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Some remarks on the effect of the Random Batch Method on phase
transition

Arnaud Guillin*, Pierre Le Bris† and Pierre Monmarché‡

In memory of Francis Comets

Abstract

In this article, we focus on two toy models : the Curie-Weiss model and the system of N particles
in linear interactions in a double well confining potential. Both models, which have been extensively
studied, describe a large system of particles with a mean-field limit that admits a phase transition. We are
concerned with the numerical simulation of these particle systems. To deal with the quadratic complexity
of the numerical scheme, corresponding to the computation of the O(N2) interactions per time step, the
Random Batch Method (RBM) has been suggested. It consists in randomly (and uniformly) dividing the
particles into batches of size p > 1, and computing the interactions only within each batch, thus reducing
the numerical complexity to O(Np) per time step. The convergence of this numerical method has been
proved in other works.

This work is motivated by the observation that the RBM, via the random constructions of batches,
artificially adds noise to the particle system. The goal of this article is to study the effect of this added
noise on the phase transition of the nonlinear limit, and more precisely we study the effective dynamics of
the two models to show how a phase transition may still be observed with the RBM but at a lower critical
temperature.

1 Introduction

1.1 Motivation

Consider a system of N particles (Xi)i∈{1,...,N} in interaction

dXi
t = −∇U(Xi

t)dt−
1

N − 1

∑
j 6=i
∇W (Xi

t −X
j
t )dt+

√
2σdBi

t, (IPS)

where for all i ∈ {1, ..., N} and t ≥ 0 we haveXi
t ∈ Rd, U andW are two twice continuously differentiable

functions, respectively called confining potential and interaction potential, σ > 0 is a diffusion coefficient
or temperature, and (Bi)i are independent d-dimensional Brownian motions. The name (IPS) refers to
Interacting Particle System.

It is well known (see [CD22a, CD22b] and references therein) that, under suitable assumptions on U
and W , the particle system (IPS) converges as N → ∞ towards its nonlinear mean-field limit, a stochastic
differential equation (SDE) of McKean-Vlasov type{

dX̄t = −∇U(X̄t)dt−∇W ∗ ρ̄t(X̄t)dt+
√

2σdBt,
ρ̄t = Law(X̄t).

(NL)
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Here, the name (NL) refers to Nonlinear Limit, and this equation arises in the modelling of granular media
[CGM08].

The quantitative link between of (IPS) and (NL) can be exploited in various ways. On one hand, as it
was historically motivated, the study of (way too) large systems of particles cannot be feasible, and boiling
it down to the study of the nonlinear limit yields exploitable results. On the other hand, one can see (IPS) as
an approximation of (NL), and in particular an approximation that can be numerically simulated. Consider
the Euler-Maruyama scheme associated to (IPS) with a timestep δ > 0{

Xi,δ
t+1 = Xi,δ

t − δ∇U(Xi,δ
t )− δ

N−1

∑
j 6=i∇W (Xi,δ

t −X
j,δ
t ) +

√
2σδGit,

Git i.i.d ∼ N (0, 1), t ∈ N.
(D-IPS)

Its name (D-IPS) comes from Discrete - Interacting Particle System. The convergence of (D-IPS) towards
(NL) has been extensively studied : with bounded Lipschitz coefficients [BT97], with Hölder continuous
coefficients [BH19], non-Lipschitz coefficients [DQ21]. The quantitative convergence of the implicit Euler-
Maruyama scheme can also be found in [Mal03].

Notice that this numerical scheme requires O(N2) operations per time step, corresponding to the total
number of interactions of pairs (i, j)i,j∈{1,...,N}. To cope with this possibly limiting complexity, several
works have suggested using the Random Batch Method (RBM) (see for instance [JLL20]), motivated by the
Stochastic Gradient Langevin Dynamics [WT11].

Consider, for a time step t ∈ N, a partition Pt =
(
P1
t , ...,P

N/p
t

)
of {1, ..., N} into N/p subsets of size

p > 1, assuming for the sake of simplicity that N is a multiple of p, and define

Cit =
{
j ∈ {1, .., N} s.t. ∃l ∈ {1, ..., N/p}, i, j ∈ P lt

}
. (1.1)

In other words, Cit is the set of indexes that are in the same subset as i at time step t, with the convention
i ∈ Cit . We now consider the following numerical scheme{

Y i,δ,p
t+1 = Y i,δ,p

t − δ∇U(Y i,δ,p
t )− δ

p−1

∑
j∈Cit\{i}

∇W (Y i,δ,p
t − Y j,δ,p

t ) +
√

2σδGit,

Git i.i.d ∼ N (0, 1), i ∈ {1, ..., N}, t ∈ N,
(D-RB-IPS)

where for each time step t the partition Pt is random and each partition has the same probability of occurring.
The name (D-RB-IPS) refers to Discrete - Random Batch - Interacting Particle System. The convergence of
(D-RB-IPS) towards (NL) can be found in [JLL21, JLYZ22, YZ22].

The idea of using random batches has been shown to be efficient for computing the evolution of large
interacting system of quantum particles [GJP21], of particles with Coulomb interactions in molecular dy-
namics [JLXZ21], but also for Markov Chain Monte Carlo [LXZ20], or for solving PDEs [CJT22, LLT22].
See also references therein.

The starting point of this work is the following observation : the RBM, via the random construction
of a partition of {1, ..., N}, artificially adds noise (or temperature) to a system. We thus ask the following
question :

Does the critical temperature of (the mean-field limit of) a system of interacting particles admitting a phase
transition decrease when considering a version with random batches ? If so, can we quantify it ?

To partially answer this question, we focus on two specific types of particle systems for which the mean-field
limit admits a phase transition : the first one is the Curie-Weiss model and the second one is the system (IPS)
in dimension 1 with attractive and quadratic interaction potential W and the double well confining potential
U .

The nonlinear mean-field limits of both models admit, as we will discuss, a phase transition occurring at
a certain critical parameter. We consider a version with random batches of size p of each system, consider
the limit as N → ∞ (with fixed p) towards a nonlinear model, and then study the phase transition of said
limit.
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1.2 The Curie-Weiss model

The classical system. The Curie-Weiss model is, and it is the reason we start by studying it, arguably
one of the most simple system admitting a phase transition. Consider N spins, given by a configuration
σ = (σ1, ..., σN ), and ΩN = {−1, 1}N the set of possible configurations for the system. On this system we
consider the following Hamiltonian

∀σ ∈ ΩN , HN (σ) = − 1

2N

∑
i,j

σiσj . (1.2)

Intuitively, each spin will tend to align with the others. It is a mean field model asHN only depends in reality
on the mean magnetization mN (σ) := 1

N

∑N
i=1 σi, by

HN (σ) = −N
2
mN (σ)2.

The evolution for (σ(n))n≥0 in ΩN is the following : at each discrete time step, a spin is chosen uniformly
among the N possible spins. Let us denote i this spin, and σ′ = (σ′1, ..., σ

′
N ) the configuration such that

for all j 6= i, σ′j = σ(n)j , and σ′i = −σ(n)i. We accept σ′ as the next step of σ(n) with probability
exp (−β(HN (σ′)−HN (σ))+) (i.e if the Hamiltonian decreases then with probability 1, otherwise with a
positive probability depending on a parameter β), otherwise the system remains at σ(n). Here we use the
notation x+ = max(x, 0). This parameter β is known as the inverse temperature. This yields the following
transition probabilities for the Markov chain (σ(n))n≥0:

p(σ, σ′) =


1
N exp (−β(HN (σ′)−HN (σ))+) if ||σ − σ′||1 = 2
0 if ||σ − σ′||1 > 2
1−

∑
η 6=σ p(σ, η) if σ′ = σ

This dynamics (σ(n))n≥0, which is an irreducible and aperiodic Markov chain on a finite state space ΩN , is
reversible with respect to the Gibbs measure

µβ,N (σ) =
1

Zβ,N
exp(−βHN (σ)), (1.3)

where Zβ,N is a normalizing constant. Instead of studying the dynamics of σ, we look at the mean mag-
netization mN (n) = mN (σ(n)), which is still a Markov chain. This quantity, at each time step, can only
increase or decrease by 2

N , and the transition probabilities are given by

r(m,m′) =


1−m

2 exp
(
−βN

2 (m2 −m′2)+

)
if m′ = m+ 2

N

1+m
2 exp

(
−βN

2 (m2 −m′2)+

)
if m′ = m− 2

N

1− r
(
m,m+ 2

N

)
− r

(
m,m− 2

N

)
if m′ = m

0 otherwise.

(1.4)

Likewise, this dynamics is reversible with respect to the Gibbs measure

νβ,N (m) =
1

Zβ,N

(
N

1+m
2 N

)
exp

(
βNm2

2

)
.

Many works (see for instance [CK17, EN78, LLP10], the classical reference that is Chapter 4 of [Ell85]
or more recently Chapter 2 of [FV17]) have studied Large Deviation Principles for this system, and have
shown that there exists a critical inverse temperature βc = 1. For the sake of completeness, and because the
method will be similar in the case with random batches, we give a proof in Section 2.1 of the phase transition
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happening in the following sense : the process M (N)
t = mN (bNtc) weakly converges to the solution of

an ordinary differential equation (ODE). For β > 1, the limit ODE admits three equilibrium states, and for
β ≤ 1 only one. In both cases, 0 is an equilibrium state, and is stable in the case β ≤ 1 and unstable in the
case β > 1. Phase transition for the maximum likelihood estimator of the parameters has also been studied
in [CG91].

The Curie-Weiss model with random batches. We then consider the same system, but using the Random
Batch Method. At each time step, the chosen spin no longer evolves according to the entire system, but
according to a subset of p spins containing the chosen spin.

We thus consider a new evolution for (σp(n))n≥0 in ΩN , where σp denotes the new sequence of spin
configurations. At each discrete time step, a spin is chosen uniformly among the N possible spins. Let us
denote it i, and σ′ = (σ′1, ..., σ

′
N ) the configuration such that for all j 6= i, σ′j = σp(n)j , and σ′i = −σp(n)i.

We then sample a subset of {1, ..., N} of size p containing i, denoted Ci,p, uniformly over such subsets, and
accept σ′ as the next step of σp(n) with probability exp

(
−β(HN,p(σ

′, Ci,p)−HN,p(σ
p(n), Ci,p))+

)
, where

HN,p(σ, Ci,p) = − 1

2p

∑
j,k∈Ci,p

σjσk. (1.5)

Likewise, we may study this system in terms of its magnetization, denoted (mN,p(n))n, for which we can
explicitly write the transition probabilities (see Lemma 2.1).

This system resembles to some extent the dilute Curie-Weiss model [BMP21], in which the spins interact
according to an Erdős-Rényi random graph with edge probability p̃ = p

N ∈]0, 1[, the main difference being
that the "graph", in our case, is modified at each time step and there are exactly p− 1 spins interacting with
a given one.

Studying the Curie-Weiss model with random batches, which is done in Section 2.2, yields the following
results.

Theorem 1. Let p ∈ N \ {0, 1} and β > 0.

• Define

Sp,β1 (m) =

p−1∑
k=0

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−1−k
e
−2β

(
2k+1−p

p

)
+

Sp,β2 (m) =

p−1∑
k=0

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−1−k
e
−2β

(
p−1−2k

p

)
+ ,

fp(β,m) =
(
Sp,β1 (m)− Sp,β2 (m)

)
−m

(
Sp,β1 (m) + Sp,β2 (m)

)
.

The process M (N,p)
t = mN,p(bNtc), i.e the magnetization rescaled in time, weakly converges as

N →∞ to the solution of the ODE

d

dt
m(t) = fp(β,m(t)). (1.6)

For all β > 0, 0 is an equilibrium state for the solution of (1.6).

• For p ∈ {2, 3}, 0 is the unique equilibrium state, and it is stable.

• For p ≥ 4, there exists βc,p such that for all β > βc,p, the equilibrium state 0 is unstable, and for all
β ≤ βc,p it is stable. Furthermore, we have the estimate

βc,p = 1 +

√
2

pπ
+ o

(
1
√
p

)
. (1.7)
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This theorem thus gives a first answer to the main question of the article : the RBM does increase the
critical inverse temperature of the system (i.e decreases the critical temperature).

1.3 Numerical scheme and double-well potential

We then go back to the initial motivation concerning numerical schemes for interacting particle systems.

The effective dynamics. Just like we may consider the nonlinear limit of (IPS), we may also consider the
limit as N →∞ of (D-RB-IPS). Define{

Ȳ δ,p
t+1 = Ȳ δ,p

t − δ∇U(Ȳ δ,p
t )− δ

p−1

∑p−1
j=1∇W (Ȳ δ,p

t − Y j) +
√

2σδGt,

Gt i.i.d ∼ N (0, 1), (Y j)j i.i.d ∼ ρ̄δ,pt := Law(Ȳ δ,p
t ).

(D-RB-NL)

The name (D-RB-NL) stands for Discrete - Random Batch - Nonlinear Limit. The convergence of (D-RB-IPS)
towards (D-RB-NL) can be found in [JL22]. The proof relies on a coupling method, noticing that, as
N →∞, the probability of constructing batches of fixed size p in (D-RB-IPS) with independent and identi-
cally distributed particles goes to 1, thus giving a convergence in total variation distance.

We then, in the spirit of [SS21], construct a continuous process, parameterized by the timestep and the
batch size, which is closer to the numerical scheme (D-RB-IPS) than the target (NL). In the dynamics of
(D-RB-NL), writing

ξt =
1

p− 1

p−1∑
j=1

∇W
(
Ȳ δ,p
t − Y j

)
notice that

E
(
ξt

∣∣∣Ȳ δ,p
t

)
= ∇W ∗ ρ̄δ,pt (Ȳ δ,p

t ),

and

Var
(
ξt

∣∣∣Ȳ δ,p
t

)
=

1

p− 1
Var

ρ̄δ,pt

(
∇W (Ȳ δ,p

t − ·)
∣∣∣Ȳ δ,p
t

)
=

1

p− 1

(
(∇W )2 ∗ ρ̄δ,pt (Ȳ δ,p

t )− (∇W ∗ ρ̄δ,pt (Ȳ δ,p
t ))2

)
,

where the square of a vector has to be understood component-wise. Hence,

Ȳ δ,p
t = Ȳ δ,p

0 − δ
t−1∑
s=0

∇U(Ȳ δ,p
s )− δ

t−1∑
s=0

∇W ∗ ρ̄δ,ps (Ȳ δ,p
s )− δMt +

√
2σδ

t−1∑
s=0

Gs ,

where

t 7→Mt :=
t−1∑
s=0

(
ξs −∇W ∗ ρ̄δ,ps (Ȳ δ,p

s )
)

is a martingale. By martingale CLT, we thus expect the numerical scheme (D-RB-IPS) to be close, for small
values of δ, the following non-linear SDE, that we call the effective dynamics: dX̄e,δ,p

t = −∇U(X̄e,δ,p
t )dt−∇W ∗ ρ̄e,δ,pt (X̄e,δ,p

t )dt+
(

2σ + δ
p−1Σ(X̄e,δ,p

t , ρ̄e,δ,pt )
)1/2

dBt,

ρ̄e,δ,pt = Law(X̄e,δ,p
t ),

(Eff)

where we denote Σ(x, ρ) = (∇W )2 ∗ ρ(x) − (∇W ∗ ρ(x))2. Notice that, although it is a continuous-time
process, it depends on the stepsize δ of the numerical schemes.
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Such dynamics are also known as modified equations in various works considering the backward error
analysis of SDEs [Sha06, Zyg11], improving upon a technique that had already provided a better under-
standing of the numerical methods for ODEs. They have been used in the numerical error analysis of the
Stochastic Gradient Langevin Dynamics [VZT16, SS21]. Of course, these references do not consider non-
linear SDEs as we do, and obtaining a formal result in our case is out of the scope of the present work.
Let us informally and briefly explain the motivation of the effective dynamics (we refer to [VZT16, SS21]
and references within for further details). In the usual stochastic gradient case (which would correspond to
(D-RB-NL) where we assume that the law of Y j is fixed), denote by πδ,p, π, πδ and πeff , respectively, the
invariant measures of (D-RB-NL), of the continuous-time limit process (NL), of its Euler scheme (without
Random batches, i.e. (D-RB-NL) with p = ∞) and of (Eff). For a fixed observable f , from the weak error
analysis on the invariant measure (see e.g. [SS21, Proposition 1])), we get that there exists c1, c2 ∈ R such
that πδ,p(f) ' π(f) + c1δ + c2δ/p, while πδ(f) ' π(f) + c1δ and πeff (f) ' π(f) + c2δ/p, where these
approximations are all up to a term of order δ2(1 + p−3/2). In other words, at first order in δ, c1 and c2

respectively accounts for the time discretization and stochastic gradient errors. By studying (Eff), at first or-
der, we disregard the error which is purely due to the time discretization and focus on the contribution of the
stochastic gradient approximation. Notice that, for the Euler scheme of the overdamped Langevin diffusion
(D-RB-NL), except if the variance Σ is very large (which corresponds to the case in [VZT16, SS21] which
are not concerned with a mean-field scaling) these two parts of the error are of the same order in δ. However,
in practice, second-order schemes for underdamped Langevin or Hamiltonian Monte Carlo are widely used
(as in [SS21, GLBMM22]) and in that case the stochastic gradient contribution is the leading term of the bias
(see Remark 1.2 below). In any cases, the numerical scheme is closer to the effective dynamics than it is to
the continuous-time process (as they only differ, at first order, through the pure discretization error), which
motivates in the following the analysis of the effective dynamics (Eff).

Again, we emphasize that providing a quantitative link between the various processes (IPS), (D-IPS),
(D-RB-IPS), (D-RB-NL), (Eff), and (NL) would require an entire separate analysis, even though some results
are already known. As it would dilute the main message of this work concerning the phase transition of the
effective dynamics, we do not address this question here.

The double well confining potential. We now choose in (NL) the dimension to be d = 1 and the potentials

U(x) =
x4

4
− x2

2
, W (x) = LW

x2

2
with LW > 0. (1.8)

Recall the following result adapted from [Tug14].

Theorem 2 (Theorem 2.1 of [Tug14]). For U and W given by (1.8), there exists σc > 0 such that

• For all σ ≥ σc, there exists a unique stationary distribution µσ,0 for (NL). Furthermore, µσ,0 is
symmetric.

• For all σ < σc, there exist three stationary distributions for (NL). One is symmetric, also denoted
µσ,0, and the other two, denoted µσ,+ and µσ,−, satisfy ±

∫
xdµσ,±(dx) > 0.

By convention, in the case σ ≥ σc, we may denote µσ = µσ,± = µσ,0.

Our goal is now to study the stationary distribution(s) for the effective dynamics (Eff) in the specific case
of the double-well potential (1.8). We wish to understand if, similarly as Theorem 2, there exists a phase
transition, and if so compare the critical parameters. We thus prove in Section 3 the following theorem.

Theorem 3. Let σ0 ∈]0, σc[ where σc is defined in Theorem 2. For U and W given by (1.8), there exists
c0 > 0 such that for all (δ, p) satisfying δ

p−1 ≤ c0, denoting

σeffc = σc

(
1− δLW

2(p− 1)

)
, (1.9)
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we have the following phase transition for the dynamics (Eff)

• For all σ ≥ σeffc , there exists a unique stationary distribution µδ,pσ,0 for (Eff). Furthermore, µδ,pσ,0 is
symmetric.

• For all σ ∈ [σ0, σ
eff
c [, there exists exactly three stationary distributions for (Eff). One is symmetric,

also denoted µδ,pσ,0, and the other two, denoted µδ,pσ,+ and µδ,pσ,−, satisfy ±
∫
xdµδ,pσ,±(x) > 0.

Remark 1.1. Let us quickly discuss the form of (1.9). In the specific case of (1.8), as discussed in Section 3,
one has Σ(X̄e,δ,p

t , ρ̄e,δ,pt ) = L2
WVar(ρ̄e,δ,pt ). To insist on the dependence on σ rather than (δ, p), let us denote,

only in this remark, Σσ := Σ(X̄e,δ,p
t , ρ̄e,δ,pt ).

We will show, but this can be intuitively understood at this stage, that any stationary distribution for (NL)
is a stationary distribution for (Eff) although for a smaller value of σ. We thus have to study the stationary
distribution at the critical value σc.

As proved in Lemma 3.2, the variance of the stationary distribution for (NL) at the critical value is
Var(µσc,0) = σc

LW
.

By considering the diffusion term in (Eff) and ensuring 2σc = 2σeffc + δ
p−1Σσc , we then obtain (1.9).

Remark 1.2. Another consequence of the fact that Σ(x, ρ) does not depend on x is that a stationary solution
of (Eff) is also the first marginal of a stationary solution of the corresponding effective dynamics for the
kinetic Langevin diffusion (with the second marginal, i.e. the distribution of velocities at equilibrium, being
the standard Gaussian distribution, and the distribution in the phase space being the product of these two
marginals, see e.g. [GM21]). It means that Theorem 3 also applies to the kinetic case. Moreover, in this case,
in practice, second-order splitting schemes are used, which means that the discretization error is negligible
with respect to the stochastic gradient error, and thus the effective dynamics captures the leading term of the
numerical errror, see also [GLBMM22] on this topic.

Let us sum up the organization of the article.

• The Curie-Weiss model is studied in Section 2. We start by recalling the analysis of the phase transition
for the classical Curie-Weiss model in Section 2.1 since the same ideas will be used afterwards. The
study of the Curie-Weiss model with random batches and the proof of Theorem 1 are then done in
Section 2.2,

• In Section 3 we study the Random Batch Method for interacting particle systems. More specifically
we prove Theorem 3 in the specific case of the double-well potential,

• Finally, in Appendix A we gather some technical lemmas, and in Appendix B we prove some results
on (NL) for the double-well potential used in Section 3.

Notation

For the Curie-Weiss model, with and without random batches:

• ΩN = {−1, ..., 1}N : the set of possible configurations,

• σ(n) = (σ1(n), ..., σN (n)) : the spin configuration at time step n,

• β : the inverse temperature,

• βc : the critical inverse temperature,

• HN : the Hamiltonian of the Curie-Weiss model given in (1.2),

7



• mN (n) = 1
N

∑N
i=1 σi(n) : the magnetization at time step n,

• r(σ, σ′) : transition probability for the Markov chain (mN (n))n, given in (1.4).

• σp(n) = (σp1(n), ..., σpN (n)) : the spin configuration of the system with random batches of size p at
time step n,

• HN,p : the Hamiltonian for the system with random batches of size p, given in (1.5),

• mN,p(n) = 1
N

∑N
i=1 σ

p
i (n) : the magnetization at time step n for the system with random batches of

size p,

• rp(m,m′) : transition probability for the Markov chain (mN,p(n))n, given in Lemma 2.1.

• βc,p : the critical inverse temperature for the system with random batches of size p.

For the Random Batch Method for interacting particle system :

• U,W : two twice continuously differentiable functions, respectively the confining potential and the
interacting potential (see (IPS)),

• σ > 0 : a diffusion coefficient (see (IPS)),

• (Xi
t)i∈{1,...,N} : the solution at time t ∈ R+ of the interacting particle system (IPS),

• X̄t, ρ̄t : the solution at time t ∈ R+ of the nonlinear limit (NL) and its law,

• δ > 0 : a timestep used in the various numerical schemes,

• (Xi,δ
t )i∈{1,...,N} : the solution at time step t ∈ N of the Euler-Maruyama numerical scheme (D-IPS),

• p ∈ N \ {0, 1} : the batch size,

• Pt : the partition of {1, ..., N} at time step t into subsets of size p,

• Cit : the cluster containing index i at time step t (see (1.1)),

• (Y i,δ,p
t )i∈{1,...,N} : the solution at time step t ∈ N of the numerical scheme with random batches

(D-RB-IPS),

• Ȳ δ,p
t : the solution at time step t ∈ N of (D-RB-NL), the nonlinear limit of (D-RB-IPS) as N →∞,

• X̄e,δ,p
t , ρ̄e,δ,pt : the effective dynamics (Eff) at time t ∈ R+ and its law,

• µσ,∗ for ∗ ∈ {0,±}, σc : stationary distributions and critical parameter of (NL) given in Theorem 2,

• µδ,pσ,∗ for ∗ ∈ {0,±}, σeffc : stationary distributions and critical parameter of (Eff) given in Theorem 3.

2 Understanding the problem on the Curie-Weiss model

In order to get a better grasp on the phenomenon we focus on, we begin by studying arguably one of the
simplest model admitting a phase transition : the Curie-Weiss model. In Section 2.1, we show how we obtain
the value of the critical parameter in the classical case. Then, in Section 2.2, we follow the same steps to
compute the new critical inverse temperature in the case with random batches.
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2.1 ...without the Random Batch Method

In order to study this critical inverse temperature, we choose to look at the limit of the dynamics with time
step 1

N as N goes to infinity. (mN (n))n is a discrete-time Markov chain with transition operator U (N) given

by U (N) =
(
U

(N)
i,j

)
0≤i,j≤N

where U (N)
i,j = r

(
−1 + 2i

N ,−1 + 2j
N

)
. We denote AN = N

(
U (N) − I

)
. We

have, for all continuously differentiable functions f ,

ANf(m) =N
1−m

2
e
−βN

(
m2

2
−(m+ 2

N )
2

2

)
+

(
f

(
m+

2

N

)
− f(m)

)

+N
1 +m

2
e
−βN

(
m2

2
−(m− 2

N )
2

2

)
+

(
f

(
m− 2

N

)
− f(m)

)
.

We thus get

ANf(m) =N
1−m

2
e
−2β(−m− 1

N )
+

(
f

(
m+

2

N

)
− f(m)

)
+N

1 +m

2
e
−2β(m+ 1

N )
+

(
f

(
m− 2

N

)
− f(m)

)
=N

1−m
2

e
−2β(−m− 1

N )
+

(
2

N
f ′(m) +O

(
1

N2

))
+N

1 +m

2
e
−2β(m+ 1

N )
+

(
− 2

N
f ′(m) +O

(
1

N2

))
=(1−m)e

−2β(−m− 1
N )

+f ′(m)− (1 +m)e
−2β(m+ 1

N )
+f ′(m) +O

(
1

N

)
−−−−→
N→∞

f ′(m)
(

(1−m)e−2β(−m)+ − (1 +m)e−2βm+

)
,

which finally yields

ANf(m) −−−−→
N→∞

2f ′(m)e−β|m| (sinh(mβ)−m cosh(mβ)) .

By [Kal97, Theorem 17.28], the process M (N)
t = mN (bNtc) weakly converges to the solution of

d

dt
m(t) = 2e−β|m(t)| (sinh(βm(t))−m(t) cosh(βm(t))) .

Denote f(β,m) = 2e−β|m| (sinh(βm)−m cosh(βm)). We have

f(β,m) = 0 ⇐⇒ tanh(βm) = m.

For β > 1, the equation f(β,m) = 0 admits three solutions, and for β ≤ 1 only one. Notice that for all
β > 0, f(β, 0) = 0 : 0 is thus always an equilibrium state for the magnetization. Furthermore

∀β > 0, ∀m 6= 0, ∂mf(β,m) =− 2βsign(m)e−β|m| (sinh(βm)−m cosh(βm))

+2e−β|m| ((β − 1) cosh(βm)− βm sinh(βm)) ,

and, extending by continuity, we have ∂mf(β, 0) = 2(β − 1). Therefore, for β > 1, 0 is unstable as
∂mf(β, 0) > 0, and for β ≤ 1 it is stable.

Hence a critical inverse temperature βc = 1, above which there are two stable equilibrium states, and
under which there is only one.
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2.2 ...with the Random Batch Method

To follow the same steps in the case with random batches, we need to compute the transition operator before
finding its limit.

2.2.1 Transition probabilities

Let us start by giving explicit values for the transitions probabilities for the magnetization using the Ran-
dom Batch Method. The proof, which relies on combinatorics arguments, is double-checked via numerical
simulations in Figure 1.

Lemma 2.1. In a system of size N , the transition probabilities for the magnetization with random batches
of size p are given by

rp(m,m
′) =



1−m
2

(
N−1
p−1

)−1∑p−1
k=0

(( 1−m
2 )N−1

k

)(( 1+m
2 )N

p−1−k
)
e
−2β

(
2k+1−p

p

)
+

if m′ = m+ 2
N

1+m
2

(
N−1
p−1

)−1∑p−1
k=0

(( 1−m
2 )N
k

)(( 1+m
2 )N−1

p−1−k
)
e
−2β

(
p−1−2k

p

)
+

if m′ = m− 2
N

1− rp
(
m,m+ 2

N

)
− rp

(
m,m− 2

N

)
if m′ = m

0 otherwise.

(2.1)

Proof. Notice that, for a givenm, the number of positive spins is given by 1+m
2 N and the number of negative

spins by 1−m
2 N .

Going right. Let us calculate the probability of going from m to m + 2
N . To do so, the chosen spin,

denoted i, must be of value −1, and this will happen with probability 1−m
2 . Then, depending on the cluster

C to which spin i belongs, switching the spin from −1 to +1 happens with probability

P(σpi (n+ 1) = 1|σpi (n) = −1, C) = exp

−β
− 1

2p

∑
j,l∈C

σ′jσ
′
l +

1

2p

∑
j,l∈C

σpj (n)σpl (n)


+

 ,

where σ′ denotes the configuration such that for all j 6= i, σ′j = σpj (n), and σ′i = −σpi (n). We have

− 1

2p

∑
j,l∈C

σ′jσ
′
l+

1

2p

∑
j,l∈C

σpj (n)σpl (n)

=− 1

2p

 ∑
j,l∈C,j 6=i,l 6=i

σ′jσ
′
l −

∑
j,l∈C,j 6=i,l 6=i

σpj (n)σpl (n) + 2
∑

j∈C,j 6=i
σ′jσ

′
i

−2
∑

j∈C,j 6=i
σpj (n)σpi (n) + (σ′i)

2 − (σpi (n))2


=− 1

2p

−2σpi (n)
∑

j∈C,j 6=i
σpj (n)− 2σpi (n)

∑
j∈C,j 6=i

σpj (n)


=

2

p
σpi (n)

∑
j∈C,j 6=i

σpj (n).
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We classify the possible clusters containing i based on the number of negative spins. The number of clusters
containing i and k other negative spins is

( 1−m
2
N−1

k

)( 1+m
2
N

p−1−k
)

(choosing k spins among the 1−m
2 N−1 negative

spins that are not i, then the p− 1− k spins that remain to construct cluster C among the positive spins). For
k negative spins in cluster C (without counting i), we have∑

j∈C,j 6=i
σpj (n) =

∑
j∈C,j 6=i,σpj (n)=1

1−
∑

j∈C,j 6=i,σpj (n)=−1

1 = p− 1− k − k,

and thus, since σpi (n) = −1

− 1

2p

∑
j,l∈C

σ′jσ
′
l +

1

2p

∑
j,l∈C

σpj (n)σpl (n) =2
2k + 1− p

p

The total number of possible choices for C is
(
N−1
p−1

)
(choosing the (p− 1) spins that are not i). Hence

rp

(
m,m+

2

N

)
=

1−m
2

1(
N−1
p−1

) p−1∑
k=0

((1−m
2

)
N − 1

k

)((1+m
2

)
N

p− 1− k

)
e
−2β

(
2k+1−p

p

)
+

Going left. Similar calculations yield the probability of going left : the probability of choosing a spin of
value +1 is 1+m

2 , then we classify the possible clusters containing this spin based on the number of negative
spins.

Remark 2.1. The values given in (2.1) are consistent in the case p = N . Observe for instance that the only
nonzero term in the sum defining rN

(
m,m+ 2

N

)
is obtained for k = 1−m

2 N − 1. Thus

rN

(
m,m+

2

N

)
=

1−m
2

e
−2β(−m− 1

N )
+ = r

(
m,m+

2

N

)
,

where the value of r is given in (1.4).

Remark 2.2. We observe how the transition probabilities evolve with the parameter p in Figure 2. Further-
more, the values given in (2.1) allow us to define, on the state space {−1, 1 + 2

N , ..., 1−
2
N , 1}, a transition

matrix for the magnetization. The latter is an irreducible and aperiodic Markov chain on a finite state space,
and thus admits a unique invariant measure. We can numerically obtain it by iterating the transition matrix
(see Figure 3)

2.2.2 Study of the critical parameter

We now wish to show how adding random batches artificially increases the temperature of the system, thus
decreasing the critical temperature (or, equivalently, increasing the critical inverse temperature).

Limit ODE. Let us, like previously, find the limit as N goes to infinity of the dynamics of (mN,p(n))n
with time step 1

N . This discrete-time Markov chain admits a transition operator U (N,p) given by

U (N,p) =
(
U

(N,p)
i,j

)
0≤i,j≤N

where U
(N,p)
i,j = rp

(
−1 +

2i

N
,−1 +

2j

N

)
.

We denote A(p)
N = N(U (N,p) − I) and have, for all continuously differentiable functions f ,

A
(p)
N f(m) =Nrp

(
m,m+

2

N

)(
f(m+

2

N
)− f(m)

)
+Nrp

(
m,m− 2

N

)(
f(m− 2

N
)− f(m)

)
11



Figure 1: Comparison of theoretical and empirical transition probabilities, for N = 100. The theoretical
values are those given in Lemma 2.1. To numerically compute the empirical transition probabilities, for each
initial magnetization in {−1,−1 + 2

N , ..., 1−
2
N , 1}, 10 processes are simulated during 1000 timesteps, and

we consider the proportion of times the processes go left or right. Top : without random batches. Bottom :
with random batches of size p = 10. Left : for β = 0.5. Right : for β = 2.

Figure 2: Comparison of transition probabilities depending on batch size, forN = 100. The values given are
from Lemma 2.1. Top : probability of going left. Bottom : probability of going right. Left : for β = 0.5.
Right : for β = 2.
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Figure 3: Numerical observation of the invariant distribution for the Curie-Weiss model with N spins. Start-
ing from the uniform distribution for the magnetization, we iterate the transition matrix (given by Lemma 2.1)
until the L1 distance between two consecutive iterations is less than a threshold Nε, with N = 1000,
ε = 10−9 and various values for β. We indicate the number of iterations (or steps) needed before conver-
gence. Top left : with no random batches. Top right : with p = 50. Bottom left : with p = 25. Bottom
right : with p = 10.
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=rp

(
m,m+

2

N

)(
2f ′(m) +O

(
1

N

))
− rp

(
m,m− 2

N

)(
2f ′(m) +O

(
1

N

))
.

We have, by standard computations

rp

(
m,m+

2

N

)
=

1−m
2

(
N − 1

p− 1

)−1 p−1∑
k=0

((1−m
2

)
N − 1

k

)((1+m
2

)
N

p− 1− k

)
e
−2β

(
2k+1−p

p

)
+

−−−−→
N→∞

1−m
2

p−1∑
k=0

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−1−k
e
−2β

(
2k+1−p

p

)
+ ,

and likewise

rp

(
m,m− 2

N

)
−−−−→
N→∞

1 +m

2

p−1∑
k=0

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−1−k
e
−2β

(
p−1−2k

p

)
+ .

Hence

A
(p)
N f(m) −−−−→

N→∞
A(p)f(m),

where

A(p)f(m) = f ′(m)
(
Sp,β1 (m)− Sp,β2 (m)

)
−mf ′(m)

(
Sp,β1 (m) + Sp,β2 (m)

)
,

Sp,β1 (m) =

p−1∑
k=0

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−1−k
e
−2β

(
2k+1−p

p

)
+

Sp,β2 (m) =

p−1∑
k=0

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−1−k
e
−2β

(
p−1−2k

p

)
+ .

Remark 2.3. Notice that

Sp,β1 (m) = E
(
e
−2β

(
2Xm,p+1−p

p

)
+

)
, Sp,β2 (m) = E

(
e
−2β

(
p−1−2Xm,p

p

)
+

)
,

whereXm,p is a random variable following a binomial distribution of parameters p−1 and 1−m
2 . Intuitively,

for an infinite number of spins, the dynamics of the system relies on the construction of a cluster of size p
(containing the chosen spin that may change), which is done by independently taking the remaining p − 1
spins from an infinite pool containing a proportion 1−m

2 of negative spins.

Denoting fp(β,m) =
(
Sp,β1 (m)− Sp,β2 (m)

)
−m

(
Sp,β1 (m) + Sp,β2 (m)

)
, by [Kal97, Theorem 17.28],

the process M (N,p)
t = mN,p(bNtc) weakly converges to the solution of

d

dt
m(t) = fp(β,m(t)).

The cases p = 2 and p = 3. We may directly compute

S2,β
1 (m) =

1 +m

2
+

1−m
2

e−β, S2,β
2 (m) =

1 +m

2
e−β +

1−m
2

,

S3,β
1 (m) =

(
1 +m

2

)2

+ 2

(
1 +m

2

)(
1−m

2

)
+

(
1−m

2

)2

e−
4β
3 ,
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S3,β
2 (m) =

(
1 +m

2

)2

e−
4β
3 + 2

(
1 +m

2

)(
1−m

2

)
+

(
1−m

2

)2

,

which yield

f2(β,m) =m(1− e−β)−m(1 + e−β) = −2me−β,

f3(β,m) =

((
1 +m

2

)2

−
(

1−m
2

)2
)(

1− e−
4β
3

)
−m

(((
1 +m

2

)2

+

(
1−m

2

)2
)(

1 + e−
4β
3

)
+ (1 +m)(1−m)

)

=m
(

1− e−
4β
3

)
−m

(
(1 +m2)

2

(
1 + e−

4β
3

)
+ 1−m2

)
=− m

2

(
1 + 3e−

4β
3

)
+
m3

2

(
1− e−

4β
3

)
.

For p = 2 we thus have, f2(β,m) = 0 ⇐⇒ m = 0, and furthermore notice that ∂mf2(β, 0) < 0, which
means that 0 is the unique equilibrium state, and it is stable. For p = 3,

f3(β,m) = 0 ⇐⇒ m = 0 or m = ±

√√√√1 + 3e−
4β
3

1− e−
4β
3

.

However, for all β > 0 we have
√

1+3e−
4β
3

1−e−
4β
3

> 1, as well as ∂mf3(β, 0) = −1+3e−
4β
3

2 < 0. The point 0 is

thus the unique equilibrium state, and it is stable.
We may observe this phenomenon in Figure 4, in which we compare the cases p = 2 and p = 3 with

p = 4.

Existence of a phase transition for p ≥ 4. First notice that

fp(β, 0) =

p−1∑
k=0

(
p− 1

k

)(
1

2

)p−1

e
−2β

(
2k+1−p

p

)
+ −

p−1∑
k=0

(
p− 1

k

)(
1

2

)p−1

e
−2β

(
p−1−2k

p

)
+

=0 by change of variables k′ = p− 1− k.

Thus m = 0 is for all β > 0 an equilibrium state. The remaining questions, in order to prove Theorem 1, are

• is there βc,p > 0 such that for all β < βc,p we have ∂κf(β, 0) < 0 (in which case m = 0 is stable) and
such that for all β > βc,p we have ∂mf(β, 0) > 0 (in which case m = 0 is unstable) ?

• do we have βc,p > 1 (in which case the critical temperature has indeed decreased when compared to
the case without random batches) ?

• can we give an estimate of βc,p ?

To answer the first question, we may calculate

S′p,β1 (m) = −
p−1∑
k=0

k

2

(
p− 1

k

)(
1−m

2

)k−1(1 +m

2

)p−1−k
e
−2β

(
2k+1−p

p

)
+

+

p−1∑
k=0

p− 1− k
2

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−2−k
e
−2β

(
2k+1−p

p

)
+
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Figure 4: Numerical observation of the invariant distribution for the Curie-Weiss model with N spins in the
cases p = 2 (Top right), p = 3 (Top left) and p = 4 (Bottom left). Starting from the uniform distribution for
the magnetization, we iterate the transition matrix (given in Lemma 2.1) until the L1 distance between two
consecutive iterations is less than a threshold Nε, with N = 1000, ε = 10−9 and various values for β.
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and

S′p,β2 (m) = −
p−1∑
k=0

k

2

(
p− 1

k

)(
1−m

2

)k−1(1 +m

2

)p−1−k
e
−2β

(
p−1−2k

p

)
+

+

p−1∑
k=0

p− 1− k
2

(
p− 1

k

)(
1−m

2

)k (1 +m

2

)p−2−k
e
−2β

(
p−1−2k

p

)
+ ,

which yields

∂mfp(β,m) =
(
S′p,β1 (m)− S′p,β2 (m)

)
−
(
Sp,β1 (m) + Sp,β2 (m)

)
−m

(
S′p,β1 (m) + S′p,β2 (m)

)
.

We thus have

∂mfp(β, 0) = 2S′p,β1 (0)− 2Sp,β1 (0) = 2

(
1

2

)p−1 p−1∑
k=0

(p− 2− 2k)

(
p− 1

k

)
e
−2β

(
2k+1−p

p

)
+ .

First, notice

∂β(∂mfp(β, 0)) =− 4

(
1

2

)p−1 p−1∑
k=0

(p− 2− 2k)

(
2k + 1− p

p

)
+

(
p− 1

k

)
e
−2β

(
2k+1−p

p

)
+ > 0.

The function β 7→ ∂mfp(β, 0) is therefore an increasing function, which furthermore satisfies
∂mfp(0, 0) < 0 and limβ→∞ ∂mfp(β, 0) > 0, hence a unique critical parameter βc,p > 0.

Remark 2.4. We use the assumption p ≥ 4 in order to prove limβ→∞ ∂mfp(β, 0) > 0. Indeed

lim
β→∞

∂mfp(β, 0) = 2

(
1

2

)p−1 p−1∑
k=0

(p− 2− 2k)

(
p− 1

k

)
1k≤ p−1

2
.

If p is even, all the terms in the sum are nonnegative, and if p ≥ 4, at least one term is positive. If p is odd,
one term is negative, and if p ≥ 5 it can easily be shown that it is compensated by the positive terms.

Estimation of the critical parameter. Denoting Xp a random variable following a binomial distribution
of parameters p− 1 and 1

2 , we have

∂mfp(β, 0) = 2E
(

(p− 2− 2Xp)e
−2β

(
2Xp+1−p

p

)
+

)
:= gp(β).

We are thus looking for the unique βc,p > 0 such that gp(βc,p) = 0.
Let Yp = 2

Xp
p −

p−1
p . We have

gp(β) = E
(

2(−pYp − 1)e−2β(Yp)+
)
. (2.2)

Since Xp and p− 1−Xp have the same law, Yp has the same law as 2
p−1−Xp

p − p−1
p = p−1

p − 2
Xp
p = −Yp.

Thus

gp(β) =− E
(
pYpe

−2β(Yp)+
)
− E

(
p(−Yp)e−2β(−Yp)+

)
− E

(
e−2β(Yp)+

)
− E

(
e−2β(−Yp)+

)
=− E

(
pYp

(
e−2β(Yp)+ − e−2β(−Yp)+

))
− E

(
e−2β(Yp)+ + e−2β(−Yp)+

)
17



=E
(

2pYpe
−β|Yp| sinh(βYp)

)
− E

(
2e−β|Yp| cosh(βYp)

)
=2E

(
cosh(βYp)e

−β|Yp| (pYp tanh(βYp)− 1)
)
.

As this is an increasing function in β, in order to prove that βc,p > 1, it is sufficient to prove that gp(1) < 0.
The Law of Large Number and the Central Limit Theorem yield

Yp
a.s−−−→
p→∞

0 and
p√
p− 1

Yp
law−−−→
p→∞

N (0, 1).

We have

gp(β) =2E

((
1 +

β2Y 2
p

2
+ o(Y 2

p )

)(
1− β|Yp|+

β2Y 2
p

2
+ o(Y 2

p )

)

×

(
pYp

(
βYp −

β3Y 3
p

3
+ o(Y 3

p )

)
− 1

))

=2E
((

p− 1

p
β

p2

p− 1
Y 2
p − 1

)
− β|Yp|

(
p− 1

p
β

p2

p− 1
Y 2
p − 1

)
+O(Y 2

p ) +O(pY 4
p )

)
=2

(
β
p− 1

p
E
(

p2

p− 1
Y 2
p

)
− 1− (p− 1)3/2

p2

(
β2E

(∣∣∣∣ p√
p− 1

Yp

∣∣∣∣3
)
− βE

(∣∣∣∣ p√
p− 1

Yp

∣∣∣∣)
)

+
1

p
E
(
O(pY 2

p ) +O(p2Y 4
p )
))

=2

(
β
p− 1

p
E
(
Z2
)
− 1− (p− 1)3/2

p2

(
β2
(
E |Z|3 + o (1)

)
− β (E (|Z|) + o(1))

)
+O

(
1

p

))

=2(β − 1)− 2
√
p

√
2

π

(
2β2 − β

)
+ o

(
1
√
p

)
,

where for this last equality, we use Lemma A.1 and the fact that, for Z ∼ N (0, 1), E|Z| =
√

2
π and

E(|Z|3) = 2
√

2
π .

In the end, we obtain, again, the fact that gp(1) −−−→
p→∞

0 (hence the correct critical parameter at the limit)

and the fact that, at least for p sufficiently large, gp(1) < 0. For smaller values of p, we rely on numerical
simulations to verify gp(1) < 0 (See Figure 5). Let us find an approximation of βc,p by using the fact that
gp(βc,p) = 0. We have

2

√
2

pπ
β2
c,p −

(
1 +

√
2

pπ

)
βc,p + 1 + o

(
1
√
p

)
= 0,

i.e

βc,p,± =
1

4

√
pπ

2

(1 +

√
2

pπ

)
±

((
1 +

√
2

pπ

)2

− 8

√
2

pπ

(
1 + o

(
1
√
p

)))1/2


=
1

4

√
pπ

2

(
1 +

√
2

pπ
±
(

1 +
2

pπ
− 6

√
2

pπ
+ o

(
1

p

))1/2
)

=
1

4

√
pπ

2

(
1 +

√
2

pπ
±
(

1 +
1

pπ
− 3

√
2

pπ
− 9

pπ
+ o

(
1

p

)))
,

18



Figure 5: Numerical values for gp(1) and gp
(
β̃c

)
, with β̃c = 1 +

√
2
pπ . The value of gp given in (2.2) is

computed via Monte-Carlo approximation using M = 108 samples for Yp.

thus

βc,p =
1

4

√
pπ

2

(
1 +

√
2

pπ
−
(

1− 3

√
2

pπ
− 8

pπ
+ o

(
1

p

)))
=

1

4

√
pπ

2

(
4

√
2

pπ
+

8

pπ
+ o

(
1

p

))
=1 +

√
2

pπ
+ o

(
1
√
p

)
.

We have thus proved Theorem 1.

3 Random Batch Method for interacting particle systems and stationary dis-
tribution(s)

We now turn our attention to the study of (D-RB-IPS) for a given batch size p ∈ N \ {0, 1}. In the specific
case of U and W given in (1.8), we study the phase transition for (Eff) and prove Theorem 3. The stationary
distributions of (NL), provided there exists one, are defined by the solutions of

µσ(dx) =
exp

(
− 1
σ (U(x) +W ∗ µσ(x))

)∫
exp

(
− 1
σ (U(y) +W ∗ µσ(y))

)
dy
dx. (3.1)

We consider the case of linear interactions in a double well potential in dimension one, i.e U and W given
in (1.8), which in particular implies

Σ(x, ρ) =(∇W )2 ∗ ρ(x)− (∇W ∗ ρ(x))2 = L2
W

(∫
y2ρ(dy)−

(∫
yρ(dy)

)2
)

= L2
WVar(ρ).
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Denote, for a measure µ,

κ1(µ) =

∫
R
xµ(dx) and κ2(µ) =

∫
R

(x− κ1(µ))2µ(dx).

The stationary distributions of (Eff), provided there exist one, are thus similarly defined by the solutions of

µδ,pσ (dx) =

exp

(
− 2

2σ+
δL2
W

p−1
κ2
(
µδ,pσ

)
(
U(x) + LW

2

∣∣∣x− κ1

(
µδ,pσ
)∣∣∣2))

∫
exp

(
− 2

2σ+
δL2
W

p−1
κ2
(
µδ,pσ

)
(
U(y) + LW

2

∣∣∣y − κ1

(
µδ,pσ
)∣∣∣2)) dydx. (3.2)

The pair (κ1(µδ,pσ ), κ2(µδ,pσ )) is therefore a solution of

κ1 =

∫
R x exp

(
− 2

2σ+
δL2
W

p−1
κ2

(
U(x) + LW

2 |x− κ1|2
))

dx

∫
R exp

(
− 2

2σ+
δL2
W

p−1
κ2

(
U(x) + LW

2 |x− κ1|2
))

dx

(3.3)

κ2 =

∫
R (x− κ1)2 exp

(
− 2

2σ+
δL2
W

p−1
κ2

(
U(x) + LW

2 |x− κ1|2
))

dx

∫
R exp

(
− 2

2σ+
δL2
W

p−1
κ2

(
U(x) + LW

2 |x− κ1|2
))

dx

. (3.4)

Thanks to (3.2), solving for (κ1, κ2) the system of equations (3.3)-(3.4) is equivalent to finding a stationary
distribution of (Eff). Define

g(x, σ, κ) = exp

(
− 1

σ

(
U(x) +

LW
2
|x− κ|2

))
, (3.5)

f1(σ, κ) =

∫
R xg(x, σ, κ)dx∫
R g(x, σ, κ)dx

, (3.6)

f2(σ, κ) =

∫
R(x− κ)2g(x, σ, κ)dx∫

R g(x, σ, κ)dx
, (3.7)

such that, for the symbol ∗ ∈ {0,±} and µσ,∗ defined in Theorem 2, κ1(µσ,∗) is a solution of κ1(µσ,∗) =
f1(σ, κ1(µσ,∗)) and κ2(µσ,∗) = f2(σ, κ1(µσ,∗)) is the corresponding variance.

Remark 3.1 (Wellposedness). Since we are looking for stationary distributions of (Eff), we are in reality
considering specific solutions with constant mean and variance. We could thus choose not to worry about
wellposedness of (Eff) since we could technically forget the nonlinearity.

However, for the sake of completeness, let us quickly turn our attention to the existence and uniqueness
of solutions of (Eff) in the specific case of U and W given in Theorem 3, for which the process is{

dX̄e,δ,p
t = u(X̄e,δ,p

t ) + f ∗ ρe,δ,pt (X̄e,δ,p
t )dt+ σ̄(ρe,δ,pt )dBt,

ρe,δ,pt = Law(X̄e,δ,p
t )

in dimension 1, with

u(x) = −x3 + x, f(x) = −LWx, and σ̄(µ) =

(
2σ +

δL2
W

p− 1
Var(µ)

)1/2

.
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To prove existence and uniqueness, we use [CdS23, Theorem 2.5]. To do so, we notice that there is a constant
C > 0 (which may change from line to line) such that

(x− y)(u(x)− u(y)) ≤ C|x− y|2, |u(x)− u(y)| ≤ C(1 + x2 + y2)|x− y|.

Another assumption we have to verify, and which is the main technical difficulty, is the following

|σ̄(µ)− σ̄(ν)| ≤ CW2(µ, ν).

Since the square root function is Lipschitz continuous on [2σ,∞[, it is sufficient to prove that there is C > 0
such that |Var(µ)− Var(ν)| ≤ CW2(µ, ν). Denoting X (resp. Y ) a random variable distributed according
to µ (resp. ν), we have

|Var(µ)− Var(ν)| ≤
∣∣E(X2)− E(Y 2)

∣∣+
∣∣E(X)2 − E(Y )2

∣∣
≤ |E((X − Y )(X + Y ))|+ |E(X − Y )E(X + Y )|

≤2
√

E((X − Y )2)
√
E((X + Y )2),

where we use for this last line Cauchy-Schwarz inequality and Jensen’s inequality. Considering (X,Y ) to
be distributed according to the optimal coupling for the Wasserstein-2 distance between µ and ν, we thus
have

|Var(µ)− Var(ν)| ≤ C
√

E(X2) + E(Y 2)W2(µ, ν).

We thus should obtain existence and uniqueness for processes with bounded second moments.
Let us now use this idea to prove wellposedness. We consider the following process, for a given K > 0{

dX̄K
t = u(X̄K

t ) + f ∗ ρKt (X̄K
t )dt+ σ̄K(ρKt )dBt,

ρKt = Law(X̄K
t )

(3.8)

where σ̄K(µ) =
(

2σ +
δL2

W
p−1

(∫
x2dµ(x) ∧K −

(∫
xdµ(x)

)2 ∧K))1/2
. Let a, b ∈ R and c ≥ 0, we

have
∣∣a2 ∧ c− b2 ∧ c

∣∣ ≤ |a− b| ∣∣∣√a2 ∧ c+
√
b2 ∧ c

∣∣∣. We obtain similarly as before, for (X,Y ) distributed
according to the optimal coupling of µ and ν∣∣E(X2) ∧K −E(X)2 ∧K − E(Y 2) ∧K + E(Y )2 ∧K

∣∣
≤
∣∣E(X2) ∧K − E(Y 2) ∧K

∣∣+
∣∣E(X)2 ∧K − E(Y )2 ∧K

∣∣
≤2
√
K
∣∣∣√E(X2)−

√
E(Y 2)

∣∣∣+ 2
√
K||E(X)| − |E(Y )|| .

On one hand we have by Cauchy-Schwarz inequality

E((X − Y )2)−
∣∣∣√E(X2)−

√
E(Y 2)

∣∣∣2 = 2
√
EX2

√
EY 2 − 2E(XY ) ≥ 0,

which implies ∣∣∣√E(X2)−
√

E(Y 2)
∣∣∣ ≤√E((X − Y )2) =W2(µ, ν).

On the other hand

||E(X)| − |E(Y )|| ≤ |E(X)− E(Y )| ≤ E|X − Y | ≤
√

E((X − Y )2) =W2(µ, ν).

Hence, σ̄K is Lipschitz continuous.

21



Thus, [CdS23, Theorem 2.5] applies and we have strong existence and uniqueness for (3.8). Further-
more, up until the stopping time

TK = inf

{
t ≥ 0 s.t.

∫
x2dρKt (x) > K

}
,

the solution of (3.8) coincides with the solution of (Eff). Then, applying Itô’s formula on the process (Eff)
for the function x 7→ x2, we obtain that the second moment of the solution is bounded. Hence, for K large
enough depending on the initial condition, TK =∞. We finally obtain the wellposedness of (Eff).

Our goal is to compare the stationary distribution(s) for (Eff) to the stationary distribution(s) for (NL),
in particular in regards to this critical parameter σc. To do so, we begin by showing that any stationary
distribution of (NL) is a stationary distribution of (Eff), and conversely.

Lemma 3.1. Let µ be a probability measure on R.

• If µ is a solution of (3.2) for a diffusion coefficient σ′, then µ is a solution of (3.1) for a diffusion
coefficient σ = σ′ +

δL2
W

2(p−1)κ2(µ),

• If µ is a solution of (3.1) for a diffusion coefficient σ and δ
p−1 <

2σ
L2
W κ2(µ)

, then µ is a solution of (3.2)

for a diffusion coefficient σ′ = σ − δL2
W

2(p−1)κ2(µ).

Proof. Let us prove the two points.
A stationary distribution of (Eff) is a stationary distribution of (NL). Assume µ satisfies (3.2) for a given
(δ, p, σ′), which in particular is equivalent to the pair (κ1(µ), κ2(µ)) satisfying

κ1(µ) =

∫
R x exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

∫
R exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

κ2(µ) =

∫
R (x− κ1(µ))2 exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

∫
R exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

.

Denoting σ = σ′ +
δL2

W
2(p−1)κ2(µ), we thus have

κ1(µ) =

∫
R x exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx∫
R exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

κ2(µ) =

∫
R (x− κ1(µ))2 exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx∫
R exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx
.

Thus, if µ is a stationary distribution for (Eff) with diffusion coefficient σ′ and parameters δ and p, it is also
a stationary distribution for (NL) with diffusion coefficient σ = σ′ +

δL2
W

2(p−1)κ2(µ).
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A stationary distribution of (NL) is a stationary distribution of (Eff). Assume µ satisfies (3.2) for a given
σ, which in particular is equivalent to the pair (κ1(µ), κ2(µ)) satisfying

κ1(µ) =

∫
R x exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx∫
R exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

κ2(µ) =

∫
R (x− κ1(µ))2 exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx∫
R exp

(
− 1
σ

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx
.

Consider parameters δ and p, and denote σ′ = σ − δL2
W

2(p−1)κ2(µ). Notice κ2(µ) is independent of δ and p

thus, provided δ
(p−1) is small enough, we may ensure σ′ > 0 and have

κ1(µ) =

∫
R x exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

∫
R exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

κ2(µ) =

∫
R (x− κ1(µ))2 exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

∫
R exp

(
− 2

2σ′+
δL2
W

p−1
κ2(µ)

(
U(x) + LW

2 |x− κ1(µ)|2
))

dx

.

Thus, given two parameters δ and p, if µ is a stationary distribution for (NL) with diffusion coefficient σ, it
is also a stationary distribution for (Eff) with diffusion coefficient σ′ = σ − δL2

W
2(p−1)κ2(µ).

Unfortunately, this lemma does not directly imply the existence of a phase transition for (Eff). Several
issues arise :

• the existence of a symmetric stationary distribution µσ,0 for (NL) with diffusion coefficient σ > 0 only
yields the existence of a symmetric stationary distribution for (Eff) for a specific diffusion coefficient
σ′ = σ − δL2

W
2(p−1)κ2(µ). We need to show that, for any σ > 0, there exists a symmetric stationary

distribution for (Eff).

• likewise, the existence of non symmetric stationary distribution for (Eff) is only ensured for specific
diffusion coefficients.

• we cannot infer the uniqueness of the symmetric stationary distribution for (Eff) from the uniqueness
of the symmetric stationary distribution for (NL). Given σ′ > 0, there may a priori be two stationary
distributions for (Eff), denoted µ1 and µ2, with different variance κ2(µ1) 6= κ2(µ2), which thus
correspond to two different symmetric stationary distributions for (NL) with diffusion coefficients
σ1 = σ′ +

δL2
W

2(p−1)κ2(µ1) 6= σ′ +
δL2

W
2(p−1)κ2(µ2) = σ2.

We therefore dedicate the remainder of this document to the proof of Theorem 3.

3.1 Some results on the stationary distribution(s) of (NL)

The study of the critical parameter of (Eff) relies, by Lemma 3.1, on the study of the one of (NL). We
gather here some results concerning the latter. They are numerically illustrated in Figure 6, and the proofs
are postponed to Appendix B.

23



Figure 6: Left : The means of µσ,± as a function of σ for different values of LW , as given in Theorem 2.
Right : The variances of µσ,± as a function of σ for different values of LW . In dotted line the variance of
µσ,0, and in solid line the variance of µσ,±.

Lemma 3.2. We have the following results concerning the stationary distribution(s) of (NL).

• Symmetry. We have κ1(µσ,+) = −κ1(µσ,−) and κ2(µσ,+) = κ2(µσ,−).

• Moment bound. Let the symbol ∗ ∈ {0,±}. Consider µσ,∗ given in Theorem 2, and κ1(µσ,∗) (resp.
κ2(µσ,∗)) the corresponding mean (resp. variance). There existsCκ1 , Cκ2 > 0 such that for σ ∈ [0, σc]
we have

|κ1(µσ,∗)| ≤ Cκ1 , and |κ2(µσ,∗)| ≤ Cκ2 . (3.9)

• Critical variance. We have the equality

κ2 (µσc) =
σc
LW

. (3.10)

Furthermore, for σ < σc we have κ2 (µσ,±) < σ
LW

and κ2 (µσ,0) > σ
LW

, and for σ > σc we have
κ2 (µσ,0) < σ

LW
.

• Continuity. The function σ 7→ κ1(µσ,+), with the convention µσ,+ = µσ,0 for σ ≥ σc, is continuous
on ]0,∞[. In particular, this also yields the continuity of σ 7→ κ2(µσ,+) = f2(σ, κ1(µσ,+)).

• Lipschitz continuity. Let σ0 > 0. The functions σ 7→ κ2(µσ,0) and σ 7→ κ2(µσ,±) are Lipschitz
continuous, respectively on [σ0,∞[ and on [σ0, σc]. More precisely, there exists C > 0 such that for
respectively σ > σ0 and σ ∈]σ0, σc[ we have

∣∣ d
dσκ2(µσ,∗)

∣∣ ≤ C.

Remark 3.2. The bound (3.9), combined with the knowledge of the fact that for σ ≥ σc there only exists a
symmetric stationary distribution for (NL) as well as Lemma 3.1, shows that we can restrict our study of the
stationary distribution for both (NL) and (Eff) to a compact set of means κ1 ∈ [−Cκ1 , Cκ1 ].

Remark 3.3. The main technical difficulty lies in the proof of the Lipschitz continuity of σ 7→ κ2(µσ,0) and
σ 7→ κ2(µσ,±), since it turns out that the mean σ 7→ κ1(µσ,±) is not Lipschitz continuous near the critical
parameter σc (See Figure 6). It therefore requires a careful estimation of the mean and variance around σc,
and the proof is a section of its own (See Appendix B.2).

24



3.2 Phase transition for the effective dynamics

Let σ0 > 0 and define, for ∗ ∈ {0,±}, the function geff,∗ : σ 7→ σ − δL2
W

2(p−1)κ2(µσ,∗).
From Lemma 3.1, if µσ,∗ is a stationary distribution for (NL), then it is a stationary distribution for (Eff)

with diffusion coefficient σ′ = geff,∗(σ).
By Lemma 3.2, σ 7→ κ2(µσ,0) is a Lipschitz continuous function on [σ0,∞[ and σ 7→ κ2(µσ,±) is a

Lipschitz continuous function on [σ0, σc], and, more precisely, in both cases we obtain that
∣∣ d
dσκ2(µσ,∗)

∣∣ is
bounded by some constant C > 0.

In this case, the function σ 7→ geff,∗(σ) is such that g′eff,∗(σ) = 1 − δL2
W

2(p−1)
d
dσκ2(µσ,∗) and thus

g′eff,∗(σ) ∈
[
1− δL2

W
2(p−1)C, 1 +

δL2
W

2(p−1)C
]
. In particular, for δ

p−1 sufficiently small, geff,∗(σ) is both an
increasing continuous function and positive.

Thus, geff,0 and geff,± are two injective functions. In particular, geff,± is a bijection from [σ0, σc] to
[geff,±(σ0), geff,±(σc)].

Finally, notice that geff,±(σc) = geff,0(σc) = σc

(
1− δLW

2(p−1)

)
, that geff,∗(σ0) ≤ σ0, and that, up to

the additional assumption 2(σc−σ0)
σcLW

> δ
p−1 , we may assume geff,∗(σc) > σ0.

We may now state the following facts concerning the stationary distribution(s) for (Eff).

• There exists at least one symmetric stationary distribution. Since g′eff,0 ≥ 1 − δL2
W

2(p−1)C, geff,0
is an increasing function such that geff,0(x) −−−→

x→∞
∞. Thus, geff,0 is a bijection from [σ0,∞[ to

[geff,0(σ0),∞[. Therefore, for all σ ∈ [geff,0(σ0),∞[, there exists σ̃ such that geff,0(σ̃) = σ. In
other words, µσ̃,0 is also a symmetric stationary distribution for (Eff) with diffusion coefficient σ.

• There exists at most one symmetric stationary distribution. Let σ ≥ σ0 and κ1 = 0, and assume
there are two symmetric stationary distributions of (Eff) with diffusion coefficient σ. This yields two
coefficients σ′, σ′′ ≥ σ > 0 such that

σ′ =σ +
δL2

W

2(p− 1)
κ2

(
µδ,pσ,1

)
σ′′ =σ +

δL2
W

2(p− 1)
κ2

(
µδ,pσ,2

)
,

where µδ,pσ,1 and µδ,pσ,2 denote the two stationary distributions. We consider µσ′ (= µδ,pσ,1) and µσ′′ (=

µδ,pσ,2) the corresponding (unique) symmetric stationary distributions of (NL). Because σ′ and σ′′ are
greater than σ0, there exists a constant K, possibly depending on σ0 and LW , such that by Lemma 3.2

|κ2 (µσ′′)− κ2 (µσ′)| =
∣∣f2(σ′′, 0)− f2(σ′, 0)

∣∣ ≤ K|σ′′ − σ′|
i.e. |κ2 (µσ′′)− κ2 (µσ′)| ≤

KδL2
W

2(p− 1)

∣∣∣κ2

(
µδ,pσ,2

)
− κ2

(
µδ,pσ,1

)∣∣∣ . (3.11)

Because the stationary distributions of (Eff) are uniquely defined by their mean and variance,

κ2 (µσ′′) = κ2

(
µδ,pσ,2

)
and κ2 (µσ′) = κ2

(
µδ,pσ,1

)
,

and we obtain from (3.11) that, for δ
p−1 sufficiently small, κ2

(
µδ,pσ,1

)
= κ2

(
µδ,pσ,2

)
and thus that

µδ,pσ,1 = µδ,pσ,2.
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• For σ ∈ [geff,±(σ0), geff,±(σc)[, there exists at least two stationary distributions with nonzero
mean. Because geff,± is a bijection, consider g−1

eff,±(σ) ∈ [σ0, σc[. There are three stationary distri-
bution for (NL) with diffusion coefficient g−1

eff,±(σ). By Lemma 3.1, µg−1
eff,±(σ),+ and µg−1

eff,±(σ),− are
also stationary distributions for (Eff) with diffusion coefficient σ, and they have nonzero mean.

• For σ ∈ [geff,±(σ0), geff,±(σc)[, there exists at most two stationary distributions with nonzero
mean. By symmetry, it is sufficient to prove that there is at most one stationary distribution with
positive mean. Assume there are two such solutions µδ,pσ,+,1 and µδ,pσ,+,2.

Let, for i ∈ {1, 2}, σi = σ+
δL2

W
2(p−1)κ2(µδ,pσ,+,i). Then, µδ,pσ,+,i is a stationary distribution with a positive

mean for (NL) with diffusion coefficient σi, i.e µδ,pσ,+,i = µσi,+.

Thus σ = σi −
δL2

W
2(p−1)κ2(µδ,pσ,+,i) = σi −

δL2
W

2(p−1)κ2(µσi,+) = geff,+(σi). Since geff,+ is an injective

function, we obtain that σ1 = σ2. In particular, µδ,pσ,+,1 and µδ,pσ,+,2 are two stationary distribution with

a positive mean for (NL) with diffusion coefficient σ1 = σ2, thus by uniqueness µδ,pσ,+,1 = µδ,pσ,+,2.

• For σ ≥ geff,+(σc), there does not exists stationary distribution with nonzero mean. The result
is direct if σ ≥ σc, because if µ is a stationary measure for (Eff) with diffusion coefficient σ, it is is
a stationary measure for (NL) with diffusion coefficient σ +

δL2
W

2(p−1)κ2(µ) ≥ σ > σc, hence it cannot
have a nonzero mean.

Assume σc > σ ≥ geff,+(σc) > σ0 and that there exists such a solution µδ,pσ,+. Consider

σ′ = σ +
δL2

W

2(p− 1)
κ2(µδ,pσ,+), (3.12)

such that µδ,pσ,+ = µσ′,+ is a stationary distribution with positive mean for (NL). We thus necessarily
have σ′ < σc. Let

σ̃ = geff,+(σ′) = σ′ −
δL2

W

2(p− 1)
κ2(µσ′,+). (3.13)

We obtain µδ,pσ,+ = µσ′,+ = µδ,pσ̃,+. Since geff,+ is increasing we have geff,+(σc) > geff,+(σ′) = σ̃,
we obtain from (3.13)

geff,+(σc) >σ
′ −

δL2
W

2(p− 1)
κ2(µσ′,+) = σ′ −

δL2
W

2(p− 1)
κ2(µδ,pσ,+),

i.e κ2(µδ,pσ,+) >
2(p− 1)

δL2
W

(
σ′ − geff,+(σc)

)
.

Plugging that back into (3.12), we obtain

σ′ > σ + σ′ − geff,+(σc), i.e σ < geff,+(σc),

which contradicts the initial assumption.

This concludes the proof of Theorem 3.
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A Technical lemmas

We start with this slight extension of the central limit theorem:

Lemma A.1. Let (Xi)i≥1 be a sequence of i.i.d random variables in R such that EX1 = 0 and E(|X1|2) = 1.
Assume also that E(|X1|4) <∞. Denote Zp = 1√

p

∑p
i=1Xi.

Then, we have for Z ∼ N (0, 1)

E
(
|Zp|2

)
= E

(
|Z|2

)
, and E

(
|Zp|4

)
= E

(
|Z|4

)
+O

(
1

p

)
.

This in particular also yields E (|Zp|) −−−→
p→∞

E (|Z|) and E
(
|Zp|3

)
−−−→
p→∞

E
(
|Z|3

)
Proof. Direct computations give E

(
|Zp|2

)
= E

(
|Z|2

)
. Likewise, we may explicitly compute E|Zp|4. Keep-

ing only the terms with nonzero expectation, we have

E|Zp|4 =
1

p2

p∑
i=1

E|Xi|4 +
6

p2

∑
i>j

E|Xi|2E|Xj |2

=
E|X1|4

p
+

6

p2

p(p− 1)

2
.

Noticing that E|Z|4 = 3 yields the convergence E
(
|Zp|4

)
= E

(
|Z|4

)
+O

(
1
p

)
. Thus, we have both

• Zp converges in law to Z ∼ N (0, 1),

• and the convergence of the fourth moment E |Zp|4 −−−→
p→∞

E |Z|4.

By [Vil09, Theorem 6.9], we have the convergence in L4 Wasserstein distance of the law of Zp to a law
N (0, 1). This implies the convergence in both L1 Wasserstein distance and L3 Wasserstein distance, thus
the convergence of the first and third moments of Zp.

Lemma A.2. The function σ ∈]0,∞[7→ ∂3
κf1(σ, 0) (with f1 given by (3.6)) is continuous and satisfies

∀σ > 0, ∂3
κf1(σ, 0) < 0.

Proof. We have

∂3
κf1(σ, 0) =

(
LW
σ

)3
(∫

R x
4g∫

R g
− 3

(∫
R x

2g∫
R g

)2
)
,

with g given by (3.5). We wish to prove

A(σ, LW ) :=

∫
R x

4g
∫
R g(∫

R x
2g
)2 < 3.

Remark that A(σ, LW ) is by definition the kurtosis of a random variable with probability density g∫
g

.
Let us rewrite, for α > 0

U(x) +
LW
2
x2 =

x4

4
+
LW − 1

2
x2

=
x4

4
+
LW − 1− α

2
x2 +

(
LW − 1− α

2

)2

+
α

2
x2 −

(
LW − 1− α

2

)2
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=
1

4

(
x2 + LW − 1− α

)2
+
α

2
x2 −

(
LW − 1− α

2

)2

,

such that

g(x, σ, 0) = exp

(
− 1

4σ

(
x2 + LW − 1− α

)2)
exp

(
1

σ

(
LW − 1− α

2

)2
)
e−

α
2σ
x2 .

This way we can write

A(σ, LW ) =
E
(

exp
(
− 1

4σ

(
Y 2 + LW − 1− α

)2))E(Y 4 exp
(
− 1

4σ

(
Y 2 + LW − 1− α

)2))
E
(
Y 2 exp

(
− 1

4σ (Y 2 + LW − 1− α)2
))2 ,

with Y ∼ N
(

0,
σ

α

)
,

=
E
(

exp
(
− 1

4σ

(
σ
αX

2 + LW − 1− α
)2))E(X4 exp

(
− 1

4σ

(
σ
αX

2 + LW − 1− α
)2))

E
(
X2 exp

(
− 1

4σ

(
σ
αX

2 + LW − 1− α
)2))2 ,

with X ∼ N (0, 1) .

We have

− 1

4σ

(σ
α
X2 + LW − 1− α

)2
= − 1

4σ

(σ
α

)2
(
X2 +

α (LW − 1− α)

σ

)2

.

We thus choose α = 1
2

(
LW − 1 +

√
(LW − 1)2 + 4σ

)
> 0 in order to ensure α(LW−1−α)

σ = −1. Finally,
denoting

β(σ, LW ) =

LW − 1√
σ

+

√(
LW − 1√

σ

)2

+ 4

−2

> 0 ,

we have

A(σ, LW ) =
E
(

exp
(
−β(σ, LW )

(
X2 − 1

)2))E(X4 exp
(
−β(σ, LW )

(
X2 − 1

)2))
E
(
X2 exp

(
−β(σ, LW ) (X2 − 1)2

))2 , X ∼ N (0, 1)

:=A(β(σ, LW )). (A.1)

The quantity A given above can be expressed as a function of β(σ, LW ) ∈]0,∞[, that we denote A(β). We
may then numerically check that A(β) < 3 for all β > 0. (see Figure 7).

Notice that the function β(σ, LW ), which is in reality a function of the quantity LW−1√
σ

, is a bijection from
LW−1√

σ
∈ R to ]0,∞[, which satisfies β(σ, LW ) −−−−−−−→

LW−1√
σ
→∞

0. And, for β(σ, LW ) = 0, direct calculations

knowing the moments of the Gaussian law yield A(0) = 3 and A′(0) = −24 < 0.

Lemma A.3. Consider the function F1 : σ 7→ ∂κf1(σ, 0). It is continuously differentiable and, for σ > 0,
satisfies F ′1(σ) < 0.
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Figure 7: Numerical simulation of the quantity given in (A.1).

Proof. We have

F1(σ) =
LW
σ

∫
x2 exp

(
−x4

4σ + 1−LW
2σ x2

)
dx∫

exp
(
−x4

4σ + 1−LW
2σ x2

)
dx

.

Consider the change of variable y = x√
σ

. We have

F1(σ) =
LW
σ

∫
σy2 exp

(
−σ2 y4

4σ + 1−LW
2σ σy2

)
dy∫

exp
(
−σ2 y

4

4σ + 1−LW
2σ σy2

)
dy

=LW

∫
y2 exp

(
−σ

4 y
4 + 1−LW

2 y2
)
dy∫

exp
(
−σ

4 y
4 + 1−LW

2 y2
)
dy

,

which then yields

F ′1(σ) =
LW
4

(
−E

(
Y 6
)

+ E
(
Y 2
)
E
(
Y 4
))
,

where Y is a random variable with probability density (up to renormalization) exp
(
−σ

4 y
4 + 1−LW

2 y2
)
dy.

By Jensen inequality (in a strictly convex case with a non almost surely constant random variable), we have
F ′1(σ) < 0.

B Proofs of Lemma 3.2

In this section we prove the various results of Lemma 3.2.
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B.1 Moment bounds, critical variance and continuity

To prove the first properties stated in Lemma 3.2, we recall the following result, extracted from Theorem 2.1
of [Tug14] and its proof.

Lemma B.1. The equation (with unknown σ)∫
R+

(
x2 − 1

2LW

)
exp

(
(1− LW )x2 − σx4

)
dx = 0, (B.1)

admits a unique solution, that is the critical value σc.
Finally, consider the function

ξ(σ, κ) =

∫
R

(x− κ) exp

(
− 1

σ

(
U(x) +

LW
2
x2 − LWxκ

))
dx. (B.2)

We have the following properties on ξ :

• The function σ 7→ ∂κξ(σ, 0) is decreasing : for σ < σc we have ∂κξ(σ, 0) > 0, for σ > σc we have
∂κξ(σ, 0) < 0, and finally ∂κξ(σc, 0) = 0.

• For σ ≥ σc and κ ≥ 0, the function κ 7→ ξ(σ, κ) is decreasing (which, in fact, ensures uniqueness of
the stationary solution for (NL)).

• For σ < σc and κ ≥ 0, the function κ 7→ ξ(σ, κ) is increasing and then decreasing (which,in fact,
ensures the thirdness of the stationary solution for (NL)).

Moment bound : Consider (X̄t)t the solution of (NL). Itô’s formula yields

dU(X̄t) = Atdt+ dMt,

where Mt is a continuous local martingale and

At = −U ′
(
X̄t

)2 − LW (X̄t − E
(
X̄t

))
U ′
(
X̄t

)
+ σU ′′

(
X̄t

)
.

There exists λ > 0 and C > 0, both independent of σ ∈ [0, σc], such that for all x ∈ R

σU ′′(x) + 2λU(x) ≤ U ′(x)2

2
+ C, and 2L2

Wx
2 ≤ λU(x) + C.

Consider for instance λ = 1 and C = max
(

2σ + (2σ)3/2 − 1
2 ,

(1+4L2
W )2

4

)
for U(x) = x4

4 −
x2

2 . Thus

At ≤ C − λU
(
X̄t

)
+
(
L2
W

(
X̄2
t + E

(
X̄t

)2)− λU (X̄t

))
,

and, using Fatou’s lemma to deal with the local martingale, finally we obtain thanks to Gronwall’s lemma

EU
(
X̄t

)
≤ e−λtEU

(
X̄0

)
+

2C

λ
.

Since E
(
X̄t

)2 ≤ E
(
X̄2
t

)
≤ 1

2L2
W

(
λEU

(
X̄t

)
+ C

)
, and considering X̄0 distributed according to a station-

ary distribution, we may conclude.
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Value of κ2 (µσc) : We rewrite Equation (B.1) defining σc, first by using the symmetry in x to obtain∫
R

(
x2 − 1

2LW

)
exp

(
(1− LW )x2 − σx4

)
dx = 0,

and then, by a change of variable x = y√
2σ

, this is equivalent to∫
R

(
y2 − σ

LW

)
exp

(
− 1

σ

(
y4

4
− 1− LW

2
y2

))
dy = 0.

Finally, this amounts to having

σ

LW
=

∫
R y

2 exp
(
− 1
σ

(
y4

4 −
1−LW

2 y2
))

dy∫
R exp

(
− 1
σ

(
y4

4 −
1−LW

2 y2
))

dy
,

which, since κ1(µσc) = 0, yields the value of κ2(µσc).
Consider then the function ξ given (B.2). We have ξ(σ, κ) = (f1(σ, κ)− κ)

∫
g(x, σ, κ)dx, and thus

∂κξ(σ, κ) = (∂κf1(σ, κ)− 1)

∫
g(x, σ, κ)dx+ (f1(σ, κ)− κ)

∫
∂κg(x, σ, κ)dx.

Considering the equation above for κ = κ1(µσ,∗), we obtain

∂κξ(σ, κ1(µσ,∗)) = (∂κf1(σ, κ1(µσ,∗))− 1)

∫
g(x, σ, κ1(µσ,∗))dx.

We may compute the derivatives of f1 (see (B.5) below), and obtain

∂κξ(σ, κ1(µσ,∗)) =

(
LW
σ
κ2(µσ,∗)− 1

)∫
g(x, σ, κ1(µσ,∗))dx.

The values of ∂κξ(σ, κ) for κ = 0 and κ = κ1(µσ,+) depending on σ, as given in Lemma B.1, yields the
result.

Continuity of the moments : Notice that f1 given in (3.6) is continuous on (σ, κ) ∈ R+,∗ ×R+. We start
by proving the continuity of σ 7→ κ1(µσ,+), with the convention µσ,+ = µσ,0 for σ > σc. In this latter case,
the function σ 7→ κ1(µσ,+) is trivially continuous as κ1(µσ,+) = 0.

Let us show the continuity at the point σc. Let (σn)n∈N be a sequence of positive real numbers such
that σn −−−→

n→∞
σc, and consider the (bounded) sequence (κ1(µσn,+))n. Up to extraction, we can assume

κ1(µσn,+) −−−→
n→∞

κ1 ≥ 0. We have, by definition, κ1(µσn,+) = f1(σn, κ1(µσn,+)) and, by considering the

limit n → ∞, thanks to the continuity of f1, we obtain κ1 = f1(σc, κ1). Uniqueness of the fixed point for
σc then ensures κ1 = 0 = κ1(µσc,+). Hence we obtain the desired continuity.

We now consider σ < σc. Assume there exists ε > 0 and a sequence (σn)n∈N such that σn −−−→
n→∞

σ and

|κ1(µσn,+) − κ1(µσ,+)| > ε. Again, up to extraction, we have κ1(µσn,+) −−−→
n→∞

κ1 ≥ 0 and, since κ1 is a

fixed point that cannot be κ1(µσ,+), we have κ1 = 0. Consider the (at least) twice continuously differentiable
function ξ given in (B.2). On one hand, we have by continuity ∂κξ(σn, κ1(µσn,+)) −−−→

n→∞
∂κξ(σ, 0) > 0.

On the other hand, by the properties of ξ given in Theorem B.1 , we have ∂κξ(σn, κ1(µσn,+)) < 0. Hence a
contradiction, and κ1(µσn,+) −−−→

n→∞
κ1(µσ,+) for any sequence σn −−−→

n→∞
σ. We thus obtain the continuity.

31



B.2 On the variance of the stationary distribution(s) of (NL)

Let σ0 > 0, and let us show that the functions σ 7→ κ2(µσ,0) and σ 7→ κ2(µσ,±) are Lipschitz continuous.
This is useful, as can be seen in Section 3.2, in proving that there exists a phase transition for the effective
dynamics (Eff).

Throughout this section, the constant C holds no importance and may change from one line to the next.

We start by showing that σ 7→ κ2(µσ,0) is Lipschitz continuous.

Lemma B.2. Let σ0 > 0 and κ1 ∈ [−Cκ1 , Cκ1 ] (where Cκ1 is given in (3.9)). The function σ 7→ f2(σ, κ1)
is Lipschitz continuous on [σ0,∞[ uniformly in κ1 ∈ [−Cκ1 , Cκ1 ].

Applying this lemma for κ1 = 0 yields the desired Lipschitz continuity for κ2(µσ,0).

Proof of Lemma B.2. Recall g defined in (3.5). and consider C =
1+2LW κ21

4 , a constant such that, for U
given by (1.8), we ensure U(x) + LW

2 x2 − LWxκ1 + C ≥ 0. We have

f2(σ, κ1) =

∫
R(x− κ1)2g(x, σ, κ1)e−

C
σ dx∫

R g(x, σ, κ1)e−
C
σ dx

,

and thus

|∂σf2(σ, κ1)| = 1

σ2

∣∣∣∣∣∣
∫
R(x− κ1)2

(
U(x) + LW

2 x2 − LWxκ1 + C
)
g(x, σ, κ1)dx

∫
R g(x, σ, κ1)dx(∫

R g(x, σ, κ1)dx
)2

−

∫
R(x− κ1)2g(x, σ, κ1)dx

∫
R

(
U(x) + LW

2 x2 − LWxκ1 + C
)
g(x, σ, κ1)dx(∫

R g(x, σ, κ1)dx
)2

∣∣∣∣∣∣
≤ 1

σ2

∫
R(x− κ1)2

(
U(x) + LW

2 x2 − LWxκ1 + C
)
g(x, σ, κ1)dx∫

R g(x, σ, κ1)dx
(B.3)

+
1

σ2

∫
R(x− κ1)2g(x, σ, κ1)dx∫

R g(x, σ, κ1)dx

∫
R

(
U(x) + LW

2 x2 − LWxκ1 + C
)
g(x, σ, κ1)dx∫

R g(x, σ, κ1)dx
.

(B.4)

First (∫
R
g(x, σ, κ1)dx

)−1

≤
(∫

R
exp

(
− 1

σ0

(
U(x) +

LW
2
x2 − LWxκ1 + C

))
dx

)−1

.

Then, for all x ∈ R and all α ≥ 0, we have

U(x) +
LW
2
x2 − LWxκ1 + C =

x4

4
− x2

2
+

1

4
+
LW
2
|x− κ1|2 ≥ αx2 − βα,

with

βα =
(2α+ 1)2

4
− 1

4
= α2 + α.

Thus, for all integers k ≥ 0, we have∫
R
x2k exp

(
− 1

σ

(
U(x) +

LW
2
x2 − LWxκ1 + C

))
dx ≤e

α2+α
σ

∫
R
x2k exp

(
−αx

2

σ

)
dx
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=e
α2+α
σ

√
2π

(2k)!

2kk!

( σ
2α

)k+ 1
2
.

Choosing α =
√
σ

2 , we obtain∫
R
x2k exp

(
− 1

σ

(
U(x) +

LW
2
x2 − LWxκ1 + C

))
dx ≤e

1
4

+ 1
2
√
σ
√

2π
(2k)!

2kk!
σ
k
2

+ 1
4 .

Hence there exists C, independent of σ, such that for k ≤ 7
2 , 1

σ2

∫
R x

2kg(σ, x)dx ≤ C (which allows us to
deal with (B.3)) and for k ≤ 2, 1

σ5/4

∫
R x

2kg(σ, x)dx ≤ C and for k ≤ 1, 1
σ3/4

∫
R x

2kg(σ, x)dx ≤ C (both
allow us to deal with (B.4)). Thus, for σ ≥ σ0, |∂σf2(σ, κ1)| is bounded uniformly in κ1, which yields the
result.

We now show that σ 7→ κ2(µσ,+) is Lipschitz continuous. Let σc > σ0 > 0. We have already proved,
in Lemma B.2, that σ 7→ f2(σ, κ1) is Lipschitz continuous uniformly in κ1 ∈ [−Cκ1 , Cκ1 ]. However, the
difficulty lies in the fact that, for κ2(µσ,+) given by κ2(µσ,+) = f2(σ, κ1(µσ,+)), the mean σ 7→ κ1(µσ,+)
is not Lipschitz continuous around σc. We will work our way around this fact (and, doing so, also prove it)
in the rest of the subsection, but in the meantime this can be numerically observed in Figure 6.

Let us compute the various derivatives of f1 and f2 given in (3.6) and (3.7).

∂σg(x, σ, κ) =

(
U(x) + LW

2 |x− κ|
2
)

σ2
g(x, σ, κ),

∂κg(x, σ, κ) =
LW
σ

(x− κ)g(x, σ, κ),

∂σf1(σ, κ) =
1(∫
R g
)2 (∫

R
g

∫
R
x∂σg −

∫
R
∂σg

∫
R
xg

)

=
1

σ2

∫R x
(
U(x) + LW

2 |x− κ|
2
)
g∫

R g
−

∫
R

(
U(x) + LW

2 |x− κ|
2
)
g∫

R g

∫
R xg∫
R g

 ,

∂κf1(σ, κ) =
1(∫
R g
)2 (∫

R
g

∫
R
x∂κg −

∫
R
∂κg

∫
R
xg

)
=
LW
σ

(∫
R x(x− κ)g∫

R g
−
∫
R(x− κ)g∫

R g

∫
R xg∫
R g

)
=
LW
σ

(∫
R x

2g∫
R g

−
(∫

R xg∫
R g

)2
)
,

∂σf2(σ, κ) =
1(∫
R g
)2 (∫

R
g

∫
R

(x− κ)2∂σg −
∫
R
∂σg

∫
R

(x− κ)2g

)

=
1

σ2

∫R(x− κ)2
(
U(x) + LW

2 |x− κ|
2
)
g∫

R g
−

∫
R

(
U(x) + LW

2 |x− κ|
2
)
g∫

R g

∫
R(x− κ)2g∫

R g

 ,

∂κf2(σ, κ) =
1(∫
R g
)2 ((2

∫
R

(κ− x)g +

∫
R

(x− κ)2∂κg

)∫
R
g −

∫
R
∂κg

∫
R

(x− κ)2g

)
=

2
∫
R(κ− x)g∫

R g
+
LW
σ

(∫
R(x− κ)3g∫

R g
−
∫
R(x− κ)2g∫

R g

∫
R(x− κ)g∫

R g

)
.
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In particular, notice that

∂κf1(σ, κ1(µσ,∗)) =
LW
σ
κ2(µσ,∗) and ∂κf2(σ, κ1(µσ,∗)) =

LW
σ

∫
R(x− κ1(µσ,∗))

3g∫
R g

. (B.5)

We have

d

dσ
κ1(µσ,∗) =∂σf1(σ, κ1(µσ,∗)) + ∂κf1(σ, κ1(µσ,∗))

d

dσ
κ1(µσ,∗),

d

dσ
κ2(µσ,∗) =∂σf2(σ, κ1(µσ,∗)) + ∂κf2(σ, κ1(µσ,∗))

d

dσ
κ1(µσ,∗).

Thus

d

dσ
κ1(µσ,∗) =

∂σf1(σ, κ1(µσ,∗))

1− ∂κf1(σ, κ1(µσ,∗))
=
∂σf1(σ, κ1(µσ,∗))

1− LW
σ κ2(µσ,∗)

. (B.6)

By the results on the critical variance in Lemma 3.2, κ1(µσ,∗) is continuously differentiable on ]σ0, σc[.
Likewise

d

dσ
κ2(µσ,∗)

(
1− LW

σ
κ2(µσ,∗)

)
=

(
1− LW

σ
κ2(µσ,∗)

)
∂σf2(σ, κ1(µσ,∗)) + ∂κf2(σ, κ1(µσ,∗))∂σf1(σ, κ1(µσ,∗)). (B.7)

The fact that 1 − LW
σ κ2(µσ,∗) goes to 0 as σ → σc is what prevents us from giving an upper bound on

d
dσκ1(µσ,∗). By the result on the critical variance in Lemma 3.2 and by continuity, there may be a problem
in the limit σ → σ−c , but we wan already say that σ 7→ κ2(µσ,+) is Lipschitz continuous on any interval of
the form [σ1, σ2] with 0 < σ1 < σ2 < σc. The following lemma gives a more precise speed of convergence
of the mean to 0 around the critical parameter.

Lemma B.3. There exists C > 0 such that

κ1(µσ,+)√
σc − σ

−−−−→
σ→σ−c

C.

Proof. We restrict the study to σ ∈ [σ0, σc[ for some arbitrary σ0 > 0. We compute

∂κf1(σ, κ) =
LW
σ

(∫
R x

2g∫
R g

−
(∫

R xg∫
R g

)2
)
,

∂2
κf1(σ, κ) =

(
LW
σ

)2
(∫

R x
3g∫

R g
− 3

∫
R x

2g∫
R g

∫
R xg∫
R g

+ 2

(∫
R xg∫
R g

)3
)
,

∂3
κf1(σ, κ) =

(
LW
σ

)3
(∫

R x
4g∫

R g
− 4

∫
R x

3g∫
R g

∫
R xg∫
R g

+12

∫
R x

2g∫
R g

(∫
R xg∫
R g

)2

−6

(∫
R xg∫
R g

)4

− 3

(∫
R x

2g∫
R g

)2
)
.

In particular

f1(σ, 0) =0,

∂κf1(σ, 0) =
LW
σ

∫
R x

2g∫
R g

> 0,

∂2
κf1(σ, 0) =0,
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and, by Lemma A.2

∂3
κf1(σ, 0) =

(
LW
σ

)3
(∫

R x
4g∫

R g
− 3

(∫
R x

2g∫
R g

)2
)

σ→σ−c−−−−→ ∂3
κf1(σc, 0) < 0. (B.8)

Let us start by proving that there exists C > 0 such that, in the limit σ → σc (or equivalently κ1(µσ,+)→ 0),
we have

σc − σ
κ1(µσ,+)2

< C + o(1). (B.9)

We compute

∂κf1(σ, κ) = ∂κf1(σ, 0) + κ∂2
κf1(σ, 0) +

κ2

2
∂3
κf1(σ, 0) + o(κ2).

By Lemma A.3, there exists C > 0 such that

∂κf1(σ, 0) ≥ ∂κf1(σc, 0) + C(σc − σ) = 1 + C(σc − σ).

Since ∂κf1(σc, 0) = ∂κf1(σc, κ1(µσc)) = LW
σc
κ2(µσc) = 1 by (3.10)

∂κf1(σ, κ) ≥ 1 + C(σc − σ) +
κ2

2

(
∂3
κf1(σc, 0) + oσ→σc(1)

)
+ o(κ2),

where the o(κ2) is uniform in σ ∈ [σ0, σc]. Considering κ = κ1(µσ,+), which goes to 0 as σ → σc, in the
equation above yields

LW
σ
κ2(µσ,+) ≥ 1 + C(σc − σ) +

κ1(µσ,+)2

2

(
∂3
κf1(σc, 0) + oσ→σc(1)

)
+ o(κ1(µσ,+)2).

By the results of Lemma 3.2 concerning the critical variance, LWσ κ2(µσ,+) ≤ 1, which gives

0 ≥ C(σc − σ)

κ1(µσ,+)2
+
∂3
κf1(σc, 0)

2
+ oσ→σc(1).

This gives (B.9) and this in turns allows us to state that σc − σ = O(κ1(µσ,+)2).

We then have

f1(σ, κ) =f1(σ, 0) + κ∂κf1(σ, 0) +
κ2

2
∂2
κf1(σ, 0) +

κ3

6
∂3
κf1(σ, 0) + o(κ3)

=κ∂κf1(σ, 0) +
κ3

6
∂3
κf1(σ, 0) + o(κ3).

Furthermore, defining F1 as in Lemma A.3, we obtain

∂κf1(σ, 0) = F1(σ) =F1(σc)− (σc − σ)F ′1(σc) + o(σc − σ)

=1− (σc − σ)F ′1(σc) + o(σc − σ),

which then yields

f1(σ, κ) =κ
(
1− (σc − σ)F ′1(σc) + o(σc − σ)

)
+
κ3

6

(
∂3
κf1(σc, 0) + o(1)

)
+ o(κ3).
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Since κ1(µσ,+) = f1(σ, κ1(µσ,+)), we thus get in the limit σ → σ−c

0 =− κ1(µσ,+)(σc − σ)F ′1(σc) +
κ1(µσ,∗)

3

6
∂3
κf1(σc, 0) (B.10)

+ o(κ1(µσ,+)3) + κ1(µσ,+)o(σc − σ)

0 =− (σc − σ)F ′1(σc) +
κ1(µσ,+)2

6
∂3
κf1(σc, 0) + o(κ1(µσ,+)2). (B.11)

Thus, thanks to (B.8) and Lemma A.3, there exists C > 0 such that

σc − σ
κ1(µσ,+)2

σ→σ−c−−−−→ C,

which yields the final result.

Lemma B.4. Let σ0 ∈]0, σc[. Then σ 7→ κ2(µσ,+) is Lispchitz continuous on [σ0, σc].

Proof. Let us write for all (σ, κ) ∈ [σ0, σc]× [−Cκ1 , Cκ1 ]

∂κf1(σ, κ) =∂κf1(σ, 0) + κ∂2
κf1(σ, 0) +

κ2

2
∂3
κf1(σ, 0) + o(κ3)

=
(
F1(σc)− (σc − σ)F ′1(σc) + o(σc − σ)

)
+
κ2

2

(
∂3
κf1(σc, 0) +O(σc − σ)

)
+ o(κ3),

where we used the notation F1 from Lemma A.3, the fact that ∂2
κf1(σ, 0) = 0, and where all notation o(·)

and O(·) are uniform in (σ, κ) ∈ [σ0, σc]× [−Cκ1 , Cκ1 ] by continuity. Since F1(σc) = 1, we obtain

1− ∂κf1(σ, κ) = (σc − σ)F ′1(σc)−
κ2

2
∂3
κf1(σc, 0) + o(σc − σ) + o(κ3) + κ2O(σc − σ).

Applying this for κ = κ1(µσ,+), and using (B.11) and Lemma B.3, we obtain

1− ∂κf1(σ, κ1(µσ,+)) =
κ1(µσ,+)2

6
∂3
κf1(σc, 0)− κ1(µσ,+)2

2
∂3
κf1(σc, 0) + o(κ1(µσ,+)2)

=− κ1(µσ,+)2

3
∂3
κf1(σc, 0) + o(κ1(µσ,+)2).

Hence, using (B.6), for all σ ∈ [σ0, σc[∣∣∣∣ ddσκ1(µσ,+)

∣∣∣∣ =
|∂σf1(σ, κ1(µσ,+))|
|1− ∂κf1(σ, κ1(µσ,+))|

.
Cκ1(µσ,+)

κ1(µσ,+)2 + o(κ1(µσ,+)2)
.

1

κ1(µσ,+)
+ o(κ1(µσ,+)),

where we used that ∂σf1(σ, 0) = 0 and that ∂κ∂σf1 is bounded over [σ0, σc] × [−Cκ1 , Cκ1 ] to bound the
numerator, and Lemma A.2 for the denominator. Besides, since ∂κf2(σ, 0) = 0 (by (B.5) and symmetry),

|∂κf2(σ, κ1(µσ,+)| = |∂κf2(σ, κ1(µσ,+))− ∂κf2(σ, 0)| . |κ1(µσ,+)|+o(κ1(µσ,+))

and thus we bound for all σ ∈ [σ0, σc[∣∣∣∣ ddσκ2(µσ,+)

∣∣∣∣ ≤ |∂σf2(σ, κ1(µσ,+))|+
∣∣∣∣ ddσκ1(µσ,+)

∣∣∣∣ |∂κf2(σ, κ1(µσ,+))|+o(κ1(µσ,+))

.1 +
|∂κf2(σ, κ1(µσ,+)|

κ1(µσ,+)
+o(1)

.1+o(1).

By continuity (recall that 1 − ∂κf1(σ, κ1(µσ,+)) = 1 − LW
σ κ2(µσ,+) > 0 for σ < σc) , this proves that

σ 7→ κ2(µσ,+) is Lipschitz on [σ0, σc].
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