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QCMATH: Mathematica modules for electronic structure calculations
Enzo Monino,1, a) Antoine Marie,1, b) and Pierre-François Loos1, c)

Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France

We introduce qcmath, a user-friendly quantum chemistry software tailored for electronic structure calcula-
tions, implemented using the Wolfram Mathematica language and available at https://github.com/LCPQ/
qcmath. This software, designed with accessibility in mind, takes advantage of the symbolic capabilities
intrinsic to Mathematica. Its primary goal is to provide a supportive environment for newcomers to the
field of quantum chemistry, enabling them to easily conceptualize, develop, and test their own ideas. The
functionalities of qcmath encompass a broad spectrum of methods, catering to both ground- and excited-
state calculations. We provide a comprehensive overview of these capabilities, complemented by essential
theoretical insights. To facilitate ease of use, we offer an exhaustive blueprint of the software’s architecture.
Furthermore, we provide users with comprehensive guides, addressing both the operational aspects and the
more intricate programming facets of qcmath.

I. INTRODUCTION

Quantum chemistry methods are highly compatible
with computer utilization, owing to the matrix formu-
lation of quantum mechanics, which leverages the power
of linear algebra packages like BLAS and LAPACK. As a
result, a wide array of quantum chemistry software is cur-
rently available, encompassing both free and commercial
options. These software packages cater to specific meth-
ods or offer a diverse range of methodologies, utilizing
various types of basis functions, among other features. A
considerable number of quantum chemistry codes exist,
covering a comprehensive range of methods. For a com-
prehensive list of these codes, refer to Wikipedia’s page
on quantum chemistry and solid-state physics software.

Regrettably, despite the efficient design of many of
these software packages, they can be challenging to com-
prehend as they often employ low-level programming lan-
guages. Moreover, these programs are not primarily in-
tended for educational purposes or for facilitating under-
standing. This is precisely where qcmath comes into
play. qcmath aims to assist newcomers in the field of
quantum chemistry by providing a user-friendly platform
for developing ideas and codes. It is worth noting that
certain software packages utilize higher-level program-
ming languages, which can enhance code comprehension.
As for qcmath, it is a compilation of mathematica

a)Electronic mail: emonino@irsamc.ups-tlse.fr
b)Electronic mail: amarie@irsamc.ups-tlse.fr
c)Electronic mail: loos@irsamc.ups-tlse.fr

modules specifically designed for conducting electronic
structure calculations.

Before delving into the specifics of qcmath, let us
provide an overview of the mathematica environment.
mathematica is a comprehensive software system devel-
oped by Wolfram Research, initially conceptualized by
Stephen Wolfram. It boasts a wide range of built-in li-
braries that can be utilized for diverse purposes. One of
its key strengths lies in its ability to perform computer
algebra operations, such as derivatives, integrals, and ex-
pression simplifications. Furthermore, mathematica en-
ables the numerical evaluation of these expressions. An-
other notable feature is its advanced plotting capabilities,
supporting intricate visualizations of functions in one,
two, and three dimensions. Numerous books offer ex-
tensive examples of mathematica’s applications across
various domains. With its versatility, mathematica has
become a powerful tool employed in numerous scientific
fields, including education, research, and industry.

mathematica comprises two main components: the
kernel and the front end. The kernel interprets expres-
sions and generates result expressions, which can then
be displayed using the front end. The original front end
takes the form of a notebook interface, facilitating the
creation and editing of notebook documents that can
contain code, plaintext, images, and graphics. qcmath,
specifically, relies on these notebook documents. It is im-
portant to note that qcmath is not primarily designed
for computational efficiency but rather focuses on pro-
viding a user-friendly environment.
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II. INSTALLATION GUIDE

The qcmath software can be downloaded on github
as a git repository

git clone https://github.com/LCPQ/qcmath.git

Then, one must define the variable QCMATH_ROOT and
install PySCF using pip

pip install pyscf

PySCF is used for the computation of one- and two-
electron integrals. Here is the list of the requirements to
use qcmath:

• Linux or Mac OS

• Wolfram Mathematica ≥ 12.1

• PySCF

• Python ≥ 3.6.0

• Numpy ≥ 1.13

Note that the version of Python and Numpy is fixed by
PySCF.

III. QUICK START

Before running any qcmath calculation, we need to
define the working directory as

1 SetDirectory[NotebookDirectory []];
2 path=Directory [];
3 py="your_path_to_python"
4 NotebookEvaluate[path <>"/src/Main/Main.nb"]

To streamline the execution of other notebooks and pre-
vent the need for directory changes, the first line of code
sets the working directory as the directory containing the
notebook. This ensures a seamless evaluation process.
Following that, the second line establishes the variable
path as the current directory, which corresponds to the
working directory. The third line designates the path to
your Python installation, allowing for appropriate con-
figuration. Lastly, the main notebook is evaluated, with
the inclusion of the path variable to locate the correct
directory. This approach ensures smooth execution and
seamless integration of the required files.

Once this first step is done, one can run a qcmath
calculation as follows

1 qcmath[molecule_name ,basis_set ,methods]

To invoke the qcmath module, use the keyword qcmath
followed by three arguments. These arguments are either
strings or a list of strings. The first argument is the name
of the molecule to be studied, represented as a string. For
example, in the case of the H2 molecule, it would be spec-
ified as "H2" . The second argument corresponds to the
basis set and is also provided as a string. For instance, in
the example of the 6-31G basis set, it would be specified
as "6-31g" . In summary, taking the example of the
H2 molecule in the 6-31G basis set using the restricted
Hartree-Fock method, the qcmath module call would
resemble the following code:

1 qcmath["H2","6-31g",{"RHF"}]

The molecular geometry is provided through a .xyz file
located in the mol directory, while the basis set file is
stored in the basis directory. It is also possible to di-
rectly enter the geometry of the molecule as an input.
Here is an example for the H2 molecule:

1 qcmath [{{"H" ,0.0 ,0.0,0.0},{"H" ,0.0,0.0 ,1.0}},"
6-31g",{"RHF"}]

First, one must specify the atom as a string and, then,
the xyz coordinates.

Additional options can be specified, such as the charge
and spin multiplicity of the molecule. If these options
are not explicitly stated, the default values are zero for
the charge (neutral) and singlet state for the spin mul-
tiplicity. Furthermore, options related to different meth-
ods can also be specified, but we will discuss them in
the upcoming section. It is worth noting that most of
the presented methods offer both spin and spatial orbital
implementations. You can choose between them using
the keyword "spinorbital" , with the default value
being False (indicating spatialorbital as the default
choice). For a comprehensive list of all available options,
including charge, spin multiplicity, and method-related
choices, please refer to the Main/default_options.nb
notebook. This notebook presents the options in the form
of a dictionary, providing a convenient reference for con-
figuring and customizing the calculations.

IV. USER GUIDE

The qcmath software is currently undergoing active
development. The features discussed below are currently
available, and they represent the initial roadmap for the
software’s future. This User Guide provides a compre-
hensive introduction to the underlying theoretical con-
cepts and showcases the functionalities offered by these
methods.1–5 It serves as a valuable resource to gain in-
sights into the theoretical background and explore the
capabilities that will be incorporated into qcmath as it
continues to evolve.

https://pyscf.org
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A. Ground-state calculations

Hartree-Fock theory

In the context of the Hartree-Fock (HF) approxima-
tion, the electronic wave function is expressed as a Slater
determinant comprising N one-electron orbitals.1 Within
the restricted HF (RHF) formalism, the Roothaan-Hall
equations come into play, given by F ·C = S ·C ·ε. Here,
F represents the Fock matrix, C denotes the matrix of
orbital coefficients, S stands for the matrix represent-
ing atomic orbital overlaps, and ε is a diagonal matrix
containing the orbital energies. Since the Fock matrix
relies on the orbital coefficients C, which are obtained
from the Fock matrix itself, these equations necessitate
a self-consistent solution. To facilitate this process, vari-
ous options can be specified to customize the calculations
and achieve desired outcomes:

1. The initial guess of the Fock matrix that needs
to be diagonalized to give the orbital coefficients.
This initial guess is described by the keyword
"guess_type"

• "guess_type"="core" (default) corre-
sponds to the core Hamiltonian defined as
Hc = T + V , where T is the kinetic energy
matrix and V is the external potential.

• "guess_type"="huckel" corresponds to the
Hückel Hamiltonian.

• "guess_type"="random" corresponds to
random orbital coefficients.

2. Options to control the convergence of HF calcula-
tions

• "maxSCF" : maximum number of iterations,
by default "maxSCF"=100 .

• "threshHF" : convergence threshold on
the commutator F · P · S − S · P · F
where P is the density matrix, by default
"threshHF"=10−7 .

• "DIIS" : rely on the Direct Inversion in the
Iterative Subspace (DIIS) where the Fock ma-
trix is extrapolated at each iteration using
the ones of the previous iterations, by default
"DIIS"=True .

• "n_DIIS" : size of the DIIS space, by default
"n_DIIS"=5 .

• "level_shift" : a level shift increases the
gap between the occupied and virtual orbitals,
it can help to converge the SCF process for
systems with a small HOMO-LUMO gap, by
default "level_shift"=0 .

3. Orthogonalization matrix with the keyword
"ortho_type" .

• "ortho_type"="lowdin" (default): Löwdin
orthogonalization.

• "ortho_type"="canonical" : Canonical or-
thogonalization.

4. Print additional information about the calculation
with the keyword "verbose"

• "verbose"=False by default, if
"verbose"=True then more informa-
tion about the CPU timing and additional
quantities are printed. Note that this option
is available for most methods in qcmath.

Two flavors of Hartree-Fock (HF) are available in qcmath:
restricted HF (RHF) and unrestricted HF (UHF). To run
a UHF calculation, one simply does

1 qcmath["H2","6-31g",{"UHF"}]

Møller-Plesset perturbation theory

The second-order Møller-Plesset (MP2) correlation en-
ergy is defined by

EMP2
c =

1

4

occ∑
ij

vir∑
ab

| ⟨ij||ab⟩ |2

ϵHF
i + ϵHF

j − ϵHF
a − ϵHF

b

(1)

where ⟨pq||rs⟩ = ⟨pq|rs⟩ − ⟨pq|sr⟩ are antisymmetrized
two-electron integrals (in Dirac notations) in the spinor-
bital basis and the ϵHF

p ’s are the HF orbital energies.
From here on, i, j, . . . are occupied spinorbitals, a, b,
. . . denote virtual (unoccupied) spinorbitals, and p, q,
r, and s indicate arbitrary (orthonormal) spinorbitals.
Since MP2 needs HF quantities, first, a HF calculation
needs to be done. This is automatically taken into ac-
count by qcmath and an MP2 calculation can be done
using

1 qcmath["H2","6-31g",{"RHF","MP2"}]

or
1 qcmath["H2","6-31g",{"MP2"}]

Note that in the last case, a RHF is performed by default
so if one wants to rely on a UHF reference, one has to
run

1 qcmath["H2","6-31g",{"UHF","MP2"}]

Configuration interaction methods

One of the most conceptually simple (albeit expen-
sive) approaches to recovering a large fraction of the
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correlation energy is the configuration interaction (CI)
method.1–3 The general idea is to expand the wave func-
tion as a linear combination of “excited” determinants.
These excited determinants are built by promoting elec-
trons from occupied to unoccupied (virtual) orbitals usu-
ally based on the HF orbitals, i.e.

|ΨCI⟩ = c0 |Ψ0⟩+
occ∑
i

virt∑
a

cai |Ψa
i ⟩+

occ∑
ij

virt∑
ab

cabij |Ψab
ij ⟩

+

occ∑
ijk

virt∑
abc

cabcijk |Ψabc
ijk⟩+ · · · (2)

where |Ψa
i ⟩, |Ψab

ij ⟩ and |Ψabc
ijk⟩ are singly-, doubly- and

triply-excited determinants. |Ψab
ij ⟩ corresponds to the ex-

citations of two electrons from the occupied spinorbitals
i and j to virtual spinorbitals a and b. It is easy to show
that the CI energy

ECI =
⟨ΨCI|Ĥ|ΨCI⟩
⟨ΨCI|ΨCI⟩

(3)

is an upper bound to the exact energy of the system.
When all possible excitations are taken into account,

the method is called full CI (FCI) and it recovers the
entire correlation energy for a given basis set. Albeit
elegant, FCI is very expensive due to the exponential
increase of the number of excited determinants. For ex-
ample, when only singles and doubles are taken into ac-
count, the method is called CISD. It recovers an impor-
tant chunk of the correlation. However, it has the dis-
advantage to be size-inconsistent.6 Two CI methods are
available in qcmath, the FCI and CISD methods. To run
these calculations, method keyword need to be specified:

• "CISD" : run a CISD calculation

• "FCI" : run a FCI calculation

Coupled-cluster theory

The coupled cluster (CC) family of methods is widely
regarded as one of the most successful wave function ap-
proaches for describing chemical systems.7,8 In particu-
lar, low-order truncated CC methods, such as CC with
singles, doubles and perturbative triples CCSD(T), prop-
erly describe weak correlation, while inclusion of higher-
order excitations is required for strongly correlated sys-
tems. Therefore, these methods offer a balanced treat-
ment of weak and strong electronic correlation by em-
ploying different levels of truncation.

In CC theory, the exponential excitation operator

eT̂ = 1̂ + T̂ +
T̂ 2

2!
+

T̂ 3

3!
+ · · · (4)

with

T̂ =

N∑
n=1

T̂n (5)

(where N is the number of electrons) acts on a (nor-
malized) single Slater determinant |Ψ0⟩ [such as Hartree-
Fock (HF)] to generate the exact wave function

|Ψ⟩ = eT̂ |Ψ0⟩ (6)

The nth excitation operator T̂n is defined, in second-
quantized form, as

T̂n =
1

(n!)2

∑
ij···

∑
ab···

tab···ij··· â
†
aâ

†
b · · · âj âi (7)

where âi and â†a are the usual annihilation and creation
operators which annihilates an electron in the occupied
spinorbital i and creates an electron in the vacant spinor-
bital a, respectively.

The Schrödinger equation can be rewritten in the CC
framework as

ĤeT̂ |Ψ⟩ = EeT̂ |Ψ⟩ (8)

which can be rewritten as

H̄ |Ψ⟩ = E |Ψ⟩ (9)

by defining the effective (non-Hermitian) similarity-
transformed Hamiltonian

H̄ = e−T̂ ĤeT̂ (10)

Despite being non-Hermitian, the similarity transforma-
tion described in Eq. (10) guarantees that H̄ possesses
the same energy spectrum as the original Hermitian op-
erator Ĥ. Additionally, the exponential structure of the
wave operator ensures rigorous size-extensivity. This
property contributes to the notable accuracy of the the-
ory while maintaining a relatively low computational
cost. The cluster amplitudes tab···ij··· defined in Eq. (7) are
the key quantities that need to be determined.

Truncating T̂ to double excitations, i.e., T̂ = T̂1 + T̂2

with

T̂1 =
∑
ia

tai â
†
aâi (11a)

T̂2 =
1

4

∑
ijab

tabij â
†
aâ

†
bâj âi (11b)

defines CC with singles and doubles (CCSD) and one
gets the single and double amplitudes, tai and tabij , via the
amplitude equations

⟨Ψa
i |H̄|Ψ⟩ = 0 (12a)〈

Ψab
ij

∣∣H̄∣∣Ψ〉 = 0 (12b)
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The CCSD energy, which is non-variational, is obtained
through projection:

ECC = ⟨Ψ|H̄|Ψ⟩ = ⟨Ψ|e−T̂ ĤeT̂ |Ψ⟩
⟨Ψ|e−T̂ eT̂ |Ψ⟩

(13)

In contrast, its variational counterpart, denoted as VCC,
is given by:

EVCC =
⟨Ψ|eT̂ †

ĤeT̂ |Ψ⟩
⟨Ψ|eT̂ †

eT̂ |Ψ⟩
≥ EFCI (14)

where the Rayleigh-Ritz variational principle is used to
determine the energy and amplitudes. The VCC en-
ergy provides an upper bound to the exact FCI en-
ergy EFCI. Unfortunately, VCC is computationally in-
tractable. Even for truncated CC methods like CCSD,
VCC exhibits factorial complexity because the power se-
ries expansion of the VCC energy (14) does not naturally
terminate before reaching the N -electron limit.

Various CC schemes are available in qcmath. For
ground-state calculations, CC with doubles (CCD),9 CC
with singles and doubles (CCSD),10 the distinguishable-
cluster doubles (DCD),11 direct-ring CCD (drCCD),?
ring CCD (rCCD),? ladder CCD (lCCD),12 crossed-ring
CCD (crCCD),12 and pair CCD (pCCD).13 For excited-
state calculations, the EOM-CCSD method14 for excited-
state calculations is available. To run these calculations,
method keywords need to be specified:

• "CCD" : run a CCD calculation

• "DCD" : run a DCD calculation

• "drCCD" : run a drCCD calculation

• "rCCD" : run a rCCD calculation

• "lCCD" : run a lCCD calculation

• "crCCD" : run a crCCD calculation

• "pCCD" : run a pCCD calculation

• "CCSD" : run a CCSD calculation

• "EOMCCSD" : run an EOM-CCSD calculation

Moreover, two options are also available:

• "max_SCF_CC" : maximum number of iterations
for CC calculations

• "thresh_CC" : convergence threshold of the max-
imum absolute value between the residuals

B. Charged excitations

Methods based on the one-body Green’s function offer
a means to describe charged excitations, namely, the ion-
ization potentials (IPs) and electron affinities (EAs) of a
system.4,5,15,16 This particular aspect forms the heart of
qcmath, with a diverse range of methods, approxima-
tions, and options available. To ensure clarity and co-
herence, this section is organized as follows: Firstly, we
provide a brief introduction to the general equations that
depend on the degree of (partial) self-consistency. These
general equations are shared among the three self-energy
approximations implemented in qcmath: the second-
order Green’s function (GF2), the GW approximation,
and the T -matrix approximation. By outlining these
common equations, we establish a foundational under-
standing of the framework. Subsequently, we present
the specific expressions corresponding to each of the self-
energy approximations. This breakdown allows for a
comprehensive exploration of the distinct methodologies
incorporated in qcmath, enabling users to leverage the
most suitable approach for their research goals.

Three levels of (partial) self-consistency are available
in qcmath:

• the one-shot scheme where quasiparticles and satel-
lites are obtained by solving, for each orbital p, the
frequency-dependent quasiparticle equation

ω = ϵHF
p +Σc

pp(ω) (15)

where the diagonal approximation is used. Because
we are, most of the time, interested in the quasipar-
ticle solution we can use the linearized quasiparticle
equation

ϵQP
p = ϵHF

p + ZpΣ
c
pp(ϵ

HF
p ) (16)

where the renormalization factor Zp is defined as

Zp =

[
1− ∂Σpp(ω)

∂ω

∣∣∣
ω=ϵHF

p

]−1

(17)

• the eigenvalue scheme where we iterate on the
quasiparticle solutions of Eq (16) that are used to
build the self-energy Σc

pp (and Zp)

• the quasiparticle scheme where an effective Fock
matrix built from a frequency-independent Hermi-
tian self-energy as17

F̃pq = Fpq + Σ̃pq (18)

where

Σ̃pq =
1

2

[
Σc

pq(ϵ
HF
p ) + Σc

qp(ϵ
HF
p )
]

(19)

Note that the whole self-energy is computed for this
last scheme.
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The non-linear Eq (15) can be exactly transformed in
a linear eigenvalue problem by use of the upfolding
process18–20. For each orbital p, this yields a linear eigen-
value problem of the form

Hp · cν = ϵQP
ν cν (20)

where ν runs overall solutions, quasiparticles, and satel-
lites and with21

Hp =

 ϵHF
p V 2h1p

p V 2p1h
p

(V 2h1p
p )⊺ C2h1p 0

(V 2p1h
p )⊺ 0 C2p1h

 (21)

Note that the different blocks will depend on the approx-
imated self-energy. Now that the general equations have
been set, we can turn to the self-energy approximations.
Three different approximations are available in qcmath:
the second-order Green’s function (GF2), the GW ap-
proximation, and the T -matrix approximation. For each
approximation the three partially self-consistent schemes
and the upfolding process are available. Note also that,
regularization parameters are available in qcmath.

Second-order Green’s function approximation

The GF2 correlation self-energy is closely related to
MP2 and is given by the following expression

ΣGF2
pq (ω) =

1

2

∑
ija

⟨pa||ij⟩ ⟨qa||ij⟩
ω + ϵHF

a − ϵHF
i − ϵHF

j

+
1

2

∑
iab

⟨pi||ab⟩ ⟨qi||ab⟩
ω + ϵHF

i − ϵHF
a − ϵHF

b

(22)

Keywords need to be specified for the different schemes:

• "G0F2" : run a one-shot calculation

• "evGF2" : run an eigenvalue calculation

• "qsGF2" : run a quasiparticle calculation

• "upfG0F2" : run an upfolded calculation

Example of a one-shot calculation
1 qcmath["H2","6-31g",{"G0F2"}]

Note that here, an RHF calculation is done by default.

GW approximation

The GW correlation self-energy is given by

ΣGW
pq (ω) =

∑
im

Mph
pi,mMph

qi,m

ω − ϵHF
i +Ωph

m

+
∑
am

Mph
pa,mMph

qa,m

ω − ϵHF
a − Ωph

m

(23)

where the screened two-electron integrals are given by

Mph
pq,m =

∑
ia

⟨pi|qa⟩
(
Xph + Y ph)

ia,m
(24)

with Xph and Y ph are the eigenvectors and excitations
energies Ωph

m are the eigenvalues of the ph-dRPA prob-
lem that is discussed in Section IV C. Keywords for the
method argument need to be specified for the different
schemes:

• "G0W0" : run a one-shot calculation

• "evGW" : run an eigenvalue calculation

• "qsGW" : run a quasiparticle calculation

• "upfG0W0" : run an upfolded calculation

Example of an eigenvalue calculation
1 qcmath["H2","6-31g",{"evGW"}]

Note that here, an RHF calculation is done by default.

T-matrix approximation

The T-matrix correlation self-energy is given by

ΣGT
pq (ω) =

∑
in

Mpp
pi,nM

pp
qi,n

ω + ϵHF
i − Ωpp

n
+
∑
an

Mhh
pa,nM

hh
qa,n

ω + ϵHF
a − Ωhh

n

(25)
where the pp and hh versions of the screened two-electron
integrals read

Mpp
pq,n =

∑
c<d

⟨pq||cd⟩Xpp
cd,n +

∑
k<l

⟨pq||kl⟩Y pp
kl,n (26a)

Mhh
pq,n =

∑
c<d

⟨pq||cd⟩Xhh
cd,n +

∑
k<l

⟨pq||kl⟩Y hh
kl,n (26b)

The components Xpp/hh
cd,n and Y

pp/hh
kl,n and excitation ener-

gies Ω
pp/hh
n are the double addition/removal eigenvector

components and eigenvalues, respectively, of the pp-RPA
eigenvalue problem discussed in Section IV C. Keywords
for the method argument need to be specified for the
different schemes:

• "G0T0" : run a one-shot calculation

• "evGT" : run an eigenvalue calculation

• "qsGT" : run a quasiparticle calculation

• "upfG0T0" : run an upfolded calculation

Example of a quasiparticle calculation
1 qcmath["H2","6-31g",{"qsGT"}]

Note that here, an RHF calculation is done by default.
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C. Neutral excitations

Within qcmath, the computation of excitation en-
ergies utilizes methods formulated as a Casida-like
equation.22 This equation is an eigenvalue equation that
serves as a fundamental component in linear response
theory. It plays a pivotal role in various approaches, in-
cluding time-dependent density functional theory (TD-
DFT),23 the random phase approximation (RPA), and
the Bethe-Salpeter equation (BSE).4 In this section, we
begin by exploring the RPA method and distinguishing
between different variations within this framework. By
examining these different flavors of the RPA method, we
gain insights into their unique characteristics and appli-
cability. Subsequently, we delve into the discussion of the
BSE method. This method represents another impor-
tant approach for computing excitation energies, with its
distinct theoretical foundations and computational con-
siderations. By exploring the BSE method, users can
gain a comprehensive understanding of its principles and
its role within qcmath. Note that when the spatial or-
bital implementation of a method is available, then we
can use the "singlet" and/or "triplet" keywords
to compute only singlet and/or triplet states.

Particle-hole random-phase approximation

The traditional RPA can be found under different
names like RPAx or ph-RPA.24 We choose to call it ph-
RPA to make the difference with the particle-particle
RPA (pp-RPA). The ph-RPA problem takes the form of
the following Casida-like equation(

Aph Bph

−Bph −Aph

)
·
(
Xph Y ph

Y ph Xph

)
=

(
Xph Y ph

Y ph Xph

)
·
(
Ωph 0

0 −Ωph

)
(27)

where Ωm is the diagonal matrix of the excitation en-
ergies, Xph and Y ph matrices are the transition coeffi-
cients, and the matrix elements are defined as

Aph
ia,jb = (ϵHF

a − ϵHF
i )δijδab + ⟨ib||aj⟩ (28)

Bph
ia,jb = ⟨ij||ab⟩ (29)

Now, from these equations, different approximations
arise:

• if we only take the direct term for the antisym-
metrized two-electron integrals we end up with the
direct ph-RPA (ph-dRPA), this is the one used in
the GW approximation

• if we use the Tamm–Dancoff approximation (TDA)
that sets Bph = 0, we end up with the ph-TDA
approach

Note that TDA can be used with the ph-RPA flavor and
gives ph-dTDA. Ground state correlation energy can be
computed with

Eph-RPA
c =

1

2

(∑
m

Ωph
m − Tr(Aph)

)
(30)

Keywords for the method argument need to be specified
for the different approaches and options:

• "RPAx" : run a ph-RPA calculation

• "RPA" : run a ph-dRPA calculation

The option "TDA" can be set to True , by default
"TDA"=False .

Particle-particle random-phase approximation

The particle-particle RPA (pp-RPA) problem consid-
ers the excitation energies of the (N + 2)- and (N − 2)-
electron systems.24 It is also defined by a slightly different
eigenvalue problem than ph-RPA: Cpp Bpp/hh

−
(
Bpp/hh

)†
−Dhh

 ·
(
Xpp Y hh

Y pp Xhh

)

=

(
Ωpp 0

0 Ωhh

)
·
(
Xpp Y hh

Y pp Xhh

)
(31)

where Ωpp/hh are the diagonal matrices of the double
addition/removal excitation energies, labeled by n, and
the matrix elements are defined as

Cpp
ab,cd = (ϵHF

a + ϵHF
b )δacδbd + ⟨ab||cd⟩ (32a)

B
pp/hh
ab,ij = ⟨ab||ij⟩ (32b)

Dhh
ij,kl = −(ϵHF

i + ϵHF
j )δikδjl + ⟨ij||kl⟩ (32c)

The Xpp/hh and Y pp/hh are the double addition/removal
transition coefficients matrices. In the same way we did
for the ph-RPA, we can obtain the correlation energy at
the pp-RPA level using12,25

Epp-RPA
c =

1

2

(∑
n

Ωpp
n −

∑
n

Ωhh
n − TrCpp − TrDhh

)
(33)

The keyword to use the pp-RPA is pp-RPA . Note that
TDA is also available with the option "TDA"=True .

Bethe-Salpeter equation

The Bethe-Salpeter equation (BSE) is related to the
two-body Green’s function.26 The central quantity is the
so-called BSE kernel defined as the functional derivative
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of the self-energy with respect to G. As exposed in Sec-
tion IV B, there are several approximations of the self-
energy and each one of them leads to a different BSE
approximation. The common central equation is the fol-
lowing eigenvalue equation(

ABSE BBSE

−BBSE −ABSE

)
·
(
XBSE

m

Y BSE
m

)
= ΩBSE

m

(
XBSE

m

Y BSE
m

)
(34)

where the BSE matrix elements depend on the choice
of the BSE kernel. To run a BSE calculation we have
first to specify the approximation for the self-energy with
the method argument and the keyword for this option is
"BSE"=True . Note that in general a BSE calculation is
done in the static approximation, which is the equivalent
of the adiabatic approximation in TD-DFT. It is possible
to take into account dynamical effects using first-order
perturbation theory27 using the option "dBSE"=True .
This dynamical correction is applicable for all the dif-
ferent BSE kernels available in qcmath. Note that this
dynamical correction is only available in TDA with the
option "dTDA" .

V. PROGRAMMER GUIDE

As mentioned in the first section, one of the primary
objectives of qcmath is to enable newcomers in quan-
tum chemistry to explore and advance their ideas through
coding. Therefore, it is crucial to allow them to incor-
porate their methods into qcmath. To facilitate this
process, we have developed a notebook example called
module_example.nb to guide users step-by-step. The
following outlines the different stages involved in adding
a new method to qcmath:

1. The new method needs to be implemented in its
notebook.

2. add your method in the
src/utils/list_method.nb and specify the
dependencies. For example, if a new post-HF
method is proposed, then one has to add "RHF"
or "UHF" as a dependency.

3. add default options in
src/Main/default_options.nb if needed.

4. add a call to your method in src/Main/Main.nb
as

1 NameNewMethod="NameNewMethod"
2 If[ToDoModules[NameNewMethod ]["Do"] == True ,
3 NotebookEvaluate[path <>"/src/"<>

NameNewMethod <>".nb"];

1 PrintTemporary[Style[NameNewMethod <>"
calculation ...", Bold , Orange ]];

2 {time , outputsNewMethod} = Timing[NewMethod[
arguments , options ]];

1 If[verbose == True ,
2 Print["CPU time for "<>NameNewMethod <>"

calculation= ", time ]];
3 ];

For each new method notebook, it is essential to organize
the code into potentially three modules. The first module
is responsible for reading the input and options, followed
by invoking either the spin or spatial orbitals module, and
ultimately returning the corresponding output. The re-
maining two modules are dedicated to implementing the
new method in spin and spatial orbitals, respectively. It
is important to note that if your method is exclusively im-
plemented in spatial orbitals, your notebook will consist
of only two parts. Further details regarding this structure
can be found in the module_example.nb notebook.

VI. CONCLUSION AND PERSPECTIVES

Here, we have presented the current capabilities of qc-
math, a set of mathematica modules to perform elec-
tronic structure calculations. We hope to implement new
methods in the near future, especially at the equation-of-
motion CC level where our group has recently designed
an automatic equation generator based on mathemat-
ica, named eomccgen.28 Moreover, various schemes
based on many-body Green’s functions are being cur-
rently implemented.29–31
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