)×O(4)). Note that
the action of Sp4 on Sp4 /N(SL2× Sp2) factors through SO5, and that the image of the
isotropy group is conjugate to S(O(1)×O(4)), so we indeed have a model of the desired
homogeneous space.

The subgroup of upper triangular matrices contained in SO5 is a Borel subgroup of
SO5, and under this action there is only one codimension one orbit in P4 \ Q3

, hence
only one color D1. The equation of the color is given by {x5 = 0}, this is a hyperplane
in P4

. We have thus determined D, and the description of ζ follows easily. From ζ, we
have the adapted parabolic, which is Qα2

. From that, we recover that the rank of the
homogeneous space is one, that κ = 3α1 + 3α2 and that mD1

= 3.

Consider the rational function defined by x
2
5

x1x5+x2x4+x
2
3
, it is B-semi-invariant with

weight 2(α1 + α2). It vanishes to order 2 on D1, and to order −1 on the SO5 stable
prime divisor Q

3
. Hence it is a generator of M and we deduce ρ. �

For Sp4 / SL2× Sp2 ≃ SO5 / SO4, the projective model is given by compactifying the

affine quadric {x1x5+x2x4+x
2
3 = 1} ⊂ C5

inside P5
. The result is the smooth projective

quadric Q
4
, on which SO5 acts with two orbits: the three dimensional quadric in the

hyperplane at infinity, and the affine quadric. The same arguments as in the above proof
give the combinatorial data.

Proposition 8.2. For H = SL2× Sp2, the combinatorial data is as follows.

M = ⟨α1 + α2⟩ ρ(♣) = 1 ζ(♣) = {α2}
Σ = {α1 + α2}
D = {♣}

κ = 3α1 + 3α2 f =
(3+x1)3

3
m♣ = 3

8.2. Under SL3× SL2. Since there is a parabolic subgroup of SL3 as a factor, we only
obtain products of lower dimensional spherical embeddings, namely P2×P1×P1

, labelled
as 4-1-13, and P2 × P2

labelled as 4-1-14.

8.3. Under SL
3
2. Again, since there is at least one parabolic subgroup of SL2 as a factor,

we only obtain products of lower dimensional spherical embeddings, namely 4-1-15 is
P1 ×Q3

, 4-1-16 is P1 × P3
, 4-1-17 is P1 × P1 × (P1 × P1), and 4-1-18 is P1 × P1 × P2

.

8.4. Under SL
3
2×Gm.

Proposition 8.3. Let H be a rank one horospherical subgroup of G = (SL2)3×Gm, with
normalizer the Borel subgroup B

−
, satisfying Assumptions 3.1. Then H = ker(a1$1 +
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a2$2+a3$3+χ1) for some integers a1 ≥ ∣a2∣ ≥ ∣a3∣, where χ1 is the projection G→ Gm

to the last factor. The combinatorial data of G/H is:

M = ⟨a1$1 + a2$2 + a3$3 + χ1⟩ ζ(♣) = {α1} ρ(♣) = a1

Σ = ∅ ζ(♥) = {α2} ρ(♥) = a2

D = {♣,♥,♠} ζ(♠) = {α3} ρ(♠) = a3

f = (2 + a1x1)(2 + a2x1)(2 + a3x1) κ = α1 + α2 + α3 m♣ = m♥ = m♠ = 2

Again, if one color is sent to the origin, then the embeddings are products of em-
beddings, there are seven such products, labelled 4-1-19 to 4-1-25. The non-product
examples are given by the following three polytopes

+
♣
♥
♦

4-1-26
+ ♣
♥♦

4-1-27
+ ♣♥

♦
4-1-28

Example 8.4. The first and second correspond to PP1×P1×P1(O⊕O(1, 1, 1)) and PP1×P1×P1(O⊕
O(1, 1,−1)).

8.5. Under SL3× SL2×Gm.

Proposition 8.5. Let H be a rank one horospherical subgroup of G = SL3× SL2×Gm,
with normalizer the parabolic subgroup Qα1,α3

, satisfying Assumptions 3.1. Then H =

ker(a1$1 + a3$3 + χ1) for some non-negative integer a1, some integer a3, where χ1 is
the projection G→ Gm to the third factor. The combinatorial data of G/H is:

M = ⟨a1$1 + a3$3 + χ1⟩ ζ(♣) = {α1} ρ(♣) = a1

Σ = ∅ ζ(♥) = {α3} ρ(♥) = a3

D = {♣,♥}

κ = 2α1 + α2 + α3 f =
(3+a1x1)2(2+a3x1)

2
m♣ = 3, m♥ = 2

We easily deduce the possible locally factorial G/H-reflexive polytope. If one of the
colors is sent to the origin, then the embedding is a product of embeddings, there are
six such products, labelled 4-1-29 to 4-1-34. The non-product examples are given by
the following nine polytopes.

+♣
♥

4-1-35
+♣♥

4-1-36
+ ♣
♥

4-1-37

+ ♣♥
4-1-38

+♣♥
4-1-39

+♣♥
4-1-40

+ ♣♥
4-1-41

+♣
♥

4-1-42
+♣♥

4-1-43

Example 8.6. The corresponding toroidal embeddings are the PP1×P2(O ⊕ O(k, l))
for 1 ≤ k ≤ 3 and l = ±1. The last embedding is P4

equipped with the action of
S(GL2×GL3) ⊂ SL5, which may be blown up at either of the two closed orbits to
recover two other examples.

8.6. Under Sp4×Gm. The result below, as next statements in the remaining of the
section, follows directly from Proposition 2.24.
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Proposition 8.7. Let H = ker(ai$i + χ1)∣Qαi ⊂ G = Sp4×Gm for some i ∈ {1, 2} and

ai ≥ 0. The combinatorial data of G/H when i = 1 is as follows.

M = ⟨a1$1 + χ1⟩ ζ(♣) = {α1} ρ(♣) = a1

Σ = ∅
D = {♣}

κ = 4α1 + 2α2 f =
(4+a1x1)3

6
m♣ = 4

The combinatorial data of G/H when i = 2 is as follows.

M = ⟨a2$2 + χ1⟩ ζ(♣) = {α2} ρ(♣) = a2

Σ = ∅
D = {♣}

κ = 3α1 + 3α2 f =
(3+a2x1)3

3
m♣ = 3

The locally factorial G/H-reflexive polytopes are easily derived. Note that they are
products if ai = 0: 4-1-44 is P3×P1

and 4-1-45 is Q
3×P1

. The non-product possibilities
are, when i = 1, the following four polytopes.

+♣
4-1-46

+ ♣
4-1-47

+ ♣
4-1-48

+♣
4-1-49

Example 8.8. The corresponding embeddings are the PP3(O⊕O(k)) for k ∈ {1, 2, 3},
and P4

as the cone over P3
given by the Kodaira embedding with respect to O(1).

When i = 2, the non-product possibilities are the following three polytopes.

+♣
4-1-50

+ ♣
4-1-51

+♣
4-1-52

Example 8.9. The corresponding embeddings are the PQ3(O ⊕ O(k)) for k ∈ {1, 2},

and the cone over Q
3

given by the Kodaira embedding with respect to O(1), which is a
singular quadric in P5

.

8.7. Under SL4×Gm.

Proposition 8.10. Let H be a rank one horospherical subgroup of G = SL4×Gm, with
normalizer the maximal parabolic subgroup Qα1

, satisfying Assumptions 3.1. Then H =

ker(a1$1 + χ1) for some non-negative integer a1, where χ1 is the projection G→ Gm to
the second factor. The combinatorial data of G/H is:

M = ⟨a1$1 + χ1⟩ ζ(♣) = {α1} ρ(♣) = a1

Σ = ∅
D = {♣}

κ = 3α1 + 2α2 + α3 f =
(4+a1x1)3

6
m♣ = 4

We easily deduce the possible locally factorial G/H-reflexive polytope, and the corre-
sponding four non-product embeddings (we omit the polytope for the product P3 × P1

,
numbered 4-1-53, that is when a1 = 0).
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+♣
4-1-54

+ ♣
4-1-55

+ ♣
4-1-56

+♣
4-1-57

Example 8.11. The corresponding embeddings are PP3(O⊕O(−k)) for 0 ≤ k ≤ 3, and
P4

as the locally factorial Fano cone over P3
obtained by contracting the zero section of

O(−1) in PP3(O ⊕O(−1)).

Appendix A. Rank 1 and 2 spherical actions on Fano threefolds

In the following table, we provide for each faithful spherical action on a Fano threefold
the identifier allowing to find the detailed combinatorial data in the body of the article,
followed by several additional useful characteristics. We computed the Picard rank and
anticanonical degree, determined whether or not the variety admitted Khler-Einstein
metrics, then using this data identified the underlying Fano threefold using the standard
IskovskikhProkhorov numbering [IP99]. We also recall the group acting faithfully (up
to finite cover), and the type of spherical homogeneous space.

Identifier Pic Degree KE? Fano threefold n Group Type

3-1-1 1 54 True 1.16 (SL2)2
symmetric

3-1-2 1 64 True 1.17 (SL2)2
symmetric

3-1-3 3 48 True 3.27 (SL2)2 ×Gm horospherical

3-1-4 3 48 False 3.28 (SL2)2 ×Gm horospherical

3-1-5 2 54 True 2.34 (SL2)2 ×Gm horospherical

3-1-6 3 52 False 3.31 (SL2)2 ×Gm horospherical

3-1-7 3 44 True 3.25 (SL2)2 ×Gm horospherical

3-1-8 2 54 False 2.33 (SL2)2 ×Gm horospherical

3-1-9 1 64 True 1.17 (SL2)2 ×Gm horospherical

3-1-10 2 54 True 2.34 SL3×Gm horospherical
3-1-11 2 56 False 2.35 SL3×Gm horospherical
3-1-12 2 62 False 2.36 SL3×Gm horospherical
3-1-13 1 64 True 1.17 SL3×Gm horospherical

3-2-1 3 48 True 3.27 SL2×Gm symmetric
3-2-2 3 52 False 3.31 SL2×Gm symmetric
3-2-3 4 38 False 4.8 SL2×Gm symmetric
3-2-4 1 54 True 1.16 SL2×Gm type T
3-2-5 2 48 True 2.32 SL2×Gm type T
3-2-6 2 46 False 2.31 SL2×Gm type T
3-2-7 2 54 True 2.34 SL2×Gm type T
3-2-8 3 42 False 3.24 SL2×Gm type T
3-2-9 3 38 True 3.20 SL2×Gm type T
3-2-10 3 48 False 3.28 SL2×Gm type T
3-2-11 4 36 True 4.7 SL2×Gm type T
3-2-12 1 64 True 1.17 SL2×Gm type T
3-2-13 2 54 False 2.33 SL2×Gm type T
3-2-14 3 44 True 3.25 SL2×Gm type T
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3-2-15 2 54 True 2.34 SL2×Gm symmetric
3-2-16 2 62 False 2.36 SL2×Gm symmetric
3-2-17 3 40 False 3.22 SL2×Gm symmetric
3-2-18 1 54 True 1.16 SL2×Gm symmetric
3-2-19 2 40 True 2.29 SL2×Gm symmetric
3-2-20 1 64 True 1.17 SL2×Gm symmetric
3-2-21 2 46 False 2.30 SL2×Gm symmetric
3-2-22 2 56 False 2.35 SL2×Gm symmetric
3-2-23 3 38 True 3.19 SL2×Gm symmetric

3-2-24 2 54 True 2.34 SL2×G
2
m horospherical

3-2-25 3 48 False 3.28 SL2×G
2
m horospherical

3-2-26 3 48 True 3.27 SL2×G
2
m horospherical

3-2-27 4 42 False 4.10 SL2×G
2
m horospherical

3-2-28 5 36 True 5.3 SL2×G
2
m horospherical

3-2-29 5 36 False 5.2 SL2×G
2
m horospherical

3-2-30 4 40 False 4.9 SL2×G
2
m horospherical

3-2-31 4 44 False 4.11 SL2×G
2
m horospherical

3-2-32 4 46 False 4.12 SL2×G
2
m horospherical

3-2-33 3 50 False 3.30 SL2×G
2
m horospherical

3-2-34 3 44 True 3.25 SL2×G
2
m horospherical

3-2-35 3 52 False 3.31 SL2×G
2
m horospherical

3-2-36 3 48 False 3.28 SL2×G
2
m horospherical

3-2-37 2 54 False 2.33 SL2×G
2
m horospherical

3-2-38 2 62 False 2.36 SL2×G
2
m horospherical

3-2-39 3 50 False 3.29 SL2×G
2
m horospherical

3-2-40 2 56 False 2.35 SL2×G
2
m horospherical

3-2-41 3 46 False 3.26 SL2×G
2
m horospherical

3-2-42 2 54 True 2.34 SL2×G
2
m horospherical

3-2-43 2 54 False 2.33 SL2×G
2
m horospherical

3-2-44 1 64 True 1.17 SL2×G
2
m horospherical

Appendix B. Rank 1 and 2 spherical actions on locally factorial Fano
fourfolds

As in the previous table, we gather additional useful data on the fourfolds for which
we obtained a spherical action.

Identifier Pic Degree KE? Group Type

4-1-1 2 486 True SL3 symmetric
4-1-2 2 486 True SL3 horosymmetric
4-1-3 3 336 True SL3 horosymmetric

4-1-4 3 384 True SL3×Gm horospherical
4-1-5 3 480 False SL3×Gm horospherical
4-1-6 3 400 False SL3×Gm horospherical
4-1-7 2 432 False SL3×Gm horospherical
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4-1-8 3 352 True SL3×Gm horospherical
4-1-9 2 432 False SL3×Gm horospherical
4-1-10 1 512 True SL3×Gm horospherical

4-1-11 1 625 True Sp4 symmetric
4-1-12 1 512 True Sp4 symmetric

4-1-13 3 432 True SL3× SL2 horosymmetric
4-1-14 2 486 True SL3× SL2 horosymmetric

4-1-15 2 432 True (SL2)3
horosymmetric

4-1-16 2 512 True (SL2)3
horosymmetric

4-1-17 4 384 True (SL2)3
horosymmetric

4-1-18 3 432 True (SL2)3
horosymmetric

4-1-19 4 384 True (SL2)3 ×Gm horospherical

4-1-20 4 384 False (SL2)3 ×Gm horospherical

4-1-21 3 432 True (SL2)3 ×Gm horospherical

4-1-22 4 416 False (SL2)3 ×Gm horospherical

4-1-23 4 352 True (SL2)3 ×Gm horospherical

4-1-24 3 432 False (SL2)3 ×Gm horospherical

4-1-25 2 512 True (SL2)3 ×Gm horospherical

4-1-26 4 480 False (SL2)3 ×Gm horospherical

4-1-27 4 352 False (SL2)3 ×Gm horospherical

4-1-28 3 486 False (SL2)3 ×Gm horospherical

4-1-29 3 432 True SL3× SL2×Gm horospherical
4-1-30 3 432 False SL3× SL2×Gm horospherical
4-1-31 2 486 True SL3× SL2×Gm horospherical
4-1-32 3 448 False SL3× SL2×Gm horospherical
4-1-33 3 496 False SL3× SL2×Gm horospherical
4-1-34 2 512 True SL3× SL2×Gm horospherical
4-1-35 3 496 False SL3× SL2×Gm horospherical
4-1-36 3 400 False SL3× SL2×Gm horospherical
4-1-37 3 592 False SL3× SL2×Gm horospherical
4-1-38 3 400 False SL3× SL2×Gm horospherical
4-1-39 2 512 False SL3× SL2×Gm horospherical
4-1-40 2 513 False SL3× SL2×Gm horospherical
4-1-41 2 594 False SL3× SL2×Gm horospherical
4-1-42 2 513 False SL3× SL2×Gm horospherical
4-1-43 1 625 True SL3× SL2×Gm horospherical

4-1-44 2 512 True Sp4×Gm horospherical
4-1-45 2 432 True Sp4×Gm horospherical
4-1-46 2 544 False Sp4×Gm horospherical
4-1-47 2 640 False Sp4×Gm horospherical
4-1-48 2 800 False Sp4×Gm horospherical
4-1-49 1 625 True Sp4×Gm horospherical
4-1-50 2 480 False Sp4×Gm horospherical
4-1-51 2 624 False Sp4×Gm horospherical
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4-1-52 1 512 False Sp4×Gm horospherical

4-1-53 2 512 True SL4×Gm horospherical
4-1-54 2 544 False SL4×Gm horospherical
4-1-55 2 640 False SL4×Gm horospherical
4-1-56 2 800 False SL4×Gm horospherical
4-1-57 1 625 True SL4×Gm horospherical

4-2-1 3 430 False (SL
2
2) ×Gm symmetric

4-2-2 2 624 False (SL
2
2) ×Gm symmetric

4-2-3 3 346 False (SL
2
2) ×Gm symmetric

4-2-4 2 480 False (SL
2
2) ×Gm symmetric

4-2-5 2 432 True (SL
2
2) ×Gm symmetric

4-2-6 1 512 False (SL
2
2) ×Gm symmetric

4-2-7 2 378 False (SL
2
2) ×Gm symmetric

4-2-8 2 512 True (SL
2
2) ×Gm symmetric

4-2-9 2 640 False (SL
2
2) ×Gm symmetric

4-2-10 3 376 False (SL
2
2) ×Gm symmetric

4-2-11 3 454 False (SL
2
2) ×Gm symmetric

4-2-12 2 544 False (SL
2
2) ×Gm symmetric

4-2-13 3 350 True (SL
2
2) ×Gm symmetric

4-2-14 2 800 False (SL
2
2) ×Gm symmetric

4-2-15 2 378 True (SL
2
2) ×Gm symmetric

4-2-16 1 512 True (SL
2
2) ×Gm symmetric

4-2-17 2 431 False (SL
2
2) ×Gm symmetric

4-2-18 1 625 True (SL
2
2) ×Gm symmetric

4-2-19 2 432 True (SL
2
2) solvable

4-2-20 2 384 True (SL
2
2) solvable

4-2-21 3 304 True (SL
2
2) solvable

4-2-22 3 324 True (SL
2
2) solvable

4-2-23 2 512 True (SL
2
2) solvable

4-2-24 4 384 True (SL
2
2) symmetric

4-2-25 5 252 True (SL
2
2) symmetric

4-2-26 3 432 True (SL
2
2) symmetric

4-2-27 4 248 True (SL
2
2) symmetric

4-2-28 2 486 True (SL
2
2) symmetric

4-2-29 3 230 True (SL
2
2) symmetric

4-2-30 2 352 True (SL
2
2) symmetric

4-2-31 1 512 True (SL
2
2) symmetric

4-2-32 4 384 True (SL
2
2) ×Gm horosymmetric

4-2-33 4 416 False (SL
2
2) ×Gm horosymmetric

4-2-34 5 304 False (SL
2
2) ×Gm horosymmetric

4-2-35 2 432 True (SL
2
2) ×Gm ind. type T

4-2-36 3 384 True (SL
2
2) ×Gm ind. type T
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4-2-37 3 368 False (SL
2
2) ×Gm ind. type T

4-2-38 3 432 True (SL
2
2) ×Gm ind. type T

4-2-39 4 336 False (SL
2
2) ×Gm ind. type T

4-2-40 4 304 True (SL
2
2) ×Gm ind. type T

4-2-41 4 384 False (SL
2
2) ×Gm ind. type T

4-2-42 5 288 True (SL
2
2) ×Gm ind. type T

4-2-43 2 384 True (SL
2
2) ×Gm ind. type T

4-2-44 3 432 False (SL
2
2) ×Gm ind. type T

4-2-45 4 352 True (SL
2
2) ×Gm ind. type T

4-2-46 5 330 False (SL
2
2) ×Gm horosymmetric

4-2-47 4 480 False (SL
2
2) ×Gm horosymmetric

4-2-48 4 384 False (SL
2
2) ×Gm horosymmetric

4-2-49 5 278 False (SL
2
2) ×Gm horosymmetric

4-2-50 4 352 False (SL
2
2) ×Gm horosymmetric

4-2-51 3 486 False (SL
2
2) ×Gm horosymmetric

4-2-52 3 432 True (SL
2
2) ×Gm horosymmetric

4-2-53 4 326 False (SL
2
2) ×Gm horosymmetric

4-2-54 4 288 False (SL
2
2) ×Gm ind. type T

4-2-55 4 368 False (SL
2
2) ×Gm ind. type T

4-2-56 5 288 False (SL
2
2) ×Gm ind. type T

4-2-57 4 416 False (SL
2
2) ×Gm ind. type T

4-2-58 3 432 False (SL
2
2) ×Gm ind. type T

4-2-59 2 512 True (SL
2
2) ×Gm ind. type T

4-2-60 3 432 False (SL
2
2) ×Gm ind. type T

4-2-61 3 486 False (SL
2
2) ×Gm ind. type T

4-2-62 4 352 False (SL
2
2) ×Gm ind. type T

4-2-63 3 432 True (SL
2
2) ×Gm horosymmetric

4-2-64 3 496 False (SL
2
2) ×Gm horosymmetric

4-2-65 4 320 False (SL
2
2) ×Gm horosymmetric

4-2-66 2 432 True (SL
2
2) ×Gm horosymmetric

4-2-67 3 320 True (SL
2
2) ×Gm horosymmetric

4-2-68 2 512 True (SL
2
2) ×Gm horosymmetric

4-2-69 3 368 False (SL
2
2) ×Gm horosymmetric

4-2-70 3 448 False (SL
2
2) ×Gm horosymmetric

4-2-71 4 304 True (SL
2
2) ×Gm horosymmetric

4-2-72 3 496 False (SL
2
2) ×Gm horosymmetric

4-2-73 4 304 False (SL
2
2) ×Gm horosymmetric

4-2-74 3 416 False (SL
2
2) ×Gm horosymmetric

4-2-75 2 512 False (SL
2
2) ×Gm horosymmetric

4-2-76 3 400 False (SL
2
2) ×Gm horosymmetric

4-2-77 2 513 False (SL
2
2) ×Gm horosymmetric

4-2-78 2 433 False (SL
2
2) ×Gm horosymmetric

4-2-79 3 321 False (SL
2
2) ×Gm horosymmetric
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4-2-80 3 321 False (SL
2
2) ×Gm horosymmetric

4-2-81 1 625 True (SL
2
2) ×Gm horosymmetric

4-2-82 2 433 False (SL
2
2) ×Gm horosymmetric

4-2-83 4 284 False (SL
2
2) ×Gm horosymmetric

4-2-84 3 432 False (SL
2
2) ×Gm horosymmetric

4-2-85 4 356 False (SL
2
2) ×Gm horosymmetric

4-2-86 3 592 False (SL
2
2) ×Gm horosymmetric

4-2-87 3 400 False (SL
2
2) ×Gm horosymmetric

4-2-88 3 338 False (SL
2
2) ×Gm horosymmetric

4-2-89 2 550 False (SL
2
2) ×Gm horosymmetric

4-2-90 2 486 True (SL
2
2) ×Gm horosymmetric

4-2-91 3 432 True (SL
2
2) ×G2

m horospherical

4-2-92 4 384 False (SL
2
2) ×G2

m horospherical

4-2-93 4 384 True (SL
2
2) ×G2

m horospherical

4-2-94 5 336 False (SL
2
2) ×G2

m horospherical

4-2-95 6 288 True (SL
2
2) ×G2

m horospherical

4-2-96 6 288 False (SL
2
2) ×G2

m horospherical

4-2-97 5 320 False (SL
2
2) ×G2

m horospherical

4-2-98 5 352 False (SL
2
2) ×G2

m horospherical

4-2-99 5 368 False (SL
2
2) ×G2

m horospherical

4-2-100 4 400 False (SL
2
2) ×G2

m horospherical

4-2-101 4 352 True (SL
2
2) ×G2

m horospherical

4-2-102 4 416 False (SL
2
2) ×G2

m horospherical

4-2-103 4 384 False (SL
2
2) ×G2

m horospherical

4-2-104 3 432 False (SL
2
2) ×G2

m horospherical

4-2-105 3 496 False (SL
2
2) ×G2

m horospherical

4-2-106 4 400 False (SL
2
2) ×G2

m horospherical

4-2-107 3 448 False (SL
2
2) ×G2

m horospherical

4-2-108 4 368 False (SL
2
2) ×G2

m horospherical

4-2-109 3 432 True (SL
2
2) ×G2

m horospherical

4-2-110 3 432 False (SL
2
2) ×G2

m horospherical

4-2-111 2 512 True (SL
2
2) ×G2

m horospherical

4-2-112 3 405 False (SL
2
2) ×G2

m horospherical

4-2-113 4 384 False (SL
2
2) ×G2

m horospherical

4-2-114 4 352 False (SL
2
2) ×G2

m horospherical

4-2-115 4 448 False (SL
2
2) ×G2

m horospherical

4-2-116 4 384 False (SL
2
2) ×G2

m horospherical

4-2-117 5 299 False (SL
2
2) ×G2

m horospherical

4-2-118 5 405 False (SL
2
2) ×G2

m horospherical

4-2-119 5 341 False (SL
2
2) ×G2

m horospherical

4-2-120 5 331 False (SL
2
2) ×G2

m horospherical

4-2-121 5 363 False (SL
2
2) ×G2

m horospherical

4-2-122 6 298 False (SL
2
2) ×G2

m horospherical



62 THIBAUT DELCROIX AND PIERRE-LOUIS MONTAGARD

4-2-123 6 298 False (SL
2
2) ×G2

m horospherical

4-2-124 3 592 False (SL
2
2) ×G2

m horospherical

4-2-125 3 560 False (SL
2
2) ×G2

m horospherical

4-2-126 3 400 False (SL
2
2) ×G2

m horospherical

4-2-127 4 463 False (SL
2
2) ×G2

m horospherical

4-2-128 4 433 False (SL
2
2) ×G2

m horospherical

4-2-129 4 496 False (SL
2
2) ×G2

m horospherical

4-2-130 4 337 False (SL
2
2) ×G2

m horospherical

4-2-131 3 496 False (SL
2
2) ×G2

m horospherical

4-2-132 3 400 False (SL
2
2) ×G2

m horospherical

4-2-133 3 464 False (SL
2
2) ×G2

m horospherical

4-2-134 4 389 False (SL
2
2) ×G2

m horospherical

4-2-135 4 411 False (SL
2
2) ×G2

m horospherical

4-2-136 4 347 False (SL
2
2) ×G2

m horospherical

4-2-137 3 432 False (SL
2
2) ×G2

m horospherical

4-2-138 3 459 False (SL
2
2) ×G2

m horospherical

4-2-139 2 512 False (SL
2
2) ×G2

m horospherical

4-2-140 2 544 False (SL
2
2) ×G2

m horospherical

4-2-141 3 529 False (SL
2
2) ×G2

m horospherical

4-2-142 4 368 False (SL
2
2) ×G2

m horospherical

4-2-143 3 433 False (SL
2
2) ×G2

m horospherical

4-2-144 4 326 False (SL
2
2) ×G2

m horospherical

4-2-145 3 406 False (SL
2
2) ×G2

m horospherical

4-2-146 2 513 False (SL
2
2) ×G2

m horospherical

4-2-147 2 594 False (SL
2
2) ×G2

m horospherical

4-2-148 3 450 False (SL
2
2) ×G2

m horospherical

4-2-149 2 486 True (SL
2
2) ×G2

m horospherical

4-2-150 2 513 False (SL
2
2) ×G2

m horospherical

4-2-151 3 401 False (SL
2
2) ×G2

m horospherical

4-2-152 1 625 True (SL
2
2) ×G2

m horospherical

4-2-153 2 800 False (SL
2
2) ×G2

m horospherical

4-2-154 2 544 False (SL
2
2) ×G2

m horospherical

4-2-155 2 486 True SL3×G
2
m horospherical

4-2-156 3 432 False SL3×G
2
m horospherical

4-2-157 3 432 True SL3×G
2
m horospherical

4-2-158 4 378 False SL3×G
2
m horospherical

4-2-159 5 324 True SL3×G
2
m horospherical

4-2-160 2 594 False SL3×G
2
m horospherical

4-2-161 2 513 False SL3×G
2
m horospherical

4-2-162 2 513 False SL3×G
2
m horospherical

4-2-163 3 496 False SL3×G
2
m horospherical

4-2-164 3 448 False SL3×G
2
m horospherical

4-2-165 3 464 False SL3×G
2
m horospherical
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4-2-166 3 576 False SL3×G
2
m horospherical

4-2-167 3 480 False SL3×G
2
m horospherical

4-2-168 3 592 False SL3×G
2
m horospherical

4-2-169 3 496 False SL3×G
2
m horospherical

4-2-170 3 400 False SL3×G
2
m horospherical

4-2-171 3 400 False SL3×G
2
m horospherical

4-2-172 3 560 False SL3×G
2
m horospherical

4-2-173 3 432 False SL3×G
2
m horospherical

4-2-174 4 478 False SL3×G
2
m horospherical

4-2-175 4 415 False SL3×G
2
m horospherical

4-2-176 4 558 False SL3×G
2
m horospherical

4-2-177 4 447 False SL3×G
2
m horospherical

4-2-178 4 382 False SL3×G
2
m horospherical

4-2-179 4 367 False SL3×G
2
m horospherical

4-2-180 4 351 False SL3×G
2
m horospherical

4-2-181 4 409 False SL3×G
2
m horospherical

4-2-182 4 505 False SL3×G
2
m horospherical

4-2-183 5 364 False SL3×G
2
m horospherical

4-2-184 5 334 False SL3×G
2
m horospherical

4-2-185 5 354 False SL3×G
2
m horospherical

4-2-186 2 800 False SL3×G
2
m horospherical

4-2-187 3 605 False SL3×G
2
m horospherical

4-2-188 2 640 False SL3×G
2
m horospherical

4-2-189 3 489 False SL3×G
2
m horospherical

4-2-190 2 544 False SL3×G
2
m horospherical

4-2-191 3 431 False SL3×G
2
m horospherical

4-2-192 2 512 True SL3×G
2
m horospherical

4-2-193 1 625 True SL3×G
2
m horospherical

4-2-194 2 512 False SL3×G
2
m horospherical
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