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Novelty & Impact Statements: Methylation marks of exposure to health risk factors may 

better capture current and past exposures than questionnaires, and reflect different individual 

responses to exposure. We calculated several methylation scores for smoking, body mass 

index and alcohol consumption, using summary statistics from published epigenome-wide 

association studies, and found that these were associated with cancer risk, independently of 

health-related confounders. Methylation scores for lifestyle may provide some improvements 

in the prediction of cancer risk.  

Abbreviations: AHRR: aryl hydrocarbon receptor repressor; AUC: area under the receiver 

operating characteristic curve; BMI: body mass index; EWAS: epigenome-wide association 

study; MCCS: Melbourne Collaborative Cohort Study; MS: methylation score; SD: standard 

deviation, 

Submitted: 18/12/2020 | Words: 3,026 | Tables: 5 | Supplementary Methods and 5 Tables 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.21251370doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.02.08.21251370
http://creativecommons.org/licenses/by-nc/4.0/


2 

 

ABSTRACT  

Methylation marks of exposure to health risk factors may be useful markers of cancer risk as 

they might better capture current and past exposures than questionnaires, and reflect different 

individual responses to exposure. We used data from seven case-control studies nested within 

the Melbourne Collaborative Cohort Study of blood DNA methylation and risk of colorectal, 

gastric, kidney, lung, prostate and urothelial cancer, and B-cell lymphoma (N cases=3,123). 

Methylation scores (MS) for smoking, body mass index (BMI), and alcohol consumption 

were calculated based on published data as weighted averages of methylation values. Rate 

ratios (RR) and 95% confidence intervals for association with cancer risk were estimated 

using conditional logistic regression and expressed per standard deviation increase of the MS, 

with and without adjustment for health-related confounders. The contribution of MS to 

discriminate cases from controls was evaluated using the area under the curve (AUC). After 

confounder adjustment, we observed: large associations (RR~1.5-1.7) with lung cancer risk 

for smoking MS; moderate associations (RR~1.2-1.3) with urothelial cancer risk for smoking 

MS and with mature B-cell neoplasm risk for BMI and alcohol MS; moderate to small 

associations (RR~1.1-1.2) for BMI and alcohol MS with several cancer types and cancer 

overall. Generally small AUC increases were observed after inclusion of several MS in the 

same model (colorectal, gastric, kidney, urothelial cancers: +3%; lung cancer: +7%; B-cell 

neoplasms: +8%). Methylation scores for smoking, BMI, and alcohol consumption show 

independent associations with cancer risk, and may provide some improvements in risk 

prediction. 
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INTRODUCTION 

Population-based estimates indicate that smoking, alcohol consumption and obesity 

combined explain approximately 20% of cancers diagnosed in Australia.1 These estimates are 

based on relatively strong assumptions that health risk factors are measured without error in 

cohort studies, and that population-average estimates reflect individual-level risk. In recent 

years, a growing body of research has reported associations of genetic and epigenetic 

measures with these lifestyle factors, raising the potential to increase our understanding of the 

role they play in the aetiology of cancer at the individual level. Recent research has made 

successful use of DNA methylation to study, for example, biological ageing 2, 3 and its 

association with cancer risk and mortality.4-8  

Tobacco smoking, adiposity and alcohol consumption are the health risk factors for 

which most convincing evidence exist regarding their widespread impact on the methylome; 

studies have identified thousands of CpG sites at which blood DNA methylation is associated 

with these exposures.9-14 This raises potential for increasing the precision with which we 

measure these health risk factors at the individual level, as it is plausible that i) methylation 

changes are more abundant and marked in individuals who are more sensitive to these 

exposures, ii) the levels of exposure collected via cohort questionnaires may be prone to 

substantial measurement error, and iii) harmful levels of exposure accumulate over the life 

course and cannot be tracked by only one, two, or more time-point assessments. These 

aspects likely result in underestimates of association of lifestyle factors with cancer risk. The 

usefulness of integrated genomic measures to enhance epidemiological exposure assessment 

is increasingly recognised.15-18 Recent studies have developed and validated epigenetic 

predictors for several lifestyle factors.11, 19 
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In this study, we aimed to assess the association between several methylation-based 

scores for smoking, alcohol consumption and body mass index (BMI) and the risk of cancer 

in adulthood. We used data from seven prospective case-control studies nested in the 

Melbourne Collaborative Cohort Study (MCCS), including 3,123 incident cases of colorectal, 

gastric, kidney, lung, prostate and urothelial cancers and B-cell lymphoma. 

 

MATERIALS AND METHODS 

Study samples and blood collection  

The MCCS is a prospective study of 41,513 adult volunteers (24,469 women) aged 

between 27 and 76 years (99% aged 40-69) when recruited between 1990 and 1994. More 

details on the cohort are available elsewhere.20, 21  

We used data from case-control studies of DNA methylation and risk of colorectal, 

gastric, kidney, lung, mature B-cell lymphoma, prostate and urothelial cancer, nested within 

the MCCS.22-27
 These cancers account for about 50% of new cancer cases in Victoria in 

2018.28 DNA was extracted from peripheral blood taken at the time of recruitment (1990-

1994) except for 151 case-control pairs of the urothelial cancer study, for which blood 

samples were taken at a follow-up visit in 2003-2007. The DNA source was dried blood spots, 

peripheral blood mononuclear cells or buffy coats for 70%, 28% and 2% of participants, 

respectively. More details can be found elsewhere.21, 29 Incident cancer cases were identified 

by linkage with the Victorian Cancer Registry and the Australian Cancer Database 

(Australian Institute of Health and Welfare), which are considered to be virtually complete. 

Cases were followed from inclusion until 2012-2013, so the follow-up time was up to 23 

years. The median from recruitment to diagnosis was 9.7 years (interquartile range: 5.4 to 
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13.6); these figures for individual cancer types are shown in Supplementary Table 1. For 

each nested case-control study, controls were individually matched to incident cases 

(diagnosed after blood sample collection) on age using incidence density sampling (i.e. they 

had to be free of the cancer of interest up to the age at diagnosis of the corresponding case), 

sex, country of birth (Australia/New-Zealand, Southern Europe, Northern Europe), blood 

DNA source (dried blood spots, peripheral blood mononuclear cells or buffy coat) and blood 

collection period (baseline or wave 2 for the urothelial cancer study). Controls were also 

matched to cases on year of birth, except for the colorectal cancer study where controls were 

matched on year of baseline attendance. For the lung cancer study, controls were also 

matched on smoking status at the time of blood collection. 

DNA extraction and bisulfite conversion, and DNA methylation data processing 

Methods relating to DNA extraction and bisulfite conversion, and DNA methylation 

data processing have been described previously 4, 29 and are detailed in Supplementary 

Methods. 

Methylation scores for smoking, alcohol consumption and BMI 

We calculated several methylation scores, all as weighted averages: for smoking we 

calculated Smk-233: score comprising 233 CpGs resulting from the Lasso regression applied 

to predict smoking pack-years (log-transformed), using as weights the regression coefficients 

available from the original publication from McCartney et al.19 and Smk-1,061: score 

comprising 1,061 CpGs at which methylation associated with a comprehensive smoking 

index in the MCCS (P<10-7), and also reported to be associated with smoking (P<10-7) in 

previous epigenome-wide association studies (EWAS), using as weights the individual 

association coefficients from the MCCS EWAS.12 Similarly, for BMI and alcohol 
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consumption, we calculated, Bmi-1109 and Alc-450, respectively, based on the predictors 

developed by McCartney et al.; and Bmi-85 and Alc-459 based on associations reported with 

P<10-7 in the MCCS and external data.13, 14 For alcohol consumption, we also calculated four 

scores using the weights available from the meta-analysis of Liu et al.11 These scores 

included 5, 23, 78 and 144 CpGs (Alc-5, Alc-23, Alc-78 and Alc-144) and were reported to 

explain from 5 to 14% of variance in alcohol consumption in testing datasets. The scores 

calculated from the studies by McCartney et al. and Liu et al. were obtained via Lasso and 

Elastic net regression, respectively, hence they aimed to predict these lifestyle factors 

accurately. The scores calculated from our previous EWAS conducted in the MCCS 12-14 may 

better represent the cumulative lifestyle-related changes to the methylome. Finally, we 

calculated the age-adjusted measures of biological ageing PhenoAge 30 and GrimAge, 31 

based on 513 and 1,030 CpGs, respectively, as done previously.32 All scores were winsorised 

at five standard deviations from the mean to minimise the potential influence of outliers, and 

were then rescaled to Z-scores for better comparability of relative risk estimates. 

Statistical analysis 

Correlations between methylation scores were calculated using Spearman correlations 

in participants selected as controls (to avoid collider bias). The variance explained in each of 

smoking, BMI and alcohol consumption by their respective methylation scores was also 

assessed in controls. We used conditional logistic regression to calculate odds ratios, which 

are estimates of the rate ratios [RRs] when incidence density sampling matching is used, 33 

for the associations between methylation scores, per standard deviation (1SD), and risk of 

cancer. Two models were used: in Model 1, no covariates were included other than blood cell 

composition, estimated using the Houseman algorithm;34, 35 Model 2, further adjusted for 

smoking status (never; former; current), smoking pack-years, age at starting (never smoked; 
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age 16 or less; between age 17 and 21; after age 21 years); years since quitting (never smoked; 

more than 10 years without smoking, between 5 and 10 years without smoking; less than 5 

years without smoking), body-mass index (continuous, in kg/m2), and alcohol consumption in 

the past week (continuous, in g/day), a score for physical activity,36, the Alternate Healthy 

Eating Index 2010 to reflect overall diet quality,37 education (score ranging from 1 to 8), 

socioeconomic status (score ranging from 1 to 10 38), and height (continuous, in meters). As a 

sensitivity analysis, the same models were performed without adjustment for white blood cell 

composition. These models were used to analyse each cancer separately, and all seven cancer 

types combined. For the combined analysis, where an individual was diagnosed with several 

cancers, we included the first diagnosis only (respecting the incidence density sampling 

procedure), so that participants did not contribute twice to the pooled estimates. Case-control 

pairs with any missing values for the confounders measured at baseline were excluded and 

missing values at follow-up (urothelial cancers) were replaced by baseline values; 3% of the 

initial sample was excluded due to missing values. 

We assessed the contribution of methylation scores to the ability of the model to 

discriminate between cases and controls using the area under the receiver operating 

characteristic curve (AUC) statistics obtained from unconditional logistic regression models 

adjusted for the matching variables. We evaluated i) the prediction obtained from models 

including methylation scores for smoking, BMI, and alcohol consumption instead of the 

lifestyle variables collected in the cohort; ii) the additional contribution of methylation scores 

compared with a model with a large collection of traditionally collected health risk factors. 
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RESULTS 

The characteristics of study participants were described previously 32 and are shown 

in Supplementary Table 2. The variance explained in the corresponding risk factor was 56% 

and 28% for Smk-233 and Smk-1061; 15% and 11% for Bmi-1109 and Bmi-85; and 11% and 

5% for Alc-450 and Alc-459, respectively (Table 1). The correlations between scores were 

moderate to high within each lifestyle factor, r=0.62 between Smk-233 and Smk-1061; 

r=0.46 between Bmi-1109 and Bmi-85, and r=0.27 between Alc-450 and Alc-459. Moderate 

correlations were also observed across lifestyle factors, in particular between smoking and 

alcohol scores, between Smk-1,061 and Bmi-85 and between smoking scores and GrimAge 

(Table 1). There was little overlap of CpGs between methylation scores, e.g. 17 CpGs 

between Smk-233 and Smk-1061 (Supplementary Table 3). 

The associations of methylation scores for smoking, BMI and alcohol consumption 

with risk of cancer are shown in Table 2, 3 and 4, respectively. The smoking scores showed 

strong associations with risk of lung and urothelial cancers in unadjusted models (Model 1, 

adjustment for white blood cell proportions only): lung cancer, Smk-233: RR per SD=1.84, 

95%CI: 1.44-2.36, P=2x10-6; Smk-1061: RR=1.59, 95%CI: 1.26-2.01, P=0.0001; urothelial 

cancers: Smk-233: RR=1.35, 95%CI: 1.15-1.58, P=0.0002; Smk-1061: RR=1.47, 95%CI: 

1.24-1.75, P=8x10-6. There was little attenuation after adjustment for lifestyle factors 

including several smoking-related variables collected by questionnaires (Model 2), except for 

Smk33 and urothelial cancer risk (point estimates: lung: Smk-233: 1.68, Smk-1061: 1.49, 

urothelial: Smk-233: 1.16, Smk-1061: 1.32). Positive but weak associations were observed 

with risk of cancer overall: unadjusted: Smk-233: 1.09, P=0.006, Smk-1061: 1.11, P=0.0009; 

adjusted: Smk-233: 1.06, P=0.20, Smk-1061: 1.09, P=0.02. Associations observed without 
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adjustment for cell composition were similar, albeit slightly weaker (Supplementary Table 

4). 

Methylation scores for BMI generally showed associations with cancer risk in the 

expected direction but these were weaker than for smoking (Table 3). For colorectal cancer, 

the associations were substantially attenuated in comprehensively adjusted models and were 

in Model 2: Bmi-1109: RR=1.11, 95%CI: 0.98-1.26, and Bmi-85: RR=1.11, 95%CI: 0.96-

1.29. Similar findings were obtained for gastric and kidney cancer risk. Bmi-85 was 

associated with risk of mature B-cell neoplasms (Model 2: 1.32, 95%CI: 1.04-1.66) and this 

association was not substantially stronger in models not adjusted for cell proportions, which 

may substantially confound the associations for this cancer type (RR=1.45, Supplementary 

Table 5). A moderately strong association was observed with risk of urothelial cancer 

(RR=1.35 and 1.23 in Model 1 and 2, respectively). Bmi-85 showed a stronger association 

with overall cancer risk than Bmi-1109 (RR=1.10, 95%CI: 1.02-1.19 and RR=1.02, 95%CI: 

0.96-1.08, respectively). 

For alcohol consumption, we found that all scores were associated with risk of lung 

cancer (Model 2: RR=1.37, P=0.002 and RR=1.36, P=0.008 for Alc-450 and Alc-459, 

respectively), Table 4. Small associations were observed with risk of colorectal cancer 

(RR=1.11 and RR=1.09) and a relatively large association for Alc-459 with risk of B-cell 

lymphoma RR=1.37, 95%CI: 1.11-1.69. For cancer overall, the risk was increased by 13% (4% 

to 18%) and 11% (6% to 21%) per SD increase in Alc-450 and Alc-459, respectively, after 

adjustment for cohort-collected sociodemographic, anthropometric and lifestyle variables; 

these associations were virtually the same as in unadjusted models, without adjustment for 

cell proportions, or using the scores of Liu et al. (Supplementary Tables 6 and 7). For the 

scores of Liu et al., the associations did not appear larger for the scores including more CpGs, 
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for example for cancer overall: Alc-144: RR=1.08, 95%CI: 1.02-1.15; Alc-78: RR=1.12, 

95%CI: 1.06-1.19; Alc-23: RR=1.15, 95%CI: 1.08-1.22 and Alc-5: RR=1.14, 95%CI: 1.07-

1.21 (Supplementary Table 7). 

Results for the contribution of methylation scores to the prediction of cancer risk are 

shown in Table 5. The AUCs of models with methylation scores instead of traditionally 

assessed smoking, BMI, and alcohol consumption appeared similar for all cancer types and 

were somewhat higher for lung cancer (0.60 vs 0.59) and mature B-cell neoplasms (0.59 vs 

0.57). The addition of methylation scores to variables that were collected via questionnaires 

or measured in the MCCS nevertheless resulted in relatively small AUC gains: models 

including two methylation scores for each of smoking, BMI, and alcohol consumption, 

GrimAge and PhenoAge compared with models without: colorectal cancer: AUC=0.59 vs 

0.56, gastric: 0.64 vs 0.61, kidney: 0.70 vs 0.67, lung: 0.66 vs 0.59, mature B-cell neoplasms: 

0.66 vs 0.57, prostate: 0.56 vs 0.55, urothelial: 0.63 vs 0.60. 

 

DISCUSSION 

We calculated various methylation scores for smoking, alcohol consumption and BMI, 

the main lifestyle factors that cause changes to DNA methylation and increase the risk of 

cancer.12-14, 39-41 Several of these were associated with certain types of cancer and associations 

were only moderately attenuated after adjustment for sociodemographic, anthropometric and 

lifestyle factors, including several questionnaire-collected variables relating to smoking 

history (pack-years, age at starting, time since quitting). These associations were nevertheless 

generally relatively small, except for smoking scores and lung and urothelial cancer risk, for 

which we reported some of the findings previously.42 Reasonably large associations were also 
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observed for methylation scores for BMI and alcohol consumption with risk of mature B-cell 

lymphoma (RR per SD~1.3-1.4), but these should be interpreted with some caution given the 

strongly modified blood methylation profiles found in B-cell neoplasms, 26 and the fact that 

lifestyle is thought to only moderately increase risk for these types of cancer.43 For risk of 

cancer overall, the methylation scores based on weights derived from EWAS conducted in 

the MCCS 12-14 produced somewhat stronger associations with cancer risk than those obtained 

via regularised regression,19 being estimated in comprehensively adjusted models at 9%, 10%, 

and 13% increase, compared with 6%, 2% and 11%, per SD of smoking, BMI, and alcohol 

methylation scores, respectively. That associations appeared stronger with these scores than 

with those of McCartney et al. 19 may be explained in part by the way the scores were built 

(i.e. ‘cumulative damage’ provided by the weighted average for all CpGs identified as top-

ranked associations between health risk factors and DNA methylation, instead of ‘best 

predictor’, obtained via regularised regression, which aims to maximise prediction), and 

perhaps more importantly because methylation at all CpGs they included was found to be 

strongly associated with these lifestyle factors in the samples used in this study.12-14. 

Consistent with this, the predictor found by Liu et al. 11 to be the best predictor of alcohol 

consumption in external data (based on 144 CpGs) performed less well than the reduced 

versions of it in terms of strength of association with cancer risk.  In line with the relatively 

small adjusted associations we observed, these scores, in addition to PhenoAge 30, 32 and 

GrimAge,31, 32 only provided moderate added discrimination between cases and controls (~3% 

for colorectal, gastric, kidney and urothelial cancers, ~7% for lung cancer and ~8% for 

mature B-cell lymphomas). 

The two main strengths of this study are i) its prospective design using incidence 

density sampling with improved control for confounding and efficiency by carefully 

matching cases and controls on several cancer-associated factors, including smoking history 
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for the lung cancer study, as well as very good control for batch effects provided by placing 

matched pairs on the same slide of the array; and ii) its large sample size (3,123 cancer cases) 

and the inclusion of several cancer types. The main limitation of our study is that it does not 

provide a ‘single best’ or integrated / synthetic methylation score representative of each 

lifestyle factor. It could also be that while methylation scores provided a good summary of 

the effect of lifestyle on the methylome, they were not able to capture the methylation 

patterns specific to risk for each cancer, as it is likely that methylation changes in certain 

genomic regions may have different implications regarding susceptibility to different cancers.  

To our knowledge, our study is novel in the field of cancer, and reports of similar 

attempts to assess other health outcomes are limited. In the study by McCartney et al.,19 the 

authors examined all-cause mortality and showed it was associated with their BMI 

methylation score (HR=1.23, 95%CI: 1.06-1.42, after adjustment for age, sex, white blood 

cell proportions, smoking methylation score, BMI polygenic score and measured BMI). 

Somewhat weaker associations were observed for waist-to-hip ratio and body fat percentage, 

which we did not include in our study. A negative association was observed for methylation-

predicted total cholesterol. The association for their alcohol consumption methylation score 

was similar to those observed in our study (HR=1.11, 95%CI: 0.97-1.28). A strong 

association was observed for the smoking methylation score, in particular after adjustment for 

BMI methylation score (HR=1.57, 95%CI: 1.39-1.78). Other studies published by the same 

group showed increased prediction of several health-related outcomes for their BMI 

methylation score 44 and their smoking methylation score 45. In the study by Langdon et al., 46 

methylation scores were evaluated in participants with oropharyngeal cancer and moderately 

large associations (HR~1.2-1.3) with survival were observed for some scores in adjusted 

models, with modest improvements in terms of prediction. Three other scores were evaluated 

in that study 10, 47, 48 as well as just methylation at cg05575921 (AHRR, smoking), 12 for which 
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the results were similar to those we considered. Other attempts were also made to use 

individual, or a restricted set of, smoking-associated methylation marks to predict lung cancer 

or other smoking-related outcomes, focusing on the strongest observed associations (e.g. 

AHRR), for example in the studies by Baglietto et al. including MCCS data, 23 Zhang et al., 49, 

50 and others. 51-54 

We conclude that methylation scores for smoking, BMI, and alcohol consumption 

show some associations with risk of cancer, independently of many health-related variables, 

but these were generally relatively small. While these scores could potentially replace the 

variables routinely collected in cohorts, their added contribution to the prediction of cancer is 

modest. 
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Table 1. Correlations between methylation scores 

 R2,a Smk-233 Smk-1061 Bmi-1109 Bmi-85 Alc-450 Alc-459 Alc-144 Alc-78 Alc-23 Alc-5 PhenoAge GrimAge 

Age  -0.01 0.17 0.02 0.15 0.00 0.17 -0.02 0.03 0.14 0.17 0.00 0.00 

Smk-233 56% 1 0.62 0.05 0.13 0.16 0.13 0.07 0.10 0.11 0.08 0.08 0.58 

Smk-1061 28%  1 0.05 0.34 0.23 0.45 0.11 0.20 0.34 0.31 0.13 0.42 

Bmi-1109 15%   1 0.46 0.03 -0.03 -0.02 0.01 0.04 0.07 0.06 0.12 

Bmi-85 11%    1 0.01 -0.10 -0.13 -0.06 0.14 0.15 0.06 0.05 

Alc-450 11%     1 0.27 0.26 0.33 0.42 0.45 0.06 0.19 

Alc-459 5%      1 0.47 0.55 0.53 0.50 0.25 0.33 

Alc-144 11%       1 0.92 0.59 0.43 0.07 0.08 

Alc-78 12%        1 0.75 0.59 0.09 0.12 

Alc-23 10%         1 0.94 0.09 0.12 

Alc-5 9%          1 0.12 0.16 

PhenoAge 0%           1 0.35 

GrimAge 0%            1 

a The variance explained R2 is given for each lifestyle factor; Smk-233 and Smk-1061: smoking status (current / former / never); Bmi-1109 and 
Bmi-85: BMI (continuous); Alc-450, Alc-459, Alc-144, Alc-78, Alc-23 and Alc-5: alcohol consumption (continuous). PhenoAge and GrimAge 
are independent of age because the measures were regressed on age. The variance explained before adjustment for age was 48% and 63%, 
respectively. 
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Table 2. Association (rate ratios, 95% confidence intervals) between methylation scores for 

smoking and cancer risk. 

 Cancer type (N cases) Model 1a Model 2a 

Colorectal (N=814)   RR CI95 P   RR CI95 P 
Smk-233 1.06 0.94-1.19 0.32  0.91 0.75-1.1 0.34 

Smk-1061 1.06 0.94-1.20 0.31  0.98 0.84-1.15 0.83 

Gastric (N=166)        

Smk-233 1.01 0.79-1.29 0.95  1.10 0.73-1.67 0.65 

Smk-1061 0.95 0.72-1.27 0.74  0.90 0.59-1.38 0.63 

Kidney (N=139)        

Smk-233 1.09 0.84-1.42 0.50  0.82 0.46-1.47 0.50 

Smk-1061 0.97 0.73-1.30 0.85  0.78 0.47-1.31 0.35 

Lung (N=327)        

Smk-233 1.84 1.44-2.36 2x10-6  1.68 1.29-2.19 0.0001 
Smk-1061 1.59 1.26-2.01 0.0001  1.49 1.17-1.90 0.001 

MBCN (N=426)        

Smk-233 0.97 0.80-1.17 0.74  0.93 0.69-1.24 0.61 

Smk-1061 1.12 0.93-1.35 0.22  1.21 0.96-1.52 0.11 

Prostate (N=847)        

Smk-233 0.89 0.79-1.00 0.04  0.90 0.75-1.08 0.25 

Smk-1061 0.88 0.78-1.00 0.05  0.89 0.76-1.04 0.15 

Urothelial (N=404)        

Smk-233 1.35 1.15-1.58 0.0002  1.16 0.9-1.48 0.25 

Smk-1061 1.47 1.24-1.75 8x10-6  1.32 1.06-1.63 0.01 

All types (N=3,000)        

Smk-233 1.09 1.02-1.15 0.006  1.06 0.97-1.16 0.20 

Smk-1061   1.11 1.04-1.18 0.0009  1.09 1.01-1.18 0.02 
a RRs were calculated using conditional logistic regression models. Cases and controls were matched 
on age, sex, country of birth, sample type and smoking status (for the lung cancer study), Matched 
pairs were placed consecutively on a same chip of the assay, at random positions. 

Model 1: adjusted for white blood cell composition 

Model 2: additionally adjusted for smoking status (current/former/never), alcohol consumption (in 
g/day) and BMI (in kg/m2), smoking pack-years, age at starting (never smoked; age 16 or less; 
between age 17 and 21; after age 21 years); years since quitting (never smoked; more than 10 years 
without smoking, between 5 and 10 years without smoking; less than 5 years without smoking), a 
score for physical activity, the alternate healthy eating index to reflect overall diet quality, education 
(score ranging from 1 to 8), socioeconomic status (score ranging from 1 to 10) and height (continuous, 
in meters) 
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Table 3. Association (rate ratios, 95% confidence intervals) between methylation scores for 

BMI and cancer risk. 

Cancer type (N cases) Model 1a Model 2a 

Colorectal (N=814)   RR 95% CI P   RR 95% CI P 
Bmi-1109 1.14 1.03-1.27 0.01  1.11 0.98-1.26 0.10 

Bmi-85 1.18 1.03-1.35 0.01  1.11 0.96-1.29 0.18 

Gastric (N=166)        

Bmi-1109 1.27 0.98-1.64 0.07  1.29 0.97-1.72 0.08 

Bmi-85 1.15 0.83-1.59 0.40  1.14 0.79-1.63 0.49 

Kidney (N=139)        

Bmi-1109 1.30 1.03-1.63 0.03  1.22 0.92-1.62 0.17 

Bmi-85 1.16 0.82-1.66 0.39  0.97 0.62-1.54 0.91 

Lung (N=327)        

Bmi-1109 0.90 0.76-1.06 0.22  0.99 0.83-1.19 0.94 

Bmi-85 0.97 0.78-1.21 0.78  1.08 0.84-1.38 0.57 

MBCN (N=426)        

Bmi-1109 0.87 0.74-1.01 0.07  0.81 0.68-0.97 0.02 

Bmi-85 1.25 1.02-1.53 0.03  1.32 1.04-1.66 0.02 

Prostate (N=847)        

Bmi-1109 0.99 0.89-1.11 0.92  0.97 0.86-1.10 0.61 

Bmi-85 0.90 0.78-1.05 0.18  0.90 0.77-1.05 0.19 

Urothelial (N=404)        

Bmi-1109 1.05 0.89-1.23 0.58  1.03 0.87-1.23 0.72 

Bmi-85 1.35 1.10-1.66 0.004  1.23 0.98-1.55 0.07 

All types (N=3,000)        

Bmi-1109 1.03 0.98-1.09 0.25  1.02 0.96-1.08 0.57 

Bmi-85   1.11 1.04-1.20 0.003  1.10 1.02-1.19 0.01 
1 RRs were calculated using conditional logistic regression models. Cases and controls were matched 
on age, sex, country of birth, sample type and smoking status (for the lung cancer study), Matched 
pairs were placed consecutively on a same chip of the assay, at random positions. 

Model 1: adjusted for white blood cell composition 

Model 2: additionally adjusted for smoking status (current/former/never), alcohol consumption (in 
g/day) and BMI (in kg/m2), smoking pack-years, age at starting (never smoked; age 16 or less; 
between age 17 and 21; after age 21 years); years since quitting (never smoked; more than 10 years 
without smoking, between 5 and 10 years without smoking; less than 5 years without smoking), a 
score for physical activity, the alternate healthy eating index to reflect overall diet quality, education 
(score ranging from 1 to 8), socioeconomic status (score ranging from 1 to 10) and height (continuous, 
in meters) 
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Table 4. Association (rate ratios, 95% confidence intervals) between methylation scores for 
alcohol consumption and cancer risk 

 Cancer type (N cases) Model 1a Model 2a 

Colorectal (N=814)   RR 95% CI P   RR 95% CI P 

Alc-450  1.12 1.01-1.25 0.04  1.11 0.99-1.25 0.07 

Alc-459  1.13 0.99-1.29 0.08  1.09 0.95-1.26 0.23 

Gastric (N=166)         

Alc-450  1.04 0.80-1.34 0.79  0.98 0.73-1.32 0.90 

Alc-459  0.88 0.63-1.23 0.45  0.8 0.53-1.21 0.28 

Kidney (N=139)         

Alc-450  1.02 0.78-1.32 0.91  1.14 0.83-1.57 0.43 

Alc-459  0.80 0.56-1.14 0.21  0.86 0.55-1.34 0.51 

Lung (N=327)         

Alc-450  1.39 1.17-1.66 0.0002  1.37 1.12-1.67 0.002 

Alc-459  1.32 1.07-1.63 0.008  1.36 1.08-1.70 0.008 

MBCN (N=426)         

Alc-450  1.01 0.86-1.18 0.93  1.03 0.87-1.23 0.72 

Alc-459  1.29 1.06-1.57 0.01  1.37 1.11-1.69 0.003 

Prostate (N=847)         

Alc-450  1.04 0.93-1.16 0.53  1.04 0.92-1.18 0.55 

Alc-459  1.02 0.89-1.17 0.80  1.01 0.87-1.17 0.92 

Urothelial (N=404)         

Alc-450  1.12 0.96-1.31 0.15  1.06 0.89-1.26 0.54 

Alc-459  1.14 0.97-1.33 0.11  1.05 0.89-1.25 0.55 

All types (N=3,000)         

Alc-450  1.11 1.05-1.17 0.0002  1.11 1.04-1.18 0.0007 

Alc-459  1.14 1.07-1.21 8x10-5  1.13 1.06-1.21 0.0004 
1 RRs were calculated using conditional logistic regression models. Cases and controls were matched 
on age, sex, country of birth, sample type and smoking status (for the lung cancer study), Matched 
pairs were placed consecutively on a same chip of the assay, at random positions. 

Model 1: adjusted for white blood cell composition 

Model 2: additionally adjusted for smoking status (current/former/never), alcohol consumption (in 
g/day) and BMI (in kg/m2), smoking pack-years, age at starting (never smoked; age 16 or less; 
between age 17 and 21; after age 21 years); years since quitting (never smoked; more than 10 years 
without smoking, between 5 and 10 years without smoking; less than 5 years without smoking), a 
score for physical activity, the alternate healthy eating index to reflect overall diet quality, education 
(score ranging from 1 to 8), socioeconomic status (score ranging from 1 to 10) and height (continuous, 
in meters) 
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Table 5. AUCs for various combinations of methylation scores and traditionally-assessed lifestyle variables. 

 

Cancer type Colorectal Gastric Kidney Lung MBCN Prostate Urothelial 

Model used AUC AUC AUC AUC AUC AUC AUC 

Model 0: Age, sex, country of birth, physical 
activity, diet quality, socioeconomic status, 
education and height 

0.53 0.60 0.64 0.53 0.56 0.54 0.55 

Model 1: Model 0 + smoking, alcohol, BMI 0.56 0.61 0.67 0.59 0.57 0.55 0.60 

Model 0 + methylation scores smoking, alcohol, 
and BMI 

0.55 0.61 0.66 0.60 0.59 0.55 0.60 

Model 2: Model 1 + methylation scores 
smoking, alcohol, BMI 

0.57 0.61 0.69 0.63 0.59 0.55 0.61 

Model 3: Model 2 + two methylation scores for 
smoking, alcohol, BMI 

0.58 0.63 0.69 0.64 0.65 0.55 0.62 

Model 4: Model 3 +  PhenoAge, and GrimAge 0.59 0.64 0.70 0.66 0.66 0.56 0.63 
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