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. This provides a complete mathematical proof of existence of orthogonal domain walls in Bénard-Rayleigh convection.

Introduction and Results

Let us study the following reversible system in R 6

A (4) = A(1 -A 2 -gB 2 )
(1)

B ′′ = ε 2 B(-1 + gA 2 + B 2 ),
where the coordinates in R 6 are Z = (A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ) = (A, A ′ , A ′′ , A ′′′ , B, B ′ ). This system occurs in the search for domain walls intersecting orthogonally, in a fluid dynamic problem such as the Bénard-Rayleigh convection between parallel horizontal plates (see subsection 1.1 and all details in [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF]). The heteroclinic we are looking for, corresponds to the connection between rolls on one side and rolls oriented orthogonally on the other side.

We would like to find analytically a heteroclinic connection (g > 1, ε small) such that A * (x), B * (x) > 0, (A * (x), B * (x)) →

(1, 0) as x → -∞ (0, 1) as x → +∞ .

By a variational argument Boris Buffoni et al [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF] prove the existence of such an heteroclinic orbit, for any g > 1, and ε small enough. This type of elegant proof does not unfortunately allow to prove the persistence of such heteroclinic curve under reversible perturbations of the vector field. This is our motivation for producing analytic arguments, proving such an existence, uniqueness and smoothness in parameters (ε, g) of this orbit, however for limited values of g, fortunately including physical interesting ones. Then we study the linearized operator along the heteroclinic curve and, adapting the lines of [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], we prove in Theorem 5 the persistence of such heteroclinic for the full system. After some basic consideration on the system, the first part of the paper (sections 4, 5, 6) is devoted to the proof of Theorem 1. Then sections 7, and 8 are devoted to the proof for orthogonal domain walls in convection.

We set δ = (g-1) 1/2 . The idea here might be to use the arc of equilibria A 2 + B 2 = 1, which exists for δ = 0, connecting end points M -= (1, 0) and M + = (0, 1), and to prove that for suitable values of δ, the 3-dimensional unstable manifold of M -intersects transversally the 3-dimensional stable manifold of M + , both staying on a 5 dimensional invariant manifold W δ . However, for δ = 0 the situation in M + is very degenerated, with a quadruple 0 eigenvalue for the linearized operator, while it is only a double eigenvalue in M -. Then we are not able to prove, for δ close to 0, that the 3-dimensional unstable manifold of M - exists from B = 0 until B reaches a value close enough to 1.

The strategy here consists to keep in mind that, after changing the coordinate x in x = εx, the limit ε → 0 of the system (1) gives a non C 1 heteroclinic solution such that (i) for x running from -∞ to 0, then (A 0 , B 0 ) varies from (1, 0) to (0, 1 √ g ) on the ellipse A 2 0 + gB 2 0 = 1, while (ii) for x running from 0 to +∞, then (A 0 , B 0 ) varies from (0, 1 √ g ) to (0, 1) in satisfying the differential equation (see the first integral (3)).

B ′ 0 = ε √ 2 (1 -B 2 0 ).
In the first part of this work, we prove the following Theorem 1 Let us choose 0 < δ 0 < 1/3, then for δ 0 ≤ δ ≤ 0.825, η 0 such that 0 < α = [(1 + δ 2 )η 2 0 -1] 1/2 is small enough, ε small enough with α = ε 2/7 , the 3dim unstable manifold of M -intersects transversally the 3-dim stable manifold of M + . The connecting curve which is obtained is locally unique (it is the only curve for this intersection). Moreover its dependency in parameters (ε, δ) is analytic. In addition we have B(x) and B ′ (x) > 0 on (-∞, +∞), the principal part of B(x) being given i) for x ∈ (-∞, 0], by B 0 (x) = 1

(1 + δ 2 2 ) 1/2 cosh(x 0 -εδx)

,

cosh x 0 = 1 B 00 (1 + δ 2 2 ) 1/2 , B 00 = B 0 (0) = (1 -η 2 0 δ 2 ) 1/2 ,
ii) for x ∈ [0, +∞), by B 0 (x) = tanh(εx/ √ 2) + B 00 1 + B 00 tanh(εx/ √ 2) .

For x → -∞ we have (A 0 -1, A 1 , A 2 , A 3 , B 0 , B 1 ) → 0 at least as e εδx , while for x → +∞, (A 0 , A 1 , A 2 , A 3 ) → 0 at least as - √ δ 2 x , and (B 0 -1, B 1 ) → 0 at least as e - √ 2εx .

Remark 2 From the form of system [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF] and Lemma 11 it should be noticed that A 0 -1 → 0 as e 2εδx while B 0 → 0 as e εδx for x → -∞.

In section 4 we prove at Lemma 11 the existence of the unstable manifold of M -= (1, 0) until a neighborhood of (A 0 , B 0 ) = (0, 1/ 1 + δ 2 ). Here there is no restriction on the choice of δ, except δ ≥ δ 0 > 0.

In section 5 we prove at Lemma 18 the existence of the stable manifold of M + = (0, 1) until (backward direction) a neighborhood of (0, 1/ 1 + δ 2 ). Here there is a restriction δ ≤ 0.95, for being able to reach the end point.

In section 6 we need the restriction δ ≤ 0.825 for saving a transverse intersection of the two manifolds. This ends the proof of Theorem 1.

In section 7 we give in Lemma 24 the properties of the linearized operator along the heteroclinic, which are necessary to prove a persistence result under a reversible perturbation for the heteroclinic in the 8-dimension space (with B ∈ C), adapting the lines of [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]. In section 8 we give a complete proof of Proposition 5 showing the persitence of the heteroclinic connection for the Bénard-Rayleigh convection problem, corresponding to bifurcating orthogonal domain walls, noticing the link between waves numbers at both infinities, depending on the amplitudes of rolls (see Remark 35), thus completing the results of [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF].

Remark 3 It should be noticed that we show that, in the middle of the heteroclinic, A 0 (0) ∼ αδ which is very close to 0. The choice of α = ε 2/7 results from the proof of Theorem 1. If, one day, we are able to choose a much smaller α , for example α = √ ε this would imply important improvements in the last section for the proof of orthogonal domain walls (however see Remark 17).

Remark 4 Using symmetries of the system: A → ±A, B → ±B and reversibility symmetry: (A(x), B(x)) → (A(-x), B(-x)), we find 8 heteroclinics. Two are connecting M -to M + with opposite dynamics, two others connect -M -to M + , two connect M -to -M + , and two connect -M -to -M + . The one which interests us is the only one connecting M -to M + with the dynamics running from M -to M + .

Origin of system (1)

The Bénard-Rayleigh convection problem is a classical problem in fluid mechanics. It concerns the flow of a three-dimensional viscous fluid layer situated between two horizontal parallel plates and heated from below. Upon increasing the difference of temperature between the two plates, the simple conduction state looses stability at a critical value of the temperature difference corresponding to a critical value R c of the Rayleigh number. Beyond the instability threshold, a convective regime develops in which patterns are formed, such as convective rolls, hexagons, or squares. Observed patterns are often accompanied by defects.

Mathematically, the governing equations are the Navier-Stokes equations coupled with an equation for the temperature, and completed by boundary conditions at the two plates. Observed patterns are then found as particular steady solutions of these equations. Very recently, the existence of orthogonal domain walls has been studied by [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF], where the authors handle the full governing equations, showing that the study leads to a small perturbation of the reduced system of amplitude equations [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF].

Starting from a formulation of the steady governing equations as an infinitedimensional dynamical system in which the horizontal coordinate x plays the role of evolutionary variable (spatial dynamics), a center manifold reduction is performed, which leads to a 12-dimensional reduced reversible dynamical system (reducing to 8-dimensional after restricting to solutions with reflection symmetry y → -y). A normal form for this reduced system is obtained, for which, after an appropriate rescaling of the normal form, the principal part is the system [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF], with B ∈ C, and B 2 replaced by |B| 2 . It should be noticed that the linear part of (1) for the variable A corresponds to a quadruple eigenvalue 0, with eigenvectors for the full system, independent of x, periodic in y, while the linear part for the complex variable B correponds to two non zero complex conjugated double eigenvalues (1-1 Hopf resonance), with eigenvectors independent of y. The truncation leading to (1) allows to take B real, since its phase does not play any role at this level. At section 8 we give all details about the full system and on relevant parameters. Solutions of the system (1) provide leading order approximations of solutions of the full governing equations. In particular, the equilibrium (A 0 , B 0 ) = (0, 1) of the system (1) gives an approximation of convection rolls (in the x direction) bifurcating for Rayleigh numbers R > R c close to R c , whereas the equilibrium (A 0 , B 0 ) = (1, 0) of the system (1) gives the same convection rolls (in the y direction) rotated by an angle π/2 with the phase fixed by the imposed reflexion symmetry. A heteroclinic orbit connecting these two equilibria provides then an approximation of orthogonal domain walls (see Figure 1). The parameter ε in [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF] 

is such that ε 4 is proportional to R 1/2 -R 1/2 c . The parameter g > 1 in (1)
is function of the Prandtl number, while other parameters, which only appear in higher orders, are the wave numbers of the rolls, close to the critical value. We finally prove the following Proposition 5 Except for a finite number of values of g = 1 + δ 2 and for ε such that Theorem 1 applies, the heteroclinic solution connecting an equilibrium at -∞ (representing convective rolls parallel to x -axis) and a periodic solution at +∞ (representing convective rolls orthogonal to the previous ones), persists as a one-parameter family of orthogonal domain walls, provided that certain conditions on coefficients of the cubic normal form (see ( 111) and ( 113)) are realized. The wave numbers of limiting periodic convective rolls are linked by a relation depending on ε (the amplitude of rolls being of order ε 2 ) (see Remark 35).

Remark 6

Values of δ such that 0.476 ≤ δ include values obtained for δ in the Bénard-Rayleigh convection problem where g is function of the Prandtl number P (see [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]). With rigid-rigid, rigid-free, or free-free boundaries the minimum values of g are respectively (g min = 1.227, 1.332, 1.423) corresponding to δ min = 0.476, 0.576, 0.650. The restriction in Theorem 1 corresponds to 1 < g ≤ 1.680. The eligible values for the Prandtl number are respectively P > 0.7404, > 0.9125, > 1.332. 

Global invariant manifold W δ

The first observation is that we have the first integral

ε 2 (A ′2 ) ′′ -3ε 2 A ′′2 -B ′2 + ε 2 2 (A 2 + B 2 -1) 2 + ε 2 δ 2 A 2 B 2 = 0, (2) 
i.e.

2ε 2 A 1 A 3 -ε 2 A 2 2 -B 2 1 + ε 2 2 (A 2 0 + B 2 0 -1) 2 + ε 2 δ 2 A 2 0 B 2 0 = 0 (3) 
This defines a 5-dimensional invariant maniford W δ valid for any δ > 0, which contains the heteroclinic curve that we are looking for. The singular points of this manifold are given by

A 1 = A 2 = A 3 = B 1 = 0, 0 = A 0 (A 2 0 + (1 + δ 2 )B 2 0 -1), 0 = B 0 ((1 + δ 2 )A 2 0 + B 2 0 -1).
For δ > 0, and since (A 0 , B 0 ) = (0, 0) or (±(δ 2 + 2) -1/2 , ±(δ 2 + 2) -1/2 ) do not belong to W δ , we only find the singular points

(A 0 , B 0 ) = (±1, 0), ( 4 
) (A 0 , B 0 ) = (0, ±1).
For δ = 0, all singular points belong to a circle of singular points:

A 2 0 + B 2 0 = 1. ( 5 
)
3 Linear study of the dynamics 3.1 Case δ > 0 (g > 1)

3.1.1 Neighborhood of M -= (1, 0)
The eigenvalues of the linearized operator at M -are such that λ 4 = -2 or

λ 2 = ε 2 δ 2 , hence ±2 -1/4 (1 ± i),
±εδ.

This gives a 3-dimensional unstable manifold, and a 3-dimensional stable manifold.

Neighborhood of M

+ = (0, 1)
The eigenvalues of the linearized operator at M + are such that

λ 4 = -δ 2 or λ 2 = 2ε 2 , hence ±2 -1/2 (1 ± i)δ ′ , ±ε √ 2, δ ′ = √ δ.
This gives again a 3-dimensional unstable manifold and a 3-dimensional stable manifold.

All this implies that the 3-dimensional unstable manifold starting at M - is included into the 5-dimensional manifold W δ , as well as the 3-dimensional stable manifold starting at M + is included into the 5-dimensional manifold W δ . This gives a good hope that these two manifolds intersect along a heteroclinic curve...provided that they still exist "far" from the end points M + and M -. The idea is to show that this occurs when δ is not too small.

Linear dynamics near the arc of equilibria for δ = 0

Let us denote the family of fixed points as

A 2 * + B 2 * = 1, B * ≥ 0,
which is an arc of circle of equilibria in the (A 0 , B 0 ) plane. The linearized operator along this family is

L * =         0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 -2A 2 * 0 0 0 -2A * B * 0 0 0 0 0 0 1 2ε 2 A * B * 0 0 0 2ε 2 B 2 * 0        
, and its eigenvalues are 0 double, and λ such that

λ 4 -2ε 2 B 2 * λ 2 + 2A 2 * = 0. The discriminant is ∆ = ε 4 B 4 * -2A 2 * = ε 4 B 4 * + 2B 2 * -2, it results that i) for 0 < B 2 * < B 2 c = 1 ε 4 (-1 + √ 1 + 2ε 4 ) ≃ 1 -ε 4 /2, i.e. A * > A c ≃ ε 2 √ 2
, we have ∆ < 0 and 4 complex eigenvalues λ 0 , λ 0 , -λ 0 , -λ 0 , while ii) for B c < B * < 1, i.e. A * < A c , we have ∆ > 0 and 4 real eigenvalues In all cases there are two stable directions and two well determined unstable directions, depending smoothly on (A * , B * ). The eigenvector belonging to the eigenvalue 0 is tangent to the family of equilibria.

λ 2 ± = ε 2 B 2 * ± ε 4 B 4 * -2A 2 * > 0, two > 0, two < 0,
Let us sum up the situation for the system (1) with δ = 0, linearized along the arc of equilibria: for 0 < B * < B c we have a two-dimensional invariant subspace, associated with two eigenvalues λ 0 , λ 0 , and a two-dimensional invariant subspace associated with -λ 0 and -λ 0 .

When B * reaches B c the eigenvalues λ 0 and λ 0 merge in a double eigenvalue εB * which splits in two real positive eigenvalues λ + , λ -when B c < B * < 1. The same phenomenon occurs for eigenvalues -λ 0 and -λ 0 which merge in -εB * and then split in -λ + , -λ -. The smooth dependence in B * of the two-dimensional invariant spaces (general result of perturbation theory of linear operators [START_REF] Kato | Perturbation theory for linear operators[END_REF]) shows that these two-dimensional subspaces stay transverse to each other all along the curve A 2 * + B 2 * = 1. We sum up these properties in the following Lemma 7 The system (1) admits, for δ = 0 an arc of equilibria

(A 0 , B 0 ) = (A * , B * ), A 2 * + B 2 * = 1.
Along this arc of equilibria, the family of 2-dimensional stable manifolds and the family of 2 -dimensional unstable manifolds belong to the 5-dimensional manifold W 0 (singular along the arc of equilibria). These families constitute two 3-dimensional manifolds intersecting each other transversally along the open arc (without end point M + ). Remark 8 Notice that the limit points M -= (1, 0) and M + = (0, 1) have a degenerate situation, because of the multiple 0 eigenvalue. The above transversality is weaker and weaker as (A * , B * ) → (0, 1) A "serious" study is needed since it is not obvious, for example, that the 3-dim stable manifold of M + is obtained for δ = 0 by a simple perturbation of the family of 2-dimensional stable manifolds along the arc

A 2 * + B 2 * = 1, for A * > 0.
4 Unstable manifold of M

Change of coordinates

Let us fix 0 < δ 0 ≤ 1/3, and δ 1 > 1, we assume, from now on

0 ≤ B 0 ≤ 1 -η 2 0 δ 2 , η 0 > 1 1 + δ 2 = 1 √ g , α def = (η 2 0 (1 + δ 2 ) -1) 1/2 , ε 2 α 2 ≤ δ 0 ≤ δ ≤ δ 1 , (6) 
and let us define new coordinates

Z = ( A * + A 0 , A 1 , A 2 , A 3 , B 0 , B 1 ) t (7) 
where

A 0 = A * cancels A ′ 3 with A * 2 def = 1 -(1 + δ 2 )B 2 0 , A * ≥ δα.
In the following α is a "small parameter", the relative size of which, with respect to ε is precized later.

Remark 9

The occurence of A * is linked with a formal computation of an expansion of the heteroclinic in powers of ε, which gives A * as the principal part of A 0 , valid for B 0 < (1 + δ 2 ) -1/2 = 1/ √ g. The hope is to build the unstable manifold until this limit value.

Remark 10 We choose the conditions on δ, δ 0 ≤ δ ≤ δ 1 in the purpose to include known computed values of the coefficient g = 1 + δ 2 , in the convection problems, with different boundary conditions (see [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]).

We prove below the main result of this section:

Lemma 11 For ε small enough, α small enough and for 0 < δ 0 < 1/3, and

δ ∈ [δ 0 , δ 1 ], α 2 = η 2 0 (1 + δ 2 ) -1, ε 2 ≤ δ 0 α 2 , ε = α 7/2 , the 3-dimensional unstable manifold of M -exists for 0 ≤ B 0 (x) ≤ (1 -η 2 0 δ 2 ) 1/2 , x ∈ (-∞, 0].
It sits in W g , is analytic in (ε, δ), and

A 0 = A * + B 0 O( εδ A * 1/2 e εδx ) A 1 = B 0 O( εδ A * e εδx ) A 2 = B 0 O(εδe εδx ) A 3 = B 0 O(εδe εδx ), where 0 ≤ 1 -A * ≤ cB 2 0 , A * (0) = 1, A * ≥ δα. Moreover, as x → -∞, A 0 -A * , A 1 , A 2 , A 3 
are bounded by cεδe 2εδx , and B 0 , resp. B 1 by ce εδx , resp. cεe εδx , where c is a constant independent of ε, δ.

Remark 12 We observe that A 0 reaches a value close to 0 since A * reaches δα which is close to 0, while B 0 reaches (1-η 2 0 δ 2 ) 1/2 which is close to 1/(1+δ 2 ) 1/2 = 1/ √ g, not close to 1.

The system (1) becomes

A 0 ′ = A 1 + (1 + δ 2 )B 0 A * B 1 A ′ 1 = A 2 A ′ 2 = A 3 (8) 
A ′ 3 = -2 A * 2 A 0 -3 A * A 0 2 -A 0 3 B ′ 0 = B 1 B ′ 1 = ε 2 δ 2 B * ( A * 2 -B 2 0 ) + 2ε 2 (1 + δ 2 ) A * B 0 A 0 + ε 2 (1 + δ 2 )B 0 A 0 2 ,
Now, we define the linear operator

L δ =          0 1 0 0 0 (1+δ 2 )B0 A * 0 0 1 0 0 0 0 0 0 1 0 0 -2 A * 2 0 0 0 0 0 0 0 0 0 0 1 2ε 2 (1 + δ 2 ) A * B 0 0 0 0 0 0          , (9) 
for which 0 is a double eigenvalue, and such that the non zero eigenvalues satisfy

λ 4 -2ε 2 B 2 0 (1 + δ 2 ) 2 λ 2 + 2 A * 2 = 0. ( 10 
)
The discriminant is

∆ ′ = ε 4 B 4 0 (1 + δ 2 ) 4 -2 A * 2 .
Our assumption

B 0 ≤ 1 -η 2 0 δ 2 and Kε 2 ≤ δ ≤ δ 1 , in addition with the constraint 1 α ≥ (1 + δ 2 ) 2 . ( 11 
) implies -∆ ′ ≥ A * 2 .
Then we have two pairs of complex eigenvalues

λ 2 ± = ε 2 B 2 0 (1 + δ 2 ) 2 ± i √ -∆ ′ .
The idea is to find new coordinates able to manage a new linear operator in the form of two independent blocs

±λ r λ i -λ i ±λ r (12)
for which the eigenvalues are ±λ r ± iλ i , where

2λ 2 r = √ 2 A * + ε 2 B 2 0 (1 + δ 2 ) 2 (13) 2λ 2 i = √ 2 A * -ε 2 B 2 0 (1 + δ 2 ) 2 λ 2 r -λ 2 i = ε 2 B 2 0 (1 + δ 2 ) 2 λ 2 r + λ 2 i = √ 2 A * 4λ 2 r λ 2 i = -∆ ′ .
We choose a form of the linear operator as (12) for being able to have good estimates for the monodromy operator associated with the linear operator, the coefficients of which are functions of B 0 ∈ [0, 1 -η 2 0 δ 2 ] (see Appendix A.1).

Estimates for the eigenvalues

First, notice that (13) and

α ≤ (1 + δ 2 ) -2 imply λ r λ i ≥ A * 2 , 2 1/4 A * 1/2 ≥ λ r ≥ A * 1/2 2 1/4 ≥ α 1/2 2 1/4 √ δ, (14) 
1 2 3/4 A * 1/2 ≤ λ i ≤ A * 1/2 2 1/4 . ( 15 
)

New coordinates

The eigenvector and generalized eigenvector for the eigenvalue 0 are :

Z 0 =         0 0 0 0 A * 0         , Z 1 =         0 -(1 + δ 2 )B 0 0 0 0 A *         . Now we denote by V + r ± iλ i V + i , V - r ± iλ i V - i
the eigenvectors belonging respectively to the eigenvalues

λ r ± iλ i , -λ r ± iλ i      A 0 A 1 A 2 A 3 0 B 1         = B 0 (x 1 V + r + x 2 λ i V + i + y 1 V - r + y 2 λ i V - i + z 0 Z 0 + z 1 Z 1 ).
We observe that after eliminating z 0 , we still have 6 coordinates, including B 0 as one of the new coordinates.

Remark 13 We notice that we put B 0 in front of the new coordinates, as this results from the analysis, and shorten the computations.

We have now

A 0 = -B 0 λ r (λ 2 r -3λ 2 i ) 2 A * 2 (x 1 -y 1 ) -B 0 λ i (3λ 2 r -λ 2 i ) 2 A * 2 (x 2 + y 2 ) A 1 = B 0 (x 1 + y 1 ) -(1 + δ 2 )B 2 0 z 1 A 2 = λ r B 0 (x 1 -y 1 ) + λ i B 0 (x 2 + y 2 ) (16) A 3 = (λ 2 r -λ 2 i )B 0 (x 1 + y 1 ) + 2λ r λ i B 0 (x 2 -y 2 ) 0 = - (λ 2 r -λ 2 i ) (1 + δ 2 )B 0 A * A 2 + A * B 0 z 0 B 1 = - (λ 2 r -λ 2 i ) (1 + δ 2 )B 0 A * A 3 + A * B 0 z 1 ,
which needs to be inverted. We obtain

B 0 x 1 = (λ 2 r + λ 2 i ) 4λ r A 0 + 3λ 2 r -λ 2 i 4λ r (λ 2 r + λ 2 i ) A 2 (17) + A 1 2 + (1 + δ 2 )B * 2 A * B 1 + (λ 2 r -λ 2 i ) 2 A * 2 A 3 , λ i B 0 x 2 = - (λ 2 r + λ 2 i ) 4 A 0 - λ 2 r -3λ 2 i 4(λ 2 r + λ 2 i ) A 2 (18) - (λ 2 r -λ 2 i ) 4λ r A 1 + (1 + δ 2 )B 0 A * B 1 + 1 4λ r 1 - (λ 2 r -λ 2 i ) 2 A * 2 A 3 , B 0 y 1 = - (λ 2 r + λ 2 i ) 4λ r A 0 - 3λ 2 r -λ 2 i 4λ r (λ 2 r + λ 2 i ) A 2 (19) 
+ A 1 2 + (1 + δ 2 )B 0 2 A * B 1 + (λ 2 r -λ 2 i ) 2 A * 2 A 3 , λ i B 0 y 2 = - (λ 2 r + λ 2 i ) 4 A 0 - λ 2 r -3λ 2 i 4(λ 2 r + λ 2 i ) A 2 (20) + (λ 2 r -λ 2 i ) 4λ r A 1 + (1 + δ 2 )B 0 A * B 1 - 1 4λ r 1 - (λ 2 r -λ 2 i ) 2 A * 2 A 3 , B 0 z 1 = (λ 2 r -λ 2 i ) (1 + δ 2 )B 0 A * 2 A 3 + 1 A * B 1 .
Let us now define

X = x 1 x 2 , Y = X = y 1 y 2 ,
then, for ε small enough, we obtain the following useful estimates

A * 1/2 2 3/4 ≤ λ r , λ i < 2 1/4 A * 1/2 , A * ≥ δα ≥ ε 2 α , | A 0 | ≤ 3 B 0 A * 1/2 (|X| + |Y |), |A 1 | ≤ B 0 (|X| + |Y |) + 2B 2 0 |z 1 |, |A 2 | ≤ 2B 0 A * 1/2 (|X| + |Y |), (21) 
|A 3 | ≤ 2B 0 A * (|X| + |Y |), |B 1 | ≤ 3ε 2 B 2 0 (|X| + |Y |) + A * B 0 |z 1 |.

System with new coordinates

The system [START_REF] Kapitula | Spectral and Dynamical Stability of Nonlinear Waves[END_REF] writen in the new coordinates is computed in Appendix A.2. It takes the following form

x ′ 1 = f 1 + λ r x 1 + λ i x 2 (22) +B 1 a 1 A 0 + c 1 A 2 + d 1 A 3 + e 1 B 1 B 0 - 1 B 0 x 1 -ε 2 (1 + δ 2 )(2 -δ 2 )B 0 2 A * A 0 2 -ε 2 (1 + δ 2 )B 0 2 A * 2 A 0 3 , x ′ 2 = f 2 -λ i x 1 + λ r x 2 + B 1 -a 2 A 0 + b 2 A 1 + c 2 A 2 + d 2 A 3 + e 2 B 1 - 1 B 0 x 2 (23) - 1 4λ r λ i A * B 0 3 A * 2 -2ε 4 B 4 0 (1 + δ 2 ) 4 A 0 2 - 1 4λ r λ i B 0 1 - (λ 2 r -λ 2 i ) 2 A * 2 A 0 3 . y ′ 1 = f 1 -λ r y 1 + λ i y 2 + (24) +B 1 -a 1 A 0 -c 1 A 2 + d 1 A 3 + e 1 B 1 B 0 - 1 B 0 y 1 -ε 2 (1 + δ 2 )(2 -δ 2 )B 0 2 A * A 0 2 -ε 2 (1 + δ 2 )B 0 2 A * 2 A 0 3 , y ′ 2 = -f 2 -λ i y 1 -λ r y 2 + B 1 -a 2 A 0 -b 2 A 1 + c 2 A 2 -d 2 A 3 + e 2 B 1 - 1 B 0 y 2 (25) + 1 4λ r λ i A * B 0 3 A * 2 -2ε 4 B 4 0 (1 + δ 2 ) 4 A 0 2 + 1 4λ r λ i B 0 1 - (λ 2 r -λ 2 i ) 2 A * 2 A 0 3 , B ′ 0 = -ε 2 (1 + δ 2 )B 0 A 3 A * + A * B 0 z 1 , with f 1 = ε 2 δ 2 B 0 (1 + δ 2 )( A * 2 -B 2 0 ) 2 A * , f 2 = - ε 2 δ 2 B 0 (1 + δ 2 )(λ 2 r -λ 2 i )( A * 2 -B 2 * ) 4λ r λ i A * ,
coefficients a j , b j , c j , d j , e j are defined and estimated in Appendix A.2 in (118,119), (120,121,122), (123,124), (125,126). Here A 0 , A 1 , A 2 , A 3 , B 1 should be replaced by their (linear) expressions (16) in coordinates (x 1 , x 2 , y 1 , y 2 , z 1 ) with coefficients functions of B 0 . The system above should be completed by the differential equation for z 1 . In fact we replace the equation for z ′ 1 by the direct resolution of the first integral (3) with respect to z 1 (see below).

Resolution of (3) with respect of z 1 (X, Y, B 0 )

Instead of using the differential equation for z 1 let us use the first integral (3). This leads to

B 2 1 = { A * B 0 z 1 -ε 2 B 0 (1 + δ 2 ) A * A 3 } 2 = 2ε 2 A 1 A 3 -ε 2 A 2 2 + ε 2 2 (-δ 2 B 2 0 + 2 A * A 0 + A 0 2 ) 2 + ε 2 δ 2 ( A * + A 0 ) 2 B 2 0 , hence A * 2 z 2 1 = ε 2 δ 2 A * 2 (1 + δ 2 B 2 0 2 A * 2 ) + 2ε 2 B 0 A 3 (x 1 + y 1 ) - ε 4 (1 + δ 2 ) 2 A * 2 A 2 3 - ε 2 B 2 0 A 2 2 + + 2ε 2 A * 2 B 2 0 A 0 2 + 2ε 2 A * B 2 0 A 0 3 + ε 2 2B 2 0 A 0 4 , (26) 
where we may observe on the r.h.s., that

δ 2 2 A * 2 < 1 2α 2 , hence ε 2 δ 2 ≤ ε 2 δ 2 (1 + δ 2 B 2 0 2 A * 2 ) ≤ ε 2 δ 2 (1 + 1 2α 2 ),
which is independent of (X, Y ). Moreover there is no linear part in (X, Y ). For further estimates, we make a new scaling

(X, Y, z 1 ) = εδ(X, Y , z 1 ). ( 27 
)
We notice that (21) implies

| 2ε 2 B 0 A 3 (x 1 + y 1 )| ≤ cε 4 δ 2 A * (|X| + |Y |) 2 | ε 4 (1 + δ 2 ) 2 A * 2 A 2 3 | ≤ cε 6 δ 2 (|X| + |Y |) 2 ε 2 B 2 0 A 2 2 ≤ cε 4 δ 2 A * (|X| + |Y |) 2 ) 2ε 2 A * 2 B 2 0 A 0 2 ≤ cε 4 δ 2 A * (|X| + |Y |) 2 | 2ε 2 A * B 2 0 A 0 3 | ≤ cε 5 δ 3 A * 1/2 (|X| + |Y |) 3 ε 2 2B 2 0 A 0 4 ≤ cε 6 δ 4 A * 2 (|X| + |Y |) 4 ,
so that the factors in the estimates are such that

cε 4 δ 2 A * ε 2 δ 2 A * 2 ≤ cε 2 A * , cε 6 δ 4 ε 2 δ 2 A * 4 ≤ c ε 2 δ 0 A * 2 , cε 5 δ 3 ε 2 δ 2 A * 5/2 ≤ c ε 5/2 δ 3/4 A * 2 ,
c being independent of ε and δ. Now defining z 10 such that

1 ≤ z 10 (B 0 ) def = (1 + δ 2 B 2 0 2 A * 2 ) 1/2 ≤ 1 α , for α ≤ 1/ √ 2, (28) 
It results that

z 1 2 = z 10 2 + O ε 2 A * (|X| + |Y |) 2 + ε 5/2 δ 3/4 A * 2 (|X| + |Y |) 3 + ε 2 A * 2 (|X| + |Y |) 4
and using

B 2 0 = 1 -A * 2 1 + δ 2 we also have 1 z 10 2 = 2 A * 2 2 A * 2 + δ 2 B 2 0 ≤ 2(1 + δ 2 ) A * 2 δ 2 ≤ c A * 2 δ 2 ,
so that

z 1 = z 10 (B 0 ) 1 + A * 2 δ 2 O ε 2 A * (|X| + |Y |) 2 + ε 5/2 δ 3/4 A * 2 (|X| + |Y |) 3 + ε 2 A * 2 (|X| + |Y |) 4 1/2 = z 10 (B 0 ) 1 + O[ε 2 (|X| + |Y |) 2 ] 1/2 , for |X| + |Y | ≤ ρ, ρ fixed,
and taking the square root, we obtain (using

ε 2 α ≤ ε √ δ 0 ) z 1 = z 10 (B 0 ) + Z(X, Y , B * ) (29) with Z(X, Y , B 0 ) = O(ε(|X| + |Y |) 2 , Z(X, Y , B 0 ) being defined in the ball |X| + |Y | ≤ ρ,
provided that ε is small enough and where ρ is of order 1, not necessarily small with respect to ε and α. Moreover Z is analytic in its arguments and is at least quadratic in (X, Y ). Since z 1 contains z 10 which is independent of (X, Y ), the new system has new "constant terms" and "linear terms", appearing as perturbations of the former ones.

System where z 1 is eliminated

The new system is computed in Appendix A.3. We obtain (notice that B 0 is in factor of the "constant" terms)

X ′ = L 0 X + B 0 F 0 + L 01 (X, Y ) + B 01 (X, Y ), (30) 
Y ′ = L 1 Y + B 0 F 1 + L 11 (X, Y ) + B 11 (X, Y ),
where

L 0 = λ r λ i -λ i λ r , L 1 = -λ r λ i -λ i -λ r ,
and with the following estimates, for terms independent of (X, Y )

|F 0 | + |F 1 | ≤ cε α 3 , (31) 
for terms which are linear in (X, Y )

|L 01 (X, Y )| + |L 11 (X, Y )| ≤ c ε α 2 (|X| + |Y |), (32) 
and for terms at least quadratic in (X, Y ), choosing α small enough and for

|X| + |Y | ≤ ρ, we obtain |B 01 (X, Y )| + |B 11 (X, Y )| ≤ cε α 1/2 (|X| + |Y |) 2 . ( 33 
)

Integral formulation for solutions bounded as x → -∞

Let us introduce the monodromy operators associated with the linear operators L 0 , L 1 which have non constant coefficients (functions of B 0 (see [START_REF] Hale | Ordinary differential equations[END_REF]):

∂ ∂x S 0 (x, s) = L 0 S 0 (x, s), S 0 (x, s 1 )S 0 (s 1 , s 2 ) = S 0 (x, s 2 ), S 0 (x, x) = I, ∂ ∂x S 1 (x, s) = L 1 S 1 (x, s), S 1 (x, s 1 )S 1 (s 1 , s 2 ) = S 1 (x, s 2 ), S 1 (x, x) = I.
The coefficients of operators L 0 , L 1 are functions of B 0 , so we need the Lemma 36 in Appendix A.1, with the following estimates, valid for 0

≤ B 0 ≤ 1 -η 2 0 δ 2 , α ≤ (1 + δ 2 ) -2 : ||S 0 (x, s)|| ≤ e σ(x-s) , -∞ < x < s ≤ 0, ( 34 
) ||S 1 (x, s)|| ≤ e -σ(x-s) , -∞ < s < x ≤ 0, ( 35 
) with σ = α 1/2 δ 1/2 2 1/4 .
We are looking for solutions of (30) which stay bounded for x → -∞. Then, thanks to estimates (34) (35), the system (30) may be formulated as

X(x) = S 0 (x, 0)X 0 + x 0 S 0 (x, s)G 0 (s)ds (36) Y (x) = x -∞ S 1 (x, s)G 1 (s)ds G 0 (s) def = B 0 F 0 + L 01 (X, Y ) + B 01 (X, Y ), G 1 (s) def = B 0 F 1 + L 11 (X, Y ) + B 11 (X, Y )
where X, Y and B 0 are bounded and continuous functions of s, B 0 tending towards 0 as s → -∞.

Strategy

The idea is. i) solve (36) with respect to (X, Y ) in function of (X 0 , B 0 ). ii) solve the integro-differential equation for B 0 , with

B 0 | x=0 = B 0 (0).
Then the unstable manifold of M -is given (see [START_REF] Hale | Ordinary differential equations[END_REF]) by

Y | x=0 , z 1 | x=0 in terms of X 0 , B 0 (0)
. The result will be valid for an interval [0, 1 -η 2 0 δ 2 ] for B 0 and it appears that A 0 is then very close to 0 at this end point. The hope is that this should allow to compute its intersection with the 3-dim stable manifold of M + which computation should be valid for B 0 in the interval [ 1 -η 2 0 δ 2 , 1].

Resolution for (X, Y )

Let us define, for κ > 0

C 0 κ = {X ∈ C 0 (-∞, 0]; X(x)e -κx is bounded} equiped with the norm ||X|| κ = sup (-∞,0) |X(x)e -κx |.
We observe that, provided that κ < σ

| x -∞ S 1 (x, s)e κs ds| ≤ e κx κ + σ |S 0 (x, 0)e -κx | ≤ e (σ-κ)x , x ≤ 0, | x 0 S 0 (x, s)e κs ds| ≤ e κx σ -κ , x ≤ 0. Let us choose κ ≤ σ 2 , then | x -∞ S 1 (x, s)e κs ds| ≤ e κx σ = 2 1/4 e κx α 1/2 δ 1/2 , | x 0 S 0 (x, s)e κs ds| ≤ 2 5/4 e κx α 1/2 δ 1/2 , x ≤ 0. Let us assume that ||B 0 || κ ≤ m
holds with m independent of ε, which needs to be proved at next subsection. Hence, the implicit function theorem applies for (X, Y ) in the function space C 0 κ , provided that we can choose κ ≤ σ 2 and ||X|| κ + ||Y || κ ≤ ρ. Using the above estimates for coefficients, we obtain

|X(x)e -κx | ≤ |X 0 | + 2 5/4 α 1/2 δ 1/2 ||B 0 F 0 + L 01 (X, Y ) + B 01 (X, Y )|| κ , hence ||X|| κ ≤ |X 0 | + 2 5/4 α 1/2 δ 1/2 ||B 0 F 0 + L 01 (X, Y ) + B 01 (X, Y )|| κ , (37) 
and in the same way

||Y || κ ≤ 2 1/4 α 1/2 δ 1/2 ||B 0 F 1 + L 11 (X, Y ) + B 11 (X, Y )|| κ . (38) 
Remark 14 The choice of κ is governed by the behavior of B 0 (x) as x → -∞, which is studied at next subsection.

For ε small enough, estimates on F 1 , B 11 , (38) and

||X|| κ + ||Y || κ ≤ ρ, we obtain, with S def = ||X|| κ + ||Y || κ S ≤ |X 0 | + c[ εm α 7/2 δ 1/2 + Sε α 5/2 δ 1/2 + εSρ αδ 1/2 ] so that (using δ ≥ δ 0 > 0) for ε = α 7/2 , (39) ε α 5/2 δ 1/2 + ερ αδ 1/2 ≤ cε 2/7 , S(1 -cε 2/7 ) ≤ |X 0 | + cm, which implies S ≤ (1 + c ′ ε 2/7 )|X 0 | + c ′ m, which leads finally to ||Y || κ ≤ c(m + ε 2/7 |X 0 |), (40) 
||X|| κ ≤ (1 + cε 2/7 )|X 0 | + cm, ( 41 
)
where c is a number independent of ε, and |X 0 | ≤ ρ/2, ε = α 7/2 small enough, and we assume m bounded by a certain M of order 1, S ≤ ρ, where ρ is fixed arbitrarily, of order 1.

Resolution for B 0

We intend to solve the part of our system for B 0 with B 0 (0

) = B 0 | x=0 .
We notice from ( 16) and ( 21) that

B 1 = εδ A * B 0 z 10 (B 0 ) + Z(X, Y , B 0 ) -ε 3 δ(1 + δ 2 ) B 0 A * A 3 A 3 = B 0 [ε 2 B 2 0 (1 + δ 2 ) 2 (x 1 + y 1 ) + 2λ r λ i (x 2 -y 2 )], ε 2 (1 + δ 2 ) A 3 A * 2 ≤ 4ε 2 A * (|X| + |Y |) ≤ 4ε δ 0 (|X| + |Y |),
so that it is clear that (see above estimates for Z)

B 1 > 0 for B 0 ∈ (0, 1 -η 2 0 δ 2 ), |X| + |Y | ≤ ρ. ( 42 
)
This is coherent with the study of the linearized system near M -: Indeed the principal part of the differential equation for B 0 is

B ′ 0 = εδB 0 A * z 10 (B 0 )
which may be integrated as

B 2 0 = 1 (1 + δ 2 2 ) cosh 2 (x 0 -εδx) , (43) 
cosh x 0 = 1 B 0 (0)(1 + δ 2 2 ) 1/2
, which satisfies B 0 = 0 for x = -∞, and B 0 = B 0 (0) for x = 0. More precisely the differential equation for B 0 is now (after replacing (X, Y ) by its expression found at previous subsection)

B ′ 0 = εδ A * B 0 z 10 (B 0 )[1 + f (B 0 )] (44) 
where

f (B 0 ) is a non local analytic function of B 0 in C 0 κ , such that ||f (B 0 )|| κ ≤ cερ.
Remark 15 We may notice that we might replace cερ in the estimate above, by

cερe κx → 0 as x → -∞, since X and Y ∈ C 0 κ .
We are looking for the solution such that B 0 = 0 for x = -∞, and B 0 (0) ≤ 1 -η 2 0 δ 2 for x = 0. We can rewrite (44) as

2B 0 B ′ 0 B 2 0 A * z 10 (B 0 ) = 2εδ[1 + f (B 0 )]. ( 45 
)
20

We now introduce the variable v :

v = 1 -1 -(1 + δ 2 2 )B 2 0 1 + 1 -(1 + δ 2 2 )B 2 0 , B 2 0 = 1 1 + δ 2 2 4v (1 + v) 2 , so that (ln v) ′ = 2εδ[1 + f (B 0 )].
We observe that for x runing from -∞ to 0,

w = ln v is increasing from -∞ to w 0 = ln v 0 < 0.
Now let us define h continuous in its argument and such that

h(w) = f (B 0 ), B 0 = 1 1 + δ 2 2 1/2 2e w/2 (1 + e w ) ,
and let us find an a priori estimate for the solution B 0 (x), for x ∈ (-∞, 0]. We obtain by simple integration

x 0 w ′ (s) 1 + h(w)(s) ds = 2εδx.
For α small enough we have

1 -cερ ≤ 1 1 + h(w) ≤ 1 + cερ,
hence (since w < w 0 , and x < 0)

(w 0 -w)(1 -cερ) ≤ -2εδx ≤ (w 0 -w)(1 + cερ) so that exp( -2εδx 1 + cερ ) ≤ e w0-w ≤ exp( -2εδx 1 -cερ ) and v 0 exp( 2εδ 1 -cερ x) ≤ v(x) ≤ v 0 exp( 2εδ 1 + cερ x).
It finally results that we obtain an a priori estimate for

B 0 (x) = B 0 (X 0 , B 0 (0))(x) ∈ C 0 κ , (46) 
B 0 (X 0 , B 0 (0))(x) = 1 1 + δ 2 2 1/2 2 v(x) (1 + v(x)) , x ∈ (-∞, 0), 2 √ v 0 exp( εδ 1-cερ x) 1 + v 0 exp( 2εδ 1-cερ x) ≤ 1 + δ 2 2 1/2 B 0 ≤ 2 √ v 0 exp( εδ 1+cερ x) 1 + v 0 exp( 2εδ 1+cερ x) , (47) 
v 0 = 1 -1 -(1 + δ 2 2 )B 2 0 (0) 1 + 1 -(1 + δ 2 2 )B 2 0 (0) < 1.
It remains to notice that we can choose κ = εδ 1 + cερ in the proof for (X, Y ), which needs to satisfy

κ ≤ σ 2 = α 1/2 √ δ 2 5/4 . ( 48 
)
We have already chosen ε = α 7/2 hence

κ ≤ εδ = δα 7/2 ≤ α 1/2 √ δ 2 5/4
for α small enough, and (48) is satisfied. The a priori estimate for B 0 allows to prove that there is a unique solution of the integro-differential equation (45) which satisfies the estimate (47) (see [START_REF] Hale | Ordinary differential equations[END_REF]). Since B 0 is in factor in A 0 , A 1 , A 2 , A 3 , B 1 the behavior for x → -∞ of the coordinates of the unstable manifold, is governed by the behavior of B 0 . The estimates indicated in Lemma 11 results from ( 21), ( 27) and(28). This ends the proof of Lemma 11. In the last section, we need the following result:

Corollary 16 On the unstable manifold described in Lemma 11 we have the estimates

|A 0 A 1 | ≤ cεe εδx , x ∈ (-∞, 0], B 2 0 (x) ≤ (B 2 00 + cε)e 2εδx .
The first estimate is better than the one directly obtained with Lemma 11. For proving it, we notice that

A 0 A 1 = A * A * ′ + A 0 A * ′ + A * A 1 + A 0 A 1 ,
and from (21) we have

| A * A 1 | ≤ B 0 (|X| + |Y |) + 2B 2 0 A * |z 1 | ≤ B 0 ρεδ + 2B 0 εδ A * 2 + δ 2 B 2 0 2 1/2 + O(ε) ≤ cεe εδx .
We also have directly

| A * A * ′ | = 2(1 + δ 2 )B 0 B ′ 0 ≤ cεe 2εδx ,
and from Lemma 11

| A 0 A * ′ | + | A 0 A 1 | ≤ ce 2δx ε √ α ε α ≤ cεe 2εδx .
The second estimate results from (45), which implies for a certain c > 0

|(B 2 0 (x)e -2εδx ) ′ | ≤ cε 2 δe κx , with κ ∼ εδ. This leads to (x < 0) B 2 0 (x)e -2εδx -B 2 00 ≤ cε 2 δ 0 x e κτ dτ ≤ cε 2 δ κ .
Corollary 16 is proved.

Remark 17

The above corollary allows to improve the estimates for the monodromy operators S 0 (x, s) and S 1 (x, s) as shown in Appendix A.1. This allows to avoid the division by √ α in the estimates in subsection 4.9, and finally allows a better choice α = ε 1/3 instead of ε 2/7 . Since this does not lead to major changes in the sequel, we keep α = ε 2/7 for simplicity.

Let us define the hyperplane

H 0 B 0 = (1 -η 2 0 δ 2 ) 1/2 .

Intersection of the stable manifold with H 0

We need to give precisely the intersection of the unstable manifold with the hyperplane B 0 = 1 -η 2 0 δ 2 . This gives a two-dimensional manifold lying in the 4-dimensional manifold W g ∩ H 0 . Taking into account of

A * = δα λ r , λ i ∼ δ 1/2 α 1/2 2 1/4 , ε = α 7/2 , A * z 10 ∼ δ √ 2 B 00 , |Y (0)| = O(ε 2/7 |X 0 | + B 00 ),
we obtain a two-dimensional intersection which is tangent to a plane (parameters x 1 , x 2 ) with principal part given by

A 0 = δα + εδ 1/2 2 3/4 α 1/2 B 00 (x 1 -x 2 ) A 1 = εδB 00 x 1 - (1 + δ 2 ) √ 2 B 3 00 εδ α A 2 = δ 3/2 2 1/4 B 00 α 1/2 ε(x 1 + x 2 ) + O(α 1/2 ε) (49) A 3 = √ 2δ 2 B 00 εαx 2 + O(αε) B 00 = 1 -η 2 0 δ 2 ∼ (1 + δ 2 ) -1/2 , with |x 1 | + |x 2 | ≤ ρ, δ 0 ≤ δ ≤ δ 1 , ε = α 7/2 , α 2 = η 2 0 (1 + δ 2 ) -1 > 0,
and where we do not write B 1 since we know that this manifold lies in the 5 dimensional manifold W g .

Stable manifold of M +

We show the following

Lemma 18 For ε small enough, α = [η 2 0 (1 + δ 2 ) -1] 1/2 small enough, δ 0 ≤ δ ≤ 0.95, the 3-dimensional stable manifold of M + is included in the 5-dimensional manifold W g , it exists for A 0 , A 1 , A 2 , A 3 in a ball of small radius η (indepen- dent of ε, α), is analytic in parameters (ε, δ), and reaches B 0 (0) = B 00 def = 1 -η 2 0 δ 2 . Moreover as x → +∞, (A 0 , A 1 , A 2 , A 3 , B 0 -1, B 1 ) → 0 as exp(- √ 2εx), z 0 + z 1 def = B 0 -1 δ 1/2 ≃ - (1 -B 00 )(1 -tanh(εx/ √ 2) 1 + B 00 tanh(εx/ √ 2) , (50) 
|z 0 + z 1 | ≤ 0.282. Let us define δ ′ = δ 1/2 ,
and choose a new basis

V - r =          1 -δ ′ √ 2 0 δ ′3 √ 2 0 0          , V - i =          0 -δ ′ √ 2 δ ′2 -δ ′3 √ 2 0 0          , V + r =          1 δ ′ √ 2 0 -δ ′3 √ 2 0 0          , V + i =          0 δ ′ √ 2 δ ′2 δ ′3 √ 2 0 0          , W - 1 =         0 0 0 0 1 -ε √ 2         , W + 1 =         0 0 0 0 1 ε √ 2         , for defining new coordinates (x 1 , x 2 , y 1 , y 2 , z 0 , z 1 ) such that Z = (0, 0, 0, 0, 1, 0) t + δ ′ x 1 V - r + δ ′ x 2 V - i + δ ′ y 1 V + r + δ ′ y 2 V + i + δ ′ z 0 W - 1 + δ ′ z 1 W + 1 A 0 = δ ′ (x 1 + y 1 ) A 1 = - δ ′2 √ 2 (x 1 -y 1 + x 2 -y 2 ) A 2 = δ ′3 (x 2 + y 2 ) (51) A 3 = δ ′4 √ 2 (x 1 -y 1 -x 2 + y 2 ) B 0 = 1 + δ ′ (z 0 + z 1 ) B 1 = -ε √ 2δ ′ (z 0 -z 1 ).
A simple resolution leads to

x 1 = A 0 2δ ′ - A 1 2 √ 2δ ′2 + A 3 2 √ 2δ ′4 x 2 = - A 1 2 √ 2δ ′2 + A 2 2δ ′3 - A 3 2 √ 2δ ′4 y 1 = A 0 2δ ′ + A 1 2 √ 2δ ′2 - A 3 2 √ 2δ ′4 y 2 = A 1 2 √ 2δ ′2 + A 2 2δ ′3 + A 3 2 √ 2δ ′4 z 0 = B 0 -1 2δ ′ - B 1 2εδ ′ √ 2 z 1 = B 0 -1 2δ ′ + B 1 2εδ ′ √ 2 .
Let us define

A 0 = δ ′ (x 1 + y 1 ) = δ ′ u (52) B 0 = 1 + δ ′ v,
then system (1) reads as

A ′ 0 = A 1 , A ′ 1 = A 2 , A ′ 2 = A 3 , A ′ 3 = -A 0 δ 2 + 2δ 2 v + δu 2 + (1 + δ 2 )v 2 , v ′ = 1 δ ′ B 1 , B ′ 1 = ε 2 (1 + δ ′ v) 2δ ′ v + δv 2 + (1 + δ 2 )δu 2 .
With variables (51) this gives

x ′ 1 = - δ ′ √ 2 (x 1 + x 2 ) - δ ′ ug(u, v) 2 √ 2 , x ′ 2 = δ ′ √ 2 (x 1 -x 2 ) + δ ′ ug(u, v) 2 √ 2 , y ′ 1 = δ ′ √ 2 (y 1 + y 2 ) + δ ′ ug(u, v) 2 √ 2 , y ′ 2 = - δ ′ √ 2 (y 1 -y 2 ) - δ ′ ug(u, v) 2 √ 2 , z ′ 0 = -ε √ 2z 0 - εδ ′ 2 √ 2 f (u, v), z ′ 1 = ε √ 2z 1 + εδ ′ 2 √ 2 f (u, v), g(u, v) = u 2 + 2δv + (1 + δ 2 )v 2 f (u, v) = 3v 2 + δ ′ v 3 + (1 + δ 2 )(1 + δ ′ v)u 2 ,
where the linear part is as expected.

For finding the stable manifold of M + we put the system in an integral form, looking for solutions tending to 0 as x → +∞ :

X(x) = e -Lx X 0 - δ ′ 2 √ 2 x 0 e -L(x-s) u(s)G(u, v)(s)ds, Y (x) = - δ ′ 2 √ 2 +∞ x e L(x-s) u(s)G(u, v)(s)ds, (53) 
z 0 (x) = e -ε √ 2x z 00 - εδ ′ 2 √ 2 x 0 e -ε √ 2(x-s) f (u, v)(s)ds, z 1 (x) = - εδ ′ 2 √ 2 +∞ x e ε √ 2(x-s) f (u, v)(s)ds, (54) 
where

G = g -g , L = δ ′ √ 2 1 1 -1 1 .
We notice that

e Lx = e δ ′ x √ 2 cos δ ′ x √ 2 sin δ ′ x √ 2 -sin δ ′ x √ 2 cos δ ′ x √ 2 , ( 55 
)
||e -Lx || ≤ e -δ ′ x √ 2 , x > 0,
hence, we have the estimates (for x ≥ 0)

e εx √ 2 || x 0 e -L(x-s) e -εs √ 2 ds|| ≤ x 0 e - (δ ′ -2ε)(x-s) √ 2 ds ≤ √ 2 δ ′ -2ε , e εx √ 2 || ∞ x e L(x-s) e -εs √ 2 ds|| ≤ ∞ x e (δ ′ +2ε)(x-s) √ 2 ds = √ 2 δ ′ + 2ε
.

We need a precise estimate on |z 00 |, for being able to obtain an intersection of the stable manifold of M + with the unstable manifold of M -computed previously at Lemma 11. We need to reach values of (X 0 , z 00 ) such that

z 00 + z 1 (0) = -h(δ) + α 2 δ 2 2δ ′ (1 + δ 2 ) + O(α 4 ) < 0 |X 0 | close to 0, with h(δ) = 1 δ 1/2 (1 -1 - δ 2 1 + δ 2 ),
and where

η 0 - 1 1 + δ 2 ∼ α 2 2 1 + δ 2 .
We notice that |z 00 + z 1 (0)| is very closely below h(δ). Moreover, we notice that the maximum of h(δ) obtained for δ = 1+ √ 5 2 ≃ 1.618, is such that

h max = ( 1 + √ 5 2
) -2 ≃ 0.382.

Remark 19

The strategy is to first solve (53) with respect to (X, Y ) in function of

(X 0 , v) ∈ R 2 × C 0 ε √
2 (defined below) and then to solve the first integral (3) with respect to (z 0 -z 1 ) in function of (X 0 , v), which gives an integro differential equation for v. It is then possible to solve this integro-differential equation for v(x) in C 0 ε √ 2 in function of (X 0 , z 00 ). The stable manifold of M + is then obtained with (X, Y, z 0 , z 1 ) as a function of (X 0 , z 00 ).

Let us define for this section

C 0 κ = {X ∈ C 0 [0, +∞); X(x)e κx is bounded}
equiped with the norm

||X|| κ = sup (0,+∞) |X(x)e κx |.
Using (55), the system (53,54) gives two scalar equations with unknown functions (u, v). We obtain for u(x) :

u(x) = e -δ ′ x √ 2 u 0 (x) - δ ′ 2 ∞ 0 e -δ ′ |x-s| √ 2 cos[ δ ′ |x -s| √ 2 - π 4 ]u(s)g(u, v)(s)ds, (56) 
with

u 0 (x) = x 10 cos δ ′ x √ 2 -x 20 sin δ ′ x √ 2 .
Hence, we obtain the following estimate in

C 0 ε √ 2 , ||u|| ε √ 2 ≤ ||X 0 e -δ ′ x √ 2 || ε √ 2 + √ 2δ (δ -4ε 2 ) ||u|| ε √ 2 ||g|| 0 .
Moreover we have

||g|| 0 ≤ ||u|| 2 ε √ 2 + 2δ||v|| ε √ 2 + (1 + δ 2 )||v|| 2 ε √ 2 , ≤ ||u|| 2 ε √ 2 + 3||v|| ε √ 2 (57) 
which, for δ ≤ 0.95

||v|| ε √ 2 ≤ h(δ) = 0.282, gives √ 2[2δ||v|| ε √ 2 + (1 + δ 2 )||v|| 2 ε √ 2 ] < 0.972 < 1. It results that for ||v|| ε √ 2 ≤ 0.282 we can bound ||u|| ε √ 2 as 0.028||u|| ε √ 2 ≤ ||X 0 e -δ ′ x √ 2 || ε √ 2 + √ 2δ (δ -4ε 2 ) ||u|| 3 ε √ 2
which, for |X 0 | ≤ 0.0015 and ε small enough, leads to

||u|| ε √ 2 ≤ 50||X 0 e -δ ′ x √ 2 || ε √ 2 ≤ 50|X 0 |, (58) 
||g|| 0 ≤ 0.98 √ 2 .
Remark 20 The fact that

(x 1 + y 1 ) is in factor of g(x 1 + y 1 , z 0 + z 1 ) for the estimates of ||X|| ε √ 2 and ||Y || ε √ 2 is essential here, since this leaves a freedom on ||z 0 + z 1 || ε √ 2
. This is the main difference with section 4, and this allows to use the direct method for the stable manifold of M + , contrary to what we did for the computation of the unstable manifold of M -. In fact, using the direct method for the unstable manifold would give a too small bound for B 0 , with no possibility of connection with the stable manifold of M + .

Then we obtain

||x j || ε √ 2 ≤ ||X 0 e -δ ′ x √ 2 || ε √ 2 + δ ′ 2(δ ′ -2ε) ||u|| ε √ 2 ||g|| ≤ ||X 0 e -δ ′ x √ 2 || ε √ 2 + 1 2 √ 2 ||u|| ε √ 2 (59) 
≤ (1 + 25 √ 2 )||X 0 e -δ ′ x √ 2 || ε √ 2 = 18.7||X 0 e -δ ′ x √ 2 || ε √ 2 ||y j || ε √ 2 ≤ 1 2 ||u|| ε √ 2 (||u|| 2 ε √ 2 + 3||v|| ε √ 2 ) (60) ≤ 25 √ 2 ||X 0 e -δ ′ x √ 2 || ε √ 2 = 17.7||X 0 e -δ ′ x √ 2 || ε √ 2 ,
which is valid, as soon as ε is small enough and

|X 0 | ≤ 0.0015, δ 0 ≤ δ ≤ 0.95, ||z 0 + z 1 || ε √ 2 ≤ 0.282 holds.

Using the first integral (3)

Instead of using the differential equations for z 0 and z 1 we use the first integral (3):

B 2 1 = ε 2 2 (B 2 0 -1 + A 2 0 ) 2 + ε 2 δ 2 A 2 0 B 2 0 + 2ε 2 A 1 A 3 -ε 2 A 2 2 , hence B 2 1 = ε 2 2 [(B 2 0 -1) 2 + 2δ(1 + δ 2 )u 2 (2δ ′ v + δv 2 ) +δ 2 u 4 + 8δ 3 (x 1 y 1 -x 2 y 2 )].
Taking the square root gives the traces of the stable and of the unstable manifolds on W g . The stable manifold needs satisfy B 1 = B ′ 0 > 0 , since B 0 < 1 for x = 0, B 0 = 1 for x = ∞, and the sign of B 1 does not change in the interval. Hence

B 1 = ε √ 2 (1 -B 2 0 ) 1 + 2δ ′ (1 + δ 2 )u 2 (2v + δ ′ v 2 ) + δu 4 + 8δ 2 (x 1 y 1 -x 2 y 2 ) (2v + δ ′ v 2 ) 2 1/2 (61) 
and the estimates we found for ||X|| ε √ 2 and ||Y || ε √ 2 may be used.

Remark 21 We notice that this implies that v < 0, v ′ > 0, and |v(x

)| max = |z 00 + z 1 (0)| is then O(α 2 ) close to h(δ).
We observe that

B 1 = B ′ 0 = ε √ 2 [1 -B 2 0 ]
may be easily integrated (B 0 (0) = 1 -η 2 0 δ 2 ), B 0 (∞) = 1), and moreover leads to

z 0 -z 1 = 1 2 v(2 + δ ′ v)
i.e.

z 1 = - δ ′ 4 (z 0 + z 1 ) 2 < 0 (62)
which is the solution of (54) for u = 0. Let us show that the expression above for B 1 , is valid. Using ||v|| ε √ 2 ≤ 0.282, and δ ≤ 0.95, we obtain

1 -B 2 0 = |δ ′ v|(2 -|δ ′ v|) ≥ 1.725δ ′ |v| so that 2δ ′ (1 + δ 2 )u 2 (2v + δ ′ v 2 ) + δu 4 + 8δ 2 (x 1 y 1 -x 2 y 2 ) (2v + δ ′ v 2 ) 2 ≤ 4u 2 + 0.24|u| 1.725|v| + u 4 + 0.02u 2 (1.725) 2 v 2 .
In using (59,60)

|8δ 2 (x 1 y 1 -x 2 y 2 )| ≤ 160|X 0 ||u| |u| 2 + 3|v| ≤ 480|X 0 ||u| 1 40 |u| + |v| ≤ 0.72|u| 1 40 |u| + |v| ,
and we also have

|8δ 2 (x 1 y 1 -x 2 y 2 )| ≤ 8|X||u|(0.075|u| + 3|v|).
We now assume that for x ∈ (0, ∞)

|u(x)| ≤ 0.9|v(x)|, (63) 
which has to be checked at the end. Then

2δ ′ (1 + δ 2 )u 2 (2v + δ ′ v 2 ) + δu 4 + 8δ 2 (x 1 y 1 -x 2 y 2 ) (2v + δ ′ v 2 ) 2 ≤ 0.68,
and also

2δ ′ (1 + δ 2 )u 2 (2v + δ ′ v 2 ) + δu 4 + 8δ 2 (x 1 y 1 -x 2 y 2 ) (2v + δ ′ v 2 ) 2 ≤ 9.383(|X| + |Y |)
implying a smooth function for the square root, provided that we check a posteriori (63) and that |X| + |Y | is small enough. It follows from (61) that z 0 -z 1 is a smooth function of (v, X, Y ) for ε small enough, δ < 0.95, |v| ≤ 0.282,

|X| + |Y | ≤ 0.9|v|, |X| + |Y | small enough, so that z 0 -z 1 = 1 2 v(2 + δ ′ v)[1 + Z(X, Y )], |Z(X, Y )| ≤ 10(|X| + |Y |).
It results that

-ε √ 2(z 0 -z 1 ) = v ′ = -ε √ 2v(1 + δ ′ 2 v)[1 + Z(X, Y )], (64) 
where X, Y are expressed in function of (X 0 , v) (non local expression in v).

Then we can integrate the integro-differential equation, as in section 4.10. We introduce the new variable w as

w ′ = v ′ v(1 + (δ ′ /2)v) , w = ln -v 1 + (δ ′ /2)v , v = - e w 1 + δ ′ 2 e w ;
w decreases from w 0 to -∞ for x ∈ (0, ∞), while v grows from v 0 < 0 to 0. We observe now that we have

|Z(X(X 0 , v), Y (X 0 , v))| ≤ 10(|X| + |Y |) ≤ 20(18.7 + 17.7)|X 0 | ≤ 740|X 0 |,
so that, expressed in term of w, we have

Z(X(X 0 , v(w)), Y (X 0 , v(w))) = h(w), |h(w)| ≤ c|X 0 | < 1/2
for |X 0 | small enough. We then obtain, by simple integration

ε √ 2x(1 -c|X 0 |) ≤ w 0 -w(x) ≤ ε √ 2x(1 + c|X 0 |).
Remark 22 The constant c above may be replaced by

ce -ε √ 2x since |X| and |Y | lie in C 0 ε √ 2 .
We deduce the estimate

v 0 1 -tanh( εx(1-c|X0|) √ 2 ) 1 + B 00 tanh( εx(1-c|X0|) √ 2 ) ≤ v(x) ≤ v 0 1 -tanh( εx(1+c|X0|) √ 2 ) 1 + B 00 tanh( εx(1+c|X0|) √ 2 ) ( 65 
)
where v 0 = B 00 -1 δ ′ , B 00 = B 0 (0). The a priori estimate for v obtained in (65) allows to prove (see [START_REF] Hale | Ordinary differential equations[END_REF]) the existence and uniqueness of a solution for (64), provided that (63) is satisfied on the whole interval x ∈ [0, ∞). For checking this, we notice from (65) that

|v(x)| ≥ |v 0 |e -ε √ 2x , |u(x)| ≤ 50|X 0 |e -δ ′ x √ 2 ,
where the last estimate results from the bound for ||g|| 0 and an estimate for u(x)e δ ′ x √ 2 from (56). Hence (63) is satisfied as soon as

50|X 0 | ≤ 0.9|v 0 |,
which is OK for |X 0 | small enough. Lemma 18 is proved.

Intersection of the stable manifold with H 0

We need to compute the intersection of the 3-dimensional stable manifold of M + with the hyperplane H 0 defined by

B 0 = 1 -η 2 0 δ 2 . ( 66 
)
We then obtain a 2-dimensional sub-manifold living in the 4-dimensional manifold W g ∩ H 0 . We have by construction

A 0 = δ 1/2 (x 10 + y 10 ), A 1 = - δ √ 2 (x 10 + x 20 -y 10 -y 20 ) (67) 
A 2 = δ 3/2 (x 20 + y 20 )

A 3 = δ 2 √ 2 (x 10 -x 20 -y 10 + y 20 ),
where y 10 and y 20 are expressed in function of X 0 = (x 10 , x 20 ), with the restriction

|x 10 | + |x 20 | ≤ η.

Intersection of the two manifolds

We need to see the intersection of the plane (49) tangent to the unstable manifold of M -, with the plane tangent to the stable manifold of M + given by (67).

We then find a linear system with 4 unknowns (x 1 (u) , x 2 (u) , x

20 ), with the restrictions |x

(s) 10 | + |x (s) 20 | ≤ η, |x 1 (u) | + |x 2 (u) | ≤ ρ.
We then have (x

(s) 10 + y (s) 10 ) = δ ′ α + ε 2 3/4 α 1/2 B 00 (x 1 (u) -x 2 (u) ) -(x (s) 10 + x (s) 20 -y (s) 10 -y (s) 20 ) = √ 2εB 00 x 1 (u) -(1 + δ 2 )B 00 ε α (68) (x (s) 20 + y (s) 20 ) = α 1/2 ε 2 1/4 B 0 (x 1 (u) + x 2 (u) ) (x (s) 10 -x (s) 20 -y (s) 10 + y (s) 20 ) = 2αεB 0 x 2 (u) ,
where we need to express (y , X

, then we have (with c = 1+δ 2 4 B 00 )

X (s) 0 = δ ′ 2 α + c ε α c ε α + M 1 X (u) , Y (s) 0 = δ ′ 2 α -c ε α 0 + M 2 X (u) , with M 1 = εB 0 2 1/4 4α 1/2 1 -2 1/4 α 1/2 -1 + 2 3/4 α 3/2 -2 1/4 α 1/2 + √ 2α √ 2α -2 3/4 α 3/2 , M 2 = εB 0 2 1/4 4α 1/2 1 + 2 1/4 α 1/2 -1 -2 3/4 α 3/2 2 1/4 α 1/2 + √ 2α √ 2α + 2 3/4 α 3/2 .
The matrix M 2 is invertible with

M -1 2 = 4α 1/2 εB 0 2 1/4 det(M ′ 2 ) √ 2α + 2 3/4 α 3/2 1 + 2 3/4 α 3/2 -2 1/4 α 1/2 - √ 2α 1 + 2 1/4 α 1/2 det(M ′ 2 ) = [ √ 2α(1 + 2 1/4 α 1/2 ) 2 + (1 -2 3/4 α 3/2 )(2 1/4 α 1/2 + √ 2α)] = 2 1/4 α 1/2 + 2 √ 2α + O(α 3/2 ).
It results that

M 1 M -1 2 ∼ 1 2 3/2 α -2 3/2 α -1 X (s) 0 ∼ 1 2 3/2 α -2 3/2 α -1 Y (s) 0 + δ ′ 2 α δ ′ 2 α . (69) 
Equation ( 69) represents a 2-dim affine plane resulting from the 4-dim linear system expressing the intersection of the two manifolds. This gives a condition on coordinates of the stable manifold, and shows that this affine plane needs to intersect the tangent plane to the stable manifold given by (67) with Y (s) 0 expressed as a linear function of X (s) 0 . Let us show below (subsection 6.0.1) that in restricting a little δ, and for α small enough, then, for the tangent plane to the stable manifold at the intersection with H 0 , we have

|Y (s) 0 | ≤ k|X (s) 0 |, k < 1. ( 70 
)
This gives bounds for the slope of the tangent plane to this intersection which passes through the origin in (X (s) , Y (s) ): using (69), we see that

|X (s) 0 | ≤ k|X (s) 0 | + O(α),
hence this tangent plane intersects transversally the affine plane (69), and defines a unique point (X

(s) 0 , Y (s) 
0 ) = O(α). This satisfies the constraint of order η on (X (s) 0 , Y (s) 0 ). Then X (u) is uniquely determined in using (68). Finally, from (49) we obtain

A 0 (0) ∼ αδ A 1 (0) ∼ - (1 + δ 2 )δ √ 2 B 3 00 ε α A 2 (0) = O(B 00 εα 1/2 ) A 3 (0) = O(B 00 εα 1/2 ).
This proves that the intersection between the unstable manifold of M -and the stable manifold of M + is transverse while they both sit on W g and cross the hyperplane (66). Since it is the transverse intersection of two manifolds, depending analytically on parameters (ε, δ), the resulting curve depends analytically on these parameters. We observe that, along this intersection, and by construction, B 1 (x) = B ′ 0 (x) > 0. Its principal part on (-∞, 0] is given by (43) with B 0 (0) = B 00 = 1 -η 2 0 δ 2 , and on [0, +∞)by (50). The Theorem 1 is then proved. Moreover, since (51), (59), (60) hold we also have the following Corollary 23 For x ∈ [0, +∞) there exists c > 0 independent of ε, δ such that for the heteroclinic curve

|A (m) 0 (x)| ≤ cαδe -δ ′ x √ 2 , m = 0, 1, 2, 3.

Proof of (70)

The tangent plane to the stable manifold is given by Y 0 expressed with (53) for x = 0, u(x) (function of X 0 ) given by ( 56), where u is replaced by 0 in g(u, v) and G(u, v). Then we obtain the estimates

|Y 0 | ≤ 1 2 ||u|| 0 ||g|| 0 , ||u|| 0 ≤ |X 0 | + √ 2||u|| 0 ||g|| 0 , hence |Y 0 | ≤ 1 2 ||g|| 0 1 - √ 2||g|| 0 |X 0 |, where ||g|| 0 ≤ 2δ||v|| 0 + (1 + δ 2 )||v|| 2 0 .
Observing that ||v|| 0 is bounded by h(δ), it is easy to check that for δ ≤ 0.825, we obtain h(δ) = 0.2779, so that ||g|| 0 ≤ 0.5218, and

1 2 ||g|| 0 1 - √ 2||g|| 0 ≤ k < 1,
with k = 0.9956.

Study of the linearized operator

Let us redefine the heteroclinic connection we found at Theorem 1 as

(A * (x), B * (x)) ⊂ R 2 with 1 < 1 + δ 2 0 ≤ g = 1 + δ 2 ≤ 1 + (0.825) 2
, and where we know that, for ε small enough

B * (x) > 0, B ′ * (x) > 0 (A * (x), B * (x)) → (1, 0) as x → -∞ (0, 1) as x → +∞ ,
at least as e εδx for x → -∞, and at least as e - √ 2εx for x → +∞. The system (1) is now considered with B 0 complex valued, so in (1) B 2 is replaced by |B| 2 .

For being able to prove any persistence result under reversible perturbations of system (1) in R 4 × C 2 we need to study the linearized operator at the above heteroclinic solution. We follow the lines of [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF].

The linearized operator is given by

D 0 = {(A, C) ∈ H 4 η × H 2 η ; A ∈ H 4 η , C ∈ D 1 } D 1 = {C ∈ H 2 η ; ε -2 ||C ′′ || L 2 η + ε -1 ||C ′ || L 2 η + ||C|| L 2 η def = ||C|| D1 < ∞}
equiped with natural scalar products. Below, we prove the following Lemma 24 Except maybe for a set of isolated values of g, the kernel of M g in L 2 η is one dimensional, span by (A ′ * , B ′ * ), and its range has codimension 1, L 2orthogonal to (A ′ * , B ′ * ). M g has a pseudo-inverse acting from L 2 η to D 0 for any η > 0 small enough, with bound independent of ε.

The operator L g has a trivial kernel, and its range which has codimension 1, is L 2 -orthogonal to B * (B * / ∈ L 2 ). L g has a pseudo-inverse acting respectively from L 2 η to D 1 for η > 0 small enough, with bound independent of ε.

Remark 25

The above Lemma is useful for proving the persistence under reversible perturbations of our heteroclinic. We use the same technique as in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], for connecting rolls on the left side to orthogonal rolls on the right side (see [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF]). It appears that this is more difficult than the symmetric case solved in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF]. This is done at section 8.

Asymptotic operators

Let us define the operators obtained when x = ±∞ :

M - ∞ A C = -A (4) -2A ε -2 C ′′ -(g -1)C , M + ∞ A C = -A (4) -(g -1)A ε -2 C ′′ -2C , L - ∞ D = ε -2 D ′′ -(g -1)D, L + ∞ D = ε -2 D ′′ .
Notice that all these operators are negative. Furthermore, their spectra in L 2 (R) are such that

σ(M - ∞ ) = (-∞, -c -], c -= max{2, (g -1)} > 0, σ(M + ∞ ) = (-∞, -c + ], c + = c -, σ(L - ∞ ) = (-∞, -(g -1)], σ(L + ∞ ) = (-∞, 0].
Operators M g and L g are respectively relatively compact perturbations of the corresponding asymptotic operators M ∞ and L ∞ defined as

M ∞ = M - ∞ , x < 0 M + ∞ , x > 0 , L ∞ = L - ∞ , x < 0 L + ∞ , x > 0 ,
Their essential spectrum, i.e. the set of λ ∈ C for which λ -M g (resp. λ -L g ) is not Fredholm with index 0, is equal to the essential spectrum of M ∞ (resp. L ∞ ) (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]). The latter spectra are found from the spectra of M ± ∞ and L ± ∞ :

σ ess (M ∞ ) = (-∞, -c + ], σ ess (L ∞ ) = (-∞, 0].
In particular, this implies that 0 does not belong to the essential spectrum of M g , so that the operator M g is Fredholm with index 0. Moreover operators M ∞ and L ∞ are self adjoint negative operators in L 2 , and M ∞ has a bounded inverse [START_REF] Kato | Perturbation theory for linear operators[END_REF].

||M -1 ∞ || L 2 ≤ 1 c + .
This last property remains valid in exponentially weighted spaces, with weights e η|x| , and η sufficiently small, since this acts as a small perturbation of the differential operator (see [START_REF] Kapitula | Spectral and Dynamical Stability of Nonlinear Waves[END_REF] section 3.1). We show at section 7.3.1 that the kernel of M g is one-dimensional (except for a finite set of values of g), spanned by (A ′ * , B ′ * ) def = U * with a range orthogonal to U * in L 2 . Let us define the projections Q 0 on U ⊥ * and P 0 on U * , which are orthogonal projections in L 2 , then we need to solve in

L 2 η M g u = f in decomposing u = zU * + v, v = Q 0 u, (M ∞ + A g )v = Q 0 f
and we need to satisfy the compatibility condition f, U * = 0, while z is arbitrary and we obtain for v :

(I + M -1 ∞ A g )v = M -1 ∞ Q 0 f, where the operator M -1 ∞ A g is now a compact operator for which -1 is not an eigenvalue, since v ∈ U ⊥ * . It results that there is a number c independent of ε such that ||v|| L 2 η ≤ c||f || L 2 η .
From the form of operator M g and using interpolation properties, we obtain for v = (A, C)

||(A, C)|| D0 ≤ c||f || L 2 η
with a certain c independent of ε.

Properties of L g

Notice that L g is self adjoint in L 2 (R) and that

L g B * = 0, but B * / ∈ L 2 (R).
This property allows to solve explicitely the equation

L g u = f ∈ L 2 η with respect to u ∈ L 2
η (using variation of constants method), and shows that it has a unique solution, provided that

R f B * dx = 0. We obtain u(x) = ∞ x ε 2 B * (x) B 2 * (s) F (s)ds with F (s) = ∞ s f (τ )B * (τ )dτ for s ≥ 0 = - s -∞ f (τ )B * (τ )dτ for s ≤ 0.
By Fubini's theorem we can write for x ≥ 0

u(x) = ε 2 B * (x) ∞ x f (τ )B * (τ ) τ x ds B 2 * (s) dτ and, for x ≤ 0 u(x) = -ε 2 B * (x) x -∞ f (τ )B * (τ ) 0 x ds B 2 * (s) dτ -ε 2 B * (x) 0 x f (τ )B * (τ ) 0 τ ds B 2 * (s)
dτ .

The asymptotic properties of B * (x) at ±∞ imply, for x ≥ 0

|u(x)|e ηx ≤ Cε 2 ∞ x |f (τ )e ητ |(τ -x)e -η(τ -x) dτ ,
and for x ≤ 0

|u(x)|e -ηx ≤ Cε 2 2εδ x -∞ |f (τ )e -ητ |e -(η+εδ)(x-τ ) dτ + Cε 2 2εδ 0 x |f (τ )e -ητ |e (η-εδ)(τ -x) dτ . The bound ||u|| L 2 η ≤ c 2 ||f || L 2 η
follows from classical convolution results between functions in L 2 and functions in L 1 , since

0 -∞ e (η-εδ)τ dτ = 1 η -εδ , ∞ 0 τ e -ητ dτ = 1 η 2 .
Then, we choose η = 1 2 εδ, so that the pseudo-inverse of L g has a bounded inverse in L 2 η :

|| L g -1 || ≤ c 2 ,
where c 2 is independent of ε. Using the form of L g we obtain easily

||u|| D1 ≤ c 3 ||f || L 2 η with c 3 independent of ε.
Remark 26 The choice made for η is such that

η < εδ, η < ε √ 2,
for values of δ for which Theorem 1 is valid. This means that as x → -∞ (A * -1, B * ), and, as x → +∞ (A * , B * -1) tend exponentially to 0 faster than e -η|x| .

In fact, L g has the same properties as the operator M i in the proof of Lemma 7.3 in [START_REF] Haragus | Bifurcation of symmetric domain walls for the Bénard-Rayleigh convection problem[END_REF], see also [START_REF] Haragus | Grain boundaries in the Swift-Hohenberg equation[END_REF]: L g is Fredholm with index -1, when acting in L 2 η , for η small enough. L g has a trivial kernel, and its range is orthogonal to B * , with the scalar product of L 2 (R).

Properties of M g

We saw that M g is Fredholm with index 0. Furthermore the derivative of the heteroclinic solution belongs to its kernel:

M g A ′ * B ′ * = -A (5) = 0 0 . ( 71 
)
We show below (see section 7.3.1) that the kernel of M g , is one dimensional, then this implies that the range of M g needs satisfy the orthogonality with only one element. In fact, because of selfadjointness in L 2 , the range of 

M g is orthogonal in L 2 (R) to (A ′ * , B ′ * ) ∈ L 2 η .
M ± ∞ ζ ± (x) = 0
where there are only 2 possible good dimensions (on each side). This gives a bound = 2 to the dimension of the kernel of M g . Let us show that dimension 2 of ker M g implies non uniqueness of the heteroclinic, which contradicts Theorem 1, hence the only possibility is that the dimension is one. Let us choose arbitrarily g 0 and assume that the kernel of M g0 consists in

ζ 0 (x), ζ 1 (x)
where ζ 0 = (A ′ * , B ′ * )| g0 and let us decompose a solution of (1) in the neighborhood of g 0 as U = T a (U

(g0) * + a 1 ζ 1 + Y ), ( 72 
)
where T a represents the shift x → x + a, where a, a 1 ∈ R, and Y belongs to a subspace transverse to ker M g0 . Let us denote by Q 0 and P 0 = I -Q 0 , projections, respectively on the range of M g0 , and on a complementary subspace (Q 0 may be built in using the eigenvectors ζ * 0 , ζ * 1 of the adjoint operator M * g0 ). Let us denote by F (U, g) = 0

the system (1) where we look for an heteroclinic U for g = g 0 . Then, we have

F (U (g0) * , g 0 ) = 0, D U F (U (g0) * , g 0 ) = M g0 ,
and since M g0 ζ j = 0, j = 0, 1, using the equivariance under operator T a , we obtain (denoting

F 0 = F (U (g0) *
, g 0 ) and [..] (2) the argument of a quadratic operator)

0 = M g0 Y + (g -g 0 )∂ g F 0 + 1 2 D 2 UU F 0 [a 1 ζ 1 + Y ] (2) + +O(|g -g 0 |[|g -g 0 | + |a 1 | + ||Y ||] + ||Y || 3 ).
The projection Q 0 of this equation allows to use the implicit function theorem to solve with respect to Y and then obtain a unique solution

Y = Y(a 1 , g), with Y = -(g -g 0 ) M g0 -1 Q 0 ∂ g F 0 - 1 2 M g0 -1 Q 0 D 2 UU F 0 [a 1 ζ 1 ] (2) + +O(|g -g 0 |(|g -g 0 | + |a 1 |) + |a 1 | 3 )).
Then projecting on the complementary space, (only one equation since we work in the subspace orthogonal to ζ * 0 ), we may observe (see the proof below) that P 0 ∂ g0 F 0 = 0 and then obtain the "bifurcation" equation as

q(a 1 , g -g 0 ) = O((|g -g 0 | + |a 1 |) 3 ),
where the function q is quadratic in its arguments and

q| g=g0 ζ 1 = 1 2 P 0 D 2 UU F 0 [a 1 ζ 1 ] (2) .
This equation is just at main order a second degree equation in a 1 depending on g -g 0 . Provided that the discriminant is not 0, the generic number of solutions is 2 or 0. If the discriminant is 0 for g = g 0 , we just go a little farther in g, and obtain a non zero discriminant, since the discriminant cannot stay = 0, because of the analyticity in g of the heteroclinic. This is true except for a set of isolated values of g. We can then use the implicit function theorem for finding corresponding solutions for the system with higher order terms. In fact we already know a solution, corresponding to U

(g) * = U (g0) * + (g -g 0 )∂ g U (g0) * + h.o.t.
which corresponds to specific values for a 1 and Y, of order O(g -g 0 ). It then results that there is at least another solution of order O(g -g 0 ), so that there exists another heteroclinic, in the neighborhood of the known one (then in contradiction with Theorem 1).

Remark 27 The above proof with only 1 dimension in the Kernel

, provides Y = -(g -g 0 ) M g0 -1 ∂ g F 0 + O((g -g 0 ) 2
), which gives a unique heteroclinic. Since we found only one heteroclinic, this shows that the kernel is of dimension 1.

Proof of P

0 ∂ g F 0 = 0 Lemma 28 Any (u, v) in the kernel of M g satisfies R A * B * (B * u + A * v)dx = 0, and ∂ g F 0 (U * , g) = (A * B 2 * , A 2 * B * ) belongs to the range of M g , hence P 0 ∂ g F 0 = 0.

Proof.

Differentiating with respect to g the system (1) verified by the heteroclinic, we obtain

M g ∂ g A * ∂ g B * = A * B 2 * A 2 * B * = ∂ g F 0 (U * , g), hence (A * B 2 * , A 2 * B * ) belongs to the range of M g . When (u, v) ∈ ker M g , then (u, v) ∈ ker M * g where M g = M * g , when the adjoint is computed with the scalar product of L 2 , hence R A * B * (B * u + A * v)dx = 0. (73) 
Hence, the eigenvectors ζ * 0 , ζ * 1 of the adjoint M * g (the orthogonal of this 2dimensional eigenspace is the range of M g ), are orthogonal to

∂ g F 0 = (A * B 2 * , A 2 * B * )| g0 in L 2 .

Orthogonal domain walls in Bénard-Rayleigh convection

Let us start with the normal form obtained in [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF] at section 2.3. The rescaled system is smooth in its arguments and reads as

dA 0 dx = A 1 + f 0 (ε, k -, X, Y, Y ) dA 1 dx = A 2 + ek -A 0 + f 1 (ε, k -, X, Y, Y ) dA 2 dx = A 3 + ek -A 1 + f 2 (ε, k -, X, Y, Y ) (74) 
dA 3 dx = ek -A 2 + A 0 (1 + f k 2 --A 2 0 -g|B 0 | 2 ) + f 3 (ε, k -, X, Y, Y ), dB 0 dx = i 2ε B 0 + B 1 + g 0 (ε, k -, X, Y, Y ) dB 1 dx = i 2ε B 1 + ε 2 B 0 (-1 + gA 2 0 + |B 0 | 2 ) + g 1 (ε, k -, X, Y, Y ), with e = 1/3, f = -5/36, X = (A 0 , A 1 , A 2 , A 3 ) ∈ R 4 , Y = (B 0 , B 1 ) ∈ C 2 , f 0 , f 1 , f 2 , f 3 smooth and odd in X, even in (Y, Y )
g 0 , g 1 smooth and even in X, odd in (Y, Y ), ε 2 k -and ε 2 k + (used below) denote the perturbations of the critical wave number k c respectively in the y direction and in the x direction. Choosing to take A j real means that we fix the free shift in the y direction.

In this section, we prove Theorem 5. The system satisfies the reversibility symmetry

f j (ε, k -, S 1 (X, Y, Y )) = (-1) j+1 f j (ε, k -, X, Y, Y ), j = 0, 1, 2, 3 g 0 (ε, k -, S 1 (X, Y, Y )) = -g 0 (ε, k -, X, Y, Y ), g 1 (ε, k -, S 1 (X, Y, Y )) = g 1 (ε, k -, X, Y, Y ), where S 1 (X, Y, Y ) = (A 0 , -A 1 , A 2 , -A 3 , B 0 , -B 1 ).
and we have the following estimates, where c is a generic constant, independent of ε,

|f 0 (ε, k -, X, Y, Y )| ≤ cε 5 |f 1 (ε, k -, X, Y, Y )| ≤ cε 2 |f 2 (ε, k -, X, Y, Y )| ≤ cε 2 |f 3 (ε, k -, X, Y, Y )| ≤ cε |g 0 (ε, k -, X, Y, Y )| ≤ cε 3 |g 1 (ε, k -, X, Y, Y )| ≤ cε 3 .
Notice that the truncation of the system above, obtained after killing f j , g j , k - and setting B 0 = B 0 e ix 2ε , suppressing the tilde, is just (1).

Remark 29

The system (74) is a normal form at cubic order, knowing that there are no term of degree 4 in (X, Y, Y ). This means that, due to the scaling, the higher order terms, not in normal form, in f j and g j may be respectively estimated by ε 7 , ε 6 , ε 5 , ε 4 , ε 7 , ε 6 for f 0 , f 1 , f 2 , f 3 , g 0 , g 1 .

Remark 30

The values e = 1/3, f = -5/36 come from a calculation from [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF] where

e = b ′ 0 4k 2 c and f = d ′′ 0 16k 2 c
where d ′′ 0 is the coefficient of k 2 in P 3 . We check that e 2 -f = 1/4. We know from Theorem 1 that for f j = g j = 0 and k -= 0, we have the heteroclinic solution

X = X * (x) = (A * , A ′ * , A ′′ * , A ′′′ * ) Y = Y * (x) = (B * (x)e ix 2ε , B ′ * (x)e ix 2ε
).

Since we leave now some freedom to the wave numbers, as well in the y direction, as in the x direction, the "end points" of the expected heteroclinic are no longer (1, 0) at -∞, and the circle (0, e ix 2ε ) at +∞. In fact the classical study of steady convective rolls, shows that these should be respectively (A

(-∞) 0 (k -), 0) and (0, B (+∞) 0
(ω, x)) (see [START_REF] Haragus | Local bifurcations, Center manifolds, and Normal forms in infinite-dimensional dynamical systems[END_REF] section 4.3.3 and Appendix A.4). We have (A

(-∞) 0 ) 2 = 1 - k 2 - 4 + σ 0 ε 2 k -+ O(ε 2 k 3 -), 1 -(A (-∞) 0 ) def = - ω 2 - 2 , ω 2 -= k 2 - 4 -σ 0 ε 2 k -+ O[k 2 -(|k -| + ε 2 ) 2 ], B (+∞) 0 (ω, x) = r 0 e iωx + O(ε 6 ) ω def = 1 2ε + ε ω + = 1 + ε 2 k + 2ε + O(ε 7 ), B (+∞) 0 e -iωx = C (+∞) 0 + iD (+∞) 0 r 2 0 = 1 - k 2 + 4 + O(ε 2 |k + | + ε 4 ) = 1 -O[( |ω + | + ε 2 ) 2 ], C (+∞) 0 = r 0 + O(ε 6 ), oscil. part(C (+∞) 0 ) = O(ε 6 ), D (+∞) 0 = O(ε 6 ).
Remark 31 The coefficient σ 0 introduced in the expression of (A (-∞) 0

) 2 depends on the Prandtl number.

Let us set

B 0 e -iωx = C 0 + iD 0 , then (74) becomes

A (4) 0 = 3ek -A ′′ 0 + A 0 [1 - k 2 - 4 -A 2 0 -g(C 2 0 + D 2 0 )] + f (75) 
C ′′ 0 = 2ε ω + D ′ 0 + ε 2 C 0 (-1 + ω 2 + + gA 2 0 + C 2 0 + D 2 0 ) + g r (76) 
D ′′ 0 = -2ε ω + C ′ 0 + ε 2 D 0 (-1 + ω 2 + + gA 2 0 + C 2 0 + D 2 0 ) + g i with f = f 0 (ε, k -, X, Y, Y ) + f 1 (ωx, ε, k -, X, Y, Y ) g r = g r0 (ε, k -, X, Y, Y ) + g r1 (ωx, ε, k -, X, Y, Y ) g i = g i0 (ε, k -, X, Y, Y ) + g i1 (ωx, ε, k -, X, Y, Y ),
where f 0 , g r0 , g i0 come from cubic terms of the normal form in (74), and where f 1 , g r1 , g i1 are 2π-periodic in ωx, and satisfy estimates

|f 1 (ωx, ε, k -, X, Y, Y )| ≤ cε 4 |X|(|X| 2 + |Y | 2 ) 2 |g r1 (ωx, ε, k -, X, Y, Y )| + |g i1 (ωx, ε, k -, X, Y, Y )| ≤ cε 6 |Y |(|X| 2 + |Y | 2 ) 2 , with X = (A 0 , A ′ 0 , A ′′ 0 , A ′′′ 0 ) Y = (C 0 + iD 0 , C ′ 0 + iD ′ 0 ).
Using the cubic normal form obtained in [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF], we have the following expressions,

f 0 = d 1 εA 0 (C 0 D ′ 0 -D 0 C ′ 0 ) + d 2 ε 2 A 0 A ′2 0 + d 3 ε 2 A ′′ 0 (77) +d 4 ε 2 A 2 0 A ′′ 0 + d 5 ε 2 A ′′ 0 (C 2 0 + D 2 0 ) + d 6 ε 2 A 0 (C ′2 0 + D ′2 0 ) + +d 7 ε 2 A ′ 0 (C 0 C ′ 0 + D 0 D ′ 0 ) + d 8 ε 3 A ′′ 0 (C 0 D ′ 0 -D 0 C ′ 0 ) + O(ε 4 ), g r0 + ig i0 = iε 3 (C ′ 0 + iD ′ 0 )[c 0 + c 1 A 2 0 + c 2 (C 2 0 + D 2 0 )] +ε 3 c 3 (C 0 + iD 0 )(C 0 D ′ 0 -D 0 C ′ 0 ) (78) +ε 4 c 4 (C ′ 0 + iD ′ 0 )(C 0 D ′ 0 -D 0 C ′ 0 ) + c 5 ε 4 A 0 A ′′ 0 (C 0 + iD 0 ) +c 6 ε 4 [A ′2 0 (C 0 + iD 0 ) -A 0 A ′ 0 (C ′ 0 + iD ′ 0 )] +ic 7 ε 5 (C ′ 0 + iD ′ 0 )(2A 0 A ′′ 0 -A ′2 0 ) + ic 8 ε 5 (C 0 + iD 0 )(3A 0 A ′′′ 0 -A ′ 0 A ′′ 0 ),
where we notice that cubic terms as iεA 0 (B 0 B 1 -B 1 B 0 ) and ε 2 A 0 B 1 B 1 give contributions to the term gA 0 |B 0 | 2 , which are already taken into account in [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF]. Now, let us set

A 0 = A * + A 0 C 0 = B * + C 0 D 0 = D 0
where we observe that we expect

A 0 → x=-∞ A (-∞) 0 -1 = - ω 2 - 2 C 0 + i D 0 → x=+∞ C (+∞) 0 + iD (+∞) 0 -1 ∼ - ( ω + + O(ε 2 )) 2 2 .
Then (75,76) becomes

M g ( A 0 , C 0 ) = -3ek -(A ′′ * + A 0 ′′ ) + k 2 - 4 (A * + A 0 ) + φ 0 2 ω+ ε D 0 ′ + ω 2 + (B * + C 0 ) + ψ 0r , (79) 
L g D 0 = - 2 ω + ε (B ′ * + C 0 ′ ) + ω 2 + D 0 + ψ 0i , (80) 
with φ 0 , ψ 0r , ψ 0i smooth functions of (ωx, ε, k -, k + , X, Y ) where

X = ( A 0 , A 0 ′ , A 0 ′′ , A 0 ′′′ ) Y = ( C 0 , D 0 , C 0 ′ , D 0 ′ ) φ 0 = φ 00 (ε, k -, X, Y ) + φ 01 (ωx, ε, k -, X, Y ) ψ 0r = ψ 0r0 (ε, k -, X, Y ) + ψ 0r1 (ωx, ε, k -, X, Y ) ψ 0i = ψ 0i0 (ε, k -, X, Y ) + ψ 0i1 (ωx, ε, k -, X, Y ) | φ 01 (ωx, ε, k -, X, Y )| ≤ cε 4 | ψ 0r1 (ωx, ε, k -, X, Y )| + | ψ 0i1 (ωx, ε, k -, X, Y )| ≤ cε 4 .
More precisely, we have, using Lemma 11 and Corollaries 16 and 23,

φ 00 (ε, k -, X, Y ) = 3A * A 0 2 + A 0 3 + 2gB * A 0 C 0 (81) +g(A * + A 0 )( C 0 2 + D 0 2 ) + f 00 , ψ 0r0 (ε, k -, X, Y ) = 2gA * A 0 C 0 + gB * A 0 2 + 2B * C 0 2 + g A 0 2 C 0 (82) +(B * + C 0 )( C 0 2 + D 0 2 ) + g 00r , ψ 0i0 (ε, k -, X, Y ) = 2gA * A 0 D 0 + 2B * C 0 D 0 + g A 0 2 D 0 + D 0 ( C 0 2 + D 0 2 ) + g 00i , (83) 
f 00 = O[ε 3 e εδx χ (-∞,0) + αε 2 e -δ ′ x √ 2 χ (0,∞) + ε 2 |X| +ε(| D 0 ′ | + ε| D 0 |)(χ (-∞,0) + e -δ ′ x √ 2 χ (0,∞) )], g 00r = O[ε 3 e εδx χ (-∞,0) + α 2 ε 2 e -δ ′ x √ 2 χ (0,∞) + ε 2 |X|(e εδx χ (-∞,0) + χ (0,∞) ) +ε(| C 0 ′ | + | D 0 ′ | + ε| D 0 |)], g 00i = O[ε 2 e εδx χ (-∞,0) + ε 2 e -ε √ 2x χ (0,∞) + ε 2 |X|(e εδx χ (-∞,0) + χ (0,∞) ) +ε(| C 0 ′ | + | D 0 ′ | + ε| D 0 |)].
where f 00 and g 00r + ig 00i come from the rest of the cubic normal form written in (77,78)) and χ (-∞,0) and χ (0,∞) are the characteristic functions on the corresponding interval.

Remark 32 We notice that the estimates for the terms independent of X, Y come from for f 00 :

d 3 ε 2 A ′′ -1, 0, 0, 0) = (O( ω 2 -), 0, 0, 0) Y (+∞) = (C (+∞) 0 -1, D (+∞) 0 ) = [O(( ω + + ε 2 ) 2 ), O(ε 6 )],
then, taking care, in (75,76), of the oddness of f with respect to X, and the oddness of g r , g i with respect to Y, we notice that the limit terms independent of ( A 0 , C 0 , D 0 ) in the right hand side of (79,80) as x → -∞ are

k 2 - 4 A (-∞) 0
+ φ 00 (ε, k -, X (-∞) , 0) exp limit as e εδx (as B * ), 0 exp limit as e εδx (as B * ) 0 exp limit as e εδx (as B ′ * ).

The limit of the right hand side of (79,80) as x → +∞ is 0 exp limit as e - √ 2εx (as A * )

2 ω ε (D (+∞) 0

) ′ + ω 2 C (+∞) 0 + ψ 0r (ωx, ε, k -, 0, Y (+∞) ) exp limit as e -2 √ 2εx (as A 2 * ), - 2 ω ε (C (+∞) 0 ) ′ + ω 2 D (+∞) 0 + ψ 0i (ωx, ε, k -, 0, Y (+∞) ) exp limit as e -2 √ 2εx (as A 2 * ).
More precisely we have, from (81)

φ 0 = 3A * [α 2 -(χ 2 --χ -) + 2α -χ -A 0 + A 0 2 ] + α 3 -(χ 3 --χ -) (86) +3α 2 -χ 2 -A 0 + 3α -χ -A 0 2 + A 0 3 + 2gB * [α -χ -C 0 + β + χ + A 0 + A 0 C 0 ] +g(A * + α -χ -+ A 0 )[(β + χ + + C 0 ) 2 + (γ + χ + + D 0 ) 2 ] + f 00 , f 00 = O[ε 3 e εδx χ (-∞,0) + αε 2 e -δ ′ x √ 2 χ (0,∞) + ε( ω + + ε 2 ) 2 χ + e -δ ′ x √ 2 +ε(| D 0 ′ | + ε| D 0 |) + ε 2 | X|].
We notice that for η = εδ/2, and due to Lemma 11, and Corollary 23,

1 ε 2 β ′ + = O(ε 3 ), 1 ε 2 γ ′ + = O(ε 3 ), ||A ′ * || L 2 η = O(α), ||B ′ * || L 2 η = O(ε 1/2 ), ||A ′2 * || L 2 η = O(α 2 ), , ||B ′2 * || L 2 η = O(ε 3/2 ), ||A ′′ * || L 2 η = O(α), , ||B ′′ * || L 2 η = O(ε 3/2 ).
Then we have the estimates (we use extensively 2|ab| ≤ a 2 + b 2 )

||ϕ 1 (k -) -( R A ′2 * dx) -1 R ϕ 1 A ′ * dx|| L 2 η ≤ c k 2 -+ ω 2 + + ε 4 √ ε + ε 3/2 (|k -| + | ω + |) , R ϕ 1 (k -)A ′ * dx = O[(|k -| + | ω + | + ε 2 ) 2 ],
where we use η = εδ/2 (η < εδ is necessary), integration by parts and

R A ′ * A ′′ * dx = 0, R (A * -χ -)A ′ * dx = O(1) R (1 -A 2 * )A ′ * χ -dx = O(1).
Using extensively

| A 0 (m) (x)e η|x| | ≤ c|| A 0 || H 4 η , m = 0, 1, 2, 3 | C 0 (m) (x)e η|x| | ≤ cε m || C 0 || D1 , m = 0, 1, we obtain || φ 0 || L 2 η ≤ c αε 2 + ( ω + + ε 2 ) 4 + ω 4 -+ ε ω 2 + + ||( A 0 , C 0 )|| 2 D0 + || D 0 || 2 D1 +c [ε 2 + ω 2 -+ ω 2 + ]||( A 0 , C 0 )|| D0 + ε 2 || D 0 || D1 . (87) 8.2 Second component of M g ( A 0 , C 0 ),
For the second component of M g ( A 0 , C 0 ), we have

M g ( A 0 , C 0 )| 2 = 2 ω + ε D 0 ′ + ω 2 + C 0 + ψ 0r + ϕ 2 (k -), with ϕ 2 (k -) = ω 2 + (B * -χ + ) - 2 ε 2 β ′ + χ ′ + - 1 ε 2 β + χ ′′ + + 2 ω + ε γ + χ ′ + -(3 -gA 2 * -3B 2 * )β + χ + + 2gA * B * α -χ -, (88) 
ψ 0r = ψ 0r (ωx, ε, k -, X, Y ) -χ + ψ 0r (ωx, ε, k -, 0, Y (+∞) ),
where γ + = D (+∞) 0

. For ψ 0r we have

ψ 0r = 2gA * (α -χ -C 0 + β + χ + A 0 + A 0 C 0 ) (89) +g(B * + β + χ + + C 0 )(α 2 -χ 2 -+ 2α -χ -A 0 + A 0 2 ) +2β 2 + (B * χ 2 + -χ + ) + 2B * C 0 (2β + χ + + C 0 ) +(β 2 + + γ 2 + )χ + [(χ + B * -1) + β + (χ 2 + -1)] + C 0 [(β + χ + + C 0 ) 2 + (γ + χ + + D 0 ) 2 ] +2χ + (B * + β + χ + )(β + C 0 + γ + D 0 ) + (B * + β + χ + )( C 0 2 + D 0 2 ) + g 00r , g 00r = O(ε 3 e εδx χ (-∞,0) + α 2 ε 2 e -δ ′ x √ 2 χ (0,∞) + ε 2 | X| + ε(| C 0 ′ | + | D 0 ′ | + ε| D 0 |).

Now we obtain

|| ψ 0r || L 2 η ≤ c α 2 ε 2 + ω 4 -+ ω 4 + √ ε + ||( A 0 , C 0 )|| 2 D0 + || D 0 || 2 D1 (90) +c [ε 2 + ω 2 -+ ω 2 + ]||( A 0 , C 0 )|| D0 + ε 2 || D 0 || D1 , ||ϕ 2 (k -)|| L 2 η ≤ c( ω 2 - √ ε + (| ω + | + ε 2 ) 2 ε 2 ), R ϕ 2 (k -)B ′ * dx = O[( ω 2 -+ ω 2 + + ε 4 )],
where the last estimates uses

1 ε 2 1 0 β ′ + χ ′ + B ′ * dx = O(ε 4 ) 1 ε 2 1 0 β + χ ′′ + B ′ * dx = O(| ω + | + ε 2 ) 2
obtained, for the first integral in integrating by parts, and for the second one in separating the oscillating part of order ε 6 from the constant part β (c) + of β + , for which we make an integration by parts, in using B ′′ * = O(ε 2 B * ). More precisely we have

R ϕ 1 (k -)A ′ * dx+ R ϕ 2 (k -)B ′ * dx = a 2 k 2 - 4 +a 3 σ 0 ε 2 k -+O(|k 3 -|+ε 2 k 2 -+ ω 2 + +ε 4 ), (91) 
with

a 2 = R (A * -χ -)A ′ * dx -a 3 , a 3 = 1 2 0 -1 χ (4) -A ′ * - 3 2 R (1 -A 2 * )A ′ * χ -dx + g 2 R (A * B 2 * ) ′ χ -dx,
We observe that (see Lemma 11)

R (A * -χ -)A ′ * dx = 1 2 + O(α) 1 2 0 -1 χ 4 -A ′ * dx = O(α) g 2 0 -∞ (A * B 2 * ) ′ χ -dx = - g 2 0 -1 (A * B 2 * )χ ′ -dx = O(α) - 3 2 0 -∞ (1 -A 2 * )χ -A ′ * dx = 3 2 0 -1 (A * - A 3 * 3 - 2 3 )χ ′ -dx = 1 + O(α)
so that

a 2 = -1/2 + O(α), (92) 
a 3 = 1 + O(α).
(93)

Third component

For the third component we obtain

L g D 0 = - 2 ω + ε C 0 ′ + ω 2 + D 0 + ψ 0i + ϕ 3 (k -), (94) 
ϕ 3 ( ω, k -, ωx) = - 2 ω + ε [B ′ * + β + χ ′ + ] - 2 ε 2 γ ′ + χ ′ + - 1 ε 2 γ + χ ′′ + -(1 -gA 2 * -B 2 * )γ + χ + ,
and the estimate for

ψ 0i = ψ 0i (ωx, ε, k -, X, Y ) -χ + ψ 0i (ωx, ε, k -, 0, Y (+∞) ), || ψ 0i || L 2 η ≤ c{ε 3/2 + ( ω 2 -+ ω 2 + )|| D 0 || D1 +||( A 0 , C 0 )|| 2 D0 + || D 0 || 2 D1 }. ( 95 
)
which may be solved with respect to ω + (or equivalently with respect to k + since ω + = k+ 2 + O(ε 6 )) by implicit function theorem in the neighborhood of 0 for

(u, v) ∈ D 0 , w ∈ D 1 , (ε, ω -, z) ∈ R 3 , ω + = k + (ε, ω -, z, (u, v), w) ∈ C 1 (R 3 × D 0 × D 1 ).
Indeed we have the estimate

|k + | ≤ c[ε 2 + ( ω 2 -+ ε 2 α |z|)||w|| D1 + ε(||(u, v)|| 2 D0 + ||w|| 2 D1 )]. ( 98 
)
For solving equation ( 80) we now have

w = L -1 g [- 2k + ε (B ′ * + zB ′′ * + v ′ ) + k 2 + w + ϕ 3 + ψ 0i ]
which may be solved by implicit function theorem with respect to w in D 1 for

(ε, ω -, z, (u, v)) ∈ R 3 × D 0
in a neighborhood of 0, assuming

|k -| ≤ c √ ε, i.e. | ω -| ≤ c ′ √ ε. (99) 
We obtain, using (97), ( 95) and (98)

w = w(ε, ω -, z, u, v) then ||w|| D1 ≤ c(ε 3/2 + ||(u, v)|| 2 D0 ), (100) 
and we obtain

|k + | ≤ c[ε 2 + ( ω 2 -+ ε)||(u, v)|| 2 D0 ]. (101) 8.4.2 Resolution in (u, v)
Now, we replace w and ω + by their expressions w and k + , and consider (96) which may be solved by implicit function theorem with respect to (u, v) in a neighborhood of 0 in D 0 for (ε, k -, z) close to 0 in R 3 . Indeed, estimates in L 2 η of the right hand side of (96) are as follows:

1st comp. = O( k 2 - √ ε + ε 3/2 |k -| + αε 2 + α|z||k -| + α 2 z 2 +(ε 2 + |k -|)||(u, v)|| D0 + ||(u, v)|| 2 D0 ) 2nd comp. = O(ε 2 + k 2 - √ ε + √ ε|k -| + α 2 z 2 + (ε + |k -|) 2 |z| +(ε + |k -|) 2 ||(u, v)|| D0 + ||(u, v)|| 2 D0 ).
and applying implicit function theorem leads to

(u, v) = (u, v)(ε, k -, z) ∈ D 0 with ||(u, v)|| D0 ≤ c(ε 2 + k 2 - √ ε + √ ε|k -| + α 2 z 2 ), (102) 
Now (notice that α 4 = ε 8/7 , and use (99))

||w|| D1 ≤ c ε 3/2 + k 4 - ε + α 4 z 4 , (103) 
|k + | ≤ cε 2 . (104) 

Bifurcation equation

The orthogonality in L 2 of the right hand side of

M g ( A 0 , C 0 ) with (A ′ * , B ′ * ), gives 0 = R [-3ek -(zA ′′′ * + u ′′ ) + k 2 - 4 (zA ′ * + u)]A ′ * dx + R ( φ 0 + ϕ 1 )A ′ * dx + R [ 2 ω + ε w ′ + ω 2 + (zB ′ * + v)]B ′ * dx + R ( ψ 0r + ϕ 2 )B ′ * dx. (105) 
We define -

R A ′′′ * A ′ * dx = R A ′′2 * dx = a 1 > 0, (= O(α 2 )) (106) 
and we have, from (86), (89), (102), (103), (101) and Remark 32

R φ 0 A ′ * dx = z 2 [a ′ 0 + O( α 3 ω 2 - √ ε + ε 2 α )] +O[α 4 ε 2 + αεk 2 -+ αk 4 - ε + α 2 |z|(ε 2 + ω 2 - √ ε ) + α 4 |z| 3 ], with a ′ 0 = R (3A * A ′3 * + 2gB * B ′ * A ′2 * + gA * A ′ * B ′2 * )dx = O(α 4 ), and R ψ 0r B ′ * dx = z 2 [a ′′ 0 + O(α 2 ε ω 2 -)] + O(ε 3 + k 4 -+ ε 3/2 |k 3 -| + ε 2 k 2 -+ +αε 1/2 (k 2 -+ ε|k -|)|z| + α 3 ε|z| 3 ) with a ′′ 0 = R (gB * B ′ * A ′2 * + 2gA * A ′ * B ′2 * + 3B * B ′3 * )dx. Hence R φ 0 A ′ * dx + R ψ 0r B ′ * dx = z 2 [a 0 + O( α 3 ω 2 - √ ε + ε 2 α )] + O[ε 3 + αk 4 - ε (107) +α 2 |z|(ε 2 + k 2 - √ ε + ε 3/2 |k -|) + α 4 |z| 3 ]
where we define (α 4 = ε 8/7 )

a 0 = 3 R (A * A ′3 * + gB * B ′ * A ′2 * + gA * A ′ * B ′2 * + B * B ′3 * )dx = O(α 4 ). ( 108 
)
Using Lemma 11 and Corollary 23, we notice that the main contribution of the integral is on (0, +∞) and is precisely

R 3A * A ′3 * dx = O(α 4 ).
Now collecting the expressions (106), ( 91), ( 107) in (105) we obtain

z 2 [a 0 + O( ε 2 α )] + a 1 k -z + a 2 k 2 - 4 [1 + O(α √ ε)] + a 4 ε 2 k -[1 + O(α)] = O(ε 3 + α √ ε |k 3 -| + α 2 √ ε |z|(k 2 -+ ε 2 |k -|) + α 3 √ ε k 2 -z 2 + α 4 |z| 3 ), (109) 
with (use (93))

a 4 = σ 0 a 3 + O(α 1/2 ) = σ 0 + O(α 1/2 ).
The discriminant of the principal part of the quadratic form of (z, k -) of the left hand side is ∆ = a 2 1 -a 0 a 2 .

We notice that

a 0 = O(α 4 ), a 1 = O(α 2 ) > 0, a 2 ∼ -1/2
and it is important to study the sign of ∆.

Remark 33 We expect that ∆ is < 0, as this results from the fact that on (0, +∞), A * has approximatively the form

A * (x) ∼ cαe -δ ′ x √ 2 cos δ ′ x √ 2 so that R 3A * A ′3 * dx ∼ - 3 2 c 4 α 4 δ ′2 ∞ 0 e -4θ cos θ(cos θ + sin θ) 3 dθ = - 231 320 c 4 α 4 δ ′2 , and 
a 1 ∼ c 2 α 2 δ ′3 √ 2 ∞ 0 sin 2 θe -2θ dθ = c 2 α 2 δ ′3 4 √ 2 .
We then notice that

∆ ∼ c 4 α 4 δ 32 (δ 2 - 231 10 ) < 0
for values of δ considered in Theorem 1.

So, let us make the following reasonable conjecture

∆ = R A ′′2 * dx 2 + 1 2 R 3A * A ′3 * dx = α 4 ∆ 0 < 0, i.e. ∆ 0 < 0. (111) 
In the case of the opposite sign, the family of solutions would exist without any additional condition. The bifurcation equation ( 109) may be written as

|∆| a 2 z - a 1 a 4 ε 2 |∆| 2 + a 2 k - 2 + a 1 a 2 z + a 4 ε 2 a 2 2 = ε 4 a 2 4 a 0 α 4 |∆ 0 | + O ε 3 + αε 2 |k -| + α √ εk 2 -+ α √ ε |k 3 -| (112) 
+ α 2 √ ε |z|(k 2 -+ ε 2 |k -|) + ( α 3 √ ε k 2 -+ ε 2 α )z 2 + α 4 |z| 3 .
It results that we can solve the problem only if the term of order ε 3 has the good sign. Using Remark 32 this term is of the form

-ε 2 c 5 R A * A ′′ * B * B ′ * dx -ε 2 d 4 R A 2 * A ′′ * A ′ * dx = -a 5 ε 3 < 0, (113) 
where the coefficients d 4 and c 5 , occur in the cubic normal form (78). By implicit function theorem again, and easily checking that all non written terms are of order higher than ε 3 , we obtain the family of solutions

z - a 1 a 4 ε 2 |∆| = ε 3/2 α 2 ( a 5 a 2 ∆ 0 ) 1/2 cos φ + h.o.t. k - 2 + a 1 a 2 z + a 4 ε 2 a 2 = ( a 5 -a 2 ) 1/2 ε 3/2 sin φ + h.o.t. where φ ∈ [0, 2π]. Finally, since a 1 = O(α 2 ), a 2 ∼ -1/2, a 4 ∼ σ 0 , a 5 = O(1), z = O( ε 3/2 α 2 ) = O(ε 13/14 ), k -= O(ε 3/2 ), ω + = O(ε 2 ). Proposition 5 is proved.
Remark 34 The order of magnitude of terms on the right hand side of (112) is dominated by ε 3 , which is just an estimate in (113). It may happen that one day it is possible to improve this estimate, and that the dominant term becomes ε 4 a 2 4 a0 α 4 |∆0| which is stricly of order ε 4 , moreover with the good sign. This might then provide a much better result, then with k -of order ε 2 as k + ∼ 2 ω + .

Remark 35 It should be noted that the one parameter family of solutions which are obtained, correspond to convective rolls at -∞ with wave numbers

k c (1 + ε 2 k -)
connected to convective rolls at +∞ with wave numbers

k c (1 + 2ε 2 ω + )
with a relationship between both wave numbers depending on the amplitude ε 2 of rolls.

A Appendix

A.1 Monodromy operator

Let us prove the estimate for the monodromy operators. We prove the following Lemma 36 For η 0 δ ≤ A * ≤ 1, and α -1 ≥ (1 + δ 2 ) 2 and the following estimates hold

||S 0 (x, s)|| ≤ e σ(x-s) , -∞ < x < s ||S 1 (x, s)|| ≤ e -σ(x-s) , -∞ < s < x with σ = α 1/2 δ 1/2 2 1/4 .
We start with the system

x ′ 1 = λ r x 1 + λ i x 2 x ′ 2 = -λ i x 1 + λ r x 2
where λ r and λ i are functions of x. When η 0 δ ≤ A * ≤ 1, α -1 ≥ (1 + δ 2 ) 2 , we have, for ε small enough (see ( 14))

λ r ≥ α 1/2 δ 1/2 2 1/4 = σ. Now we have (x 2 1 + x 2 2 ) ′ = 2λ r (x 2 1 + x 2 2 ) 57 hence (x 2 1 + x 2 2 )(x) = e x s 2λr(τ )dτ (x 2 1 + x 2 2 )(s), which, for x < s, leads to (x 2 1 + x 2 2 )(x) ≤ e σ(x-s) (x 2 1 + x 2 2 )(s).
The proof is then done for the operator S 0 . The estimate for S 1 is obtained in the same way.

Remark 37 We have

S 0 (x, s) = e x s λr(τ )dτ cos( x s λ i (τ )dτ ) sin( x s λ i (τ )dτ ) -sin( x s λ i (τ )dτ ) cos( x s λ i (τ )dτ )
.

Remark 38 In fact, once we have proved Lemma 11, we are able to improve the estimate of the integral x s λ r (τ )dτ in using Corollary 16. Indeed this corollary leads to

A * 2 ≥ 1 -(1 + δ 2 )(B 2 00 + cε)e 2εδx ≥ 1 -[1 -α 2 δ 2 + cε(1 + δ 2 )]e 2εδx ≥ 1 -(1 -c ′ α 2 )e 2εδx provided that ε < c ′ α 2 , c ′ ≤ δ 2 1 + c(1 + δ 2 )
.

Now, in using

(1 -a 4 ) 1/4 ≤ 3 -1/4 (1 -a) for a < 1.

this leads to (x < 0)

0 x λ r (τ )dτ ≥ 1 2 1/4 0 x [1 -(1 -c ′ α 2 )e 2εδτ ] 1/4 dτ ≥ 1 6 1/4 0 x [1 -(1 -c ′ α 2 ) 1/4 e εδτ 2 ]dτ ≥ 1 6 1/4 [|x| -(1 -c ′ α 2 ) 1/4 2 εδ (1 -e εδx 2 )] ≥ 1 6 1/4 |x|, so that e x s λr (τ )dτ ≤ e x-s 6 
1/4 , x < s < 0, (114) 
which is better than the estimate in Lemma 36.

A.2 Computation of the system with new coordinates

Let us look for the system (8) writen in the new coordinates, first in forgetting quadratic and higher orders terms

B 0 x ′ 1 = (λ 2 r + λ 2 i ) 4λ r A 1 + (1 + δ 2 )B 0 B 1 A * + 3λ 2 r -λ 2 i 4λ r (λ 2 r + λ 2 i ) A 3 + A 2 2 + (1 + δ 2 ) 2 A * B 2 0 ε 2 δ 2 ( A * 2 -B 2 0 ) + 2(1 + δ 2 ) A * A 0 -(λ 2 r -λ 2 i ) A 0 = B 0 f 1 + (λ 2 r + λ 2 i ) 4λ r B 0 (x 1 + y 1 ) + A 2 2 + 1 4λ r A 3 , λ i B 0 x ′ 2 = - (λ 2 r + λ 2 i ) 4 A 1 + (1 + δ 2 )B 0 B 1 A * - λ 2 r -3λ 2 i 4(λ 2 r -α) A 3 - (λ 2 r -λ 2 i ) 4λ r A 2 + (1 + δ 2 )B 2 0 ε 2 A * δ 2 ( A * 2 -B 2 0 ) - 1 4λ r (λ 2 r + λ 2 i ) 2 A 0 = λ i B 0 f 2 - (λ 2 r + λ 2 i ) 4 B 0 (x 1 + y 1 ) - (λ 2 r -λ 2 i ) 4λ r A 2 + 1 4 A 3 - 1 4λ r (λ 2 r + λ 2 i ) 2 A 0 ,
with

f 1 = ε 2 δ 2 B 0 (1 + δ 2 )( A * 2 -B 2 0 ) 2 A * , f 2 = - ε 2 δ 2 B 0 (1 + δ 2 )(λ 2 r -λ 2 i )( A * 2 -B 2 * ) 4λ r λ i A * , hence x ′ 1 = f 1 + λ r x 1 + λ i x 2 , (115) 
x

′ 2 = f 2 -λ i x 1 + λ r x 2 ,
and in the same way

y ′ 1 = f 1 -λ r y 1 + λ i y 2 , y ′ 2 = -f 2 -λ i y 1 -λ r y 2 , (116) 
z ′ 1 = 2ε 2 δ 2 ( A * 2 -B 2 0 ) A * = 2f 1 (1 + δ 2 )B 0 , B ′ * = - (λ 2 r -λ 2 i ) (1 + δ 2 )B 0 A * A 3 + A * B 0 z 1 .
We notice that the following estimates hold

|f 1 | ≤ B 0 ε 2 δ 2 A * ≤ B 0 ε 2 δ α , (117) 
|f 2 | ≤ B 0 ε 4 δ 2 A * 2 ≤ B 0 ε 2 δ.

A.2.1 Full system in new coordinates

We intend to derive the full system (1) with coordinates (x 1 , x 2 , y 1 , y 2 , B 0 , z 1 ). Differentiating ( 17) and ( 18) we see that we respectively need to add to the previous expressions (115) for x ′ 1 and x ′

2 1 B 0 A * 2 √ 2λ r ′ A 0 + (3λ 2 r -λ 2 i ) 4 √ 2λ r A * ′ A 2 + ε 2 (1 + δ 2 ) 2 B 2 0 2 A * 2 ′ A 3 + (1 + δ 2 )B 0 2 A * ′ B 1 -ε 2 (1 + δ 2 ) 2 B 0 2 A * 2 [3 A * A 0 2 + A 0 3 ] + B 0 ε 2 (1 + δ 2 ) 2 A 0 2 2 A * - B 1 B 0 x 1 . and 1 B 0 - A * 2 √ 2λ i ′ A 0 - (λ 2 r -λ 2 i ) 4λ r λ i ′ A 1 - (λ 2 r -3λ 2 i ) 4 √ 2λ i A * ′ A 2 + ε 2 (1 + δ 2 ) 3 B 3 0 4λ r λ i A * ′ B 1 + 1 B 0 1 4λ r λ i 1 - (λ 2 r -λ 2 i ) 2 A * 2 ′ A 3 - 1 4λ r λ i B 0 1 - (λ 2 r -λ 2 i ) 2 A * 2 [3 A * A 0 2 + A 0 3 ] - ε 4 B 3 0 (1 + δ 2 ) 4 4λ r λ i A * A 0 2 - B 1 B 0 x 2 .
We then arrive to the system (22,23,24,25). We observe that (using (11)) Let us replace z 1 by z 10 + Z(X, Y , B 0 ) in the differential system for (X, Y ). The new system becomes (notice that B 0 is in factor of the "constant" terms) 

A * ′ = - (1 + δ 2 )B 0 A * B 1 (λ 2 r ) ′ = - (1 + δ 2 )B 0 B 1 √ 2 A * (1 -ε 2 √ 2(1 + δ 2 ) A * ) (λ 2 i ) ′ = - (1 + δ 2 )B 0 B 1 √ 2 A * (1 + ε 2 √ 2(1 + δ 2 ) A * ) A * 2 √ 2λ r ′ = a 1 B 0 B 1 , |a 1 | ≤ c A * 3/2 , (118) 
A * 2 √ 2λ i ′ = a 2 B 0 B 1 , |a 2 | ≤ c A * 3/2 , (119) 
- (λ 2 r -λ 2 i ) 4λ r λ i ′ = b 2 B 0 B 1 , |b 2 | ≤ cε 2 A * 3 , (120) 
(3λ 2 r -λ 2 i ) 4 √ 2λ r A * ′ = c 1 B 0 B 1 , |c 1 | ≤ c A * 5/2 , (121) 
- (λ 2 r -3λ 2 i ) 4 √ 2λ i A * ′ = c 2 B 0 B 1 , |c 2 | ≤ c A * 5/2 , (122) 
ε 2 (1 + δ 2 ) 2 B 2 0 2 A * 2 ′ = d 1 B 0 B 1 , |d 1 | ≤ c A * 3 , (123) 
1 4λ r λ i 1 - (λ 2 r -λ 2 i ) 2 A * 2 ′ = d 2 B 0 B 1 , |d 2 | ≤ c A * 3 , (124) 
-ε 2 (1 + δ 2 )B 0 A * A 3 [a 1 A 0 + c 1 A 2 + d 1 A 3 - x 1 B 0 ], b 02 (X, Y ) = - 1 4λ r λ i A * B 0 3 A * 2 -2ε 4 B 4 0 (1 + δ 2 ) 4 A 0 2 + e 2 ε 4 (1 + δ 2 )B 2 0 A * 2 A 3 2 -ε 2 (1 + δ 2 )B 0 A * A 3 [-a 2 A 0 + b 2 B 0 (x 1 + y 1 ) + c 2 A 2 + d 2 A 3 - x 2 B 0 ], C 01 (X, Y ) = ε 2 δ 2 A 0 3   -ε 2 (1+δ 2 )B0
X ′ = L 0 X + B 0 F 0 + L 01 (X, Y ) + B 01 (X, Y ), Y ′ = L 1 Y + B 0 F 1 + L 11 (X, Y ) + B 11 (X,

A.4 Periodic solution in M +

Let us consider the 4-dimensional reversible vector field corresponding to the system (74) with X = 0. We intend to give precise estimates on the family of periodic bifurcating solutions B (+∞) 0 (k + , x), here corresponding to the periodic convection rolls at infinity in M + with wave numbers close to k c (becomes 1/2ε after the scaling).

Since we use the normal form up to cubic order, and since there is no term of order 4, it takes the form (after the scaling used in [START_REF] Buffoni | Heteroclinic orbits for a system of amplitude equations for orthogonal domain walls[END_REF])

dB 0 dx = i 2ε B 0 + B 1 + iε 3 B 0 P + ε 7 g 0 (ε, Y, Y ) (128) dB 1 dx = i 2ε B 1 + ε 2 B 0 Q + iε 3 B 1 P + ε 6 g 1 (ε, Y, Y ),
difference with the classical Hopf bifurcation proof is that, norms in these spaces are chosen as, for example

||u|| H 2 = 1 ε 2 ||u ′′ || L 2 + 1 ε ||u ′ || L 2 + ||u|| L 2 ,
and notice that H 1 (R/2πZ) is an algebra. It results that we obtain an estimate such that ||( B 0 , B 1 )|| H 2 ×H 1 ≤ c(ε 2 | y| + ε 6 ).

It then remains to solve the 2-dimensional system in ( ω, y) which is a real system, due to the reversibility symmetry: 
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 1 Figure 1: Orthogonal domain wall

  and iii) for B * = B c , i.e. A * = A c , ∆ = 0 and two double eigenvalues λ = ±εB * .

7. 3 . 1

 31 Dimension of ker M g Any element ζ(x) in the kernel lies, by definition, in L 2 η , hence ζ(x) tends towards 0 exponentially at ±∞. Near x = ±∞ the vector ζ(x) ∼ ζ ± (x) should verify

( 1 + 3 (125) ε 2 ( 1 + δ 2 ) 3 B 2 0= e 2 B 0 B 1 , |e 2 1 A. 3 . 1 2 e 2 A * 2 B 0 -b 2 ( 1 + δ 2 ) A * B 2 0 ,M+ A * B 2 0 b 2 (x 1 + y 1 ) + ( 1 + δ 2 ) 2 ε 2 B 3 0 A * b 2 A 3 , 2 + e 1 ε 4 ( 1 + δ 2 )

 13212322121312220212021112032412 δ 2 )B 0 2 A * ′ = e 1 B 1 , |e 1 | ≤ c A * 4λ r λ i A * ′ c independent of ε and δ ∈ [δ 0 , δ 1 ].A.3 System after elimination of z System after scalingAfter the scaling (27) our system (22,23,24,25) takes the formX ′ = L 0 X + B 0 F 0 + B 01 (X, Y ) + z 1 M 01 (X, Y ) +z 1 2 B 0 n 0 + C 01 (X, Y ), Y ′ = L 1 Y + B 0 F 1 + B 11 (X, Y ) + z 1 M 11 (X, Y ) +z 1 2 B 0 n 1 + C 11 (X, Y ),where F 0 , F 1 , n 0 , n 1 are two-dimensional vectors M 01 , M 11 are linear operators in (X, Y ), B 01 , B 11 are quadratic and C 01 , C 11 are cubic in (X, Y ), all functions of B 0 . More precisely we have 01(X, Y ) = εδ m 01 (X, Y ) m 02 (X, Y ) , m 01 (X, Y ) = A * B 0 a 1 A 0 + c 1 A 2 + (d 1 -2e 1 (1 + δ 2 )ε 2 B 0 A * )A 3 -x 1 B 0 , m 02 (X, Y ) = A * B 0 -a 2 A 0 + c 2 A 2 + (d 2 -2e 2 (1 + δ 2 )ε 2 B B 01 (X, Y ) = εδ b 01 (X, Y ) b 02 (X, Y ) , b 01 (X, Y ) = -ε 2 (1 + δ 2 )(2 -δ 2 )B 0 2 A * A 0

n 1 ,

 1 M 11 , B 11 , C 11 are deduced respectively from n 0 , M 01 , B 01 , C 01 in changing (a 1 , c 1 , b 2 , d 2 , e 2 ) into their opposite. A.3.2 System after elimination of z 1

3 ,A * 3 δ 3 (

 333 Y ), which is (30) withF 0 = F 0 + z 10 2 n 0 , L 01 (X, Y ) = z 10 M 01 (X, Y ), B 01 (X, Y ) = B 01 (X, Y ) + Z(X, Y )M 01 (X, Y ) + C 01 (X, Y ) +2z 10 Z(X, Y )B 0 n 0 + Z(X, Y ) 2 B 0 n 0 .In using estimates (21), (118) to (126), it is straightforward to check that|F 0 | + |F 1 | ≤ cε α |M 01 (X, Y )| ≤ c εδ A * (|X| + |Y |), hence |L 01 (X, Y )| + |L 11 (X, Y )| ≤ c ε α 2 (|X| + |Y |).For higher order terms we have|B 01 (X, Y )| ≤ cε(|X| + |Y |) 2 , |2z 10 Z(X, Y )n 0 | ≤ c ε A * δ (|X| + |Y |) 2 , |Z(X, Y )M 01 (X, Y )| ≤ c ε 2 A * δ (|X| + |Y |) 3 , |Z(X, Y ) 2 n 0 | ≤ c ε 3 |X| + |Y |) 4 , |C 01 (X, Y )| ≤ c ε α 1/2 (|X| + |Y |) 3 ,hence, choosing α small enough and for|X| + |Y | ≤ ρ,(127)we obtain |B 01 (X, Y )| + |B 11 (X, Y )| ≤ cε α 1/2 (|X| + |Y |) 2 .

ωr 0 +B 1 =

 01 yr 1 = -ω yr 1 + O(ε 4 | y| + ε 3 | y| + ε 7 ) ωr 1 -yr 0 = ω yr 0 + O(ε 3 | y| + ε 2 | y| + ε 6 ), which gives ω = O(ε 7 ) y = O(ε 6 ).It results finally that the family of periodic solutions at M + are such that B 0 = r 0 e iωx + O(ε 6 ), ir 1 e iωx + O(ε 6 ),

Let us change variables as

with (in using ( 131)

and where χ -and χ + are smooth functions, such that χ -= 1 for x ∈ (-∞, -1), = 0 for x > 0 0 < χ -< 1 for x ∈ (-1, 0),

The first component of M g ( A 0 , C 0 ) is now the sum of small terms linear in ( A 0 , C 0 ) plus quadratic terms and terms independent of ( A 0 , C 0 ) which tend exponentially to 0 as e εδx for x → -∞ and e - √ 2εx for x → +∞ :

Bifurcation equation

Let us now decompose ( A 0 , C 0 , D 0 ) as 79) gives (Q 0 defined at section 7)

8.4.1 Resolution in ω + and w Now we have

and since

The compatibility condition for equation (94) leads to

with Y = (B 0 , B 1 )

where we are looking for a periodic solution (B 0 , B 1 ), with wave number ω close to 1+ε 2 k+ 2ε .

A.4.1 Principal part

Let us first compute periodic solutions for g 0 = g 1 ≡ 0. Then these small terms will be perturbations treated by an adapted implicit function theorem. Without g 0 and g 1 , let us use polar coordinates (see [START_REF] Haragus | Local bifurcations, Center manifolds, and Normal forms in infinite-dimensional dynamical systems[END_REF] section 4.3.3)

The required periodic solutions correspond to r 0 and r 1 const

Solving (129) with respect to r 1 gives

and (130) leads to

which is solved with respect to r 2 0 , by implicit function theorem:

where we notice that coefficients σ 1 and σ 2 are functions of the Prandtl number. We obtain a one-parameter family of periodic solutions (parameter k + ), with only the Fourier modes e ±is .

A.4.2 Estimates of higher order terms

The proof below is new and self contained. There is a geometrical proof without estimates in Iooss-Pérouème [START_REF] Iooss | Perturbed homoclinic solutions in reversible 1:1 resonance vector fields[END_REF], and a more precise proof by Horn in [6] section 3.5.

Let us define by ω the frequency of periodic solutions, where ω is close to

and set

where B 0 and B 1 are 2π-periodic in s, and r 0 , r 1 are solution of (129,130). Let us introduce the linear operator

Then the system (128), to be completed by its complex conjugate, becomes:

where

where B 0 and B 1 have no Fourier component in e is , and we take the component in e is orthogonal to V 0 e is , since adding a component proportional to (r 0 , r 1 ) is equivalent to adapt (r 0 , r 1 ). We first solve (132) with respect to ( B 0 , B 1 ) in using the implicit function theorem, since we observe (notice the term nω 0 = n 2ε (1 + ε 2 k + ) in the operator for a Fourier component e nis ), that the pseudo-inverse of L 0 is bounded from H 1 (R/2πZ) × L 2 (R/2πZ) to H 2 (R/2πZ) × H 1 (R/2πZ). Let us notice that the