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INTRODUCTION

Population-based estimates indicate that smoking, alcohol consumption and obesity combined explain approximately 20% of cancers diagnosed in Australia. [START_REF] Wilson | How many cancer cases and deaths are potentially preventable? Estimates for Australia in 2013[END_REF] These estimates are based on relatively strong assumptions that health risk factors are measured without error in cohort studies, and that population-average estimates reflect individual-level risk. In recent years, a growing body of research has reported associations of genetic and epigenetic measures with these lifestyle factors, raising the potential to increase our understanding of the role they play in the aetiology of cancer at the individual level. Recent research has made successful use of DNA methylation to study, for example, biological ageing 2, [START_REF] Marioni | DNA methylation age of blood predicts all-cause mortality in later life[END_REF] and its association with cancer risk and mortality. [START_REF] Dugué | DNA methylationbased biological aging and cancer risk and survival: Pooled analysis of seven prospective studies[END_REF][START_REF] Dugué | Association of DNA Methylation-Based Biological Age With Health Risk Factors and Overall and Cause-Specific Mortality[END_REF][START_REF] Dugué | Biological Aging Measures Based on Blood DNA Methylation and Risk of Cancer: A Prospective Study[END_REF][START_REF] Dugué | DNA Methylation-Based Measures of Biological Aging[END_REF][START_REF] Ambatipudi | DNA methylome analysis identifies accelerated epigenetic ageing associated with postmenopausal breast cancer susceptibility[END_REF] Tobacco smoking, adiposity and alcohol consumption are the health risk factors for which most convincing evidence exist regarding their widespread impact on the methylome; studies have identified thousands of CpG sites at which blood DNA methylation is associated with these exposures. 9-14 This raises potential for increasing the precision with which we measure these health risk factors at the individual level, as it is plausible that i) methylation changes are more abundant and marked in individuals who are more sensitive to these exposures, ii) the levels of exposure collected via cohort questionnaires may be prone to substantial measurement error, and iii) harmful levels of exposure accumulate over the life course and cannot be tracked by only one, two, or more time-point assessments. These aspects likely result in underestimates of association of lifestyle factors with cancer risk. The usefulness of integrated genomic measures to enhance epidemiological exposure assessment is increasingly recognised. [START_REF] Barrow | Epigenetic Epidemiology for Cancer Risk Epigenetic Mechanisms in Cancered[END_REF][START_REF] Lewis | Prospects for using risk scores in polygenic medicine[END_REF][START_REF] Dudbridge | Power and predictive accuracy of polygenic risk scores[END_REF][START_REF] Widschwendter | Epigenome-based cancer risk prediction: rationale, opportunities and challenges[END_REF] Recent studies have developed and validated epigenetic predictors for several lifestyle factors. 11, [START_REF] Mccartney | Epigenetic prediction of complex traits and death[END_REF] 4

In this study, we aimed to assess the association between several methylation-based scores for smoking, alcohol consumption and body mass index (BMI) and the risk of cancer in adulthood. We used data from seven prospective case-control studies nested in the Melbourne Collaborative Cohort Study (MCCS), including 3,123 incident cases of colorectal, gastric, kidney, lung, prostate and urothelial cancers and B-cell lymphoma.

MATERIALS AND METHODS

Study samples and blood collection

The MCCS is a prospective study of 41,513 adult volunteers (24,469 women) aged between 27 and 76 years (99% aged 40-69) when recruited between 1990 and 1994. More details on the cohort are available elsewhere. [START_REF] Giles | The Melbourne Collaborative Cohort Study[END_REF][START_REF] Milne | Cohort Profile: The Melbourne Collaborative Cohort Study (Health 2020)[END_REF] We used data from case-control studies of DNA methylation and risk of colorectal, gastric, kidney, lung, mature B-cell lymphoma, prostate and urothelial cancer, nested within the MCCS. [START_REF] Dugué | Genome-wide measures of DNA methylation in peripheral blood and the risk of urothelial cell carcinoma: a prospective nested case-control study[END_REF][START_REF] Baglietto | DNA methylation changes measured in pre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk[END_REF][START_REF] Fitzgerald | Genome-Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Case-Control Study[END_REF][START_REF] Bodelon | Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies[END_REF][START_REF] Wong Doo | Global measures of peripheral blood-derived DNA methylation as a risk factor in the development of mature B-cell neoplasms[END_REF][START_REF] Chamberlain | DNA methylation in peripheral blood and risk of gastric cancer: a prospective nested case-control study[END_REF] These cancers account for about 50% of new cancer cases in Victoria in 2018. [START_REF]Victorian Cancer Registry, Cancer in Victoria: Statistics & Trends 2018[END_REF] DNA was extracted from peripheral blood taken at the time of recruitment (1990-1994) except for 151 case-control pairs of the urothelial cancer study, for which blood samples were taken at a follow-up visit in 2003-2007. The DNA source was dried blood spots, peripheral blood mononuclear cells or buffy coats for 70%, 28% and 2% of participants, respectively. More details can be found elsewhere. [START_REF] Milne | Cohort Profile: The Melbourne Collaborative Cohort Study (Health 2020)[END_REF][START_REF] Dugué | Reliability of DNA methylation measures from dried blood spots and mononuclear cells using the HumanMethylation450k BeadArray[END_REF] Incident cancer cases were identified by linkage with the Victorian Cancer Registry and the Australian Cancer Database (Australian Institute of Health and Welfare), which are considered to be virtually complete.

Cases were followed from inclusion until 2012-2013, so the follow-up time was up to 23 years. The median from recruitment to diagnosis was 9.7 years (interquartile range: 5.4 to 13.6); these figures for individual cancer types are shown in Supplementary Table 1. For each nested case-control study, controls were individually matched to incident cases (diagnosed after blood sample collection) on age using incidence density sampling (i.e. they had to be free of the cancer of interest up to the age at diagnosis of the corresponding case), sex, country of birth (Australia/New-Zealand, Southern Europe, Northern Europe), blood DNA source (dried blood spots, peripheral blood mononuclear cells or buffy coat) and blood collection period (baseline or wave 2 for the urothelial cancer study). Controls were also matched to cases on year of birth, except for the colorectal cancer study where controls were matched on year of baseline attendance. For the lung cancer study, controls were also matched on smoking status at the time of blood collection.

DNA extraction and bisulfite conversion, and DNA methylation data processing

Methods relating to DNA extraction and bisulfite conversion, and DNA methylation data processing have been described previously 4, [START_REF] Dugué | Reliability of DNA methylation measures from dried blood spots and mononuclear cells using the HumanMethylation450k BeadArray[END_REF] and are detailed in Supplementary Methods.

Methylation scores for smoking, alcohol consumption and BMI

We calculated several methylation scores, all as weighted averages: for smoking we calculated Smk-233: score comprising 233 CpGs resulting from the Lasso regression applied to predict smoking pack-years (log-transformed), using as weights the regression coefficients available from the original publication from McCartney et al. [START_REF] Mccartney | Epigenetic prediction of complex traits and death[END_REF] and Smk-1,061: score comprising 1,061 CpGs at which methylation associated with a comprehensive smoking index in the MCCS (P<10 -7 ), and also reported to be associated with smoking (P<10 -7 ) in previous epigenome-wide association studies (EWAS), using as weights the individual association coefficients from the MCCS EWAS. [START_REF] Dugué | Smoking and blood DNA methylation: an epigenome-wide association study and assessment of reversibility[END_REF] Similarly, for BMI and alcohol consumption, we calculated, Bmi-1109 and Alc-450, respectively, based on the predictors developed by McCartney et al.; and Bmi-85 and Alc-459 based on associations reported with P<10 -7 in the MCCS and external data. [START_REF] Dugué | Alcohol consumption is associated with widespread changes in blood DNA methylation: Analysis of cross-sectional and longitudinal data[END_REF][START_REF] Geurts | Novel associations between blood DNA methylation and body mass index in middle-aged and older adults[END_REF] For alcohol consumption, we also calculated four scores using the weights available from the meta-analysis of Liu et al. [START_REF] Liu | A DNA methylation biomarker of alcohol consumption[END_REF] Elastic net regression, respectively, hence they aimed to predict these lifestyle factors accurately. The scores calculated from our previous EWAS conducted in the MCCS 12-14 may better represent the cumulative lifestyle-related changes to the methylome. Finally, we calculated the age-adjusted measures of biological ageing PhenoAge [START_REF] Levine | An epigenetic biomarker of aging for lifespan and healthspan[END_REF] and GrimAge, [START_REF] Lu | DNA methylation GrimAge strongly predicts lifespan and healthspan[END_REF] based on 513 and 1,030 CpGs, respectively, as done previously. [START_REF] Dugué | Biological aging measures based on blood DNA methylation and risk of cancer: a prospective study[END_REF] All scores were winsorised at five standard deviations from the mean to minimise the potential influence of outliers, and were then rescaled to Z-scores for better comparability of relative risk estimates.

Statistical analysis

Correlations between methylation scores were calculated using Spearman correlations in participants selected as controls (to avoid collider bias). The variance explained in each of smoking, BMI and alcohol consumption by their respective methylation scores was also assessed in controls. We used conditional logistic regression to calculate odds ratios, which are estimates of the rate ratios [RRs] when incidence density sampling matching is used, [START_REF] Pearce | What does the odds ratio estimate in a case-control study?[END_REF] for the associations between methylation scores, per standard deviation (1SD), and risk of cancer. Two models were used: in Model 1, no covariates were included other than blood cell composition, estimated using the Houseman algorithm; more than 10 years without smoking, between 5 and 10 years without smoking; less than 5 years without smoking), body-mass index (continuous, in kg/m 2 ), and alcohol consumption in the past week (continuous, in g/day), a score for physical activity, [START_REF] Macinnis | Body size and composition and colon cancer risk in men[END_REF] , the Alternate Healthy Eating Index 2010 to reflect overall diet quality, 37 education (score ranging from 1 to 8), socioeconomic status (score ranging from 1 to 10 38 ), and height (continuous, in meters). As a sensitivity analysis, the same models were performed without adjustment for white blood cell composition. These models were used to analyse each cancer separately, and all seven cancer types combined. For the combined analysis, where an individual was diagnosed with several cancers, we included the first diagnosis only (respecting the incidence density sampling procedure), so that participants did not contribute twice to the pooled estimates. Case-control pairs with any missing values for the confounders measured at baseline were excluded and missing values at follow-up (urothelial cancers) were replaced by baseline values; 3% of the initial sample was excluded due to missing values.

We assessed the contribution of methylation scores to the ability of the model to discriminate between cases and controls using the area under the receiver operating characteristic curve (AUC) statistics obtained from unconditional logistic regression models adjusted for the matching variables. We evaluated i) the prediction obtained from models including methylation scores for smoking, BMI, and alcohol consumption instead of the lifestyle variables collected in the cohort; ii) the additional contribution of methylation scores compared with a model with a large collection of traditionally collected health risk factors.

RESULTS

The characteristics of study participants were described previously [START_REF] Dugué | Biological aging measures based on blood DNA methylation and risk of cancer: a prospective study[END_REF] and are shown in Supplementary Table 2. The variance explained in the corresponding risk factor was 56% and 28% for Smk-233 and Smk-1061; 15% and 11% for Bmi-1109 and Bmi-85; and 11% and 5% for Alc-450 and Alc-459, respectively (Table 1). The correlations between scores were moderate to high within each lifestyle factor, r=0.62 between Smk-233 and Smk-1061; r=0.46 between Bmi-1109 and Bmi-85, and r=0.27 between Alc-450 and Alc-459. Moderate correlations were also observed across lifestyle factors, in particular between smoking and alcohol scores, between Smk-1,061 and Bmi-85 and between smoking scores and GrimAge (Table 1). There was little overlap of CpGs between methylation scores, e.g. 17 CpGs between Smk-233 and Smk-1061 (Supplementary Table 3).

The associations of methylation scores for smoking, BMI and alcohol consumption with risk of cancer are shown in Table 2, 3 and4 4).

Methylation scores for BMI generally showed associations with cancer risk in the expected direction but these were weaker than for smoking (Table 3). For colorectal cancer, the associations were substantially attenuated in comprehensively adjusted models and were in Model 2: Bmi-1109: RR=1.11, 95%CI: 0.98-1.26, and Bmi-85: RR=1.11, 95%CI: 0.96-1.29. Similar findings were obtained for gastric and kidney cancer risk. Bmi-85 was associated with risk of mature B-cell neoplasms (Model 2: 1.32, 95%CI: 1.04-1.66) and this association was not substantially stronger in models not adjusted for cell proportions, which may substantially confound the associations for this cancer type (RR=1.45, Supplementary Table 5). A moderately strong association was observed with risk of urothelial cancer (RR=1.35 and 1.23 in Model 1 and 2, respectively). Bmi-85 showed a stronger association with overall cancer risk than Bmi-1109 (RR=1.10, 95%CI: 1.02-1.19 and RR=1.02, 95%CI: 0.96-1.08, respectively).

For alcohol consumption, we found that all scores were associated with risk of lung cancer (Model 2: RR=1.37, P=0.002 and RR=1.36, P=0.008 for Alc-450 and Alc-459, respectively), Table 4. Small associations were observed with risk of colorectal cancer (RR=1.11 and RR=1.09) and a relatively large association for Alc-459 with risk of B-cell lymphoma RR=1.37, 95%CI: 1.11-1.69. For cancer overall, the risk was increased by 13% (4% to 18%) and 11% (6% to 21%) per SD increase in Alc-450 and Alc-459, respectively, after adjustment for cohort-collected sociodemographic, anthropometric and lifestyle variables; these associations were virtually the same as in unadjusted models, without adjustment for cell proportions, or using the scores of Liu et al. (Supplementary Tables 6 and7). For the scores of Liu et al., the associations did not appear larger for the scores including more CpGs, for example for cancer overall: Alc-144: RR=1.08, 95%CI: 1.02-1.15; Alc-78: RR=1.12, 95%CI: 1.06-1.19; Alc-23: RR=1.15, 95%CI: 1.08-1.22 and Alc-5: RR=1.14, 95%CI: 1.07-1.21 (Supplementary Table 7).

Results for the contribution of methylation scores to the prediction of cancer risk are shown in Table 5. The AUCs of models with methylation scores instead of traditionally assessed smoking, BMI, and alcohol consumption appeared similar for all cancer types and were somewhat higher for lung cancer (0.60 vs 0.59) and mature B-cell neoplasms (0.59 vs 0.57). The addition of methylation scores to variables that were collected via questionnaires or measured in the MCCS nevertheless resulted in relatively small AUC gains: models including two methylation scores for each of smoking, BMI, and alcohol consumption, GrimAge and PhenoAge compared with models without: colorectal cancer: AUC=0.59 vs 0.56, gastric: 0.64 vs 0.61, kidney: 0.70 vs 0.67, lung: 0.66 vs 0.59, mature B-cell neoplasms: 0.66 vs 0.57, prostate: 0.56 vs 0.55, urothelial: 0.63 vs 0.60.

DISCUSSION

We calculated various methylation scores for smoking, alcohol consumption and BMI, the main lifestyle factors that cause changes to DNA methylation and increase the risk of cancer. 12-14, 39-41 Several of these were associated with certain types of cancer and associations were only moderately attenuated after adjustment for sociodemographic, anthropometric and lifestyle factors, including several questionnaire-collected variables relating to smoking history (pack-years, age at starting, time since quitting). These associations were nevertheless generally relatively small, except for smoking scores and lung and urothelial cancer risk, for which we reported some of the findings previously. [START_REF] Dugué | Methylation marks of prenatal exposure to maternal smoking and risk of cancer in adulthood[END_REF] Reasonably large associations were also observed for methylation scores for BMI and alcohol consumption with risk of mature B-cell lymphoma (RR per SD~1.3-1.4), but these should be interpreted with some caution given the strongly modified blood methylation profiles found in B-cell neoplasms, [START_REF] Wong Doo | Global measures of peripheral blood-derived DNA methylation as a risk factor in the development of mature B-cell neoplasms[END_REF] and the fact that lifestyle is thought to only moderately increase risk for these types of cancer. [START_REF] Flowers | Identifying risk factors for B-cell lymphoma[END_REF] For risk of cancer overall, the methylation scores based on weights derived from EWAS conducted in the MCCS 12-14 produced somewhat stronger associations with cancer risk than those obtained via regularised regression, [START_REF] Mccartney | Epigenetic prediction of complex traits and death[END_REF] being estimated in comprehensively adjusted models at 9%, 10%, and 13% increase, compared with 6%, 2% and 11%, per SD of smoking, BMI, and alcohol methylation scores, respectively. That associations appeared stronger with these scores than with those of McCartney et al. [START_REF] Mccartney | Epigenetic prediction of complex traits and death[END_REF] may be explained in part by the way the scores were built (i.e. 'cumulative damage' provided by the weighted average for all CpGs identified as topranked associations between health risk factors and DNA methylation, instead of 'best predictor', obtained via regularised regression, which aims to maximise prediction), and perhaps more importantly because methylation at all CpGs they included was found to be strongly associated with these lifestyle factors in the samples used in this study. 12-14 .

Consistent with this, the predictor found by Liu et al. [START_REF] Liu | A DNA methylation biomarker of alcohol consumption[END_REF] to be the best predictor of alcohol consumption in external data (based on 144 CpGs) performed less well than the reduced versions of it in terms of strength of association with cancer risk. In line with the relatively small adjusted associations we observed, these scores, in addition to PhenoAge 30, [START_REF] Dugué | Biological aging measures based on blood DNA methylation and risk of cancer: a prospective study[END_REF] and GrimAge, 31, 32 only provided moderate added discrimination between cases and controls (~3% for colorectal, gastric, kidney and urothelial cancers, ~7% for lung cancer and ~8% for mature B-cell lymphomas).

The two main strengths of this study are i) its prospective design using incidence density sampling with improved control for confounding and efficiency by carefully matching cases and controls on several cancer-associated factors, including smoking history for the lung cancer study, as well as very good control for batch effects provided by placing matched pairs on the same slide of the array; and ii) its large sample size (3,123 cancer cases) and the inclusion of several cancer types. The main limitation of our study is that it does not provide a 'single best' or integrated / synthetic methylation score representative of each lifestyle factor. It could also be that while methylation scores provided a good summary of the effect of lifestyle on the methylome, they were not able to capture the methylation patterns specific to risk for each cancer, as it is likely that methylation changes in certain genomic regions may have different implications regarding susceptibility to different cancers.

To our knowledge, our study is novel in the field of cancer, and reports of similar attempts to assess other health outcomes are limited. In the study by McCartney et al., [START_REF] Mccartney | Epigenetic prediction of complex traits and death[END_REF] the authors examined all-cause mortality and showed it was associated with their BMI methylation score (HR=1.23, 95%CI: 1.06-1.42, after adjustment for age, sex, white blood cell proportions, smoking methylation score, BMI polygenic score and measured BMI). Somewhat weaker associations were observed for waist-to-hip ratio and body fat percentage, which we did not include in our study. A negative association was observed for methylationpredicted total cholesterol. The association for their alcohol consumption methylation score was similar to those observed in our study (HR=1.11, 95%CI: 0.97-1.28). A strong association was observed for the smoking methylation score, in particular after adjustment for BMI methylation score (HR=1.57, 95%CI: 1.39-1.78). Other studies published by the same group showed increased prediction of several health-related outcomes for their BMI methylation score [START_REF] Hamilton | An epigenetic score for BMI based on DNA methylation correlates with poor physical health and major disease in the Lothian Birth Cohort[END_REF] and their smoking methylation score [START_REF] Corley | Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936[END_REF] . In the study by Langdon et al., [START_REF] Langdon | Epigenetic prediction of complex traits and mortality in a cohort of individuals with oropharyngeal cancer[END_REF] methylation scores were evaluated in participants with oropharyngeal cancer and moderately large associations (HR~1.2-1.3) with survival were observed for some scores in adjusted models, with modest improvements in terms of prediction. Three other scores were evaluated in that study 10, 47, 48 as well as just methylation at cg05575921 (AHRR, smoking), [START_REF] Dugué | Smoking and blood DNA methylation: an epigenome-wide association study and assessment of reversibility[END_REF] for which the results were similar to those we considered. Other attempts were also made to use individual, or a restricted set of, smoking-associated methylation marks to predict lung cancer or other smoking-related outcomes, focusing on the strongest observed associations (e.g. AHRR), for example in the studies by Baglietto et al. including MCCS data, [START_REF] Baglietto | DNA methylation changes measured in pre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk[END_REF] Zhang et al., [START_REF] Zhang | Smokingassociated DNA methylation markers predict lung cancer incidence[END_REF][START_REF] Zhang | Smoking-Associated DNA Methylation Biomarkers and Their Predictive Value for All-Cause and Cardiovascular Mortality[END_REF] and others. [START_REF] Kodal | AHRR hypomethylation, lung function, lung function decline and respiratory symptoms[END_REF][START_REF] Morrow | DNA methylation is predictive of mortality in current and former smokers[END_REF][START_REF] Bojesen | AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality[END_REF][START_REF] Kemp Jacobsen | AHRR (cg05575921) methylation extent of leukocyte DNA and lung cancer survival[END_REF] We conclude that methylation scores for smoking, BMI, and alcohol consumption show some associations with risk of cancer, independently of many health-related variables, but these were generally relatively small. While these scores could potentially replace the variables routinely collected in cohorts, their added contribution to the prediction of cancer is modest. 

  These scores included 5, 23, 78 and 144 CpGs (Alc-5, Alc-23, Alc-78 and Alc-144) and were reported to explain from 5 to 14% of variance in alcohol consumption in testing datasets. The scores calculated from the studies by McCartney et al. and Liu et al. were obtained via Lasso and

  , respectively. The smoking scores showed strong associations with risk of lung and urothelial cancers in unadjusted models (Model 1, adjustment for white blood cell proportions only): lung cancer, Smk-233: RR per SD=1.84, 95%CI: 1.44-2.36, P=2x10 -6 ; Smk-1061: RR=1.59, 95%CI: 1.26-2.01, P=0.0001; urothelial cancers: Smk-233: RR=1.35, 95%CI: 1.15-1.58, P=0.0002; Smk-1061: RR=1.47, 95%CI: 1.24-1.75, P=8x10 -6 . There was little attenuation after adjustment for lifestyle factors including several smoking-related variables collected by questionnaires (Model 2), except for Smk33 and urothelial cancer risk (point estimates: lung: Smk-233: 1.68, Smk-1061: 1.49, urothelial: Smk-233: 1.16, Smk-1061: 1.32). Positive but weak associations were observed with risk of cancer overall: unadjusted: Smk-233: 1.09, P=0.006, Smk-1061: 1.11, P=0.0009; adjusted: Smk-233: 1.06, P=0.20, Smk-1061: 1.09, P=0.02. Associations observed without adjustment for cell composition were similar, albeit slightly weaker (Supplementary Table

34, 35

  age 16 or less; between age 17 and 21; after age 21 years); years since quitting (never smoked;

Model 2, further adjusted for smoking status (never; former; current), smoking pack-years, age at starting (never smoked;

Table 1 .

 1 Correlations between methylation scores

R 2,a Smk-233 Smk-1061 Bmi-1109 Bmi-85 Alc-450 Alc-459 Alc-144 Alc-78 Alc-23 Alc-5 PhenoAge GrimAge

  Alc-450, Alc-459, Alc-144, Alc-78, Alc-23 and Alc-5: alcohol consumption (continuous). PhenoAge and GrimAge are independent of age because the measures were regressed on age. The variance explained before adjustment for age was 48% and 63%, respectively.

	Age		-0.01	0.17	0.02	0.15	0.00	0.17	-0.02	0.03	0.14	0.17	0.00	0.00
	Smk-233 56%	1	0.62	0.05	0.13	0.16	0.13	0.07	0.10	0.11	0.08	0.08	0.58
	Smk-1061 28%		1	0.05	0.34	0.23	0.45	0.11	0.20	0.34	0.31	0.13	0.42
	Bmi-1109 15%			1	0.46	0.03	-0.03	-0.02	0.01	0.04	0.07	0.06	0.12
	Bmi-85	11%				1	0.01	-0.10	-0.13	-0.06	0.14	0.15	0.06	0.05
	Alc-450	11%					1	0.27	0.26	0.33	0.42	0.45	0.06	0.19
	Alc-459	5%						1	0.47	0.55	0.53	0.50	0.25	0.33
	Alc-144	11%							1	0.92	0.59	0.43	0.07	0.08
	Alc-78	12%								1	0.75	0.59	0.09	0.12
	Alc-23	10%									1	0.94	0.09	0.12
	Alc-5	9%										1	0.12	0.16
	PhenoAge 0%											1	0.35
	GrimAge	0%												1

a The variance explained R 2 is given for each lifestyle factor; Smk-233 and Smk-1061: smoking status (current / former / never); Bmi-1109 and Bmi-85: BMI (continuous);

Table 2 .

 2 Association (rate ratios, 95% confidence intervals) between methylation scores for smoking and cancer risk.

	Cancer type (N cases)		Model 1 a			Model 2 a	
	Colorectal (N=814)	RR	CI95	P	RR	CI95	P
	Smk-233	1.06	0.94-1.19	0.32	0.91	0.75-1.1	0.34
	Smk-1061	1.06	0.94-1.20	0.31	0.98	0.84-1.15	0.83
	Gastric (N=166)						
	Smk-233	1.01		0.95	1.10	0.73-1.67	0.65
	Smk-1061	0.95	0.72-1.27	0.74	0.90	0.59-1.38	0.63
	Kidney (N=139)						
	Smk-233	1.09	0.84-1.42	0.50	0.82	0.46-1.47	0.50
	Smk-1061	0.97	0.73-1.30	0.85	0.78	0.47-1.31	0.35
	Lung (N=327) Smk-233	1.84	1.44-2.36	2x10 -6	1.68	1.29-2.19	0.0001
	Smk-1061	1.59	1.26-2.01	0.0001	1.49	1.17-1.90	0.001
	MBCN (N=426)						
	Smk-233	0.97	0.80-1.17	0.74	0.93	0.69-1.24	0.61
	Smk-1061	1.12	0.93-1.35	0.22	1.21	0.96-1.52	0.11
	Prostate (N=847)						
	Smk-233	0.89	0.79-1.00	0.04	0.90	0.75-1.08	0.25
	Smk-1061	0.88	0.78-1.00	0.05	0.89	0.76-1.04	0.15
	Urothelial (N=404)						
	Smk-233	1.35	1.15-1.58	0.0002	1.16	0.9-1.48	0.25
	Smk-1061	1.47	1.24-1.75	8x10 -6	1.32	1.06-1.63	0.01
	All types (N=3,000)						
	Smk-233	1.09	1.02-1.15	0.006	1.06	0.97-1.16	0.20
	Smk-1061	1.11	1.04-1.18	0.0009	1.09	1.01-1.18	0.02
	a RRs were calculated using conditional logistic regression models. Cases and controls were matched
	on age, sex, country of birth, sample type and smoking status (for the lung cancer study), Matched
	pairs were placed consecutively on a same chip of the assay, at random positions.	
	Model 1: adjusted for white blood cell composition				
	Model 2: additionally adjusted for smoking status (current/former/never), alcohol consumption (in
	g/day) and BMI (in kg/m2), smoking pack-years, age at starting (never smoked; age 16 or less;
	between age 17 and 21; after age 21 years); years since quitting (never smoked; more than 10 years
	without smoking, between 5 and 10 years without smoking; less than 5 years without smoking), a
	score for physical activity, the alternate healthy eating index to reflect overall diet quality, education
	(score ranging from 1 to 8), socioeconomic status (score ranging from 1 to 10) and height (continuous,
	in meters)						

Table 3 .

 3 Association (rate ratios, 95% confidence intervals) between methylation scores for BMI and cancer risk.

	Cancer type (N cases)		Model 1 a			Model 2 a	
	Colorectal (N=814)	RR	95% CI	P	RR	95% CI	P
	Bmi-1109	1.14	1.03-1.27	0.01	1.11	0.98-1.26	0.10
	Bmi-85	1.18	1.03-1.35	0.01	1.11	0.96-1.29	0.18
	Gastric (N=166)						
	Bmi-1109	1.27	0.98-1.64	0.07	1.29	0.97-1.72	0.08
	Bmi-85	1.15	0.83-1.59	0.40	1.14	0.79-1.63	0.49
	Kidney (N=139)						
	Bmi-1109	1.30	1.03-1.63	0.03	1.22	0.92-1.62	0.17
	Bmi-85	1.16	0.82-1.66	0.39	0.97	0.62-1.54	0.91
	Lung (N=327)						
	Bmi-1109	0.90	0.76-1.06	0.22	0.99	0.83-1.19	0.94
	Bmi-85	0.97	0.78-1.21	0.78	1.08	0.84-1.38	0.57
	MBCN (N=426)						
	Bmi-1109	0.87	0.74-1.01	0.07	0.81	0.68-0.97	0.02
	Bmi-85	1.25	1.02-1.53	0.03	1.32	1.04-1.66	0.02
	Prostate (N=847)						
	Bmi-1109	0.99	0.89-1.11	0.92	0.97	0.86-1.10	0.61
	Bmi-85	0.90	0.78-1.05	0.18	0.90	0.77-1.05	0.19
	Urothelial (N=404)						
	Bmi-1109	1.05	0.89-1.23	0.58	1.03	0.87-1.23	0.72
	Bmi-85	1.35	1.10-1.66	0.004	1.23	0.98-1.55	0.07
	All types (N=3,000)						
	Bmi-1109	1.03	0.98-1.09	0.25	1.02	0.96-1.08	0.57
	Bmi-85	1.11	1.04-1.20	0.003	1.10	1.02-1.19	0.01
	1 RRs were calculated using conditional logistic regression models. Cases and controls were matched
	on age, sex, country of birth, sample type and smoking status (for the lung cancer study), Matched
	pairs were placed consecutively on a same chip of the assay, at random positions.		
	Model 1: adjusted for white blood cell composition				
	Model 2: additionally adjusted for smoking status (current/former/never), alcohol consumption (in
	g/day) and BMI (in kg/m2), smoking pack-years, age at starting (never smoked; age 16 or less;	
	between age 17 and 21; after age 21 years); years since quitting (never smoked; more than 10 years
	without smoking, between 5 and 10 years without smoking; less than 5 years without smoking), a	
	score for physical activity, the alternate healthy eating index to reflect overall diet quality, education
	(score ranging from 1 to 8), socioeconomic status (score ranging from 1 to 10) and height (continuous,
	in meters)						
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 4 Association (rate ratios, 95% confidence intervals) between methylation scores for alcohol consumption and cancer risk RRs were calculated using conditional logistic regression models. Cases and controls were matched on age, sex, country of birth, sample type and smoking status (for the lung cancer study), Matched pairs were placed consecutively on a same chip of the assay, at random positions. Model 1: adjusted for white blood cell composition Model 2: additionally adjusted for smoking status (current/former/never), alcohol consumption (in g/day) and BMI (in kg/m2), smoking pack-years, age at starting (never smoked; age 16 or less; between age 17 and 21; after age 21 years); years since quitting (never smoked; more than 10 years without smoking, between 5 and 10 years without smoking; less than 5 years without smoking), a score for physical activity, the alternate healthy eating index to reflect overall diet quality, education (score ranging from 1 to 8), socioeconomic status (score ranging from 1 to 10) and height (continuous, in meters)

	Cancer type (N cases)		Model 1 a			Model 2 a	
	Colorectal (N=814)	RR	95% CI	P	RR	95% CI	P
	Alc-450	1.12	1.01-1.25	0.04	1.11	0.99-1.25	0.07
	Alc-459	1.13	0.99-1.29	0.08	1.09	0.95-1.26	0.23
	Gastric (N=166)						
	Alc-450	1.04	0.80-1.34	0.79	0.98	0.73-1.32	0.90
	Alc-459	0.88	0.63-1.23	0.45	0.8	0.53-1.21	0.28
	Kidney (N=139)						
	Alc-450	1.02	0.78-1.32	0.91	1.14	0.83-1.57	0.43
	Alc-459	0.80	0.56-1.14	0.21	0.86	0.55-1.34	0.51
	Lung (N=327)						
	Alc-450	1.39	1.17-1.66	0.0002	1.37	1.12-1.67	0.002
	Alc-459	1.32	1.07-1.63	0.008	1.36	1.08-1.70	0.008
	MBCN (N=426)						
	Alc-450	1.01	0.86-1.18	0.93	1.03	0.87-1.23	0.72
	Alc-459	1.29	1.06-1.57	0.01	1.37	1.11-1.69	0.003
	Prostate (N=847)						
	Alc-450	1.04	0.93-1.16	0.53	1.04	0.92-1.18	0.55
	Alc-459	1.02	0.89-1.17	0.80	1.01	0.87-1.17	0.92
	Urothelial (N=404)						
	Alc-450	1.12	0.96-1.31	0.15	1.06	0.89-1.26	0.54
	Alc-459	1.14	0.97-1.33	0.11	1.05	0.89-1.25	0.55
	All types (N=3,000)						
	Alc-450	1.11	1.05-1.17	0.0002	1.11	1.04-1.18	0.0007
	Alc-459	1.14	1.07-1.21	8x10 -5	1.13	1.06-1.21	0.0004
	1						

Table 5 .

 5 AUCs for various combinations of methylation scores and traditionally-assessed lifestyle variables.

	Cancer type	Colorectal Gastric Kidney	Lung	MBCN Prostate Urothelial
	Model used	AUC	AUC	AUC	AUC	AUC	AUC	AUC
	Model 0: Age, sex, country of birth, physical							
	activity, diet quality, socioeconomic status,	0.53	0.60	0.64	0.53	0.56	0.54	0.55
	education and height							
	Model 1: Model 0 + smoking, alcohol, BMI	0.56	0.61	0.67	0.59	0.57	0.55	0.60
	Model 0 + methylation scores smoking, alcohol, and BMI	0.55	0.61	0.66	0.60	0.59	0.55	0.60
	Model 2: Model 1 + methylation scores smoking, alcohol, BMI	0.57	0.61	0.69	0.63	0.59	0.55	0.61
	Model 3: Model 2 + two methylation scores for smoking, alcohol, BMI	0.58	0.63	0.69	0.64	0.65	0.55	0.62
	Model 4: Model 3 + PhenoAge, and GrimAge	0.59	0.64	0.70	0.66	0.66	0.56	0.63
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