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BSTRACT 

ross-phenotype association using gene-set analy- 
is can help to detect pleiotropic genes and inform 

bout common mechanisms between diseases. Al- 
hough there are an increasing number of statistical 

ethods for exploring pleiotropy, there is a lack of 
roper pipelines to apply gene-set analysis in this 

ontext and using genome-scale data in a reasonable 

unning time. We designed a user-friendly pipeline to 

erf orm cr oss-phenotype gene-set analysis between 

wo traits using GCPBayes, a method developed by 

ur team. All analyses could be performed automat- 
cally by calling for different scripts in a simple way 

using a Shiny app, Bash or R script). A Shiny appli- 
ation was also developed to create different plots 

o visualize outputs from GCPBayes. Finally, a com- 
rehensive and step-by-step tutorial on how to use 

he pipeline is pr o vided in our gr oup’s GitHub page. 
e illustrated the application on publicly available 

WAS (genome-wide association studies) summary 

tatistics data to identify breast cancer and o v arian 

ancer susceptibility genes. We ha ve sho wn that the 

CPBayes pipeline could extract pleiotropic genes 

re viousl y mentioned in the literature, while it also 

r o vided new pleiotr opic genes and regions that are 

 orthwhile f or further investigation. We have also 

r o vided some recommendations about parameter 
election for decreasing computational time of GCP- 

ayes on genome-scale data. d

n  

B
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NTRODUCTION 

enome-wide association studies (GWAS) have been suc- 
essful in identifying hundreds of thousands of single- 
ucleotide polymorphisms (SNPs) associated with risk of 
omplex traits, and it was shown that the majority are asso- 
iated with more than one trait, suggesting that pleiotropy 

i.e. the fact that one genetic variant can affect multiple 
raits) is a widespread phenomenon in human diseases ( 1 ). 
tudying pleiotropy could help to identify shared biological 
echanisms and disentangle relationships between associ- 

ted diseases and could lead to new perspectives for preven- 
ion strategy and for treatment ( 2 ). 

Dif ferent sta tistical approaches have been proposed to 

xplor e pleiotrop y between differ ent traits by testing for 
ross-phenotype (CP) associations at the SNP le v el ( 3 ). A 

P association is defined by a genetic locus associated with 

ore than one trait in a study, regardless of the underly- 
ng cause for the observed association. A genetic locus is 
aid pleiotropic when it truly affects more than one trait 
nd is one possible underlying cause for an observed CP 

ssociation. There exist several methods that were devel- 
ped to detect CP association across two or more traits for 
 gi v en SNP, such as ASSET, a subset-based meta-analysis 
pproach that considers a null hypothesis in which no as- 
ociation exists between a given variant and any traits ( 4 ). 
her efor e, a r ejection of the null hypothesis means that 

he variant is associated with at least one trait and com- 
lementary procedur es ar e needed to detect variants as- 
ociated with more than one trait. Recently, a new SNP- 
e v el pleiotropy method has been proposed (PLACO) that 
llows a user to explore pleiotropy at the SNP le v el un- 
er the null hypothesis that a variant is associated with 

one or only one of the traits ( 5 ). Another method (CP-
ayes) has been proposed to measure the evidence of 
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aggregate-le v el CP association by using a Bayesian frame-
work based on a spike and slab prior, which is commonly
used in solving two-class classification problems and there-
fore allows the selection of an optimal subset of traits as-
sociated with a specific locus ( 6 ). Howe v er, a prob lem for
these kinds of approaches considering CP association at
the SNP le v el only is that a user needs to perform further
functional annotation analysis on the SNPs with poten-
tial pleiotropic effects on both traits to find potentially im-
plicated genes and pathways, which is challenging in most
cases. Another perspecti v e would be performing an SNP-
to-gene annotation at the first place to explore pleiotropy
at the gene le v el to make the results easier to interpret.
Furthermor e, the structur e of the common mechanisms
shared by multiple phenotypes can be more complex than
SNP-le v el pleiotropy, as different variants in the same lo-
cus can be associated with multiple traits, affecting the same
gene, and ther efor e can have an impact on the same pro-
tein. The fact that these complex mechanisms are not fully
explored in traditional GWAS approaches has been ad-
vanced as one possible explanation of the ‘missing heri-
tability’ in complex diseases ( 7 ). Recently, large-scale cross-
trait analyses have shown interest in gene prioritization and
enrichment on biological pathways as secondary analyses
( 8 , 9 ). Thus, taking into account the group structure di-
rectly in the meta-analysis could help to discover novel ge-
netic variants associated with multiple diseases ( 10 ). We
de v eloped a Bayesian meta-analysis method (called GCP-
Bayes) that can detect CP association both at the group le v el
(gene or pathway le v el) and within groups (e.g. at the SNP
le v el) ( 10 ). 

Although there is an increment in publicly available
GWAS summary statistics data, it is not trivial to use
such data very easily while working with statistical pack-
ages for pleiotropy detection since various inputs includ-
ing different file formats are needed for each package. Be-
sides, some statistical methods are very time-consuming
in the case of working with large GWAS da ta tha t in-
cluded se v eral millions of variants. Ther efor e, it seems nec-
essary to de v elop user-friendly platforms that could accel-
erate exploring pleiotropy analysis between pair of traits
using GWAS summary statistics data. Here, we have in-
troduced a new pipeline designed to handle genome-le v el
GWAS summary statistics data as inputs and would e v en-
tually perform a feasible CP analysis by using the GCP-
Bayes package. The pipeline checks the integrity of the
summary sta tistics da ta, harmonizes the r efer ent alleles be-
tween the different datasets and provides the gene anno-
tations for each variant. The pipeline also contains some
functions and a Shiny application for visualization of re-
sults, which gi v e an ov erall ov ervie w to a user for further
complementary analyses. To illustrate the application of
the pipeline, we used it to identify CP associations at the
gene le v el between breast cancer (BC) and ovarian can-
cer (OC) using GWAS summary statistics data from two
large consortia: the Breast Cancer Association Consor-
tium (BCAC) ( 11 ) and the Ovarian Cancer Association
Consortium (OCAC) ( 12 ). We used GCPBayes and com-
pared the highlighted genes with previous findings from the

literature. 
MATERIALS AND METHODS 

Pipeline ov ervie w 

Ther e ar e four main sections available throughout the GCP-
Bay es pipeline. A gener al ov ervie w of the pipeline is shown
in Figure 1 . As shown, three sections (Standardization, An-
notation and Running GCPBayes) run for e v ery pair of
traits, while there is also an optional section (Linkage Dis-
equilibrium (LD) Clumping). Additionally, we provide an
explanation of the analysis functions for input / output files
through a visualization section. In Figure 1 , we provided
a simplified version, while more details about each section,
e v ery procedure, the scripts, and input and output files are
provided in Supplementary File S1 and in our GitHub page
for advanced users. 

Ther e ar e at least thr ee files needed for running the
GCPBayes pipeline: GWAS summary statistics data for
two traits and an annotation file that contains information
about gene locations in human assembly. We considered an
annotation file from the GENCODE project ( 13 ) into the
GCPBayes pipeline. Howe v er, it is possib le for a user to re-
place it with any other annotation file. 

In the Standardization section, GWAS summary statis-
tics inputs are checked and harmonized. An important is-
sue a user should consider before exploring pleiotropic ef-
fect on two traits is to make sure that the panel of SNPs is
the same in both datasets, with valid alleles reported. Also,
e v en it is not r equir ed, this is mor e convenient to analyze
final results with similar effect alleles on the same strand in
both datasets. If the alleles do not match in the two stud-
ies and switching alleles is needed, a user should notice to
change the sign of beta values for the corresponding SNPs.
Further information and details about running this step are
provided in the GitHub page and Supplementary File S1
(Section 2.1). 

In the Annotation section, the pipeline annotates SNPs
into genes according to their coordinates, in order to per-
form CP analysis at the gene le v el. The final created files
are in Rdata file formats and compatible with the inputs
of the GCPBayes package. When the number of SNPs in-
cluded in a gene is too large, it might be necessary to shrink
the number of SNPs within a gene to reduce the computa-
tional time. So, we have designed a section in the GCPBayes
pipeline to perform LD clumping ( 14 ) to select the most sig-
nificant SNP within an LD block (with default value for
r 2 threshold set to 0.8) based on the CP association esti-
mated by PLACO ( 5 ) and LD structure information from a
1000 Genomes Phase 3 r efer ence panel. While other meth-
ods, such as MTAG ( 15 ), LOGTRAM ( 16 ) and coloc ( 17 ),
are available to identify SNPs with pleiotropic effects, we
chose to use PLACO in our pipeline due to its unique ability
to build SNP-le v el P -values under the null hypothesis that
a variant is associated with none or only one of the traits.
We acknowledge that other methods exist and may offer
distinct advanta ges, b ut the use of PLACO was justified
in our study based on its specific featur es. Mor e informa-
tion about how to pr epar e the annotation files for the SNPs
with or without the LD clumping option is provided in
the GitHub page and Supplementary File S1 (Sections 2.2
and 2.3). 
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Figure 1. A general ov ervie w of the main steps of the GCPBayes pipeline . 
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In the Running GCPBayes section, the pipeline reads 
he Rdata files created from the previous section and per- 
orms the GCPBayes method to find genes with potential 
leiotropic effects on both traits (Supplementary File S1, 
ections 2.4.2, 2.4.3, 2.5.2 and 2.5.3). We considered genes 
ith θ > 0.5 as potential pleiotropic genes, as explained 

n ( 10 ), where θ is defined as the probability of having group 

leiotropy. So, θ > 0.5 means that the probability to have 
 pleiotropic effect for the group is > 50%. We used this 
hreshold as explanatory analysis in order to generate new 

andidate genes. Howe v er, for a more general use, we im- 
lemented a q -value to control for the false discovery rate. 
e recommend to the user to report on the q -value that we 

ave implemented in the pipeline outputs in order to get 
ore confidence on the results. Howe v er, it should be noted 

hat this correction is at least as much conservati v e as a 

enjamini–Hochberg correction. 
The current version of the pipeline is running GCPBayes 

y using the Dirac spike (DS) function ( 10 ), but we rec-
mmend to then perform analysis on the subset of genes 
ith θ > 0.1 by using the hierarchical spike (HS) function 

o confirm the results. Then, the same threshold as for DS 

an be considered. As we explained in more detail in our 
revious study, DS runs a Gibbs sampler for a multivari- 
te Bayesian sparse group selection model along with DS 

rior, while HS runs a Gibbs sampler with HS prior to 

etect a pleiotropic effect ( 10 ). Also, HS could perform a 

or e r elevant selection of signal at the SNP le v el as this
ethod is designed for variable selection at both SNP and 

ene le v els. Howe v er, analysis with GCPBayes by consid- 
ring the HS function is more time-consuming than using 

S ( 10 ). 
Due to higher running time of the GCPBayes method 

hile dealing with genes that include a large number of 
NPs, the pipeline is also designed to divide genes into two 

roups according to whether their number of SNPs is lower 
r higher than a threshold that needs to be defined. It is then 

ossible to restrict the GCPBayes analysis to genes with a 

umber of SNPs lower than the gi v en threshold (Supple- 
entary File S1, Sections 2.4.2 and 2.5.2). Genes with a 

umber of SNPs higher than the gi v en threshold could also 

e processed through a separate script (Supplementary File 
1, Sections 2.4.3 and 2.5.3) or a user could shrink the num- 
er of SNPs by considering the LD clumping step. More in- 

ormation is provided in the GitHub page and Supplemen- 
ary File S1 (Section 2.3). 

Ther e ar e two wa ys to launch the GCPBa yes pipeline: (i)
y modifying directly the ‘Definition section’ that includes 
ll file names and pa ths rela ted to input and output files, as
ell as threshold values (if needed) for each section, and by 

unning the Bash or R script that will read all defined pa- 
ameters and run e v ery step of the pipeline; or (ii) by using
he Shiny app we de v eloped that will create the parameter 
le from the information the user provides (such as work- 

ng directory path, GWAS column names, threshold values, 
tc.) and that will run each step of the pipeline sequentially. 
n R script is also available (which could be run individ- 
ally or through the Shiny app) to install r equir ed pack- 
ges for the pipeline. More information is provided in the 
itHub page. 



4 NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Visualization analyses 

Some visualization parts have been designed throughout the
GCPBayes pipeline as follows: checking GWAS summary
sta tistics input da ta (files crea ted in the Standardiza tion sec-
tion) by comparing SNP allele effects with previous GWAS
r esults r efer enced in the GWAS catalog and SNP allele fre-
quencies with those r efer ences in 1000 Genomes using a
recently de v eloped R package called CheckSumStats ( 18 )
(Supplementary File S1, Section 3.1), an ov ervie w from the
annotation file (Supplementary File S1, Section 3.2), analy-
sis of PLACO outputs created in the LD Clumping section
(Supplementary File S1, Section 3.3), analysis of GCPBayes
input file created at the end of Annotation section (Sup-
plementary File S1, Section 3.4) and analysis of GCPBayes
output file created in the Running GCPBayes section (Sup-
plementary File S1, Section 3.5). 

We have also designed a Shiny application to auto-
ma tically crea te dif ferent graphs based on outputs of the
pipeline. The goal of the visualization part is to get an
ov ervie w by plotting the inputs / outputs and decide about
further analyses for a specific region or doing complemen-
tary procedur es. Mor e details about how to perform the vi-
sualization parts are provided in the GitHub page and Sup-
plementary File S1 (Section 3.6). 

GWAS data 

GWAS summary sta tistics da ta for BC risk downloaded
from the BCAC (version of year 2020) included 10 760 767
SNPs from 133 384 BC cases and 113 789 controls ( 11 ). For
OC , da ta downloaded from the OCAC contained summary
statistics for 18 119 090 SNPs deri v ed from 25 509 epithelial
OC cases and 40 941 controls in total ( 12 ). Some prepro-
cessing steps were performed on the data (as explained in
the Standardization section and also in Supplementary File
S1, Section 2.1). The reformatted data were used through
the GCPBayes pipeline for further analyses. 

RESULTS 

In the Standardization steps (Figure 1 ), we removed all
SNPs with missing effect or incomplete allele information.
For the BCAC, a total of 9 149 691 SNPs remained, while
the final OCAC GWAS summary sta tistics da ta included
8 929 032 SNPs. The OCAC GWAS data were also recoded
in order to keep the same r efer ent and effect alleles as in
the BCAC data. For details about cleaning and reformat-
ting steps, see Supplementary File S1 (Section 2.1). By keep-
ing shared entries for BCAC and OCAC GWAS summary
sta tistics da ta, 7 079 969 SNPs wer e consider ed for further
analyses. We first compared the GWAS summary statis-
tics data from the two datasets to find out common signifi-
cant loci. As shown in Supplementary Figure S1, there were
three loci (5p15.33, 10p12.31 and 15q26.1) that were signif-
icant in both BC and OC data. 

After running the pipeline without performing LD
clumping, 7 079 969 SNPs were mapped into 18 244 protein-
coding genes of which 18 124 genes contained ≤1500 SNPs,
while 120 genes had > 1500 SNPs (Supplementary Table
S1). For the second group of the genes with > 1500 SNPs, we
used the GCPBayes method with the LD clumping step in
order to shrink the SNP numbers by prioritizing the SNPs
that have the most significant CP associations within an
LD block using the PLACO method. After running GCP-
Bayes on two groups of genes, 151 protein-coding genes
across 79 different genomic regions were selected as po-
tential pleiotropic genes ( θ > 0.5) between BC and OC
thr oughout autosomal chr omosomes (Supplementary Ta-
ble S2). A summary of the gene properties with potential
pleiotropic effects distributed by chromosomes is provided
in Table 1 . GCPBayes detected genes for which the number
of SNPs ranges from 1 to 962. All pleiotropic genes were
detected through the SNPs that were not clumped. 

The reformatting of BCAC and OCAC GWAS data for
all chromosomes and the annotation using protein-coding
genes took, respecti v ely, ∼20 and ∼8 min without and with
the LD clumping step (on a server with Intel ® Xeon 

®

Processor E7-8860 v4 @ 2.20 GHz, 516 GB RAM, Cen-
tOS 7.9.2009). It should be noted that the pipeline could be
run in a regular PC with smaller size of RAM (e.g. Intel ®

Core ™ i7-1165G7 @ 2.80 GHz, 32 GB RAM) in ∼30 min.
We have also shown running times for some genes with dif-
ferent numbers of SNPs using the DS function of the GCP-
Bayes package to gi v e to the user an estimation for the pack-
age running time related to various numbers of SNPs (Ta-
ble 2 ). We observed that the running time increases with a
higher number of SNPs. So, we recommend to use the LD
clumping step to shrink the number of SNPs for genes with
a very high number of SNPs. 

While using the LD clumping step, it should be noted that
some genes could be removed. Also, while the number of
SNPs for a gene is still greater than the chosen threshold af-
ter LD clumping, this gene is not included in the GCPBayes
analysis. Ther efor e, selection of a smaller value for the LD
clumping threshold makes the pipeline run faster but would
cause losing more genes. We performed the analyses based
on differ ent thr eshold values and finally suggest a thresh-
old of 1500 SNPs (Supplementary Table S3 and Supplemen-
tary Figure S2). Using this threshold, we performed the LD
clumping step for 120 genes out of 18 244 coding genes, and
running the whole process took ∼40 h using only six CPUs,
while we missed two genes (one during the LD clumping
step and one due to higher number of SNPs than the LD
threshold). 

We compared the 79 highlighted loci with findings from
previous studies that analyzed the pleiotropic effects be-
tween BC and OC (Table 3 ). 

Looking through the literature, we identified eight pre-
vious studies that reported only a few overlapping suscep-
tibility loci reported between the two cancers (Supplemen-
tary Table S4). Four of these previous studies focused on
a specific locus (5p15.33, 8q24.21, 15q26.1 and 19p13.11)
(19 19–22 ), while three others conducted a genome-wide
meta-analysis at the SNP le v el ( 23–25 ) and one study used
transcriptome-wide association studies (TWAS) to predict
pleiotropic genes in the genome ( 26 ). These studies identi-
fied 44 potential pleiotropic loci of which 31 were reported
by the studies with a GWAS approach. Our study could
retrie v e 15 of these 31 loci and 18 out of all the 44 previ-
ously reported loci as having potential pleiotropic effects
on BC and OC (Supplementary Table S4). Our study also
suggested 61 new loci with potential pleiotropic signals. We
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Table 1. Summary for number of genes in each chromosome with potential pleiotropic signals between BCAC and OCAC GWAS data obtained after 
running the pipeline (more details are available in Supplementary Table S2) 

Chromosome # Genes 
Minimum gene length 

(bp) 
Maximum gene length 

(bp) Minimum SNP numbers Maximum SNP numbers 

1 5 4959 57 942 3 98 
2 5 49 067 394 420 79 672 
3 12 33 195 629 281 18 835 
4 10 19 285 887 472 32 962 
5 6 16 272 96 657 37 472 
6 8 40 931 472 928 55 938 
7 2 37 608 261 613 88 278 
8 3 97 883 158 920 178 447 
9 5 10 883 226 958 18 320 
10 10 12 893 354 629 3 446 
11 8 11 010 255 035 11 530 
12 14 5150 448 262 2 801 
15 9 8255 225 330 18 364 
16 7 11 508 88 046 12 197 
17 22 444 371 278 1 941 
19 13 3130 123 106 1 143 
20 7 6807 178 396 10 162 
21 2 49 232 104 701 82 151 
22 3 15 476 701 851 30 652 

Table 2. Running time used for calculation of the DS function in the 
GCPBayes package for some genes with different numbers of SNPs 

Running time 

Gene name # SNPs Seconds Minutes Hours 

ACTL7A 1 2 .917 
AP2S1 2 3 .169 
ARHGAP5 5 3 .239 
CD37 10 3 .479 
ARSF 50 8 .412 
FAF2 100 24 .295 
DDR2 200 3 .51 
KIF13B 300 8 .46 
TTC27 400 17 .24 
PPP3CA 500 30 .63 
AMPH 699 77 .44 
CDH13 1031 3 .95 
RBFOX1 1424 9 .70 
CSMD1 2264 38 .77 
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ere also able to retrie v e all three loci (Table 3 ) that were
ignificant through direct comparison of GWAS summary 

tatistics provided in Supplementary Figure S1. 
We used the Shiny application to visualize the candidate 

leiotropic genes, which reads the GCPBayes pleiotropy 

utput and creates different graphs such as scatter plot for 
ny pair of numeric data from the GCPBayes output, his- 
ogram for theta values, distribution of gene lengths and 

umber of SNPs as a circus plot, distribution of pleiotropic 
enes on chromosomes as a pie chart, gene lengths as box 

nd violin plots, and gene locations on chromosomes as a 

ary otype plot (f or each chromosome separately and for 
ll chromosomes in one graph). The graphs generated for 
CA C and OCA C data are provided in Supplementary Fig- 
re S3. 

ISCUSSION 

e have provided a pipeline for our recently developed 

ethod GCPBayes ( 10 ) that explores pleiotropy at the gene 
e v el. The pipeline starts with standardization of GWAS 

ummary sta tistics da ta f or two traits and perf orms an an-
ota tion step, crea tes inputs f or the GCPBa yes package and 

hen provides results for CP association at the gene le v el us- 
ng GCPBayes. We have also developed a visualization tool 
sing Shiny application that loads the GCPBayes output 
ata and creates various plots automatically. 
To illustrate applicability of the pipeline, we run it on 

WAS data for BC and OC. A total of 151 genes from 79 

oci were detected to be associated with BC and OC (Sup- 
lementary Table S2). 
We could retrie v e three genes ( TERT , RCCD1 and 

 AB AM1 ) that have been reported to be associated with 

oth BC and OC in previous fine-mapping studies at 
p15.33, 15q26.1 and 19p13 loci ( 19 , 21 , 22 ). We also high-
ighted the 8q24.21 locus that was reported to be associated 

ith multiple cancers ( 20 ). 
Fehringer et al. ( 25 ) have previously explored pleiotropy 

cross multiple cancers (lung, ovarian, breast, prostate, col- 
rectal) using the method ASSET that conducts a fixed ef- 
ect meta-analysis by examining the association between 

ach SNP and multiple subsets of cancer. This study re- 
orted 130 SNPs from 21 loci to be pleiotropic between BC 

nd OC (Supplementary Table S4). Our study could repli- 
ate se v en loci (3p24.1, 5p15.33, 5q11.2, 9p21.3, 10q26.13, 
9p13.11 and 20q11.22) reported in their study (Supple- 
entary Table S4). 
In ( 23 ), an SNP-le v el cross-cancer genome-wide associa- 

ion meta-analysis focusing on breast, ovarian and prostate 
ancers was conducted using GWAS statistics data from the 
CA C and OCA C based on a lower number of individuals 

han the datasets we used. They reported se v en loci asso- 
iated with both BC and OC risks. The same authors up- 
ated in 2020 ( 24 ) their results with the most recent GWAS 

ummary statistics data to analyze CP association between 

reast, prostate, ovarian and endometrium cancers. They 

eported four new loci with shared association with BC and 

C risks. In the current stud y, we replica ted 5 of the 11 sug-
ested pleiotropic loci provided in these two studies. 
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Table 3. List of loci with potential pleiotropic signals (r esults of the GCPBayes pipeline) and comparison with r eported loci in the literatur e 

Chromosome Loci Known gene References 

1 1p34.1, 1p13.2, 1q21.1, 1q32.1 
2 2p25.1, 2p23.2, 2p24.3, 2q13, 2q33.1 
3 3p25.3, 3p24.1, 3p11.1, 3q12.1, 3p13, 3q25.31 
4 4p14, 4q13.1, 4q21.22, 4q31.1, 4q31.21, 4q34.1 
5 5p15.33 TERT ( θ = 1) ( 21 ) 

5q11.2, 5q31.1 
6 6p23, 6q22.31, 6q22.33, 6q24.3, 6q25.1, 6q26 
7 7q21.3, 7q22.1 
8 8q24.21, 8p11.23, 8q21.13 
9 9q31.1 SMC2 ( θ = 1) ( 23 ) 

9p21.3, 9q21.13, 9q33.2, 9q34.2 
10 10p15.1, 10p12.31, 10p11.22, 10q21.3, 10q24.32, 10q25.2, 10q25.3, 

10q26.13 
11 11p15.5, 11p11.2, 11q13.2, 11q13.3, 11q23.3 
12 12p11.22, 12q13.2, 12q15, 12q24.11, 12q24.13, 12q24.31 
15 15q26.1 RCCD1 ( θ = 1) ( 19 , 23 ) 

15q15.1, 15q22.31 
16 16p12.2, 16q22.1, 16q23.2 
17 17p12, 17p13.1, 17q21.2, 17q21.31, 17q21.32, 17q22, 17q25.1 
19 19p13.11 B AB AM1 ( θ = 0.986) ( 22 ) 

19p13.2 
20 20q11.22 CPNE1 ( θ = 0.847) ( 26 ) 

20q13.33 RGS19 ( θ = 1) ( 26 ) 
21 21q22.12 CLIC6 ( θ = 1) ( 24 ) 

21q21.1 
22 22q12.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides, in a TWAS study, Kar et al. reported 14 loci with
shared association with BC and OC ( 26 ). Our method could
retrie v e four loci (7q21.3, 16q22.1, 20q11.22 and 20q13.33)
in common with their study (Supplementary Table S4). 

In summary, previous studies identified a total of 44
loci with potential pleiotropic effects on BC and OC. Us-
ing GCPBayes, we found 79 loci in our study of which 18
loci were reported in the previous studies. Further analyses
would be needed to confirm the potential pleiotropic effect
between BC and OC of the remaining 61 loci. 

Howe v er, as e v ery study, our approach contains some
limitations. GCPBayes could not r ecaptur e all previously
published genes with pleiotropic signals. One example was
13q13.1 locus, which contains BRCA2 gene ( θ = 0) ( 25 ).
This locus was not highlighted in our study. In another
study, Ghoussaini et al . demonstrated c-MYC gene (lo-
ca ted a t 8q24.21 region) with a potential pleiotropic ef-
fect between BC and OC based on a fine-mapping ap-
proach ( 20 ), while our study detected another gene in the
same locus ( POU5F1B ) with a potential pleiotropic sig-
nal (Supplementary Table S2). This suggests that it might
need to use other integrati v e data such as transcriptome
data used by Kar et al. ( 26 ) as well as in fine-mapping
studies in order to improve selection criteria for pleiotropic
genes and loci. Indeed, mapping trait-associated SNPs to
their nearest gene can fail to identify the functional gene
( 27 ). Se v eral methods hav e been de v eloped to improv e the
functional relevance of SNP-to-gene annotations ( 28 ) by
considering gene expression information based on stud-
ies on expression quantitative trait loci (eQTL). It also
needs some useful functions such as functional enrich-
ment analysis based on a list of genes selected by using
GCPBayes. 

Ther e ar e also some other limitations while working with
GWAS summary statistics data that lead to a loss of in-
formation about the covariance matrix of beta estimates
and then would lead to an underconsideration of the LD
structure of the group. GCPBayes uses the diagonal matrix
with variance of beta estimates as approximation of the pre-
vious ma trix tha t can lead to a loss of power of detection of
genes with pleiotropic effects. Further work is ongoing to
allow the user to exploit the covariance matrix of the geno-
types from a population of r efer ence (1000 Genomes) to ap-
proximate the covariance matrix of beta estimates. This ap-
proxima tion has alread y been exploited by some methods
in the field ( 29 ). 

Another issue when working with the GCPBayes method
is that the running time increases significantly with a higher
number of SNPs (especially when it is > 500). In this study,
we proposed to shrink genes with the highest number of
SNPs using an LD clumping step. Another possible solu-
tion would be to separate these longest genes into multiple
subgroups according to their LD block structures. 

In conclusion, we proposed an exploratory method that
permits to prioritize potential pleiotropic loci and genes for
further investigation using GWAS summary statistics data.
The proposed pipeline is publicly available at https://github.
com/CESP- ExpHer/GCPBayes- Pipeline . In order to re-
solve the limitations and improve, we will keep updating the
pipelines regularly. 

DA T A A V AILABILITY 

All scripts, Bash files and detailed information about how
to run on any dataset (also how to run a Bash file on
BCA C and OCA C GWAS summary sta tistics da ta), and
a step-by-step tutorial for running the GCPBayes pipeline
on BCAC and OCAC GWAS summary sta tistics da ta are
available on our group’s GitHub page ( https://github.com/
CESP- ExpHer/GCPBayes- Pipeline , permanent doi: https:
//doi.org/10.5281/zenodo.8042138 ). Input GWAS summary
sta tistics da ta are accessible through the w e b page of the

https://github.com/CESP-ExpHer/GCPBayes-Pipeline
https://github.com/CESP-ExpHer/GCPBayes-Pipeline
https://doi.org/10.5281/zenodo.8042138
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CAC (version 2020) ( https://bcac.ccge.medschl.cam.ac. 
k/ ) and OCAC ( https://ocac.ccge.medschl.cam.ac.uk/ ). In 

ddition, information about how to run Bash file on BCAC 

nd OCAC GWAS summary sta tistics da ta, and a step-by- 
tep tutorial for obtaining the results using these GWAS in- 
ut data including all sections are provided in Supplemen- 
ary File S1. Besides, a comprehensi v e wiki (manual) for all 
cripts used in the GCPBayes pipeline is available on our 
roup’s GitHub page that could be used by de v elopers to 

odify / add features to the pipeline. 

UPPLEMENT ARY DA T A 

upplementary Data are available at NARGAB Online. 
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