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Some remarks on the effect of the Random Batch Method on phase transition

In this article, we focus on two toy models : the Curie-Weiss model and the system of N particles in linear interactions in a double well confining potential. Both models, which have been extensively studied, describe a large system of particles with a mean-field limit that admits a phase transition. We are concerned with the numerical simulation of these particle systems. To deal with the quadratic complexity of the numerical scheme, corresponding to the computation of the O(N 2 ) interactions per time step, the Random Batch Method (RBM) has been suggested. It consists in randomly (and uniformly) dividing the particles into batches of size p > 1, and computing the interactions only within each batch, thus reducing the numerical complexity to O(N p) per time step. The convergence of this numerical method has been proved in other works.

This work is motivated by the observation that the RBM, via the random constructions of batches, artificially adds noise to the particle system. The goal of this article is to study the effect of this added noise on the phase transition of the nonlinear limit, and more precisely we study the effective dynamics of the two models to show how a phase transition may still be observed with the RBM but at a lower critical temperature.

Introduction 1.Motivation

Consider a system of N particles (X i ) i∈{1,...,N } in interaction

dX i t = -∇U (X i t )dt - 1 N -1 j =i ∇W (X i t -X j t )dt + √ 2σdB i t , (IPS) 
where for all i ∈ {1, ..., N } and t ≥ 0 we have X i t ∈ R d , U and W are two twice continuously differentiable functions, respectively called confining potential and interaction potential, σ > 0 is a diffusion coefficient or temperature, and (B i ) i are independent d-dimensional Brownian motions. The name (IPS) refers to Interacting Particle System.

It is well known (see [START_REF] Chaintron | Propagation of chaos: a review of models, methods and applications. I. Models and methods[END_REF][START_REF] Chaintron | Propagation of chaos: a review of models, methods and applications[END_REF] and references therein) that, under suitable assumptions on U and W , the particle system (IPS) converges as N → ∞ towards its nonlinear mean-field limit, a stochastic differential equation (SDE) of McKean-Vlasov type d Xt = -∇U ( Xt )dt -∇W * ρt ( Xt )dt + √ 2σdB t , ρt = Law( Xt ).

(NL)

Here, the name (NL) refers to Nonlinear Limit, and this equation arises in the modelling of granular media [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF].

The quantitative link between of (IPS) and (NL) can be exploited in various ways. On one hand, as it was historically motivated, the study of (way too) large systems of particles cannot be feasible, and boiling it down to the study of the nonlinear limit yields exploitable results. On the other hand, one can see (IPS) as an approximation of (NL), and in particular an approximation that can be numerically simulated. Consider the Euler-Maruyama scheme associated to (IPS) with a timestep δ > 0 X i,δ t+1 = X i,δ t -δ∇U (X i,δ t ) -δ N -1 j =i ∇W (X i,δ t -X j,δ t ) + √ 2σδG i t , G i t i.i.d ∼ N (0, 1), t ∈ N.

(D-IPS)

Its name (D-IPS) comes from Discrete -Interacting Particle System. The convergence of (D-IPS) towards (NL) has been extensively studied : with bounded Lipschitz coefficients [START_REF] Bossy | A stochastic particle method for the McKean-Vlasov and the Burgers equation[END_REF], with Hölder continuous coefficients [START_REF] Bao | Approximations of Mckean-Vlasov SDEs with Irregular Coefficients[END_REF], non-Lipschitz coefficients [START_REF] Ding | Euler-Maruyama approximations for stochastic McKean-Vlasov equations with non-Lipschitz coefficients[END_REF]. The quantitative convergence of the implicit Euler-Maruyama scheme can also be found in [START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF]. Notice that this numerical scheme requires O(N 2 ) operations per time step, corresponding to the total number of interactions of pairs (i, j) i,j∈{1,...,N } . To cope with this possibly limiting complexity, several works have suggested using the Random Batch Method (RBM) (see for instance [START_REF] Shi | Random batch methods (RBM) for interacting particle systems[END_REF]), motivated by the Stochastic Gradient Langevin Dynamics [START_REF] Welling | Bayesian learning via stochastic gradient langevin dynamics[END_REF].

Consider, for a time step t ∈ N, a partition P t = P 1 t , ..., P N/p t of {1, ..., N } into N/p subsets of size p > 1, assuming for the sake of simplicity that N is a multiple of p, and define

C i t = j ∈ {1, .
., N } s.t. ∃l ∈ {1, ..., N/p}, i, j ∈ P l t .

(1.1)

In other words, C i t is the set of indexes that are in the same subset as i at time step t, with the convention i ∈ C i t . We now consider the following numerical scheme where for each time step t the partition P t is random and each partition has the same probability of occurring.

Y i,δ,p t+1 = Y i,
The name (D-RB-IPS) refers to Discrete -Random Batch -Interacting Particle System. The convergence of (D-RB-IPS) towards (NL) can be found in [START_REF] Shi | Convergence of the random batch method for interacting particles with disparate species and weights[END_REF][START_REF] Shi | Ergodicity and long-time behavior of the Random Batch Method for interacting particle systems[END_REF][START_REF] Ye | Error Analysis of Time-Discrete Random Batch Method for Interacting Particle Systems and Associated Mean-Field Limits[END_REF]. The idea of using random batches has been shown to be efficient for computing the evolution of large interacting system of quantum particles [START_REF] Golse | The random batch method for N -body quantum dynamics[END_REF], of particles with Coulomb interactions in molecular dynamics [START_REF] Shi | A random batch Ewald method for particle systems with Coulomb interactions[END_REF], but also for Markov Chain Monte Carlo [START_REF] Li | A random-batch Monte Carlo method for many-body systems with singular kernels[END_REF], or for solving PDEs [START_REF] José | Random batch particle methods for the homogeneous Landau equation[END_REF][START_REF] Li | Some random batch particle methods for the Poisson-Nernst-Planck and Poisson-Boltzmann equations[END_REF]. See also references therein.

The starting point of this work is the following observation : the RBM, via the random construction of a partition of {1, ..., N }, artificially adds noise (or temperature) to a system. We thus ask the following question :

Does the critical temperature of (the mean-field limit of) a system of interacting particles admitting a phase transition decrease when considering a version with random batches ? If so, can we quantify it ?

To partially answer this question, we focus on two specific types of particle systems for which the mean-field limit admits a phase transition : the first one is the Curie-Weiss model and the second one is the system (IPS) in dimension 1 with attractive and quadratic interaction potential W and the double well confining potential U .

The nonlinear mean-field limits of both models admit, as we will discuss, a phase transition occurring at a certain critical parameter. We consider a version with random batches of size p of each system, consider the limit as N → ∞ (with fixed p) towards a nonlinear model, and then study the phase transition of said limit.

The Curie-Weiss model

The classical system. The Curie-Weiss model is, and it is the reason we start by studying it, arguably one of the most simple system admitting a phase transition. Consider N spins, given by a configuration σ = (σ 1 , ..., σ N ), and Ω N = {-1, 1} N the set of possible configurations for the system. On this system we consider the following Hamiltonian

∀σ ∈ Ω N , H N (σ) = - 1 2N i,j σ i σ j . (1.2)
Intuitively, each spin will tend to align with the others. It is a mean field model as H N only depends in reality on the mean magnetization m N (σ) := 1 N N i=1 σ i , by

H N (σ) = - N 2 m N (σ) 2 .
The evolution for (σ(n)) n≥0 in Ω N is the following : at each discrete time step, a spin is chosen uniformly among the N possible spins. Let us denote i this spin, and σ = (σ 1 , ..., σ N ) the configuration such that for all j = i, σ j = σ(n) j , and σ i = -σ(n) i . We accept σ as the next step of σ(n) with probability exp (-β(H N (σ ) -H N (σ)) + ) (i.e if the Hamiltonian decreases then with probability 1, otherwise with a positive probability depending on a parameter β), otherwise the system remains at σ(n). Here we use the notation x + = max(x, 0). This parameter β is known as the inverse temperature. This yields the following transition probabilities for the Markov chain (σ(n)) n≥0 :

p(σ, σ ) =    1 N exp (-β(H N (σ ) -H N (σ)) + ) if ||σ -σ || 1 = 2 0 if ||σ -σ || 1 > 2 1 -η =σ p(σ, η) if σ = σ
This dynamics (σ(n)) n≥0 , which is an irreducible and aperiodic Markov chain on a finite state space Ω N , is reversible with respect to the Gibbs measure

µ β,N (σ) = 1 Z β,N exp(-βH N (σ)), (1.3) 
where Z β,N is a normalizing constant. Instead of studying the dynamics of σ, we look at the mean magnetization m N (n) = m N (σ(n)), which is still a Markov chain. This quantity, at each time step, can only increase or decrease by 2 N , and the transition probabilities are given by

r(m, m ) =            1-m 2 exp -βN 2 (m 2 -m 2 ) + if m = m + 2 N 1+m 2 exp -βN 2 (m 2 -m 2 ) + if m = m -2 N 1 -r m, m + 2 N -r m, m -2 N if m = m 0 otherwise. (1.4)
Likewise, this dynamics is reversible with respect to the Gibbs measure

ν β,N (m) = 1 Z β,N N 1+m 2 N exp βN m 2 2 .
Many works (see for instance [CK17, EN78, LLP10], the classical reference that is Chapter 4 of [START_REF] Ellis | Entropy, large deviations, and statistical mechanics[END_REF] or more recently Chapter 2 of [START_REF] Friedli | Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction[END_REF]) have studied Large Deviation Principles for this system, and have shown that there exists a critical inverse temperature β c = 1. For the sake of completeness, and because the method will be similar in the case with random batches, we give a proof in Section 2.1 of the phase transition happening in the following sense : the process M (N ) t = m N ( N t ) weakly converges to the solution of an ordinary differential equation (ODE). For β > 1, the limit ODE admits three equilibrium states, and for β ≤ 1 only one. In both cases, 0 is an equilibrium state, and is stable in the case β ≤ 1 and unstable in the case β > 1. Phase transition for the maximum likelihood estimator of the parameters has also been studied in [START_REF] Comets | Asymptotics of maximum likelihood estimators for the Curie-Weiss model[END_REF].

The Curie-Weiss model with random batches. We then consider the same system, but using the Random Batch Method. At each time step, the chosen spin no longer evolves according to the entire system, but according to a subset of p spins containing the chosen spin.

We thus consider a new evolution for (σ p (n)) n≥0 in Ω N , where σ p denotes the new sequence of spin configurations. At each discrete time step, a spin is chosen uniformly among the N possible spins. Let us denote it i, and σ = (σ 1 , ..., σ N ) the configuration such that for all j = i, σ j = σ p (n) j , and

σ i = -σ p (n) i .
We then sample a subset of {1, ..., N } of size p containing i, denoted C i,p , uniformly over such subsets, and accept σ as the next step of σ p (n) with probability exp -β(H N,p (σ , C i,p ) -H N,p (σ p (n), C i,p )) + , where

H N,p (σ, C i,p ) = - 1 2p j,k∈C i,p σ j σ k . (1.5)
Likewise, we may study this system in terms of its magnetization, denoted (m N,p (n)) n , for which we can explicitly write the transition probabilities (see Lemma 2.1). This system resembles to some extent the dilute Curie-Weiss model [START_REF] Bovier | Metastability for the dilute Curie-Weiss model with Glauber dynamics[END_REF], in which the spins interact according to an Erdős-Rényi random graph with edge probability p = p N ∈]0, 1[, the main difference being that the "graph", in our case, is modified at each time step and there are exactly p -1 spins interacting with a given one.

Studying the Curie-Weiss model with random batches, which is done in Section 2.2, yields the following results.

Theorem 1. Let p ∈ N \ {0, 1} and β > 0.

• Define S p,β 1 (m) = p-1 k=0 p -1 k 1 -m 2 k 1 + m 2 p-1-k e -2β 2k+1-p p + S p,β 2 (m) = p-1 k=0 p -1 k 1 -m 2 k 1 + m 2 p-1-k e -2β p-1-2k p + , f p (β, m) = S p,β 1 (m) -S p,β 2 (m) -m S p,β 1 (m) + S p,β 2 (m) .
The process M (N,p) t = m N,p ( N t ), i.e the magnetization rescaled in time, weakly converges as N → ∞ to the solution of the ODE

d dt m(t) = f p (β, m(t)). (1.6)
For all β > 0, 0 is an equilibrium state for the solution of (1.6).

• For p ∈ {2, 3}, 0 is the unique equilibrium state, and it is stable.

• For p ≥ 4, there exists β c,p such that for all β > β c,p , the equilibrium state 0 is unstable, and for all β ≤ β c,p it is stable. Furthermore, we have the estimate

β c,p = 1 + 2 pπ + o 1 √ p . (1.7)
This theorem thus gives a first answer to the main question of the article : the RBM does increase the critical inverse temperature of the system (i.e decreases the critical temperature).

Numerical scheme and double-well potential

We then go back to the initial motivation concerning numerical schemes for interacting particle systems.

The effective dynamics. Just like we may consider the nonlinear limit of (IPS), we may also consider the limit as N → ∞ of (D-RB-IPS). Define

Ȳ δ,p t+1 = Ȳ δ,p t -δ∇U ( Ȳ δ,p t ) -δ p-1 p-1 j=1 ∇W ( Ȳ δ,p t -Y j ) + √ 2σδG t , G t i.i.d ∼ N (0, 1), (Y j ) j i.i.d ∼ ρδ,p t := Law( Ȳ δ,p t ).
(D-RB-NL)

The name (D-RB-NL) stands for Discrete -Random Batch -Nonlinear Limit. The convergence of (D-RB-IPS) towards (D-RB-NL) can be found in [START_REF] Shi | On the mean field limit of the random batch method for interacting particle systems[END_REF]. The proof relies on a coupling method, noticing that, as N → ∞, the probability of constructing batches of fixed size p in (D-RB-IPS) with independent and identically distributed particles goes to 1, thus giving a convergence in total variation distance.

We then, in the spirit of [START_REF] Sekkat | Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics[END_REF], construct a continuous process, parameterized by the timestep and the batch size, which is closer to the numerical scheme (D-RB-IPS) than the target (NL). In the dynamics of (D-RB-NL), writing

ξ t = 1 p -1 p-1 j=1 ∇W Ȳ δ,p t -Y j notice that E ξ t Ȳ δ,p t = ∇W * ρδ,p t ( Ȳ δ,p t ), and 
Var ξ t Ȳ δ,p t = 1 p -1 Var ρδ,p t ∇W ( Ȳ δ,p t -•) Ȳ δ,p t = 1 p -1 (∇W ) 2 * ρδ,p t ( Ȳ δ,p t ) -(∇W * ρδ,p t ( Ȳ δ,p t )) 2 ,
where the square of a vector has to be understood component-wise. Hence,

Ȳ δ,p t = Ȳ δ,p 0 -δ t-1 s=0 ∇U ( Ȳ δ,p s ) -δ t-1 s=0 ∇W * ρδ,p s ( Ȳ δ,p s ) -δM t + √ 2σδ t-1 s=0 G s ,
where

t → M t := t-1 s=0 ξ s -∇W * ρδ,p s ( Ȳ δ,p s )
is a martingale. By martingale CLT, we thus expect the numerical scheme (D-RB-IPS) to be close, for small values of δ, the following non-linear SDE, that we call the effective dynamics: 

   d Xe,
where we denote Σ(x, ρ) = (∇W ) 2 * ρ(x) -(∇W * ρ(x)) 2 . Notice that, although it is a continuous-time process, it depends on the stepsize δ of the numerical schemes.

Such dynamics are also known as modified equations in various works considering the backward error analysis of SDEs [START_REF] Shardlow | Modified equations for stochastic differential equations[END_REF][START_REF] Konstantinos | On the existence and the applications of modified equations for stochastic differential equations[END_REF], improving upon a technique that had already provided a better understanding of the numerical methods for ODEs. They have been used in the numerical error analysis of the Stochastic Gradient Langevin Dynamics [START_REF] Vollmer | Exploration of the (non-)asymptotic bias and variance of stochastic gradient Langevin dynamics[END_REF][START_REF] Sekkat | Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics[END_REF]. Of course, these references do not consider nonlinear SDEs as we do, and obtaining a formal result in our case is out of the scope of the present work. Let us informally and briefly explain the motivation of the effective dynamics (we refer to [START_REF] Vollmer | Exploration of the (non-)asymptotic bias and variance of stochastic gradient Langevin dynamics[END_REF][START_REF] Sekkat | Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics[END_REF] and references within for further details). In the usual stochastic gradient case (which would correspond to (D-RB-NL) where we assume that the law of Y j is fixed), denote by π δ,p , π, π δ and π ef f , respectively, the invariant measures of (D-RB-NL), of the continuous-time limit process (NL), of its Euler scheme (without Random batches, i.e. (D-RB-NL) with p = ∞) and of (Eff). For a fixed observable f , from the weak error analysis on the invariant measure (see e.g. [SS21, Proposition 1])), we get that there exists

c 1 , c 2 ∈ R such that π δ,p (f ) π(f ) + c 1 δ + c 2 δ/p, while π δ (f ) π(f ) + c 1 δ and π ef f (f ) π(f ) + c 2 δ/p
, where these approximations are all up to a term of order δ 2 (1 + p -3/2 ). In other words, at first order in δ, c 1 and c 2 respectively accounts for the time discretization and stochastic gradient errors. By studying (Eff), at first order, we disregard the error which is purely due to the time discretization and focus on the contribution of the stochastic gradient approximation. Notice that, for the Euler scheme of the overdamped Langevin diffusion (D-RB-NL), except if the variance Σ is very large (which corresponds to the case in [START_REF] Vollmer | Exploration of the (non-)asymptotic bias and variance of stochastic gradient Langevin dynamics[END_REF][START_REF] Sekkat | Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics[END_REF] which are not concerned with a mean-field scaling) these two parts of the error are of the same order in δ. However, in practice, second-order schemes for underdamped Langevin or Hamiltonian Monte Carlo are widely used (as in [START_REF] Sekkat | Removing the mini-batching error in Bayesian inference using Adaptive Langevin dynamics[END_REF][START_REF] Gouraud | HMC and underdamped langevin united in the unadjusted convex smooth case[END_REF]) and in that case the stochastic gradient contribution is the leading term of the bias (see Remark 1.2 below). In any cases, the numerical scheme is closer to the effective dynamics than it is to the continuous-time process (as they only differ, at first order, through the pure discretization error), which motivates in the following the analysis of the effective dynamics (Eff).

Again, we emphasize that providing a quantitative link between the various processes (IPS), (D-IPS), (D-RB-IPS), (D-RB-NL), (Eff), and (NL) would require an entire separate analysis, even though some results are already known. As it would dilute the main message of this work concerning the phase transition of the effective dynamics, we do not address this question here.

The double well confining potential. We now choose in (NL) the dimension to be d = 1 and the potentials

U (x) = x 4 4 - x 2 2 , W (x) = L W x 2 2 with L W > 0.
(1.8)

Recall the following result adapted from [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF].

Theorem 2 (Theorem 2.1 of [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF]). For U and W given by (1.8), there exists σ c > 0 such that

• For all σ ≥ σ c , there exists a unique stationary distribution µ σ,0 for (NL). Furthermore, µ σ,0 is symmetric.

• For all σ < σ c , there exist three stationary distributions for (NL). One is symmetric, also denoted µ σ,0 , and the other two, denoted µ σ,+ and µ σ,-, satisfy ± xdµ σ,± (dx) > 0.

By convention, in the case σ ≥ σ c , we may denote µ σ = µ σ,± = µ σ,0 .

Our goal is now to study the stationary distribution(s) for the effective dynamics (Eff) in the specific case of the double-well potential (1.8). We wish to understand if, similarly as Theorem 2, there exists a phase transition, and if so compare the critical parameters. We thus prove in Section 3 the following theorem.

Theorem 3. Let σ 0 ∈]0, σ c [ where σ c is defined in Theorem 2. For U and W given by (1.8), there exists c 0 > 0 such that for all (δ, p) satisfying δ p-1 ≤ c 0 , denoting

σ ef f c = σ c 1 - δL W 2(p -1)
, (1.9)

we have the following phase transition for the dynamics (Eff)

• For all σ ≥ σ ef f c , there exists a unique stationary distribution µ δ,p σ,0 for (Eff). Furthermore, µ δ,p σ,0 is symmetric.

• For all σ ∈ [σ 0 , σ ef f c [, there exists exactly three stationary distributions for (Eff). One is symmetric, also denoted µ δ,p σ,0 , and the other two, denoted µ δ,p σ,+ and µ δ,p σ,-, satisfy ± xdµ δ,p σ,± (x) > 0.

Remark 1.1. Let us quickly discuss the form of (1.9). In the specific case of (1.8), as discussed in Section 3, one has Σ( Xe,δ,p t , ρe,δ,p t ) = L 2 W Var(ρ e,δ,p t ). To insist on the dependence on σ rather than (δ, p), let us denote, only in this remark, Σ σ := Σ( Xe,δ,p t , ρe,δ,p t ). We will show, but this can be intuitively understood at this stage, that any stationary distribution for (NL) is a stationary distribution for (Eff) although for a smaller value of σ. We thus have to study the stationary distribution at the critical value σ c .

As proved in Lemma 3.2, the variance of the stationary distribution for (NL) at the critical value is Var(µ σc,0 ) = σc L W . By considering the diffusion term in (Eff) and ensuring 2σ c = 2σ ef f c + δ p-1 Σ σc , we then obtain (1.9). Remark 1.2. Another consequence of the fact that Σ(x, ρ) does not depend on x is that a stationary solution of (Eff) is also the first marginal of a stationary solution of the corresponding effective dynamics for the kinetic Langevin diffusion (with the second marginal, i.e. the distribution of velocities at equilibrium, being the standard Gaussian distribution, and the distribution in the phase space being the product of these two marginals, see e.g. [START_REF] Guillin | Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes[END_REF]). It means that Theorem 3 also applies to the kinetic case. Moreover, in this case, in practice, second-order splitting schemes are used, which means that the discretization error is negligible with respect to the stochastic gradient error, and thus the effective dynamics captures the leading term of the numerical errror, see also [START_REF] Gouraud | HMC and underdamped langevin united in the unadjusted convex smooth case[END_REF] on this topic.

Let us sum up the organization of the article.

• The Curie-Weiss model is studied in Section 2. We start by recalling the analysis of the phase transition for the classical Curie-Weiss model in Section 2.1 since the same ideas will be used afterwards. The study of the Curie-Weiss model with random batches and the proof of Theorem 1 are then done in Section 2.2,

• In Section 3 we study the Random Batch Method for interacting particle systems. More specifically we prove Theorem 3 in the specific case of the double-well potential,

• Finally, in Appendix A we gather some technical lemmas, and in Appendix B we prove some results on (NL) for the double-well potential used in Section 3.

Notation

For the Curie-Weiss model, with and without random batches:

• Ω N = {-1, ..., 1} N : the set of possible configurations,

• σ(n) = (σ 1 (n), ..., σ N (n)) : the spin configuration at time step n,

• β : the inverse temperature,

• β c : the critical inverse temperature,

• H N : the Hamiltonian of the Curie-Weiss model given in (1.2),

• m N (n) = 1 N N i=1 σ i (n)
: the magnetization at time step n,

• r(σ, σ ) : transition probability for the Markov chain (m N (n)) n , given in (1.4).

• σ p (n) = (σ p 1 (n), ..., σ p N (n)) : the spin configuration of the system with random batches of size p at time step n,

• H N,p : the Hamiltonian for the system with random batches of size p, given in (1.5),

• m N,p (n) = 1 N N i=1 σ p i (n)
: the magnetization at time step n for the system with random batches of size p,

• r p (m, m ) : transition probability for the Markov chain (m N,p (n)) n , given in Lemma 2.1.

• β c,p : the critical inverse temperature for the system with random batches of size p.

For the Random Batch Method for interacting particle system :

• U, W : two twice continuously differentiable functions, respectively the confining potential and the interacting potential (see (IPS)),

• σ > 0 : a diffusion coefficient (see (IPS)),

• (X i t ) i∈{1,...,N } : the solution at time t ∈ R + of the interacting particle system (IPS),

• Xt , ρt : the solution at time t ∈ R + of the nonlinear limit (NL) and its law,

• δ > 0 : a timestep used in the various numerical schemes,

• (X i,δ t ) i∈{1,...,N } : the solution at time step t ∈ N of the Euler-Maruyama numerical scheme (D-IPS),

• p ∈ N \ {0, 1} : the batch size,

• P t : the partition of {1, ..., N } at time step t into subsets of size p,

• C i t : the cluster containing index i at time step t (see (1.1)),

• (Y i,δ,p t ) i∈{1,...,N } : the solution at time step t ∈ N of the numerical scheme with random batches (D-RB-IPS),

• Ȳ δ,p t : the solution at time step t ∈ N of (D-RB-NL), the nonlinear limit of (D-RB-IPS) as N → ∞,

• Xe,δ,p t , ρe,δ,p t : the effective dynamics (Eff) at time t ∈ R + and its law,

• µ σ, * for * ∈ {0, ±}, σ c : stationary distributions and critical parameter of (NL) given in Theorem 2,

• µ δ,p σ, * for * ∈ {0, ±}, σ ef f c : stationary distributions and critical parameter of (Eff) given in Theorem 3.

Understanding the problem on the Curie-Weiss model

In order to get a better grasp on the phenomenon we focus on, we begin by studying arguably one of the simplest model admitting a phase transition : the Curie-Weiss model. In Section 2.1, we show how we obtain the value of the critical parameter in the classical case. Then, in Section 2.2, we follow the same steps to compute the new critical inverse temperature in the case with random batches.

...without the Random Batch Method

In order to study this critical inverse temperature, we choose to look at the limit of the dynamics with time step 1 N as N goes to infinity. (m N (n)) n is a discrete-time Markov chain with transition operator U (N ) given by U

(N ) = U (N ) i,j 0≤i,j≤N where U (N ) i,j = r -1 + 2i N , -1 + 2j N .
We denote A N = N U (N ) -I . We have, for all continuously differentiable functions f ,

A N f (m) =N 1 -m 2 e -βN m 2 2 -( m+ 2 N ) 2 2 + f m + 2 N -f (m) + N 1 + m 2 e -βN m 2 2 -( m-2 N ) 2 2 + f m - 2 N -f (m) .
We thus get

A N f (m) =N 1 -m 2 e -2β(-m-1 N ) + f m + 2 N -f (m) + N 1 + m 2 e -2β(m+ 1 N ) + f m - 2 N -f (m) =N 1 -m 2 e -2β(-m-1 N ) + 2 N f (m) + O 1 N 2 + N 1 + m 2 e -2β(m+ 1 N ) + - 2 N f (m) + O 1 N 2 =(1 -m)e -2β(-m-1 N ) + f (m) -(1 + m)e -2β(m+ 1 N ) + f (m) + O 1 N ----→ N →∞ f (m) (1 -m)e -2β(-m) + -(1 + m)e -2βm + ,
which finally yields

A N f (m) ----→ N →∞ 2f (m)e -β|m| (sinh(mβ) -m cosh(mβ)) .
By [Kal97, Theorem 17.28], the process M

(N ) t = m N ( N t ) weakly converges to the solution of d dt m(t) = 2e -β|m(t)| (sinh(βm(t)) -m(t) cosh(βm(t))) . Denote f (β, m) = 2e -β|m| (sinh(βm) -m cosh(βm)). We have f (β, m) = 0 ⇐⇒ tanh(βm) = m.
For β > 1, the equation f (β, m) = 0 admits three solutions, and for β ≤ 1 only one. Notice that for all β > 0, f (β, 0) = 0 : 0 is thus always an equilibrium state for the magnetization. Furthermore

∀β > 0, ∀m = 0, ∂ m f (β, m) = -2βsign(m)e -β|m| (sinh(βm) -m cosh(βm)) +2e -β|m| ((β -1) cosh(βm) -βm sinh(βm)) ,
and, extending by continuity, we have ∂ m f (β, 0) = 2(β -1). Therefore, for β > 1, 0 is unstable as ∂ m f (β, 0) > 0, and for β ≤ 1 it is stable. Hence a critical inverse temperature β c = 1, above which there are two stable equilibrium states, and under which there is only one.

...with the Random Batch Method

To follow the same steps in the case with random batches, we need to compute the transition operator before finding its limit.

Transition probabilities

Let us start by giving explicit values for the transitions probabilities for the magnetization using the Random Batch Method. The proof, which relies on combinatorics arguments, is double-checked via numerical simulations in Figure 1.

Lemma 2.1. In a system of size N , the transition probabilities for the magnetization with random batches of size p are given by

r p (m, m ) =                          1-m 2 N -1 p-1 -1 p-1 k=0 ( 1-m 2 )N-1 k ( 1+m 2 )N p-1-k e -2β 2k+1-p p + if m = m + 2 N 1+m 2 N -1 p-1 -1 p-1 k=0 ( 1-m 2 )N k ( 1+m 2 )N-1 p-1-k e -2β p-1-2k p + if m = m -2 N 1 -r p m, m + 2 N -r p m, m -2 N if m = m 0 otherwise.
(2.1)

Proof. Notice that, for a given m, the number of positive spins is given by 1+m 2 N and the number of negative spins by 1-m 2 N .

Going right. Let us calculate the probability of going from m to m + 2 N . To do so, the chosen spin, denoted i, must be of value -1, and this will happen with probability 1-m 2 . Then, depending on the cluster C to which spin i belongs, switching the spin from -1 to +1 happens with probability

P(σ p i (n + 1) = 1|σ p i (n) = -1, C) = exp   -β   - 1 2p j,l∈C σ j σ l + 1 2p j,l∈C σ p j (n)σ p l (n)   +   ,
where σ denotes the configuration such that for all j = i, σ j = σ p j (n), and σ i = -σ p i (n). We have

- 1 2p j,l∈C σ j σ l + 1 2p j,l∈C σ p j (n)σ p l (n) = - 1 2p   j,l∈C,j =i,l =i σ j σ l - j,l∈C,j =i,l =i σ p j (n)σ p l (n) + 2 j∈C,j =i σ j σ i -2 j∈C,j =i σ p j (n)σ p i (n) + (σ i ) 2 -(σ p i (n)) 2   = - 1 2p   -2σ p i (n) j∈C,j =i σ p j (n) -2σ p i (n) j∈C,j =i σ p j (n)   = 2 p σ p i (n) j∈C,j =i σ p j (n).
We classify the possible clusters containing i based on the number of negative spins. The number of clusters containing i and k other negative spins is

1-m 2 N -1 k 1+m 2 N
p-1-k (choosing k spins among the 1-m 2 N -1 negative spins that are not i, then the p -1 -k spins that remain to construct cluster C among the positive spins). For k negative spins in cluster C (without counting i), we have

j∈C,j =i σ p j (n) = j∈C,j =i,σ p j (n)=1 1 - j∈C,j =i,σ p j (n)=-1 1 = p -1 -k -k,
and thus, since

σ p i (n) = -1 - 1 2p j,l∈C σ j σ l + 1 2p j,l∈C σ p j (n)σ p l (n) =2 2k + 1 -p p
The total number of possible choices for C is N -1 p-1 (choosing the (p -1) spins that are not i). Hence

r p m, m + 2 N = 1 -m 2 1 N -1 p-1 p-1 k=0 1-m 2 N -1 k 1+m 2 N p -1 -k e -2β 2k+1-p p +
Going left. Similar calculations yield the probability of going left : the probability of choosing a spin of value +1 is 1+m 2 , then we classify the possible clusters containing this spin based on the number of negative spins.

Remark 2.1. The values given in (2.1) are consistent in the case p = N . Observe for instance that the only nonzero term in the sum defining r N m, m

+ 2 N is obtained for k = 1-m 2 N -1. Thus r N m, m + 2 N = 1 -m 2 e -2β(-m-1 N ) + = r m, m + 2 N ,
where the value of r is given in (1.4).

Remark 2.2. We observe how the transition probabilities evolve with the parameter p in Figure 2. Furthermore, the values given in (2.1) allow us to define, on the state space {-1, 1 + 2 N , ..., 1 -2 N , 1}, a transition matrix for the magnetization. The latter is an irreducible and aperiodic Markov chain on a finite state space, and thus admits a unique invariant measure. We can numerically obtain it by iterating the transition matrix (see Figure 3)

Study of the critical parameter

We now wish to show how adding random batches artificially increases the temperature of the system, thus decreasing the critical temperature (or, equivalently, increasing the critical inverse temperature).

Limit ODE. Let us, like previously, find the limit as N goes to infinity of the dynamics of (m N,p (n)) n with time step 1 N . This discrete-time Markov chain admits a transition operator U (N,p) given by

U (N,p) = U (N,p) i,j 0≤i,j≤N
where

U (N,p) i,j = r p -1 + 2i N , -1 + 2j N .
We denote A (p) N = N (U (N,p) -I) and have, for all continuously differentiable functions f , 

A (p) N f (m) =N r p m, m + 2 N f (m + 2 N ) -f (m) + N r p m, m - 2 N f (m - 2 N ) -f (m)
=r p m, m + 2 N 2f (m) + O 1 N -r p m, m - 2 N 2f (m) + O 1 N .
We have, by standard computations

r p m, m + 2 N = 1 -m 2 N -1 p -1 -1 p-1 k=0 1-m 2 N -1 k 1+m 2 N p -1 -k e -2β 2k+1-p p + ----→ N →∞ 1 -m 2 p-1 k=0 p -1 k 1 -m 2 k 1 + m 2 p-1-k e -2β 2k+1-p p + ,
and likewise

r p m, m - 2 N ----→ N →∞ 1 + m 2 p-1 k=0 p -1 k 1 -m 2 k 1 + m 2 p-1-k e -2β p-1-2k p + .
Hence

A (p) N f (m) ----→ N →∞ A (p) f (m),
where

A (p) f (m) = f (m) S p,β 1 (m) -S p,β 2 (m) -mf (m) S p,β 1 (m) + S p,β 2 (m) , S p,β 1 (m) = p-1 k=0 p -1 k 1 -m 2 k 1 + m 2 p-1-k e -2β 2k+1-p p + S p,β 2 (m) = p-1 k=0 p -1 k 1 -m 2 k 1 + m 2 p-1-k e -2β p-1-2k p + .
Remark 2.3. Notice that

S p,β 1 (m) = E e -2β 2Xm,p+1-p p + , S p,β 2 (m) = E e -2β p-1-2Xm,p p +
, where X m,p is a random variable following a binomial distribution of parameters p-1 and 1-m 2 . Intuitively, for an infinite number of spins, the dynamics of the system relies on the construction of a cluster of size p (containing the chosen spin that may change), which is done by independently taking the remaining p -1 spins from an infinite pool containing a proportion 1-m 2 of negative spins.

Denoting f p (β, m) = S p,β 1 (m) -S p,β 2 (m) -m S p,β 1 (m) + S p,β 2 (m) , by [Kal97, Theorem 17.28], the process M (N,p) t = m N,p ( N t ) weakly converges to the solution of d dt m(t) = f p (β, m(t)).
The cases p = 2 and p = 3. We may directly compute

S 2,β 1 (m) = 1 + m 2 + 1 -m 2 e -β , S 2,β 2 (m) = 1 + m 2 e -β + 1 -m 2 , S 3,β 1 (m) = 1 + m 2 2 + 2 1 + m 2 1 -m 2 + 1 -m 2 2 e -4β 3 , S 3,β 2 (m) = 1 + m 2 2 e -4β 3 + 2 1 + m 2 1 -m 2 + 1 -m 2 2 , which yield f 2 (β, m) =m(1 -e -β ) -m(1 + e -β ) = -2me -β , f 3 (β, m) = 1 + m 2 2 - 1 -m 2 2 1 -e -4β 3 -m 1 + m 2 2 + 1 -m 2 2 1 + e -4β 3 + (1 + m)(1 -m) =m 1 -e -4β 3 -m (1 + m 2 ) 2 1 + e -4β 3 + 1 -m 2 = - m 2 1 + 3e -4β 3 + m 3 2 1 -e -4β 3
.

For p = 2 we thus have, f 2 (β, m) = 0 ⇐⇒ m = 0, and furthermore notice that ∂ m f 2 (β, 0) < 0, which means that 0 is the unique equilibrium state, and it is stable. For p = 3,

f 3 (β, m) = 0 ⇐⇒ m = 0 or m = ± 1 + 3e -4β 3 1 -e -4β 3 .
However, for all β > 0 we have

1+3e -4β 3 1-e -4β 3 > 1, as well as ∂ m f 3 (β, 0) = -1+3e -4β 3 2 < 0.
The point 0 is thus the unique equilibrium state, and it is stable. We may observe this phenomenon in Figure 4, in which we compare the cases p = 2 and p = 3 with p = 4.

Existence of a phase transition for p ≥ 4. First notice that

f p (β, 0) = p-1 k=0 p -1 k 1 2 p-1 e -2β 2k+1-p p + - p-1 k=0 p -1 k 1 2 p-1 e -2β p-1-2k p + =0 by change of variables k = p -1 -k.
Thus m = 0 is for all β > 0 an equilibrium state. The remaining questions, in order to prove Theorem 1, are

• is there β c,p > 0 such that for all β < β c,p we have ∂ κ f (β, 0) < 0 (in which case m = 0 is stable) and such that for all β > β c,p we have ∂ m f (β, 0) > 0 (in which case m = 0 is unstable) ?

• do we have β c,p > 1 (in which case the critical temperature has indeed decreased when compared to the case without random batches) ?

• can we give an estimate of β c,p ?

To answer the first question, we may calculate and

S p,β 1 (m) = - p-1 k=0 k 2 p -1 k 1 -m 2 k-1 1 + m 2 p-1-k e -2β 2k+1-p p + + p-1 k=0 p -1 -k 2 p -1 k 1 -m 2 k 1 + m 2 p-2-k e -2β 2k+1-p p +
S p,β 2 (m) = - p-1 k=0 k 2 p -1 k 1 -m 2 k-1 1 + m 2 p-1-k e -2β p-1-2k p + + p-1 k=0 p -1 -k 2 p -1 k 1 -m 2 k 1 + m 2 p-2-k e -2β p-1-2k p + ,
which yields

∂ m f p (β, m) = S p,β 1 (m) -S p,β 2 (m) -S p,β 1 (m) + S p,β 2 (m) -m S p,β 1 (m) + S p,β 2 (m) .
We thus have

∂ m f p (β, 0) = 2S p,β 1 (0) -2S p,β 1 (0) = 2 1 2 p-1 p-1 k=0 (p -2 -2k) p -1 k e -2β 2k+1-p p + .
First, notice

∂ β (∂ m f p (β, 0)) = -4 1 2 p-1 p-1 k=0 (p -2 -2k) 2k + 1 -p p + p -1 k e -2β 2k+1-p p + > 0.
The function β → ∂ m f p (β, 0) is therefore an increasing function, which furthermore satisfies ∂ m f p (0, 0) < 0 and lim β→∞ ∂ m f p (β, 0) > 0, hence a unique critical parameter β c,p > 0.

Remark 2.4. We use the assumption p ≥ 4 in order to prove lim β→∞ ∂ m f p (β, 0) > 0. Indeed

lim β→∞ ∂ m f p (β, 0) = 2 1 2 p-1 p-1 k=0 (p -2 -2k) p -1 k 1 k≤ p-1 2 .
If p is even, all the terms in the sum are nonnegative, and if p ≥ 4, at least one term is positive. If p is odd, one term is negative, and if p ≥ 5 it can easily be shown that it is compensated by the positive terms.

Estimation of the critical parameter. Denoting X p a random variable following a binomial distribution of parameters p -1 and 1 2 , we have

∂ m f p (β, 0) = 2E (p -2 -2X p )e -2β 2Xp+1-p p + := g p (β).
We are thus looking for the unique β c,p > 0 such that g p (β c,p ) = 0.

Let Y p = 2 Xp p -p-1 p . We have g p (β) = E 2(-pY p -1)e -2β(Yp) + . (2.2)
Since X p and p -1 -X p have the same law, Y p has the same law as 2

p-1-Xp p -p-1 p = p-1 p -2 Xp p = -Y p . Thus g p (β) = -E pY p e -2β(Yp) + -E p(-Y p )e -2β(-Yp) + -E e -2β(Yp) + -E e -2β(-Yp) + = -E pY p e -2β(Yp) + -e -2β(-Yp) +
-E e -2β(Yp) + + e -2β(-Yp) + =E 2pY p e -β|Yp| sinh(βY p ) -E 2e -β|Yp| cosh(βY p ) =2E cosh(βY p )e -β|Yp| (pY p tanh(βY p ) -1) .

As this is an increasing function in β, in order to prove that β c,p > 1, it is sufficient to prove that g p (1) < 0.

The Law of Large Number and the Central Limit Theorem yield

Y p a.s ---→ p→∞ 0 and p √ p -1 Y p law ---→ p→∞ N (0, 1).
We have

g p (β) =2E 1 + β 2 Y 2 p 2 + o(Y 2 p ) 1 -β|Y p | + β 2 Y 2 p 2 + o(Y 2 p ) × pY p βY p - β 3 Y 3 p 3 + o(Y 3 p ) -1 =2E p -1 p β p 2 p -1 Y 2 p -1 -β|Y p | p -1 p β p 2 p -1 Y 2 p -1 + O(Y 2 p ) + O(pY 4 p ) =2 β p -1 p E p 2 p -1 Y 2 p -1 - (p -1) 3/2 p 2 β 2 E p √ p -1 Y p 3 -βE p √ p -1 Y p + 1 p E O(pY 2 p ) + O(p 2 Y 4 p ) =2 β p -1 p E Z 2 -1 - (p -1) 3/2 p 2 β 2 E |Z| 3 + o (1) -β (E (|Z|) + o(1)) + O 1 p =2(β -1) - 2 √ p 2 π 2β 2 -β + o 1 √ p ,
where for this last equality, we use Lemma A.1 and the fact that, for Z ∼ N (0, 1), E|Z| = 2 π and E(|Z| 3 ) = 2 2 π . In the end, we obtain, again, the fact that g p (1) ---→ p→∞ 0 (hence the correct critical parameter at the limit) and the fact that, at least for p sufficiently large, g p (1) < 0. For smaller values of p, we rely on numerical simulations to verify g p (1) < 0 (See Figure 5). Let us find an approximation of β c,p by using the fact that g p (β c,p ) = 0. We have 

2 2 pπ β 2 c,p -1 + 2 pπ β c,p + 1 + o 1 √ p = 0, i.e β c,p,± = 1 4 pπ 2   1 + 2 pπ ± 1 + 2 pπ 2 -8 2 pπ 1 + o 1 √ p 1/2   = 1 4 pπ 2 1 + 2 pπ ± 1 + 2 pπ -6 2 pπ + o 1 p 1/2 = 1 4 pπ 2 1 + 2 pπ ± 1 + 1 pπ -3 2 pπ - 9 pπ + o 1 p ,
pπ 2 1 + 2 pπ -1 -3 2 pπ - 8 pπ + o 1 p = 1 4 pπ 2 4 2 pπ + 8 pπ + o 1 p =1 + 2 pπ + o 1 √ p .
We have thus proved Theorem 1.

3 Random Batch Method for interacting particle systems and stationary distribution(s)

We now turn our attention to the study of (D-RB-IPS) for a given batch size p ∈ N \ {0, 1}. In the specific case of U and W given in (1.8), we study the phase transition for (Eff) and prove Theorem 3. The stationary distributions of (NL), provided there exists one, are defined by the solutions of

µ σ (dx) = exp -1 σ (U (x) + W * µ σ (x)) exp -1 σ (U (y) + W * µ σ (y)) dy dx. (3.1)
We consider the case of linear interactions in a double well potential in dimension one, i.e U and W given in (1.8), which in particular implies

Σ(x, ρ) =(∇W ) 2 * ρ(x) -(∇W * ρ(x)) 2 = L 2 W y 2 ρ(dy) - yρ(dy) 2 = L 2 W Var(ρ).
Denote, for a measure µ,

κ 1 (µ) = R xµ(dx) and κ 2 (µ) = R (x -κ 1 (µ)) 2 µ(dx).
The stationary distributions of (Eff), provided there exist one, are thus similarly defined by the solutions of

µ δ,p σ (dx) = exp - 2 2σ+ δL 2 W p-1 κ 2 µ δ,p σ U (x) + L W 2 x -κ 1 µ δ,p σ 2 exp - 2 2σ+ δL 2 W p-1 κ 2 µ δ,p σ U (y) + L W 2 y -κ 1 µ δ,p σ 2 dy dx. (3.2)
The pair (κ 1 (µ δ,p σ ), κ 2 (µ δ,p σ )) is therefore a solution of

κ 1 = R x exp - 2 2σ+ δL 2 W p-1 κ 2 U (x) + L W 2 |x -κ 1 | 2 dx R exp - 2 2σ+ δL 2 W p-1 κ 2 U (x) + L W 2 |x -κ 1 | 2 dx (3.3) κ 2 = R (x -κ 1 ) 2 exp - 2 2σ+ δL 2 W p-1 κ 2 U (x) + L W 2 |x -κ 1 | 2 dx R exp - 2 2σ+ δL 2 W p-1 κ 2 U (x) + L W 2 |x -κ 1 | 2 dx . (3.4) 
Thanks to (3.2), solving for (κ 1 , κ 2 ) the system of equations (3.3)-(3.4) is equivalent to finding a stationary distribution of (Eff). Define

g(x, σ, κ) = exp - 1 σ U (x) + L W 2 |x -κ| 2 , (3.5) f 1 (σ, κ) = R xg(x, σ, κ)dx R g(x, σ, κ)dx , (3.6) f 2 (σ, κ) = R (x -κ) 2 g(x, σ, κ)dx R g(x, σ, κ)dx , (3.7) 
such that, for the symbol * ∈ {0, ±} and µ σ, * defined in Theorem 2,

κ 1 (µ σ, * ) is a solution of κ 1 (µ σ, * ) = f 1 (σ, κ 1 (µ σ, * )) and κ 2 (µ σ, * ) = f 2 (σ, κ 1 (µ σ, *
)) is the corresponding variance.

Remark 3.1 (Wellposedness). Since we are looking for stationary distributions of (Eff), we are in reality considering specific solutions with constant mean and variance. We could thus choose not to worry about wellposedness of (Eff) since we could technically forget the nonlinearity. However, for the sake of completeness, let us quickly turn our attention to the existence and uniqueness of solutions of (Eff) in the specific case of U and W given in Theorem 3, for which the process is

d Xe,δ,p t = u( Xe,δ,p t ) + f * ρ e,δ,p t ( Xe,δ,p t )dt + σ(ρ e,δ,p t )dB t , ρ e,δ,p t = Law( Xe,δ,p t ) in dimension 1, with u(x) = -x 3 + x, f (x) = -L W x, and σ(µ) = 2σ + δL 2 W p -1 Var(µ) 1/2 .
To prove existence and uniqueness, we use [CdS23, Theorem 2.5]. To do so, we notice that there is a constant C > 0 (which may change from line to line) such that

(x -y)(u(x) -u(y)) ≤ C|x -y| 2 , |u(x) -u(y)| ≤ C(1 + x 2 + y 2 )|x -y|.
Another assumption we have to verify, and which is the main technical difficulty, is the following

|σ(µ) -σ(ν)| ≤ CW 2 (µ, ν).
Since the square root function is Lipschitz continuous on [2σ, ∞[, it is sufficient to prove that there is C > 0 such that |Var(µ) -Var(ν)| ≤ CW 2 (µ, ν). Denoting X (resp. Y ) a random variable distributed according to µ (resp. ν), we have

|Var(µ) -Var(ν)| ≤ E(X 2 ) -E(Y 2 ) + E(X) 2 -E(Y ) 2 ≤ |E((X -Y )(X + Y ))| + |E(X -Y )E(X + Y )| ≤2 E((X -Y ) 2 ) E((X + Y ) 2 ),
where we use for this last line Cauchy-Schwarz inequality and Jensen's inequality. Considering (X, Y ) to be distributed according to the optimal coupling for the Wasserstein-2 distance between µ and ν, we thus have

|Var(µ) -Var(ν)| ≤ C E(X 2 ) + E(Y 2 )W 2 (µ, ν).
We thus should obtain existence and uniqueness for processes with bounded second moments.

Let us now use this idea to prove wellposedness. We consider the following process, for a given K > 0

d XK t = u( XK t ) + f * ρ K t ( XK t )dt + σK (ρ K t )dB t , ρ K t = Law( XK t ) (3.8)
where σK (µ) = 2σ +

δL 2 W p-1 x 2 dµ(x) ∧ K - xdµ(x) 2 ∧ K 1/2 . Let a, b ∈ R and c ≥ 0, we have a 2 ∧ c -b 2 ∧ c ≤ |a -b| √ a 2 ∧ c + √ b 2 ∧ c .
We obtain similarly as before, for (X, Y ) distributed according to the optimal coupling of µ and ν

E(X 2 ) ∧ K -E(X) 2 ∧ K -E(Y 2 ) ∧ K + E(Y ) 2 ∧ K ≤ E(X 2 ) ∧ K -E(Y 2 ) ∧ K + E(X) 2 ∧ K -E(Y ) 2 ∧ K ≤2 √ K E(X 2 ) -E(Y 2 ) + 2 √ K||E(X)| -|E(Y )|| .
On one hand we have by Cauchy-Schwarz inequality

E((X -Y ) 2 ) - E(X 2 ) -E(Y 2 ) 2 = 2 √ EX 2 √ EY 2 -2E(XY ) ≥ 0, which implies E(X 2 ) -E(Y 2 ) ≤ E((X -Y ) 2 ) = W 2 (µ, ν).
On the other hand

||E(X)| -|E(Y )|| ≤ |E(X) -E(Y )| ≤ E|X -Y | ≤ E((X -Y ) 2 ) = W 2 (µ, ν).
Hence, σK is Lipschitz continuous.

Thus, [CdS23, Theorem 2.5] applies and we have strong existence and uniqueness for (3.8). Furthermore, up until the stopping time

T K = inf t ≥ 0 s.t.
x 2 dρ K t (x) > K , the solution of (3.8) coincides with the solution of (Eff). Then, applying Itô's formula on the process (Eff) for the function x → x 2 , we obtain that the second moment of the solution is bounded. Hence, for K large enough depending on the initial condition, T K = ∞. We finally obtain the wellposedness of (Eff).

Our goal is to compare the stationary distribution(s) for (Eff) to the stationary distribution(s) for (NL), in particular in regards to this critical parameter σ c . To do so, we begin by showing that any stationary distribution of (NL) is a stationary distribution of (Eff), and conversely.

Lemma 3.1. Let µ be a probability measure on R.

• If µ is a solution of (3.2) for a diffusion coefficient σ , then µ is a solution of (3.1) for a diffusion coefficient σ = σ + δL 2 W 2(p-1) κ 2 (µ),
• If µ is a solution of (3.1) for a diffusion coefficient σ and δ

p-1 < 2σ L 2 W κ 2 (µ) , then µ is a solution of (3.2) for a diffusion coefficient σ = σ - δL 2 W 2(p-1) κ 2 (µ).

Proof. Let us prove the two points.

A stationary distribution of (Eff) is a stationary distribution of (NL). Assume µ satisfies (3.2) for a given (δ, p, σ ), which in particular is equivalent to the pair (κ 1 (µ), κ 2 (µ)) satisfying

κ 1 (µ) = R x exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx κ 2 (µ) = R (x -κ 1 (µ)) 2 exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx . Denoting σ = σ + δL 2 W 2(p-1) κ 2 (µ), we thus have κ 1 (µ) = R x exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx κ 2 (µ) = R (x -κ 1 (µ)) 2 exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx .
Thus, if µ is a stationary distribution for (Eff) with diffusion coefficient σ and parameters δ and p, it is also a stationary distribution for (NL) with diffusion coefficient

σ = σ + δL 2 W 2(p-1) κ 2 (µ).
A stationary distribution of (NL) is a stationary distribution of (Eff). Assume µ satisfies (3.2) for a given σ, which in particular is equivalent to the pair (κ 1 (µ), κ 2 (µ)) satisfying

κ 1 (µ) = R x exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx κ 2 (µ) = R (x -κ 1 (µ)) 2 exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp -1 σ U (x) + L W 2 |x -κ 1 (µ)| 2 dx .
Consider parameters δ and p, and denote σ = σ -

δL 2 W 2(p-1) κ 2 (µ).
Notice κ 2 (µ) is independent of δ and p thus, provided δ (p-1) is small enough, we may ensure σ > 0 and have

κ 1 (µ) = R x exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx κ 2 (µ) = R (x -κ 1 (µ)) 2 exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx R exp - 2 2σ + δL 2 W p-1 κ 2 (µ) U (x) + L W 2 |x -κ 1 (µ)| 2 dx .
Thus, given two parameters δ and p, if µ is a stationary distribution for (NL) with diffusion coefficient σ, it is also a stationary distribution for (Eff) with diffusion coefficient σ = σ -

δL 2 W 2(p-1) κ 2 (µ).
Unfortunately, this lemma does not directly imply the existence of a phase transition for (Eff). Several issues arise :

• the existence of a symmetric stationary distribution µ σ,0 for (NL) with diffusion coefficient σ > 0 only yields the existence of a symmetric stationary distribution for (Eff) for a specific diffusion coefficient

σ = σ - δL 2 W 2(p-1) κ 2 (µ).
We need to show that, for any σ > 0, there exists a symmetric stationary distribution for (Eff).

• likewise, the existence of non symmetric stationary distribution for (Eff) is only ensured for specific diffusion coefficients.

• we cannot infer the uniqueness of the symmetric stationary distribution for (Eff) from the uniqueness of the symmetric stationary distribution for (NL). Given σ > 0, there may a priori be two stationary distributions for (Eff), denoted µ 1 and µ 2 , with different variance κ 2 (µ 1 ) = κ 2 (µ 2 ), which thus correspond to two different symmetric stationary distributions for (NL) with diffusion coefficients

σ 1 = σ + δL 2 W 2(p-1) κ 2 (µ 1 ) = σ + δL 2 W 2(p-1) κ 2 (µ 2 ) = σ 2 .
We therefore dedicate the remainder of this document to the proof of Theorem 3.

Some results on the stationary distribution(s) of (NL)

The study of the critical parameter of (Eff) relies, by Lemma 3.1, on the study of the one of (NL). We gather here some results concerning the latter. They are numerically illustrated in Figure 6, and the proofs are postponed to Appendix B. Lemma 3.2. We have the following results concerning the stationary distribution(s) of (NL).

• Symmetry. We have κ 1 (µ σ,+ ) = -κ 1 (µ σ,-) and κ 2 (µ σ,+ ) = κ 2 (µ σ,-).

• Moment bound. Let the symbol * ∈ {0, ±}. Consider µ σ, * given in Theorem 2, and κ 1 (µ σ, * ) (resp.

κ 2 (µ σ, * )) the corresponding mean (resp. variance). There exists

C κ 1 , C κ 2 > 0 such that for σ ∈ [0, σ c ] we have |κ 1 (µ σ, * )| ≤ C κ 1 , and |κ 2 (µ σ, * )| ≤ C κ 2 . (3.9) 
• Critical variance. We have the equality

κ 2 (µ σc ) = σ c L W . (3.10)
Furthermore, for σ < σ c we have κ 2 (µ σ,± ) < σ L W and κ 2 (µ σ,0 ) > σ L W , and for σ > σ c we have κ 2 (µ σ,0 ) < σ L W .

• Continuity. The function σ → κ 1 (µ σ,+ ), with the convention µ σ,+ = µ σ,0 for σ ≥ σ c , is continuous on ]0, ∞[. In particular, this also yields the continuity of σ → κ 2 (µ σ,+ ) = f 2 (σ, κ 1 (µ σ,+ )).

• Lipschitz continuity. Let σ 0 > 0. The functions σ → κ 2 (µ σ,0 ) and σ → κ 2 (µ σ,± ) are Lipschitz continuous, respectively on [σ 0 , ∞[ and on [σ 0 , σ c ]. More precisely, there exists C > 0 such that for respectively σ > σ 0 and σ ∈]σ 0 , σ c [ we have d dσ κ 2 (µ σ, * ) ≤ C.

Remark 3.2. The bound (3.9), combined with the knowledge of the fact that for σ ≥ σ c there only exists a symmetric stationary distribution for (NL) as well as Lemma 3.1, shows that we can restrict our study of the stationary distribution for both (NL) and (Eff) to a compact set of means

κ 1 ∈ [-C κ 1 , C κ 1 ].
Remark 3.3. The main technical difficulty lies in the proof of the Lipschitz continuity of σ → κ 2 (µ σ,0 ) and σ → κ 2 (µ σ,± ), since it turns out that the mean σ → κ 1 (µ σ,± ) is not Lipschitz continuous near the critical parameter σ c (See Figure 6). It therefore requires a careful estimation of the mean and variance around σ c , and the proof is a section of its own (See Appendix B.2).

Phase transition for the effective dynamics

Let σ 0 > 0 and define, for * ∈ {0, ±}, the function g ef f, * : σ → σ -δL 2 W 2(p-1) κ 2 (µ σ, * ). From Lemma 3.1, if µ σ, * is a stationary distribution for (NL), then it is a stationary distribution for (Eff) with diffusion coefficient σ = g ef f, * (σ).

By Lemma 3.2, σ → κ 2 (µ σ,0 ) is a Lipschitz continuous function on [σ 0 , ∞[ and σ → κ 2 (µ σ,± ) is a Lipschitz continuous function on [σ 0 , σ c ], and, more precisely, in both cases we obtain that d dσ κ 2 (µ σ, * ) is bounded by some constant C > 0.

In this case, the function σ → g ef f, * (σ) is such that

g ef f, * (σ) = 1 - δL 2 W 2(p-1) d dσ κ 2 (µ σ, * ) and thus g ef f, * (σ) ∈ 1 - δL 2 W 2(p-1) C, 1 + δL 2 W 2(p-1) C .
In particular, for δ p-1 sufficiently small, g ef f, * (σ) is both an increasing continuous function and positive.

Thus, g ef f,0 and g ef f,± are two injective functions. In particular,

g ef f,± is a bijection from [σ 0 , σ c ] to [g ef f,± (σ 0 ), g ef f,± (σ c )]. Finally, notice that g ef f,± (σ c ) = g ef f,0 (σ c ) = σ c 1 -δL W 2(p-1)
, that g ef f, * (σ 0 ) ≤ σ 0 , and that, up to the additional assumption 2(σc-σ 0 ) σcL W > δ p-1 , we may assume g ef f, * (σ c ) > σ 0 .

We may now state the following facts concerning the stationary distribution(s) for (Eff).

• There exists at least one symmetric stationary distribution. Since g ef f,0 ≥ 1 -

δL 2 W 2(p-1) C, g ef f,0 is an increasing function such that g ef f,0 (x) ---→ x→∞ ∞. Thus, g ef f,0 is a bijection from [σ 0 , ∞[ to [g ef f,0 (σ 0 ), ∞[. Therefore, for all σ ∈ [g ef f,0 (σ 0 ), ∞[,
there exists σ such that g ef f,0 (σ) = σ. In other words, µ σ,0 is also a symmetric stationary distribution for (Eff) with diffusion coefficient σ.

• There exists at most one symmetric stationary distribution. Let σ ≥ σ 0 and κ 1 = 0, and assume there are two symmetric stationary distributions of (Eff) with diffusion coefficient σ. This yields two coefficients σ , σ ≥ σ > 0 such that

σ =σ + δL 2 W 2(p -1) κ 2 µ δ,p σ,1 σ =σ + δL 2 W 2(p -1) κ 2 µ δ,p σ,2 ,
where µ δ,p σ,1 and µ δ,p σ,2 denote the two stationary distributions. We consider µ σ (= µ δ,p σ,1 ) and µ σ (= µ δ,p σ,2 ) the corresponding (unique) symmetric stationary distributions of (NL). Because σ and σ are greater than σ 0 , there exists a constant K, possibly depending on σ 0 and L W , such that by Lemma 3.2

|κ 2 (µ σ ) -κ 2 (µ σ )| = f 2 (σ , 0) -f 2 (σ , 0) ≤ K|σ -σ | i.e. |κ 2 (µ σ ) -κ 2 (µ σ )| ≤ KδL 2 W 2(p -1) κ 2 µ δ,p σ,2 -κ 2 µ δ,p σ,1 . (3.11)
Because the stationary distributions of (Eff) are uniquely defined by their mean and variance,

κ 2 (µ σ ) = κ 2 µ δ,p σ,2 and κ 2 (µ σ ) = κ 2 µ δ,p σ,1 ,
and we obtain from (3.11) that, for δ p-1 sufficiently small, κ 2 µ δ,p σ,1

= κ 2 µ δ,p σ,2 and thus that µ δ,p σ,1 = µ δ,p σ,2 .

• For σ ∈ [g ef f,± (σ 0 ), g ef f,± (σ c )[, there exists at least two stationary distributions with nonzero mean. Because g ef f,± is a bijection, consider g -1 ef f,± (σ) ∈ [σ 0 , σ c [. There are three stationary distribution for (NL) with diffusion coefficient g -1 ef f,± (σ). By Lemma 3.1, µ g -1 ef f,± (σ),+ and µ g -1 ef f,± (σ),-are also stationary distributions for (Eff) with diffusion coefficient σ, and they have nonzero mean.

• For σ ∈ [g ef f,± (σ 0 ), g ef f,± (σ c )[, there exists at most two stationary distributions with nonzero mean. By symmetry, it is sufficient to prove that there is at most one stationary distribution with positive mean. Assume there are two such solutions µ δ,p σ,+,1 and µ δ,p σ,+,2 .

Let, for i ∈ {1, 2}, σ i = σ + δL 2 W 2(p-1) κ 2 (µ δ,p σ,+,i ). Then, µ δ,p σ,+,i is a stationary distribution with a positive mean for (NL) with diffusion coefficient σ i , i.e µ δ,p σ,+,i = µ σ i ,+ .

Thus

σ = σ i - δL 2 W 2(p-1) κ 2 (µ δ,p σ,+,i ) = σ i - δL 2 W 2(p-1) κ 2 (µ σ i ,+ ) = g ef f,+ (σ i ).
Since g ef f,+ is an injective function, we obtain that σ 1 = σ 2 . In particular, µ δ,p σ,+,1 and µ δ,p σ,+,2 are two stationary distribution with a positive mean for (NL) with diffusion coefficient σ 1 = σ 2 , thus by uniqueness µ δ,p σ,+,1 = µ δ,p σ,+,2 .

• For σ ≥ g ef f,+ (σ c ), there does not exists stationary distribution with nonzero mean. The result is direct if σ ≥ σ c , because if µ is a stationary measure for (Eff) with diffusion coefficient σ, it is is a stationary measure for (NL) with diffusion coefficient σ

+ δL 2 W 2(p-1) κ 2 (µ) ≥ σ > σ c , hence it cannot have a nonzero mean.
Assume σ c > σ ≥ g ef f,+ (σ c ) > σ 0 and that there exists such a solution µ δ,p σ,+ . Consider

σ = σ + δL 2 W 2(p -1) κ 2 (µ δ,p σ,+ ), (3.12) 
such that µ δ,p σ,+ = µ σ ,+ is a stationary distribution with positive mean for (NL). We thus necessarily have σ < σ c . Let

σ = g ef f,+ (σ ) = σ - δL 2 W 2(p -1) κ 2 (µ σ ,+ ). (3.13)
We obtain µ δ,p σ,+ = µ σ ,+ = µ δ,p σ,+ . Since g ef f,+ is increasing we have g ef f,+ (σ c ) > g ef f,+ (σ ) = σ, we obtain from (3.13)

g ef f,+ (σ c ) >σ - δL 2 W 2(p -1) κ 2 (µ σ ,+ ) = σ - δL 2 W 2(p -1) κ 2 (µ δ,p σ,+ ), i.e κ 2 (µ δ,p σ,+ ) > 2(p -1) δL 2 W σ -g ef f,+ (σ c ) .
Plugging that back into (3.12), we obtain

σ > σ + σ -g ef f,+ (σ c ), i.e σ < g ef f,+ (σ c ),
which contradicts the initial assumption.

This concludes the proof of Theorem 3.

A Technical lemmas

We start with this slight extension of the central limit theorem:

Lemma A.1. Let (X i ) i≥1 be a sequence of i.i.d random variables in R such that EX 1 = 0 and E(|X

1 | 2 ) = 1. Assume also that E(|X 1 | 4 ) < ∞. Denote Z p = 1 √ p p i=1 X i .
Then, we have for Z ∼ N (0, 1)

E |Z p | 2 = E |Z| 2 , and E |Z p | 4 = E |Z| 4 + O 1 p .
This in particular also yields

E (|Z p |) ---→ p→∞ E (|Z|) and E |Z p | 3 ---→ p→∞ E |Z| 3 Proof. Direct computations give E |Z p | 2 = E |Z| 2 .
Likewise, we may explicitly compute E|Z p | 4 . Keeping only the terms with nonzero expectation, we have

E|Z p | 4 = 1 p 2 p i=1 E|X i | 4 + 6 p 2 i>j E|X i | 2 E|X j | 2 = E|X 1 | 4 p + 6 p 2 p(p -1) 2 .
Noticing that E|Z| 4 = 3 yields the convergence E |Z p | 4 = E |Z| 4 + O 1 p . Thus, we have both

• Z p converges in law to Z ∼ N (0, 1),

• and the convergence of the fourth moment

E |Z p | 4 ---→ p→∞ E |Z| 4 .
By [Vil09, Theorem 6.9], we have the convergence in L 4 Wasserstein distance of the law of Z p to a law N (0, 1). This implies the convergence in both L 1 Wasserstein distance and L 3 Wasserstein distance, thus the convergence of the first and third moments of Z p .

Lemma A.2. The function σ ∈]0, ∞[ → ∂ 3 κ f 1 (σ, 0) (with f 1 given by (3.6)) is continuous and satisfies ∀σ > 0, ∂ 3 κ f 1 (σ, 0) < 0.

Proof. We have

∂ 3 κ f 1 (σ, 0) = L W σ 3 R x 4 g R g -3 R x 2 g R g 2 ,
with g given by (3.5). We wish to prove

A(σ, L W ) := R x 4 g R g R x 2 g 2 < 3.
Remark that A(σ, L W ) is by definition the kurtosis of a random variable with probability density g g . Let us rewrite, for α > 0

U (x) + L W 2 x 2 = x 4 4 + L W -1 2 x 2 = x 4 4 + L W -1 -α 2 x 2 + L W -1 -α 2 2 + α 2 x 2 - L W -1 -α 2 2 = 1 4 x 2 + L W -1 -α 2 + α 2 x 2 - L W -1 -α 2 2 , such that g(x, σ, 0) = exp - 1 4σ x 2 + L W -1 -α 2 exp 1 σ L W -1 -α 2 2 e -α 2σ x 2 .
This way we can write

A(σ, L W ) = E exp -1 4σ Y 2 + L W -1 -α 2 E Y 4 exp -1 4σ Y 2 + L W -1 -α 2 E Y 2 exp -1 4σ (Y 2 + L W -1 -α) 2 2 , with Y ∼ N 0, σ α , = E exp -1 4σ σ α X 2 + L W -1 -α 2 E X 4 exp -1 4σ σ α X 2 + L W -1 -α 2 E X 2 exp -1 4σ σ α X 2 + L W -1 -α 2 2
, with X ∼ N (0, 1) .

We have

- 1 4σ σ α X 2 + L W -1 -α 2 = - 1 4σ σ α 2 X 2 + α (L W -1 -α) σ 2 . We thus choose α = 1 2 L W -1 + (L W -1) 2 + 4σ > 0 in order to ensure α(L W -1-α) σ = -1. Finally, denoting β(σ, L W ) =   L W -1 √ σ + L W -1 √ σ 2 + 4   -2 > 0 ,
we have

A(σ, L W ) = E exp -β(σ, L W ) X 2 -1 2 E X 4 exp -β(σ, L W ) X 2 -1 2 E X 2 exp -β(σ, L W ) (X 2 -1) 2 2 , X ∼ N (0, 1) :=A(β(σ, L W )). (A.1)
The quantity A given above can be expressed as a function of β(σ, L W ) ∈]0, ∞[, that we denote A(β). We may then numerically check that A(β) < 3 for all β > 0. (see Figure 7). Notice that the function β(σ, L W ), which is in reality a function of the quantity

L W -1 √ σ , is a bijection from L W -1 √ σ ∈ R to ]0, ∞[, which satisfies β(σ, L W ) -------→ L W -1 √ σ →∞ 0.
And, for β(σ, L W ) = 0, direct calculations knowing the moments of the Gaussian law yield A(0) = 3 and A (0) = -24 < 0.

Lemma A.3. Consider the function F 1 : σ → ∂ κ f 1 (σ, 0). It is continuously differentiable and, for σ > 0, satisfies F 1 (σ) < 0. Proof. We have

F 1 (σ) = L W σ x 2 exp -x 4 4σ + 1-L W 2σ x 2 dx exp -x 4 4σ + 1-L W 2σ x 2 dx .
Consider the change of variable y = x √ σ . We have

F 1 (σ) = L W σ σy 2 exp -σ 2 y 4 4σ + 1-L W 2σ σy 2 dy exp -σ 2 y 4 4σ + 1-L W 2σ σy 2 dy =L W y 2 exp -σ 4 y 4 + 1-L W 2 y 2 dy exp -σ 4 y 4 + 1-L W 2 y 2 dy
, which then yields

F 1 (σ) = L W 4 -E Y 6 + E Y 2 E Y 4 ,
where Y is a random variable with probability density (up to renormalization) exp -σ 4 y 4 + 1-L W 2 y 2 dy. By Jensen inequality (in a strictly convex case with a non almost surely constant random variable), we have F 1 (σ) < 0.

B Proofs of Lemma 3.2

In this section we prove the various results of Lemma 3.2.

B.1 Moment bounds, critical variance and continuity

To prove the first properties stated in Lemma 3.2, we recall the following result, extracted from Theorem 2.1 of [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in double-wells landscape[END_REF] and its proof.

Lemma B.1. The equation (with unknown σ)

R + x 2 - 1 2L W exp (1 -L W )x 2 -σx 4 dx = 0, (B.1)
admits a unique solution, that is the critical value σ c . Finally, consider the function

ξ(σ, κ) = R (x -κ) exp - 1 σ U (x) + L W 2 x 2 -L W xκ dx. (B.2)
We have the following properties on ξ :

• The function σ → ∂ κ ξ(σ, 0) is decreasing : for σ < σ c we have ∂ κ ξ(σ, 0) > 0, for σ > σ c we have ∂ κ ξ(σ, 0) < 0, and finally ∂ κ ξ(σ c , 0) = 0.

• For σ ≥ σ c and κ ≥ 0, the function κ → ξ(σ, κ) is decreasing (which, in fact, ensures uniqueness of the stationary solution for (NL)).

• For σ < σ c and κ ≥ 0, the function κ → ξ(σ, κ) is increasing and then decreasing (which,in fact, ensures the thirdness of the stationary solution for (NL)).

Moment bound : Consider ( Xt ) t the solution of (NL). Itô's formula yields

dU ( Xt ) = A t dt + dM t ,
where M t is a continuous local martingale and

A t = -U Xt 2 -L W Xt -E Xt U Xt + σU Xt .
There exists λ > 0 and C > 0, both independent of σ ∈ [0, σ c ], such that for all x ∈ R σU

(x) + 2λU (x) ≤ U (x) 2 2 + C, and 
2L 2 W x 2 ≤ λU (x) + C. Consider for instance λ = 1 and C = max 2σ + (2σ) 3/2 -1 2 , (1+4L 2 W ) 2 4 for U (x) = x 4 4 -x 2 2 . Thus A t ≤ C -λU Xt + L 2 W X2 t + E Xt 2 -λU Xt ,
and, using Fatou's lemma to deal with the local martingale, finally we obtain thanks to Gronwall's lemma

EU Xt ≤ e -λt EU X0 + 2C λ . Since E Xt 2 ≤ E X2 t ≤ 1 2L 2 W
λEU Xt + C , and considering X0 distributed according to a stationary distribution, we may conclude.

B.2 On the variance of the stationary distribution(s) of (NL) Let σ 0 > 0, and let us show that the functions σ → κ 2 (µ σ,0 ) and σ → κ 2 (µ σ,± ) are Lipschitz continuous. This is useful, as can be seen in Section 3.2, in proving that there exists a phase transition for the effective dynamics (Eff).

Throughout this section, the constant C holds no importance and may change from one line to the next.

We start by showing that σ

→ κ 2 (µ σ,0 ) is Lipschitz continuous. Lemma B.2. Let σ 0 > 0 and κ 1 ∈ [-C κ 1 , C κ 1 ] (where C κ 1 is given in (3.9)). The function σ → f 2 (σ, κ 1 ) is Lipschitz continuous on [σ 0 , ∞[ uniformly in κ 1 ∈ [-C κ 1 , C κ 1 ].
Applying this lemma for κ 1 = 0 yields the desired Lipschitz continuity for κ 2 (µ σ,0 ).

Proof of Lemma B.2. Recall g defined in (3.5). and consider C =

1+2L W κ 2 1 4
, a constant such that, for U given by (1.8), we ensure U

(x) + L W 2 x 2 -L W xκ 1 + C ≥ 0. We have f 2 (σ, κ 1 ) = R (x -κ 1 ) 2 g(x, σ, κ 1 )e -C σ dx R g(x, σ, κ 1 )e -C σ dx
, and thus

|∂ σ f 2 (σ, κ 1 )| = 1 σ 2 R (x -κ 1 ) 2 U (x) + L W 2 x 2 -L W xκ 1 + C g(x, σ, κ 1 )dx R g(x, σ, κ 1 )dx R g(x, σ, κ 1 )dx 2 - R (x -κ 1 ) 2 g(x, σ, κ 1 )dx R U (x) + L W 2 x 2 -L W xκ 1 + C g(x, σ, κ 1 )dx R g(x, σ, κ 1 )dx 2 ≤ 1 σ 2 R (x -κ 1 ) 2 U (x) + L W 2 x 2 -L W xκ 1 + C g(x, σ, κ 1 )dx R g(x, σ, κ 1 )dx (B.3) + 1 σ 2 R (x -κ 1 ) 2 g(x, σ, κ 1 )dx R g(x, σ, κ 1 )dx R U (x) + L W 2 x 2 -L W xκ 1 + C g(x, σ, κ 1 )dx R g(x, σ, κ 1 )dx . (B.4) First R g(x, σ, κ 1 )dx -1 ≤ R exp - 1 σ 0 U (x) + L W 2 x 2 -L W xκ 1 + C dx -1
.

Then, for all x ∈ R and all α ≥ 0, we have

U (x) + L W 2 x 2 -L W xκ 1 + C = x 4 4 - x 2 2 + 1 4 + L W 2 |x -κ 1 | 2 ≥ αx 2 -β α , with 
β α = (2α + 1) 2 4 - 1 4 = α 2 + α.
Thus, for all integers k ≥ 0, we have

R x 2k exp - 1 σ U (x) + L W 2 x 2 -L W xκ 1 + C dx ≤e α 2 +α σ R x 2k exp - αx 2 σ dx =e α 2 +α σ √ 2π (2k)! 2 k k! σ 2α k+ 1 2 . Choosing α = √ σ 2 , we obtain R x 2k exp - 1 σ U (x) + L W 2 x 2 -L W xκ 1 + C dx ≤e 1 4 + 1 2 √ σ √ 2π (2k)! 2 k k! σ k 2 + 1 4 .
Hence there exists C, independent of σ, such that for k ≤ 7 2 , 1 σ 2 R x 2k g(σ, x)dx ≤ C (which allows us to deal with (B.3)) and for k ≤ 2, 1 σ 5/4 R x 2k g(σ, x)dx ≤ C and for k ≤ 1, 1 σ 3/4 R x 2k g(σ, x)dx ≤ C (both allow us to deal with (B.4)). Thus, for σ ≥ σ 0 , |∂ σ f 2 (σ, κ 1 )| is bounded uniformly in κ 1 , which yields the result.

We now show that

σ → κ 2 (µ σ,+ ) is Lipschitz continuous. Let σ c > σ 0 > 0. We have already proved, in Lemma B.2, that σ → f 2 (σ, κ 1 ) is Lipschitz continuous uniformly in κ 1 ∈ [-C κ 1 , C κ 1 ].
However, the difficulty lies in the fact that, for κ 2 (µ σ,+ ) given by κ 2 (µ σ,+ ) = f 2 (σ, κ 1 (µ σ,+ )), the mean σ → κ 1 (µ σ,+ ) is not Lipschitz continuous around σ c . We will work our way around this fact (and, doing so, also prove it) in the rest of the subsection, but in the meantime this can be numerically observed in Figure 6.

Let us compute the various derivatives of f 1 and f 2 given in (3.6) and (3.7).

∂ σ g(x, σ, κ) = U (x) + L W 2 |x -κ| 2 σ 2 g(x, σ, κ), ∂ κ g(x, σ, κ) = L W σ (x -κ)g(x, σ, κ), ∂ σ f 1 (σ, κ) = 1 R g 2 R g R x∂ σ g - R ∂ σ g R xg = 1 σ 2   R x U (x) + L W 2 |x -κ| 2 g R g - R U (x) + L W 2 |x -κ| 2 g R g R xg R g   , ∂ κ f 1 (σ, κ) = 1 R g 2 R g R x∂ κ g - R ∂ κ g R xg = L W σ R x(x -κ)g R g -R (x -κ)g R g R xg R g = L W σ R x 2 g R g - R xg R g 2 , ∂ σ f 2 (σ, κ) = 1 R g 2 R g R (x -κ) 2 ∂ σ g - R ∂ σ g R (x -κ) 2 g = 1 σ 2   R (x -κ) 2 U (x) + L W 2 |x -κ| 2 g R g - R U (x) + L W 2 |x -κ| 2 g R g R (x -κ) 2 g R g   , ∂ κ f 2 (σ, κ) = 1 R g 2 2 R (κ -x)g + R (x -κ) 2 ∂ κ g R g - R ∂ κ g R (x -κ) 2 g = 2 R (κ -x)g R g + L W σ R (x -κ) 3 g R g -R (x -κ) 2 g R g R (x -κ)g R g .
In particular, notice that ). By the result on the critical variance in Lemma 3.2 and by continuity, there may be a problem in the limit σ → σ - c , but we wan already say that σ → κ 2 (µ σ,+ ) is Lipschitz continuous on any interval of the form [σ 1 , σ 2 ] with 0 < σ 1 < σ 2 < σ c . The following lemma gives a more precise speed of convergence of the mean to 0 around the critical parameter. Proof. We restrict the study to σ ∈ [σ 0 , σ c [ for some arbitrary σ 0 > 0. We compute

∂ κ f 1 (σ, κ) = L W σ R x 2 g R g - R xg R g 2 , ∂ 2 κ f 1 (σ, κ) = L W σ 2 R x 3 g R g -3 R x 2 g R g R xg R g + 2 R xg R g 3 , ∂ 3 κ f 1 (σ, κ) = L W σ 3 R x 4 g R g -4 R x 3 g R g R xg R g +12 R x 2 g R g R xg R g 2 -6 R xg R g 4 -3 R x 2 g R g 2 .
In particular

f 1 (σ, 0) =0, ∂ κ f 1 (σ, 0) = L W σ R x 2 g R g > 0,
∂ 2 κ f 1 (σ, 0) =0, and, by Lemma A.2

∂ 3 κ f 1 (σ, 0) = L W σ 3 R x 4 g R g -3 R x 2 g R g 2 σ→σ - c ----→ ∂ 3 κ f 1 (σ c , 0) < 0. (B.8)
Let us start by proving that there exists C > 0 such that, in the limit σ → σ c (or equivalently κ 1 (µ σ,+ ) → 0), we have σ c -σ κ 1 (µ σ,+ ) 2 < C + o(1).

(B.9)

We compute

∂ κ f 1 (σ, κ) = ∂ κ f 1 (σ, 0) + κ∂ 2 κ f 1 (σ, 0) + κ 2 2 ∂ 3 κ f 1 (σ, 0) + o(κ 2 ).
By Lemma A.3, there exists C > 0 such that

∂ κ f 1 (σ, 0) ≥ ∂ κ f 1 (σ c , 0) + C(σ c -σ) = 1 + C(σ c -σ).
Since ∂ κ f 1 (σ c , 0) = ∂ κ f 1 (σ c , κ 1 (µ σc )) = L W σc κ 2 (µ σc ) = 1 by (3.10) This gives (B.9) and this in turns allows us to state that σ c -σ = O(κ 1 (µ σ,+ ) 2 ).

∂ κ f 1 (σ, κ) ≥ 1 + C(σ c -σ) + κ 2 2 ∂ 3 κ f 1 (σ c ,
We then have

f 1 (σ, κ) =f 1 (σ, 0) + κ∂ κ f 1 (σ, 0) + κ 2 2 ∂ 2 κ f 1 (σ, 0) + κ 3 6 ∂ 3 κ f 1 (σ, 0) + o(κ 3 ) =κ∂ κ f 1 (σ, 0) + κ 3 6 ∂ 3 κ f 1 (σ, 0) + o(κ 3 ).
Furthermore, defining F 1 as in Lemma A.3, we obtain Since κ 1 (µ σ,+ ) = f 1 (σ, κ 1 (µ σ,+ )), we thus get in the limit σ → σ - Proof. Let us write for all (σ, κ)

∈ [σ 0 , σ c ] × [-C κ 1 , C κ 1 ] ∂ κ f 1 (σ, κ) =∂ κ f 1 (σ, 0) + κ∂ 2 κ f 1 (σ, 0) + κ 2 2 ∂ 3 κ f 1 (σ, 0) + o(κ 3 ) = F 1 (σ c ) -(σ c -σ)F 1 (σ c ) + o(σ c -σ) + κ 2 2 ∂ 3 κ f 1 (σ c , 0) + O(σ c -σ) + o(κ 3 ),
where we used the notation F 1 from Lemma A.3, the fact that ∂ 2 κ f 1 (σ, 0) = 0, and where all notation o(•) and O(•) are uniform in (σ, κ) ∈ [σ 0 , σ c ] × [-C κ 1 , C κ 1 ] by continuity. Since F 1 (σ c ) = 1, we obtain

1 -∂ κ f 1 (σ, κ) = (σ c -σ)F 1 (σ c ) - κ 2 2 ∂ 3 κ f 1 (σ c , 0) + o(σ c -σ) + o(κ 3 ) + κ 2 O(σ c -σ).
Applying this for κ = κ 1 (µ σ,+ ), and using (B.11) and Lemma B. By continuity (recall that 1 -∂ κ f 1 (σ, κ 1 (µ σ,+ )) = 1 -L W σ κ 2 (µ σ,+ ) > 0 for σ < σ c ) , this proves that σ → κ 2 (µ σ,+ ) is Lipschitz on [σ 0 , σ c ].

Figure 1 :

 1 Figure 1: Comparison of theoretical and empirical transition probabilities, for N = 100. The theoretical values are those given in Lemma 2.1. To numerically compute the empirical transition probabilities, for each initial magnetization in {-1, -1 + 2 N , ..., 1 -2 N , 1}, 10 processes are simulated during 1000 timesteps, and we consider the proportion of times the processes go left or right. Top : without random batches. Bottom : with random batches of size p = 10. Left : for β = 0.5. Right : for β = 2.

Figure 2 :

 2 Figure 2: Comparison of transition probabilities depending on batch size, for N = 100. The values given are from Lemma 2.1. Top : probability of going left. Bottom : probability of going right. Left : for β = 0.5. Right : for β = 2.

Figure 3 :

 3 Figure 3: Numerical observation of the invariant distribution for the Curie-Weiss model with N spins. Starting from the uniform distribution for the magnetization, we iterate the transition matrix (given by Lemma 2.1) until the L 1 distance between two consecutive iterations is less than a threshold N , with N = 1000, = 10 -9 and various values for β. We indicate the number of iterations (or steps) needed before convergence. Top left : with no random batches. Top right : with p = 50. Bottom left : with p = 25. Bottom right : with p = 10.

Figure 4 :

 4 Figure 4: Numerical observation of the invariant distribution for the Curie-Weiss model with N spins in the cases p = 2 (Top right), p = 3 (Top left) and p = 4 (Bottom left). Starting from the uniform distribution for the magnetization, we iterate the transition matrix (given in Lemma 2.1) until the L 1 distance between two consecutive iterations is less than a threshold N , with N = 1000, = 10 -9 and various values for β.

Figure 5 :

 5 Figure 5: Numerical values for g p (1) and g p βc , with βc = 1 +

Figure 6 :

 6 Figure 6: Left : The means of µ σ,± as a function of σ for different values of L W , as given in Theorem 2. Right : The variances of µ σ,± as a function of σ for different values of L W . In dotted line the variance of µ σ,0 , and in solid line the variance of µ σ,± .

Figure 7 :

 7 Figure 7: Numerical simulation of the quantity given in (A.1).

∂ κ f 1

 1 (σ, κ 1 (µ σ, * )) = L W σ κ 2 (µ σ, * ) and ∂ κ f 2 (σ, κ 1 (µ σ, * )) = L W σ R (x -κ 1 (µ σ, * )) µ σ, * ) =∂ σ f 1 (σ, κ 1 (µ σ, * )) + ∂ κ f 1 (σ, κ 1 (µ σ, * )) d dσ κ 1 (µ σ, * ), d dσ κ 2 (µ σ, * ) =∂ σ f 2 (σ, κ 1 (µ σ, * )) + ∂ κ f 2 (σ, κ 1 (µ σ, * )) d dσ κ 1 (µ σ, * ).Thusd dσ κ 1 (µ σ, * ) = ∂ σ f 1 (σ, κ 1 (µ σ, * )) 1 -∂ κ f 1 (σ, κ 1 (µ σ, * )) = ∂ σ f 1 (σ, κ 1 (µ σ, * )) 1 -L W σ κ 2 (µ σ, * ) . (B.6)By the results on the critical variance in Lemma 3.2,κ 1 (µ σ, * ) is continuously differentiable on ]σ 0 , σ c [. Likewise d dσ κ 2 (µ σ, * ) 1 -L W σ κ 2 (µ σ, * ) = 1 -L W σ κ 2 (µ σ, * ) ∂ σ f 2 (σ, κ 1 (µ σ, * )) + ∂ κ f 2 (σ, κ 1 (µ σ, * ))∂ σ f 1 (σ, κ 1 (µ σ, * )). (B.7)The fact that 1 -L W σ κ 2 (µ σ, * ) goes to 0 as σ → σ c is what prevents us from giving an upper bound on d dσ κ 1 (µ σ, *

Lemma B. 3 .

 3 There exists C > 0 such thatκ 1 (µ σ,+ ) √ σ c -σ ----→ σ→σ - c C.

  0) + o σ→σc (1) + o(κ 2 ), where the o(κ 2 ) is uniform in σ ∈ [σ 0 , σ c ]. Considering κ = κ 1 (µ σ,+), which goes to 0 as σ → σ c , in the equation above yieldsL W σ κ 2 (µ σ,+ ) ≥ 1 + C(σ c -σ) + κ 1 (µ σ,+ ) 2 2 ∂ 3 κ f 1 (σ c , 0) + o σ→σc (1) + o(κ 1 (µ σ,+ ) 2 ).By the results of Lemma 3.2 concerning the critical variance, L W σ κ 2 (µ σ,+ ) ≤ 1, which gives0 ≥ C(σ c -σ) κ 1 (µ σ,+ ) 2 + ∂ 3 κ f 1 (σ c , 0) 2 + o σ→σc (1).

∂ κ f 1

 1 (σ, 0) = F 1 (σ) =F 1 (σ c ) -(σ c -σ)F 1 (σ c ) + o(σ c -σ) =1 -(σ c -σ)F 1 (σ c ) + o(σ c -σ), which then yields f 1 (σ, κ) =κ 1 -(σ c -σ)F 1 (σ c ) + o(σ c -σ) + κ 3 6 ∂ 3 κ f 1 (σ c , 0) + o(1) + o(κ 3 ).

c 0 =

 0 -κ 1 (µ σ,+ )(σ c -σ)F 1 (σ c ) + κ 1 (µ σ, * ) 3 6 ∂ 3 κ f 1 (σ c , 0) (B.10) + o(κ 1 (µ σ,+ ) 3 ) + κ 1 (µ σ,+ )o(σ c -σ) 0 = -(σ c -σ)F 1 (σ c ) + κ 1 (µ σ,+ ) 2 6 ∂ 3 κ f 1 (σ c , 0) + o(κ 1 (µ σ,+ ) 2 ). (B.11)Thus, thanks to (B.8) and Lemma A.3, there exists C > 0 such thatσ c -σ κ 1 (µ σ,+ ) 2 σ→σ - c ----→ C, which yields the final result. Lemma B.4. Let σ 0 ∈]0, σ c [. Then σ → κ 2 (µ σ,+ ) is Lispchitz continuous on [σ 0 , σ c ].

  3, we obtain1 -∂ κ f 1 (σ, κ 1 (µ σ,+ )) = κ 1 (µ σ,+ ) 2 6 ∂ 3 κ f 1 (σ c , 0) -κ 1 (µ σ,+ ) 2 2 ∂ 3 κ f 1 (σ c , 0) + o(κ 1 (µ σ,+ ) 2 ) = -κ 1 (µ σ,+ ) 2 3 ∂ 3 κ f 1 (σ c , 0) + o(κ 1 (µ σ,+ ) 2 ).Hence, using (B.6), for all σ ∈ [σ 0 , σ c [d dσ κ 1 (µ σ,+ ) = |∂ σ f 1 (σ, κ 1 (µ σ,+ ))| |1 -∂ κ f 1 (σ, κ 1 (µ σ,+ ))| Cκ 1 (µ σ,+ ) κ 1 (µ σ,+ ) 2 + o(κ 1 (µ σ,+ ) 2 ) 1 κ 1 (µ σ,+ ) + o(κ 1 (µ σ,+ )),where we used that ∂ σ f 1 (σ, 0) = 0 and that∂ κ ∂ σ f 1 is bounded over [σ 0 , σ c ] × [-C κ 1 , C κ 1 ]to bound the numerator, and Lemma A.2 for the denominator. Besides, since ∂ κ f 2 (σ, 0) = 0 (by (B.5) and symmetry),|∂ κ f 2 (σ, κ 1 (µ σ,+ )| = |∂ κ f 2 (σ, κ 1 (µ σ,+ )) -∂ κ f 2 (σ, 0)| |κ 1 (µ σ,+ )|+o(κ 1 (µ σ,+ ))and thus we bound for all σ ∈ [σ 0 , σ c [d dσ κ 2 (µ σ,+ ) ≤ |∂ σ f 2 (σ, κ 1 (µ σ,+ ))| + d dσ κ 1 (µ σ,+ ) |∂ κ f 2 (σ, κ 1 (µ σ,+ ))| +o(κ 1 (µ σ,+ )) 1 + |∂ κ f 2 (σ, κ 1 (µ σ,+ )| κ 1 (µ σ,+ ) +o(1)1+o(1).
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Value of κ 2 (µ σc ) : We rewrite Equation (B.1) defining σ c , first by using the symmetry in x to obtain

and then, by a change of variable x = y √ 2σ , this is equivalent to

Finally, this amounts to having

, which, since κ 1 (µ σc ) = 0, yields the value of κ 2 (µ σc ).

Consider then the function ξ given (B.2). We have ξ(σ, κ) = (f 1 (σ, κ) -κ) g(x, σ, κ)dx, and thus

Considering the equation above for κ = κ 1 (µ σ, * ), we obtain

We may compute the derivatives of f 1 (see (B.5) below), and obtain

The values of ∂ κ ξ(σ, κ) for κ = 0 and κ = κ 1 (µ σ,+ ) depending on σ, as given in Lemma B.1, yields the result.

Continuity of the moments : Notice that f 1 given in (3.6) is continuous on (σ, κ) ∈ R +, * × R + . We start by proving the continuity of σ → κ 1 (µ σ,+ ), with the convention µ σ,+ = µ σ,0 for σ > σ c . In this latter case, the function σ → κ 1 (µ σ,+ ) is trivially continuous as κ 1 (µ σ,+ ) = 0. Let us show the continuity at the point σ c . Let (σ n ) n∈N be a sequence of positive real numbers such that σ n ---→ n→∞ σ c , and consider the (bounded) sequence (κ 1 (µ σn,+ )) n . Up to extraction, we can assume

We have, by definition, κ 1 (µ σn,+ ) = f 1 (σ n , κ 1 (µ σn,+ )) and, by considering the limit n → ∞, thanks to the continuity of f 1 , we obtain κ 1 = f 1 (σ c , κ 1 ). Uniqueness of the fixed point for σ c then ensures κ 1 = 0 = κ 1 (µ σc,+ ). Hence we obtain the desired continuity.

We now consider σ < σ c . Assume there exists > 0 and a sequence (σ n ) n∈N such that σ n ---→ n→∞ σ and |κ 1 (µ σn,+ ) -κ 1 (µ σ,+ )| > . Again, up to extraction, we have κ 1 (µ σn,+ ) ---→ n→∞ κ 1 ≥ 0 and, since κ 1 is a fixed point that cannot be κ 1 (µ σ,+ ), we have κ 1 = 0. Consider the (at least) twice continuously differentiable function ξ given in (B.2). On one hand, we have by continuity

On the other hand, by the properties of ξ given in Theorem B.1 , we have ∂ κ ξ(σ n , κ 1 (µ σn,+ )) < 0. Hence a contradiction, and κ 1 (µ σn,+ ) ---→ n→∞ κ 1 (µ σ,+ ) for any sequence σ n ---→ n→∞ σ. We thus obtain the continuity.