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Introduction

The use of machine learning (ML) in real-world applications increased the need of explaining decisions to non-computer experts. However, providing model explanations for isolated features is challenging. Consider the explanation in Fig. 1(b) which is annotated via pixel-level importance: one does not directly understand the model's knowledge. It is not easily interpretable.

Figure 1: Pixel-level importance is more difficult to interpret than components one. From left to right: an image, its Integrated gradients [START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF], and an easier-to-interpret visualization.

Interpretability, compared to explainability, is more subjective as it involves semantics and the idea of how humans understand signals [2; 15]. This process is a translation of knowledge which depends not only on the information semantics, but also on how it is transmitted and received [START_REF] Shannon | A mathematical theory of communication[END_REF].

Methods like LIME [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF] and KernelSHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF] propose visualizations based on interpretable components rather than isolated pixels. These components facilitate the human interpretation of how a model understands a sample. However, instead of understanding the complete knowledge of the model, they explain the behavior of the convolutional neural network (CNN) associated with an individual image.

Works such as TCAVs [START_REF] Kim | Interpretability beyond feature attribution: Quantitative testing with Concept Activation Vectors (TCAV)[END_REF] and Explanatory graphs [START_REF] Zhang | Invertible concept-based explanations for CNN models with non-negative concept activation vectors[END_REF] aim to translate the model's knowledge and behavior given input changes, into interpretable concepts. Apart from increased interpretability, the required supervision can affect how a model is explained. In the case of TCAVs, we need to know the concepts we are testing the model against. In the case of Explanatory graphs, we need to train a time-expensive model to approximate a graph of activation patterns for a set of images.

These supervision constraints may impact how well a model can be explained, i.e., if the explanation provided is complete enough to represent the model reasoning. To solve this problem, ACE [START_REF] Ghorbani | Towards automatic conceptbased explanations[END_REF] was proposed to use image segments, represented by internal activations, clustered as concepts. In this way, TCAV no longer requires user concept supervision. However, as an example-based technique, it depends on how and which images are segmented, i.e., if we do not use images that contain all concepts, some concepts could be left out.

We use a similar idea to cluster concepts, but instead of clustering the segment's activations, we cluster the internal unit's activation patterns. By doing this, we are able to provide a more global and complete set of concepts.

Our methodology tackles three aspects of a CNN's explainability problem: i) we represent the models' knowledge as completely and globally as possible without supervision; ii) we obtain explanations based on how humans understand concepts (groups of patterns with similar semantics), and; iii) we provide interpretability to the explanations, enabling the use of intelligent systems by non-experts.

Our main contributions are:

• Maximum Activation Groups Extraction (MAGE), that constructs novel feature-map representations based on activation patterns localization in multiple images, instead of the normal activation vectors from individual images;

• The Class-aware Order Correlation (CAOC) metric, to determine the impact of occlusions, not only in a single image activation but also how, according to the model, this image relates to the others (dataset relation);

• A Multiscale Interpretable Visualization (Ms-IV), using CAOC to have an occlusion-based visualization accounting for dataset relations; and presenting a hierarchical selection of the important image regions (from the complete image to the smallest defined patch size) to focus human attention on gradually highlighted image parts. Section 2 is a review of the literature on xAI methods, Section 3 presents the intuition of our method, Section 4 shows qualitative and human-based experiments, and Section 5 concludes the paper.

Literature review and Motivation

XAI methods can be broadly categorized as intrinsic, model-specific, or post-hoc and model-agnostic. Examples of intrinsic methods are decision trees [START_REF] Quinlan | Induction of decision trees[END_REF], some attention networks [START_REF] Gu | Ca-net: Comprehensive attention convolutional neural networks for explainable medical image segmentation[END_REF], and training alongside text explanations [START_REF] Park | Multimodal explanations: Justifying decisions and pointing to the evidence[END_REF]. They are called intrinsic because they do not need an extra mechanism to provide some level of explanation. For these methods, we obtain the explanations directly from the analyzed learning model.

The specific-methods can also cover intrinsic models. However, they refer to explanations specifically applied to some determined architectures. For example, the Deconvolution [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF], CAM [START_REF] Zhou | Learning deep features for discriminative localization[END_REF] and Grad-CAM [START_REF] Selvaraju | Grad-cam: Visual explanations from deep networks via gradientbased localization[END_REF] techniques are firstly designed to explain Convolutional Neural Networks. Nevertheless, they are not intrinsic but post-hoc models, as they are applied to a pretrained model.

According to recent xAI surveys [12; 3; 32], the most commonly referenced methods include LIME [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF], SHAP [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF], DeconvNet [START_REF] Zeiler | Visualizing and understanding convolutional networks[END_REF], CAM [START_REF] Zhou | Learning deep features for discriminative localization[END_REF], Grad-CAM [START_REF] Selvaraju | Grad-cam: Visual explanations from deep networks via gradientbased localization[END_REF], Guided Grad-CAM [START_REF] Selvaraju | Grad-cam: Visual explanations from deep networks via gradientbased localization[END_REF], DeepLIFT [START_REF] Shrikumar | Learning important features through propagating activation differences[END_REF], Integrated Gradients [START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF], Guided-Backpropagation [START_REF] Springenberg | Striving for simplicity: The all convolutional net[END_REF], Saliency maps, and TCAV [START_REF] Kim | Interpretability beyond feature attribution: Quantitative testing with Concept Activation Vectors (TCAV)[END_REF].

Their application is disseminated through different domains and is presented in recent research.

The medical domain is one of the biggest applications of xAI techniques. Some literature reviews in this domain mention the use of TCAV as a concept analysis technique [9; 31; 36]; CAM, Grad-CAM, LRP [START_REF] Bach | On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[END_REF], SHAP, and LIME as visual-based model explanations [31; 10]; ACE [START_REF] Ghorbani | Towards automatic conceptbased explanations[END_REF] and Network dissection [START_REF] Bau | Network dissection: Quantifying interpretability of deep visual representations[END_REF] as a network decomposition technique; and, t-SNE and UMAP [START_REF] Borys | Explainable ai in medical imaging: An overview for clinical practitioners -beyond saliency-based xai approaches[END_REF] as a supplementary visualization technique. Tim Hulsen [START_REF] Hulsen | Explainable artificial intelligence (xai): Concepts and challenges in healthcare[END_REF] mentions that most of the papers in this area are based on visual explanations for different purposes, such as lung ultrasound [START_REF] Born | Accelerating detection of lung pathologies with explainable ultrasound image analysis[END_REF] and breast cancer X-rays [START_REF] Shen | An interpretable classifier for highresolution breast cancer screening images utilizing weakly supervised localization[END_REF] using CAM; ulcerative colitis colonoscopy using Grad-CAM [START_REF] Sutton | Artificial intelligence enabled automated diagnosis and grading of ulcerative colitis endoscopy images[END_REF]; COVID-19 de-tection in chest CTs [START_REF] Lu | Nagnn: Classification of covid-19 based on neighboring aware representation from deep graph neural network[END_REF] using Grad-CAM; lung X-ray [START_REF] Haghanifar | Covid-cxnet: Detecting covid-19 in frontal chest x-ray images using deep learning[END_REF] using Grad-CAM and LIME, and; chest X-ray images [START_REF] Abeyagunasekera | Enhance the explainability of medical images unifying current xai techniques[END_REF] using LIME, Integrated Gradients and SHAP.

In areas such as network security, models such as LIME, SHAP, and induced decision trees are used to explain the detection of malicious domains [START_REF] Aslam | Interpretable machine learning models for malicious domains detection using explainable artificial intelligence (xai)[END_REF]. There are also applications in forecasting within the manufacturing domain [START_REF] Chen | Applications of xai for forecasting in the manufacturing domain[END_REF] using methods such as recursive feature elimination (RFE) [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF], and SHAP.

However, despite their frequent use, we believe that the currently used xAI techniques are not sufficiently interpretable for non-experts to analyze and that they do not fully explain the reasoning of models.

Model-agnostic methods and interpretability

The model-agnostic methods are generally post-hoc methods and can explain multiple types of architectures. Some examples of post-hoc and modelagnostic methods include not only Layer-wise Relevance Propagation [START_REF] Bach | On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[END_REF] and Integrated Gradients [START_REF] Sundararajan | Axiomatic attribution for deep networks[END_REF], but also LIME [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF] and its numerous derivatives [30; 48; 24], TreeView [START_REF] Thiagarajan | Treeview: Peeking into deep neural networks via feature-space partitioning[END_REF], and Explanatory graphs [START_REF] Zhang | Interpreting cnn knowledge via an explanatory graph[END_REF]. Here, we describe some methods with a higher level of interpretability and their differences.

LIME [START_REF] Ribeiro | Explaining the predictions of any classifier[END_REF]: is a model-agnostic method which introduces the idea of explaining by using interpretable components. The method decomposes each data sample into human-understandable parts. If a data sample is an image, these decomposed parts can be, for example, superpixels or patches, not necessarily expressed as it is inputted in the model. After we have these parts (or components), LIME measures their importance to a decision. This approach is more human-friendly than showing each individual feature's importance, especially in high-dimensional data. However, despite presenting high interpretability, these explanations are generally local, i.e., they are sample-based or rely on local explanations to explain the model behavior.

Explanatory Graphs: proposed by Zhang et al. [START_REF] Zhang | Interpreting cnn knowledge via an explanatory graph[END_REF], represent a CNN knowledge hierarchy through convolutional layers. Each node in the graph represents candidate patterns of the object's parts, summarizing the knowledge from feature maps. Edges connect nodes from adjacent layers. The method proposes to disentangle object parts from a single filter without ground-truth part annotations. It mines highly activated image patterns from the last convolutional layer (high-level semantics) to the first (simpler structures). This process relies on the complete dataset to optimize the graph of hierarchically connected patterns that best fit network feature maps.

Testing with Concept Activation Vectors (TCAV): proposed by Kim et al. [START_REF] Kim | Interpretability beyond feature attribution: Quantitative testing with Concept Activation Vectors (TCAV)[END_REF], aims to, use a set of low-level features to provide humanfriendly, interpretable concepts. In more detail, CAVs' method is part of TCAV, which analyzes how sensitive a model's prediction is to a user's predefined concept. The idea is to learn a linear classifier to separate, based on the model internal activations and a given class, the response to the concept's given examples and random ones. TCAV ultimately shows the images most similar to a concept.

Besides the improvement in interpretability, Explanatory Graphs and

TCAVs require some level of supervision to generate the knowledge graphs or to indicate the concepts. We also want to obtain a more global network explanation in an unsupervised manner.

Our motivation and similar literature methods

We propose to extract interpretable visual concepts from a model. Previously, we mentioned some ideas similar to our proposal: TCAVs and Explanatory Graphs (described in Section 2.1). Additionaly, a paper proposed by Tan el al. [START_REF] Tan | Interpretable artificial intelligence through locality guided neural networks[END_REF], has a similar idea: to identify semantic concepts within networks. The authors suggest inducing, during training, neighboring neurons (or feature maps) to exhibit similar activations. The objective is to have an easier interpretation of the activation map visualizations, showing similar regions of activations for similar semantic concepts. Their method, called Locality Guided Neural Network (LGNN), conditions during training, the filters' topology to facilitate manual inspection. However, what distinguishes it from our approach is that this method focuses on changing the learning algorithm, i.e., it should be used during the training process to change the model. This is not our objective, as we aim to have a general explanation of already trained CNNs.

Another work, proposed by Li et al. [START_REF] Li | Patternnet: Visual pattern mining with deep neural network[END_REF], presents a network, PatternNet, to mine visual patterns that are discriminative and representative. They consider that these patterns should be popular (representative), i.e., activated in a considerable number of images from the analyzed class; and unique (discriminative) for this class (not appearing in the rest of the classes). However, this is also a supervised task. The authors train PatternNet to find these patterns. Therefore, it is a dataset explanation technique and not a model explanation technique, as we propose.

The method ACE [START_REF] Ghorbani | Towards automatic conceptbased explanations[END_REF] proposes a way to mine concepts, without direct supervision. It uses image segments with different scales to cluster similar patterns, represented by the network activations for each segment. TCAV is then used to measure the importance of each cluster. We have a similar proposal. However, we aim to represent units as their activation patterns in the complete dataset. In this way, we include a global view of the network's behavior while decomposing the network into units with similar concepts.

We believe our methods can fill the gap of global model interpretability by providing unsupervised means of mining semantic patterns inside a pre-trained model, through decomposing the model's global knowledge into interpretable concepts.

Proposed methods

Our intuition is: if we can decompose networks' knowledge into different concepts (used for the network decision), we can translate them into humanunderstandable visualizations (patterns). In this section, we describe these two tasks.

Concepts' decomposition:

We define concepts as combinations of features that form a semantic meaning. This generally implies spatial proximity.

For animal images (cats & dogs), a concept can be nearby features that compose a muzzle, ears, or eyes at a given location. Together, these concepts induce the perception of an animal's presence in the image at this same location.

For digital images, these features are pixels. For the human visual system, the process of grouping pixels into concepts seems instinctive, but it is not the same for machines. In the case of artificial neural networks, the patterns that indicate these concepts are learned by internal units during training.

As previously investigated by other works, we observe different learned patterns inside a CNN by looking into convolutional layers' activations.

These patterns can be determined by structures (in the input) that most activate each feature map. It is quite similar to mapping human brain activity. We give a stimulus and look at what lights up in the brain.

The problem is that CNNs have high-dimensional feature maps, and the reasoning based on them is humanly infeasible. Our solution is to group similar responses of feature maps' dimensions to provide easier analysis.

Concept discovery through visualization:

We use a hierarchical visualization strategy to enrich human understandability. From a higher to a smaller size of the image substructures (patches), we want to gradually increase attention to the most important parts, from bigger to smaller regions.

The idea is similar to a face verification task. The first step is to detect faces in images and then to compare the faces. The complete face is important; however, for verification, facial characteristics such as eyes, nose, and mouth will be more significant. These characteristics are hierarchically linked to the face (inside the face) and during this task, we assign a gradual level of focus, from the face to its specific regions contained within. Similar to this, we expect to facilitate a gradual human attention process, to understand the importance of the main structure and, subsequently, the specific linked characteristics.

The visualization is intended to represent the concepts we previously decomposed. We want to visualize what parts of the original image impact the most for each concept. Using an example: we want to know which of, a dog's muzzle or a dog's eyes, causes the biggest impact in a concept A. In this way, we can discover which concept is A.

We try to capture this causality through occlusions. We evaluate the impact of each image region by occluding it and verifying what changed according to a concept A. If the response to concept A changes a lot, the occluded part is important, and is a candidate to explain what is concept A.

Different image parts will have different levels of importance. We expect the most important parts to represent the concept.

However, these occlusions can only be made in each image individually.

If we want to account for the globalism of a concept (same concept for the majority of images), we need a strategy to include global awareness in the evaluation of the concept's after-occlusion impact.

For our solution to be globally aware we evaluate the impacts of the occlusions on the relation between images containing the concept A. Let us consider a pre-defined set of images. After one image occlusion, we measure how many relationships we have changed in this group. This way, if an image has the concept A, the occlusion of this concept in the image will change the image's relation to the others (it will have less A than the others). On the other hand, if there is no concept A in this image, even if occlusions change the image's prediction, it should not change the image's relation to the others.

Decomposition into concepts: Maximum Activation Groups Extraction

The network's knowledge decomposition is made from five steps (Fig- ). We obtain feature maps (from the last convolutional layer) for each patch (2.). We find the corresponding patch with the highest feature map norm by dimension (3.). We concatenate the patches' positions of the highest norms for a set of images to represent each feature map's dimension (4.). We cluster the dimension representations to obtain the MAGs (5.). More detail in Appendix A.

Decomposition of input features into patches

We decompose the image into non-overlapping patches to evaluate the stimulus of images' subregions to the feature maps. Humans can decompose an image into semantic pieces to understand it in its entirety.

To be able to interpret what CNN-based classifiers "visualize", we propose

to decompose their feature maps of the highest abstraction level into similar dimensions. Note that we prefer to use the last convolutional layer because it can represent high-level semantic concepts, but we do not use fully-connected layer activations because they lose the "visual awareness". To proceed, we start from a CNN like a VGG [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] or a ResNet [START_REF] He | Deep residual learning for image recognition[END_REF], that we model using the formula

Ξ = Ξ classif • Ξ enc (1) 
(with Ξ classif the classifier following the encoder denoted by Ξ enc ). The encoder includes the network's layers up to the last convolutional layer. Then, for a given image I, we decompose the image into patches.

We believe that this patch decomposition is a key ingredient to better understand about how the network "reasons". To formalize, let us introduce some notations. The dataset DS = (I i , GT i ) i∈ [START_REF] Abeyagunasekera | Enhance the explainability of medical images unifying current xai techniques[END_REF]NbIm] We can then introduce our formalism: To decompose the domain D of a given image I into patches of dimension s p ×s p (see Figure 2 (1)), we proceed this way:

D = x∈[1, max x ], y ∈[1, max y ] P( x , y , s p ), with x , y , max x , max y ∈ N, max x
, max y the number of patches horizontally and vertically (respectively), and ( x , y ) the relative coordinates of the patch P( x , y , s p ) described by

P( x , y , s p ) = [1 + ( x -1) • s p , x • s p ] × [1 + ( y -1) • s p , y • s p ] (2) 
(we obtain then a partition of D).

Calculus of feature maps' activation per patch

We obtain activations of feature maps by giving each patch to the network -the response to the stimuli (see Figure 2 (2)). We use the model described by Equation 1, in which Ξ enc includes the network layers up to the last convolutional layer. Since for the image i and for the n th f feature, we have the 2D mapping Ξ enc (., ., n f ) : (x, y) → R, and that we will restrict the input image to the patch P( x , y , s p ), we propose to introduce the term F i,n f ,( x, y ),sp : (x, y) → R, which maps an image patch P( x , y , s p ) into the n th f feature map after a forward pass through Ξ enc , representing the 2D feature map activations for the mentioned patch. Now that we have introduced the formalism to represent feature patches, let us show how we decompose the "knowledge" of the encoder into concepts.

Identifying important patches for feature map's dimensions

We want to group feature map dimensions according to their activation patterns. Therefore, we characterize these dimensions by their patterns. This characterization is similar to a brain experiment: if part A of the brain is more activated by emotions than by a task like reading, part A probably knows the concept of emotions. Instead of using emotions and reading, we give the patches to the network. Therefore, we identify the patches that activate a feature map's dimension the most to represent the mentioned dimension.

The identification is done by locating the selected patch; in this paper, the process is based on its position in the original image.

Let us choose some image I i in DS. We consider in the n th f feature map corresponding to I i the one which maximizes the 1-norm as the reference patch. It is then identified by its parameters:

( * x (i, n f ), * y (i, n f )) = arg max ( x, y ) ||F i,n f ,( x, y ),sp || 1 . (3) 
Intuitively, this position represents the patch where the CNN reacted the most (see Figure 2 (3)).

Dimension characterization by the dataset

We have limited (local) information if we use only one image to characterize dimensions. Therefore, we incorporate more images in the process.

Instead of having the feature map's dimensions characterized by patches of a single image, we repeat the process with more images to obtain multiple characterizations. We can then define as "concept" the set of features activated at (almost) the same location for each image of DS (see Figure 2 (4)).

In other words, by defining the representative of the n th f feature:

rep(n f ) = * x (1, n f ), * y (1, n f ), * x (2, n f ), . . . , * y (NbIm, n f ) T , (4) 
we obtain a vector in a space (of dimension 2NbIm) which satisfies the property that when two features n 1 f and n 2 f are physically near to each other in the images of DS, their representation will be near each other, and vice-versa.

Decomposition of feature space into concepts

We use the set of characterizations of a feature map's dimension to create a feature vector representing it. If two dimensions have similar feature vectors, they activate in similar patches for most images. We consider them the same concept. Therefore, we cluster the feature vectors for all feature map's dimensions to obtain the groups of concepts. This allows us to find the concepts using any clustering algorithm (in this paper, we use K-means) to obtain the Maximal Activation Groups (MAG):

{MAG(k)} k∈[1,K] = Clustering(K, {rep(n f )} n f ). ( 5 
)
Each term MAG(k) is what we formally define as a DS-relative concept.

They are relative to K and to the clustering algorithm used. Thanks to them, we can understand the global behavior of the CNN. 

Global causality visualization: Multiscale-Interpretable Visualization

Original concept output space

Let us define the term concept output space in order to describe the image's relation to other dataset images, according to a concept. The concept output space is the output matrix of the network, for a fixed set of images, using only the dimensions of the concepts, i.e. zeroing out all the dimensions belonging to other concepts.

We introduce the notation Activ (I; Ξ) which represents the vector of dimension NbClasses used as input of the softmax layer in the network Ξ when we input I. We set at 0 the feature activations not relative to concept k in Ξ, leading to a "new" neural network Ξ k . The other feature activations are left intact. Then, as illustrated in Figure 3 (1), we compute the following class-aware matrix, with the images' activations of class c, for the MAG(k), representing the original concept output space: otherwise. Therefore, as presented in Figure 3 (2), the matrix representing the under-occlusion concept output space, of image I c j , and patch P( x , y , s p ), is:

OS Activ (c, k) = Activ (I c i local ; Ξ k ) i local ∈[1,NbIm(c)] (6 
OS P( x, y ,sp ),Activ (c, k) = Activ (Occ I c j (I c i local )); Ξ k ) i local ∈[1,NbIm(c)]

Measuring patch importance

As we have the original and each occluded-patch concept output space for an image, we can verify the changes from the original to the underocclusion spaces. To create our globally aware visualization, we need to verify this impact on the complete space. We propose to use a rankingbased approach to measure the difference between the original and an underocclusion concept output space. We name this approach Class-aware Order Correlation (CAOC).

The ranking structure is based on a target class, by ordering the points in the concept output space from the higher to the lower responses to that class (class-aware). Note that the order of one point depends also on the response of the other points in the space (global awareness). This makes the comparison between the original concept output space ranking and the under-occlusion concept output space ranking to provide an understanding of how the space changes under a specific occlusion.

We measure the difference in rankings to determine an importance score.

To evaluate the effect of the patch occlusions, we use rankings. We argsort the values for a class c in the data points on OS Activ (c, k) and OS P( x, y ,sp ),Activ (c, k)

to obtain the sequence of positions of the class scores, sorted from highest to lowest:

Seq c = argsort (OS Activ (c, k) c , decreasing) (7) 
Seq c = argsort OS P( x, y ,sp ),Activ (c, k) c , decreasing .

In practice, in the matrices where each row is a data point (a sample's activations), the activation from class c corresponds to column c. Then we compare these sequences. As this sequence of positions are rankings, they can be compared using ranking correlation metrics such as Kendall-tau (K).

Calculating this correlation measures how much the patch absence impacts the complete space. This way, the score of patch P( x , y , s p ) is obtained by:

CAOC( x , y ) = K(Seq c , Seq c ).
However, as only one image was occluded, we propose to use a simpler calculation of importance. Let us define the image I c j position in the original sequence Seq c as InitPos and the position of P( x, y ,sp ) (I c j ) in the new sequence Seq c as NewPos x, y . We define the importance of P( x , y , s p ) as: CAOC( x , y ) = InitPos -NewPos x, y (see Figure 3 (3)).

Choosing important patches

The higher the score, the more important the patch. We use a percentage of the score of the most important patch to define a threshold. Then, we use this threshold to filter the importance of other patches. The visualization consists only of sufficiently important patches. We want to consider not only the highest score as important for visualization. However, if we visualize all the patches and their respective scores, we obtain a more confusing and noisy visualization. Therefore, we use a threshold thr based on δ: thr = max {CAOC( x , y )} ( x, y ) × δ. All patches with higher importances will remain in the process (see Figure 3 (4)).

Reducing patch size to repeat process hierarchically

We perform new occlusions of smaller patch sizes in the sufficiently important patches by repeating the process from step 2. We stop reducing the patch size when we reach a predefined smallest size. We compose the final patch importance by adding up the importance from all patch sizes. We continue recursively the procedure in the patches satisfying the inequality Imp( x , y ) ≥ thr , returning to step 2. This time, with reduced patch size, while s p is greater than or equal to s min p . During this recursive procedure, each position (x, y) ∈ D may have been treated several times. We deduce the accumulated importance of a position (x, y) relative to the image I i by summing all the computed importance terms where this position was occluded. The final result is called the accumulated importance matrix and we denote it M Imp (see Figure 3 (5)). We finally multiply the initial image by M Imp and we plot it. In doing so, we have highlighted important regions.

Experiments and results

Here, we present visualizations of the clusters' dispersion obtained with MAGE and qualitative experiments to visually compare Ms-IV with other methods. We reinforce the results with quantitative evaluation (Robustness, Faithfulness and Localization). Extra experiments in Appendix C.

To complete the experimentation, we present a concept and bias discovery evaluation with humans. Experiments were performed using two CNN architectures, ResNet-18 [START_REF] He | Deep residual learning for image recognition[END_REF] and VGG16 [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF], and datasets: cats vs. dogs1 and CUB-200-2011 [START_REF] He | Fine-grained visual-textual representation learning[END_REF] dataset for Localization evaluation. Models trained with initial weights from Imagenet, learning rate 1e -7, cross-entropy loss, the Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

The code is at https://github.com/CarolMazini/unsupervised-IVC. In Figure 4, we show the dispersion of obtained clusters (high dimensionality reduced to 2D using the Uniform Manifold Approximation and Projection UMAP algorithm [START_REF] Mcinnes | Umap: Uniform manifold approximation and projection for dimension reduction[END_REF]). To generate the representation, we used a subset of 512 images (half from each class), n = 4 (patch size in representation), and t = 5 (number of patches per image). To group the concepts, we used K-means, with k ∈ [2, 25[ selected by the Elbow curve method and Inertia.
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The scatter plots, even with the 5120-dimensional representations reduced to 2-dimensional, show the separations of "clusters of concepts". We present three visualization experiments: i) visualizations based on thr at {0.25, 0.50, 0.75, 0.90} for changing the acceptance of important patches (calculated by the percentage thr of the maximum patch importance); ii) These metrics serve for different purposes, CAOC is sparsity-aware: CAOC metric will differ from PDs when the model's output space changes density.

Multiscale visualization

If the new patch-disturbed image falls in a sparse space region, the patch importance should be smaller, as the region was "less modified" according to the model. We present in Fig. 6 the comparison between Ms-IV and two xAI methods: IG and OC.

Quantitative evaluation

Papers such as Bommer et al. [START_REF] Bommer | Finding the right XAI method -A guide for the evaluation and ranking of explainable AI methods in climate science[END_REF], analyze the use of metrics such as Complexity, Robustness, Faithfulness and Localization, directed towards specific xAI applications. We will discuss their use in our context.

The complexity is evaluated based on the number of presented important features. A less complex visualization has fewer important features. Ms-IV uses a δ parameter to regulate this criterion. Higher δ highlights fewer patches, facilitating interpretation.

Robustness evaluates the impact of adversarial attacks (changing or not changing the classification) on the explanations. For attacks that change the sample's class, we can expect a different explanation (Misclassification); however, for other attacks that do not change the sample's class, we expect the explanations to remain the same (Preserved Class).

For this evaluation, we used the Worst Case Evaluation proposed by Huang et al. [START_REF] Huang | Safari: Versatile and efficient evaluations for robustness of interpretability[END_REF]. The method applies a genetic algorithm to find the worst perturbation (adversarial example) for the interpretability of an image explanation. We generated two types of perturbation: one to change the classification but not the explanation, and another to change the explanation but not the classification. We perturbed 30 images (15 per class) by applying a genetic algorithm with 100 iterations, a population size of 100 particles, and a selection of 20 particles for the next iterations (reduced numbers due to computational resource limitations). We used Pearson's correlation to com-pare the original and perturbed image explanations. We compare Ms-IV to IG and LIME. The results in Table 1a show high Preserved class robustness for Ms-IV, closer to the method IG (the best for Preserved class according to Huang et al. [START_REF] Huang | Safari: Versatile and efficient evaluations for robustness of interpretability[END_REF]). Methods such as IG are high resolution (pixel-level importance) and have high robustness when modifications do not change classification results (Table 1a Preserved Class). However, they lose interpretability (example in Figure 6) with noisy visualizations and in robustness when modifications alter the sample's class (Table 1a Misclassification).

LIME significantly improves interpretability, but despite its high robustness for misclassification (Table 1a Misclassification), it does not have as much robustness as IG for preserved classes (Table 1a Preserved Class).

Faithfulness refers to how much a change in an important feature changes the model's response. For this metric, it is expected to have different outputs (and even different classifications) after perturbations. As we constructed an occlusion-based visualization, we already accounted for perturbation impacts in the explanations. However, we wanted to verify if the use of occlusion to construct our visualization induced a higher faithfulness to the visualization method. To provide a fairer comparison, we compare Ms-IV to LIME, as it also visualizes image regions instead of pixels.

Results in Table 1b were obtained using 512 images (256 from each class).

We extracted the important region of each image according to both methods: LIME and Ms-IV. We used these regions as masks to occlude the most important image parts. The results in the table represent the percentage of class changes after occlusion (cl.change), decrease of class output value (Decrease), and increase of class output value (Increase).

Additionally, we evaluated which method disturbs the model's output more in important regions checking, for each image, whether LIME or Ms-IV had the greatest variation (in terms of absolute output class difference) when occluded (>). Ms-IV shows a greater number of output variations with 72% of images for the VGG model, and 69% of images for the ResNet model, indicating higher faithfulness of the selected important regions to the model.

Ms-IV presents a trade-off between the two methods, IG and LIME (Figure 1a), and provides interpretable components that, when occluded, have a bigger impact than LIME occlusion components (Table 1b).

The criterion Localization refers to the ability of a well-trained model to locate the object of interest in the image (of the correct class). For example, in a cat/dog classification problem, if we have a cat for which the model

provides the correct answer, the expectation is that the explanation shows the important region inside the cat region (considering an unbiased model).

As in this paper, we aim to decompose and visualize concepts, so the idea of localization needed to be adapted. We wanted to evaluate if a MAG (concept cluster) could show the same concept in different images, relying on Ms-IV. To evaluate this, we produced MAGs visualizations using different images and the methods Ms-IV and LIME. Then, we used the human eye to label the displayed areas as different animal parts (a total of 14 different labels).

As our focus is to be globally aware, we considered that a good-Locatization method should show, for different images and the same MAG, the same highlighted animal parts. We also evaluated the original idea of localization by calculating the percentage of background highlighted by the visualizations (the lower, the better). We used 12 individuals to label the 200 image visualizations (reduced amount of visualizations is due to limited human resources).

Table 2a presents the results for 10 images of 5 MAGs from both models, VGG and ResNet (a total of 200 visualizations). For each MAG, we show the most frequently labeled animal part within its percentage of appearance in the analyzed images (the higher, the better). Subsequently, we show the background percentage in each MAG. MS-IV has the best conventional localization rates (highlighting fewer background regions) and presents higher percentages of the same concept for each MAG, especially for VGG.

To reinforce the comparison, we also performed a localization experiment with an already parts-labeled dataset, CUB-200-2011 [START_REF] He | Fine-grained visual-textual representation learning[END_REF]. The dataset has 200 bird classes with 60 images each. We used 20 classes of Warblers together and 20 classes of Sparrows together, to compose a binary classification problem. We trained a VGG16 and a ResNet-18 model for this problem, obtaining a validation accuracy higher than 95%. There were 16 coordinates of annotated parts per image: back, beak, belly, breast, crown, forehead, left eye, left leg, left-wing, nape, right eye, right leg, right-wing, tail, throat.

First, we found the MAGs for both models. For these bird classification models: VGG had 12 concepts and ResNet had 9 concepts. Second, we found the 100 most activated images for each MAG (each concept). Third, we generated the visualization, LIME and Ms-IV, for each isolated MAG for its 100 most activated images. The idea is, to use the most activated images, to explicitly visualize the concepts. Finally, we calculated the centroid of the highlighted regions in the visualizations and compared it with the coordinates of the parts. We considered the one with the closest coordinate as the visualized part. If the visualization centroid was outside the bird's bounding box, we considered it a background highlight. Tables 2b and2c present the results for both models using LIME and Ms-IV.

These results evince better localization using Ms-IV with fewer background highlights. We also present the top 2 most frequent concepts in each cluster. The ideal is to have a high percentage of images highlighting a few parts. Ms-IV presents an improvement in LIME results, especially for ResNet model.

(a)

Mean 

Knowledge Discovery

In these experiments, we applied the ensemble of methods to find concepts and detect bias. To measure the provided interpretability, the produced visualizations were analyzed by the 24 individuals selected from computer and non-computer experts from two countries: Brazil and France. There were a total of 11 computer experts, including people from industry and academia. There were a total of 13 non-computer experts including people from non-academic domains and from the three main domains (in similar quantities): humanities (sociology, geography, and architecture), biological sciences (medicine, physical education), and exact sciences (mathematics) in different educational stages (undergraduate, graduate, and post-graduate).

Finding concepts: We selected six MAG-generated clusters from ResNet-18 and VGG16. We visualized each cluster through Ms-IV applied to 16 images (8 cats and 8 dogs) from the top-middle-ranked positions. From a ranking of 512 images, we started at position 100 to avoid sparsity in higher and lower positions (possible outliers). We presented the Ms-IV visualizations of these image subsets to the research participants and asked which animal part corresponded to the lighter regions in dogs and cats. There were a total of 12 image subsets (limited analysis to six clusters per network).

Of the 13 concepts, fewer than three of them received most of the participants' votes per cluster. There was an agreement about concepts for both computer and non-computer experts. Concepts such as eyes and muzzle were the most frequently observed. We highlight Fig. 7 as an example of high agreement and variability of concepts: eye, muzzle, paws, and ear. Results in Table 3 show, that both computer and non-computer experts found, with high accuracy, the unbiased model (73% of correct for the noncomputer experts). Our visualization facilitates model analysis, even for non-specialists.

Conclusion

We propose a novel way to make CNNs interpretable thanks to the combination of MAGE, to group feature maps into "concepts", and Ms-IV, to provide a simple (multiscale) understanding of a given model's knowledge.

The CAOC metric considers the structure and organization of the model's final decision space and provides global awareness of sample perturbations.

In the future, we plan to improve the "clusters quality" through hierarchical/spectral clustering techniques, and to introduce more subtle segmentation techniques using mathematical morphology in our multiscale visualization. or "square"). We have set the concept value to some random k. We plot the activation distributions in a 2D space: the horizontal coordinate represents how much the sample is predicted as being a circle, and vertically, how much it is predicted as being a square. We can see that, by occlusion, one square moves in this space by a distance of 0.07 and one disk by 0.12. However, we need some quantification of the impact of a concept on the two classes. Thus, we propose using the ranking correlation between before/after the occlusion of the most important patch images relative to the concept k. We find that the disk did not move in the disk's ranking when we did the occlusion (it remains the "strongest" disk), so the correlation CAOC(k, disks) is maximal, meaning that concept k does not have much influence on disks. Conversely, in the case of the square, the square's position changes from 3 rd to 5 th position, leading to a ranking change of 2, thus CAOC(k, squares) is lower, which means that concept k is important for squares.

We propose here an algorithm (see Algorithm 1 depicted in Figure B.10) that uses a multiscale hierarchical approach (such as a quad-tree) capable of highlighting the areas of a given image I (belonging to DS) that are important to the network's decision regarding the concept k. This approach is global in the sense that computations on the entire dataset will have been completed beforehand. Note that our procedure is different from LIME: even though in both cases, we use parts of images to show the model's knowledge, in our case we illuminate the image relative to one unique concept at a time.

For the sake of simplicity, let us introduce a new term: we define an occlusion of the image I of domain D on a patch P ⊆ D as P (I) : D → R such that for any (x, y) ∈ D, P (I)(x, y) is equal to I(x, y) when (x, y) ∈ P, and 0 otherwise. Now let us formally explain the main steps of our algorithm (we cope with the recursive part of the algorithm using a list that, to simplify, will not be detailed:

1. We fix a visualization threshold ratio δ ∈ ]0, 1], a minimal patch size 5. We compute a threshold thr based on δ: thr = max {Imp( x , y )} ( x, y ) × δ 6. We continue the procedure recursively in the patches that satisfy the inequality Imp( x , y ) ≥ thr while s p is greater than or equal to s min p . 7. During this recursive procedure, each position (x, y) ∈ D may have been treated several times. We deduce the accumulated importance of a position (x, y) relative to the image I i by summing all the computed importance terms where this position was occluded. The final result is called the accumulated importance matrix and we denote it M Imp . 8. We finally multiply the initial image by M Imp and we plot it. We have highlighted important regions. 

Figure 2 :

 2 Figure 2: Steps to obtain the Maximum Activation Groups (MAGs). We divide dataset images into patches (we perform experiments with different patch sizes to obtain better separation in 5.) (1.). We obtain feature maps (from the last convolutional layer) for

  used to train Ξ is made up of NbIm images I i and their class GT i (the class number). For a given i ∈ [1, NbIm], we denote I i as the i th image of DS. We denote by NbIm(c) as the number of images of class c ∈ [1, NbClasses]. For a given class c and for a given i local ∈ [1, NbIm(c)], we will denote I c i local as the i th local image of class c ∈ [1, NbClasses] of DS.

Figure 3 :

 3 Figure 3: Multiscale-Interpretable Visualization (Ms-IV). We obtain the final responses of the network (outputs before Softmax) for a set of images (1.). We occlude one patch (out of 4) from the image we want to visualize, and we calculate the new model's response (2.). We apply Argmax to the image's model responses to obtain orders according to a class c. We want two vectors, one ordering all the images, including the original image (to visualize), and; another ordering all images, except the original one (to visualize), but including its occluded version. We obtain the differences in the position of the original and the occluded (3.) to account for the modification in the output space. It is considered the importance of that patch (Class-aware Order Correlation (CAOC)). We do the same to obtain CAOC for all patches and filter (based on a threshold) the patches that will continue in the next hierarchical visualization level (4.). We reduce the size of patches and repeat the process. We accumulate the importances for all hierarchical levels to, in the end, multiply by the original image and obtain the visualization (5.). More detail in Appendix B.

) 3 . 2 . 2 .

 322 Concept output space under input occlusion Our causal-based visualization employs patch occlusions to identify influential image regions. Depending on the patch size, we create image-specific concept output spaces by individually occluding each patch. We divide the image I c j , where j ∈ [1, NbIm(c)] that we want to visualize into four patches of the same size s p = s image 2 : {P( x , y , s p )} ( x, y )∈{0,1} 2 (this partitioning assumes that the image size is a multiple of 2). We perform occlusion on each patch P( x , y , s p ) individually, resulting in a partially occluded image P( x, y ,sp ) (I c j ). That will replace the original image I c j in the original sequence I c i local i local ∈[1,NbIm(c)] . Let us define Occ I c j (I c i local ) := P( x, y ,sp ) (I i local ) when i local = j and I c i local

  The cat vs. dog dataset has two classes, dog and cat, with 19,891 images[START_REF] Borys | Explainable ai in medical imaging: An overview for clinical practitioners -beyond saliency-based xai approaches[END_REF]936 dogs and 9,955 cats) in the training set, 5,109 images (2,564 dogs and 2,545 cats) in the validation set, and 12,499 in the test set (without labels). The CUB-200 dataset has 200 classes featuring different bird species. Besides the class annotation (200 labels), it has the bird's bounding box and parts annotation (15 different parts including back, beak, and belly). For more controlled evaluation, we merged 20 different species of warblers and 20 species of sparrows to separate sparrows from warblers. We used the training/validation split provided in the dataset. The two classes each one have 600 images for training and 600 images for validation, totaling 1,200 images in the training set and 1,200 in the validation set.

4. 1 .

 1 Scatter plot of MAG We performed experiments with different patch sizes to generate feature map representations (complete experiments in Appendix C). We chose the one with good final separation of clusters, without being too small (to reduce computation). (a) VGG 9 clusters (b) ResNet 11 clusters

Figure 4 :

 4 Figure 4: Projection of 5120-dimensional representations, from cat vs. dog trained model, to 2D with UMAP. Figures (a) and (b) represent the plots of feature map dimensions from VGG16 and ResNet-18, respectively. Colors represent clusters obtained by K-means. We use k = 9 for VGG and 11 for ResNet, chosen by the Elbow curve method using Inertia.

Figure 5 :

 5 Figure 5: Ms-IV visualizations using CAOC metric to measure patch importance for image samples (two dogs and two cats) using VGG16/ResNet-18 (explanations in the text).

Figure 6 :

 6 Figure 6: Attribution maps by IG and OC methods versus Ms-IV: IG and OC do not allow us to recognize the shapes of the dog or the cat, whereas Ms-IV, illuminating the initial image, enables us to easily recognize which part of the image is important in the model's decision. Three interpretable components were used for LIME visualizations. The occlusion method uses 7x7 patches, while for Ms-IV we used thr = 0.75.

  (a) Visualizations 2 clusters ResNet-18 (b) Visualizations 3 clusters VGG16

Figure 7 :

 7 Figure 7: Some visualizations obtained for clusters 0 and 1 of ResNet-18, and clusters 2, 5, and 6 of VGG16 (other visualizations in Appendix C.4). We present the selected concepts for these clusters, by 24 participants, to describe the two classes. According to the answers, for ResNet-18: cluster 0 presents the eye and muzzle of cats, highlighting eye and ear of dogs. Cluster 1 presents eye for both classes and muzzle for dogs. For VGG16: cluster 2 presents eye for both classes. Cluster 5 detects the eye for cats, and the muzzle and paws for dogs. Cluster 6 presents ears of cats and, the muzzle and eyes for dogs.

Figure B. 9 :

 9 Figure B.9: Explanation of the computation of CAOC (on a fictitious scenario). Here, our dataset is made up of images of one disk or one square, the output is a class ("disk"

Figure B. 10 :

 10 Figure B.10: How our visualization algorithm works. We fix some concept value k and some image number i. We sort the activations of each image, and we call InitPos the position of the activation of the current image I i in the computed sequence. The goal is to enlighten the areas of the image as much as the concept k is important in each region of this same image. To this aim, we decompose the initial domain into four patches; it is the first step of our recursive subdivision. By occluding separately each of these four patches and computing how much their new position NewPosx , y (in the sequence of activations of the occluded images) differs from InitPos, we obtain four scores InitPos -NewPos x, y (called the importance). Choosing the maximal score, allows us to deduce in which of these four patches the concept is represented most. By continuing this recursive subdivision in the most important patches until we reach the minimal size of a patch, we will know how much we have to illuminate each coordinate in the image (by adding up the importances we have computed for each pixel).

∈

  N * (representing the minimal patch size of a concept), a class c, the image I c i local , and a concept k. 2. We compute the sequence Seq = sort Activ c (I c j , Ξ k ) j∈[1,NbIm(c)] and then the position InitPos of Activ c (I c i local , Ξ k ) within it. This position represents "how much" I c i local truly belongs to class c. 3. We divide the image into four patches of the same size s p = s image 2resulting in this partition {P(0, 0, s p ), P(0, 1, s p ), P(1, 0, s p ), P(1, 1, s p )} (we assume that the image size is a multiple of 2).

4 .

 4 For each ( x , y ) ∈ {0, 1} 2 : (a) We occlude I c i local on the patch P( x , y , s p ) resulting in P( x, y ,sp ) (I c i local ). (b) We calculate:Seq := sort (Activ c ( P( x, y ,sp ) (I c j ), Ξ k )) j∈[1,NbIm(c)]and the position NewPos x, y of Activ c ( P( x, y ,sp) (I c i local ), Ξ k ) in it. Itwill then represent how much I c i local is still of class c after occluding the image in the patch domain. If the initial activation is almost preserved despite the occlusion, we will have NewPos x, y ≈ InitPos. (c) For this reason, we propose to calculate what we call the importance of the patch P( x , y , s p ): Imp( x , y ) = InitPos -NewPos x, y

  Figure C.11: Silhouette and Inertia results from K-means with k ∈ [2, 25[ with different sizes and numbers of patches used in the feature map representation, n ∈ {2, 4, 7, 14, 28, 56}, and t ∈ {1, 5, 10}. Figures (a) and (c) present the Silhouette for VGG16 and ResNet respectively. Figures (b) and (d) present the Inertia for VGG16 and ResNetrespectively. The best clusters should maximize the Silhouette, which is between -1 and 1. Inertia is not directly comparable, as we changed representation, but will be used for finding the best number of clusters k. The representations using small patch sizes seem to improve this mentioned quality.

Figure C. 12 :

 12 Figure C.12: Smallest values of n seem to present denser clusters. Figures (a), (b), and (c) represent the scatter plots of feature maps of VGG16 while Figures (d), (e), and (f) represent those of ResNet according to the representation using n ∈ {4, 7, 14} and t = 5, respectively. The colors represent the clusters obtained by K-means. We used the value k equal to 9, 8, and 8 for VGG and, 11, 12, and 10 for ResNet (for each patch size) chosen by the Elbow curve method from the Inertia presented in Figure C.11(b).

Figure C. 15 :

 15 Figure C.15: Visualizations obtained for clusters 0 and 1 of ResNet-18 and results of selected concepts, by 24 participants, to describe the two classes separately. According to the answers, cluster 0 presents the eye and muzzle of cats, while highlighting the eye and ear of dogs. Cluster 1 presents the eye for both classes.

Figure C. 16 :

 16 Figure C.16: Visualizations obtained for clusters 2 and 6 of ResNet-18 and results of selected concepts, by 24 participants, to describe the two classes separately. According to the answers, cluster 2 presents the eye and muzzle of cats, while highlighting the eye and forehead of dogs. Cluster 6 presents the muzzle for dogs and a mix of concepts, eye, muzzle, and forehead, for cats.

Figure C. 17 :

 17 Figure C.17: Visualizations obtained for clusters 9 and 10 of ResNet-18 and the results of selected concepts were described separately by 24 participants. According to the answers, cluster 9 seems not to be well-formed for the cat, but highlights the dog's eye. Cluster 10 presents the muzzle for dogs and the eyes, below the eyes, and whiskers for cats.

  

  

  

Table 1 :

 1 Robustness and Faithfulness analysis in the cat vs. dog dataset. (a) Robustness values were calculated using Worst Case Evaluation for Preserved Class and Misclassification for three visualization methods: IG, LIME, and Ms-IV. Results were derived using Pearson's correlation between the original image and Worst Case visualizations. Higher values are expected for Preserved Class and lower values for Misclassification.

		VGG						
		Preserved Class Misclassification			VGG		
	IG	0.41	0.52		cl. change Decrease. Increase.	>
	LIME	-0.02	0.08	LIME	0.03	0.83	0.12	0.27
	Ms-IV	0.34	0.14	Ms-IV	0.08	0.80	0.10	0.72
		ResNet				ResNet		
		Preserved Class Misclassification		cl. change	Pos.	Neg.	>
	IG	0.43	0.50	LIME	0.06	0.70	0.23	0.30
	LIME	0.078	0.01	Ms-IV	0.08	0.65	0.25	0.69
	Ms-IV	0.26	0.29					
		(a)				(b)		

Ms

-IV presents a good trade-off between high Preserved Class and low Misclassification. (b) Faithfulness analysis based on the percentage of class changes after occlusion (cl.change), decrease of class output value (Decrease), increase of class output value (Increase) using LIME and Ms-IV directed occlusions of 512 images. Additionally, we present the methods' comparison of the biggest variation (absolute output class difference) under occlusion (>). Ms-IV presents bigger output variations.

Table 3 :

 3 From a total of 24 participants and 8 different bias/non-bias comparisons, 77% of the responses showed the non-bias group choice as a better separation (results using the cat vs. dog model). We display the values for computer (Comp.) and non-computer (Noncomp.) experts to make a selection between Bias and Non-bias. Even non-computer experts present a high percentage of the non-bias choice. We compared a biased and a less biased model (more accurate). The analyzed ResNet-18 model was the less biased, we call it the normal one. We trained an extra ResNet-18 model, initialized with ImageNet weights, and trained with 100 images, 50 dark cats, and 50 beige dogs.We generated the biased and unbiased ResNet-18 image subsets to each concept (as in the finding concepts part). We paired one biased ResNet-18 group and one normal ResNet-18 group. We asked the participants which of the models seemed to highlight only the important parts to differentiate cats and dogs, without explaining Neural Network bias.

	Comp. Non-Comp. Total		Comp. Non-Comp. Total
	Bias 0	3	4	7	Bias 4	0	1	1
	Non-bias 0	8	9	17	Non-bias 4	11	12	23
	Bias 1	3	3	6	Bias 5	2	4	6
	Non-bias 1	8	10	18	Non-bias 5	9	9	18
	Bias 2	2	4	6	Bias 6	2	5	7
	Non-bias 2	9	9	18	Non-bias 6	9	8	17
	Bias 3	0	0	0	Bias 7	3	7	10
	Non-bias 3	11	13	24	Non-bias 7	8	6	14
					Bias Total	15	28	43
					Non-bias Total	73	76	149
					% Non-bias Total	82%	73%	77%
	Bias Detection:							

https://www.kaggle.com/competitions/dogs-vs-cats-redux-kernels-edition/data

https://kneed.readthedocs.io

Figure C.20: Visualizations obtained for clusters 5 and 6 of VGG16 and results of selected concepts, by 24 participants, to describe the two classes separately. According to the answers, cluster 5 seems not to detect the eye for cats and the muzzle and paws for dogs. Cluster 6 presents the ear of cats and the muzzle and eye for dogs.
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We decompose their common domain into 4 patches of the same size 2 × 2. On the first image, we observe that among the 4 four subdivisions in the f th p feature map, the one that maximizes its 1-norm corresponds to ( x = 1, y = 1), so we write in the vector (depicted above) these values: 1 and then 1. We continue this procedure for the next images until we reach the end of the dataset. This vector represents then where the f th p feature is located in the images of the data set; we call it the representative of the feature number f p . In the sequel, we explain in more detail the algorithm and pseudocode of Ms-IV. // final matrix initialization

We present in

// final level

// level 0 has only patch (0,0) 

Imp ( a u, . . . , ( a + 1)u -1; b u, . . . , interesting Silhouette values. We selected k, for each configuration by using the Elbow curve method 3 and Inertia.

We show the scatter plots that compare the spatial position of feature maps for patch sizes n ∈ {4, 7, 14} in Fig. C.12 for VGG16. The scatter plot visualizations show greater intra-cluster sparsity for larger patch sizes.

It should be noted that for visualization purposes, we reduced the representation dimensionality using the UMAP technique [START_REF] Mcinnes | Umap: Uniform manifold approximation and projection for dimension reduction[END_REF], with the parameters n neighbors = 50, min dist = 0.0, and Euclidean distance. Colors designate the different assigned clusters for each of them.

These results highlight that the size of the patches is a crucial parameter.

Smaller patches can help to provide better concept clusters; however, they will probably capture fewer interpretable structures (the same xAI pixel-level technique's problem). Moreover, when using these smaller patches, the number of analyzed regions increases together with the number of computations.

On the other hand, big patches will not cluster feature maps well enough, with poorer evaluation results and bigger sparsity (Fig. C.12). As the feature map cluster centers were reasonably similar, we continued the experiments with the n = 4 clusters (small but not the smallest). We show the difference between the CAOC metric and the probabilities difference (PD) used as a metric. We selected 50 images from the dataset (to make the visualization easier), 25 from each class (dogs as even numbers and cats as odd numbers), and we calculated the difference from image 0 (dog) and image 1 (cat) to all the others (from their respective classes) using In general, out of the 13 proposed concepts, fewer than three of them received most of the participants' votes for each cluster. There was agreement about concepts for both computer and non-computer experts. Concepts such as eyes and muzzle were the most observed. Cluster 4 presents also the muzzle and eye for cats, but the muzzle and mouth for dogs.