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Abstract

Providing interpretability of deep-learning models to non-experts, while fun-

damental for a responsible real-world usage, is challenging. Attribution maps

from xAI techniques, such as Integrated Gradients, are a typical example of a

visualization technique containing a high level of information, but with diffi-

cult interpretation. In this paper, we propose two methods, Maximum Acti-

vation Groups Extraction (MAGE) and Multiscale Interpretable Visualization

(Ms-IV), to explain the model’s decision, enhancing global interpretability.

MAGE finds, for a given CNN, combinations of features which, globally, form

a semantic meaning, that we call concepts. We group these similar feature

patterns by clustering in “concepts”, that we visualize through Ms-IV. This

last method is inspired by Occlusion and Sensitivity analysis (incorporat-

ing causality) and uses a novel metric, called Class-aware Order Correlation

(CAOC), to globally evaluate the most important image regions according to

the model’s decision space. We compare our approach to xAI methods such

as LIME and Integrated Gradients. Experimental results evince the Ms-IV

higher localization and faithfulness values. Finally, qualitative evaluation of

combined MAGE and Ms-IV demonstrates humans’ ability to agree, based
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on the visualization, with the decision of clusters’ concepts; and, to detect,

among a given set of networks, the existence of bias.

Keywords:

explainable artificial intelligence, interpretability, convolutional neural

networks, global artificial concepts

1. Introduction

The use of machine learning (ML) in real-world applications increased the

need of explaining decisions to non-computer experts. However, providing

model explanations for isolated features is challenging. Consider the expla-

nation in Fig. 1(b) which is annotated via pixel-level importance: one does

not directly understand the model’s knowledge. It is not easily interpretable.

Figure 1: Pixel-level importance is more difficult to interpret than components one. From

left to right: an image, its Integrated gradients [40], and an easier-to-interpret visualiza-

tion.

Interpretability, compared to explainability, is more subjective as it in-

volves semantics and the idea of how humans understand signals [2; 15].

This process is a translation of knowledge which depends not only on the

information semantics, but also on how it is transmitted and received [34].

Methods like LIME [30] and KernelSHAP [26] propose visualizations

based on interpretable components rather than isolated pixels. These com-

ponents facilitate the human interpretation of how a model understands a
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sample. However, instead of understanding the complete knowledge of the

model, they explain the behavior of the convolutional neural network (CNN)

associated with an individual image.

Works such as TCAVs [22] and Explanatory graphs [46] aim to translate

the model’s knowledge and behavior given input changes, into interpretable

concepts. Apart from increased interpretability, the required supervision can

affect how a model is explained. In the case of TCAVs, we need to know

the concepts we are testing the model against. In the case of Explanatory

graphs, we need to train a time-expensive model to approximate a graph of

activation patterns for a set of images.

These supervision constraints may impact how well a model can be ex-

plained, i.e., if the explanation provided is complete enough to represent the

model reasoning. To solve this problem, ACE [13] was proposed to use im-

age segments, represented by internal activations, clustered as concepts. In

this way, TCAV no longer requires user concept supervision. However, as

an example-based technique, it depends on how and which images are seg-

mented, i.e., if we do not use images that contain all concepts, some concepts

could be left out.

We use a similar idea to cluster concepts, but instead of clustering the

segment’s activations, we cluster the internal unit’s activation patterns. By

doing this, we are able to provide a more global and complete set of concepts.

Our methodology tackles three aspects of a CNN’s explainability problem:

i) we represent the models’ knowledge as completely and globally as possible

without supervision; ii) we obtain explanations based on how humans un-

derstand concepts (groups of patterns with similar semantics), and; iii) we
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provide interpretability to the explanations, enabling the use of intelligent

systems by non-experts.

Our main contributions are:

• Maximum Activation Groups Extraction (MAGE), that constructs novel

feature-map representations based on activation patterns localization in

multiple images, instead of the normal activation vectors from individ-

ual images;

• The Class-aware Order Correlation (CAOC) metric, to determine the

impact of occlusions, not only in a single image activation but also

how, according to the model, this image relates to the others (dataset

relation);

• A Multiscale Interpretable Visualization (Ms-IV), using CAOC to have

an occlusion-based visualization accounting for dataset relations ; and

presenting a hierarchical selection of the important image regions (from

the complete image to the smallest defined patch size) to focus human

attention on gradually highlighted image parts.

Section 2 is a review of the literature on xAI methods, Section 3 presents

the intuition of our method, Section 4 shows qualitative and human-based

experiments, and Section 5 concludes the paper.

2. Literature review and Motivation

XAI methods can be broadly categorized as intrinsic, model-specific, or

post-hoc and model-agnostic. Examples of intrinsic methods are decision
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trees [29], some attention networks [14], and training alongside text expla-

nations [28]. They are called intrinsic because they do not need an extra

mechanism to provide some level of explanation. For these methods, we

obtain the explanations directly from the analyzed learning model.

The specific-methods can also cover intrinsic models. However, they refer

to explanations specifically applied to some determined architectures. For

example, the Deconvolution [44], CAM [47] and Grad-CAM [33] techniques

are firstly designed to explain Convolutional Neural Networks. Nevertheless,

they are not intrinsic but post-hoc models, as they are applied to a pre-

trained model.

According to recent xAI surveys [12; 3; 32], the most commonly refer-

enced methods include LIME [30], SHAP [26], DeconvNet [44], CAM [47],

Grad-CAM [33], Guided Grad-CAM [33], DeepLIFT [37], Integrated Gra-

dients [40], Guided-Backpropagation [39], Saliency maps, and TCAV [22].

Their application is disseminated through different domains and is presented

in recent research.

The medical domain is one of the biggest applications of xAI techniques.

Some literature reviews in this domain mention the use of TCAV as a concept

analysis technique [9; 31; 36]; CAM, Grad-CAM, LRP [5], SHAP, and LIME

as visual-based model explanations [31; 10]; ACE [13] and Network dissec-

tion [6] as a network decomposition technique; and, t-SNE and UMAP [9]

as a supplementary visualization technique. Tim Hulsen [21] mentions that

most of the papers in this area are based on visual explanations for different

purposes, such as lung ultrasound [8] and breast cancer X-rays [35] using

CAM; ulcerative colitis colonoscopy using Grad-CAM [41]; COVID-19 de-
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tection in chest CTs [25] using Grad-CAM; lung X-ray [17] using Grad-CAM

and LIME, and; chest X-ray images [1] using LIME, Integrated Gradients

and SHAP.

In areas such as network security, models such as LIME, SHAP, and

induced decision trees are used to explain the detection of malicious do-

mains [4]. There are also applications in forecasting within the manufacturing

domain [11] using methods such as recursive feature elimination (RFE) [16],

and SHAP.

However, despite their frequent use, we believe that the currently used

xAI techniques are not sufficiently interpretable for non-experts to analyze

and that they do not fully explain the reasoning of models.

2.1. Model-agnostic methods and interpretability

The model-agnostic methods are generally post-hoc methods and can ex-

plain multiple types of architectures. Some examples of post-hoc and model-

agnostic methods include not only Layer-wise Relevance Propagation [5]

and Integrated Gradients [40], but also LIME [30] and its numerous deriva-

tives [30; 48; 24], TreeView [43], and Explanatory graphs [45]. Here, we

describe some methods with a higher level of interpretability and their dif-

ferences.

LIME [30]: is a model-agnostic method which introduces the idea of ex-

plaining by using interpretable components. The method decomposes each

data sample into human-understandable parts. If a data sample is an image,

these decomposed parts can be, for example, superpixels or patches, not nec-

essarily expressed as it is inputted in the model. After we have these parts (or

components), LIME measures their importance to a decision. This approach
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is more human-friendly than showing each individual feature’s importance,

especially in high-dimensional data. However, despite presenting high inter-

pretability, these explanations are generally local, i.e., they are sample-based

or rely on local explanations to explain the model behavior.

Explanatory Graphs: proposed by Zhang et al. [45], represent a CNN

knowledge hierarchy through convolutional layers. Each node in the graph

represents candidate patterns of the object’s parts, summarizing the knowl-

edge from feature maps. Edges connect nodes from adjacent layers. The

method proposes to disentangle object parts from a single filter without

ground-truth part annotations. It mines highly activated image patterns

from the last convolutional layer (high-level semantics) to the first (simpler

structures). This process relies on the complete dataset to optimize the graph

of hierarchically connected patterns that best fit network feature maps.

Testing with Concept Activation Vectors (TCAV): proposed by

Kim et al. [22], aims to, use a set of low-level features to provide human-

friendly, interpretable concepts. In more detail, CAVs’ method is part of

TCAV, which analyzes how sensitive a model’s prediction is to a user’s pre-

defined concept. The idea is to learn a linear classifier to separate, based on

the model internal activations and a given class, the response to the concept’s

given examples and random ones. TCAV ultimately shows the images most

similar to a concept.

Besides the improvement in interpretability, Explanatory Graphs and

TCAVs require some level of supervision to generate the knowledge graphs

or to indicate the concepts. We also want to obtain a more global network

explanation in an unsupervised manner.
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2.2. Our motivation and similar literature methods

We propose to extract interpretable visual concepts from a model. Pre-

viously, we mentioned some ideas similar to our proposal: TCAVs and Ex-

planatory Graphs (described in Section 2.1). Additionaly, a paper proposed

by Tan el al. [42], has a similar idea: to identify semantic concepts within

networks. The authors suggest inducing, during training, neighboring neu-

rons (or feature maps) to exhibit similar activations. The objective is to have

an easier interpretation of the activation map visualizations, showing similar

regions of activations for similar semantic concepts. Their method, called

Locality Guided Neural Network (LGNN), conditions during training, the

filters’ topology to facilitate manual inspection. However, what distinguishes

it from our approach is that this method focuses on changing the learning

algorithm, i.e., it should be used during the training process to change the

model. This is not our objective, as we aim to have a general explanation of

already trained CNNs.

Another work, proposed by Li et al. [23], presents a network, PatternNet,

to mine visual patterns that are discriminative and representative. They con-

sider that these patterns should be popular (representative), i.e., activated

in a considerable number of images from the analyzed class; and unique (dis-

criminative) for this class (not appearing in the rest of the classes). However,

this is also a supervised task. The authors train PatternNet to find these

patterns. Therefore, it is a dataset explanation technique and not a model

explanation technique, as we propose.

The method ACE [13] proposes a way to mine concepts, without direct

supervision. It uses image segments with different scales to cluster similar
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patterns, represented by the network activations for each segment. TCAV

is then used to measure the importance of each cluster. We have a similar

proposal. However, we aim to represent units as their activation patterns in

the complete dataset. In this way, we include a global view of the network’s

behavior while decomposing the network into units with similar concepts.

We believe our methods can fill the gap of global model interpretabil-

ity by providing unsupervised means of mining semantic patterns inside a

pre-trained model, through decomposing the model’s global knowledge into

interpretable concepts.

3. Proposed methods

Our intuition is: if we can decompose networks’ knowledge into different

concepts (used for the network decision), we can translate them into human-

understandable visualizations (patterns). In this section, we describe these

two tasks.

Concepts’ decomposition: We define concepts as combinations of fea-

tures that form a semantic meaning. This generally implies spatial proximity.

For animal images (cats & dogs), a concept can be nearby features that com-

pose a muzzle, ears, or eyes at a given location. Together, these concepts

induce the perception of an animal’s presence in the image at this same

location.

For digital images, these features are pixels. For the human visual system,

the process of grouping pixels into concepts seems instinctive, but it is not

the same for machines. In the case of artificial neural networks, the patterns

that indicate these concepts are learned by internal units during training.
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As previously investigated by other works, we observe different learned

patterns inside a CNN by looking into convolutional layers’ activations.

These patterns can be determined by structures (in the input) that most

activate each feature map. It is quite similar to mapping human brain activ-

ity. We give a stimulus and look at what lights up in the brain.

The problem is that CNNs have high-dimensional feature maps, and the

reasoning based on them is humanly infeasible. Our solution is to group

similar responses of feature maps’ dimensions to provide easier analysis.

Concept discovery through visualization: We use a hierarchical vi-

sualization strategy to enrich human understandability. From a higher to a

smaller size of the image substructures (patches), we want to gradually in-

crease attention to the most important parts, from bigger to smaller regions.

The idea is similar to a face verification task. The first step is to detect faces

in images and then to compare the faces. The complete face is important;

however, for verification, facial characteristics such as eyes, nose, and mouth

will be more significant. These characteristics are hierarchically linked to

the face (inside the face) and during this task, we assign a gradual level of

focus, from the face to its specific regions contained within. Similar to this,

we expect to facilitate a gradual human attention process, to understand

the importance of the main structure and, subsequently, the specific linked

characteristics.

The visualization is intended to represent the concepts we previously

decomposed. We want to visualize what parts of the original image impact

the most for each concept. Using an example: we want to know which of, a

dog’s muzzle or a dog’s eyes, causes the biggest impact in a concept A. In
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this way, we can discover which concept is A.

We try to capture this causality through occlusions. We evaluate the

impact of each image region by occluding it and verifying what changed

according to a concept A. If the response to concept A changes a lot, the

occluded part is important, and is a candidate to explain what is concept A.

Different image parts will have different levels of importance. We expect the

most important parts to represent the concept.

However, these occlusions can only be made in each image individually.

If we want to account for the globalism of a concept (same concept for the

majority of images), we need a strategy to include global awareness in the

evaluation of the concept’s after-occlusion impact.

For our solution to be globally aware we evaluate the impacts of the

occlusions on the relation between images containing the concept A. Let us

consider a pre-defined set of images. After one image occlusion, we measure

how many relationships we have changed in this group. This way, if an image

has the concept A, the occlusion of this concept in the image will change the

image’s relation to the others (it will have less A than the others). On

the other hand, if there is no concept A in this image, even if occlusions

change the image’s prediction, it should not change the image’s relation to

the others.

3.1. Decomposition into concepts: Maximum Activation Groups Extraction

The network’s knowledge decomposition is made from five steps (Fig-

ure 2).
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Figure 2: Steps to obtain the Maximum Activation Groups (MAGs). We divide dataset

images into patches (we perform experiments with different patch sizes to obtain better

separation in 5.) (1.). We obtain feature maps (from the last convolutional layer) for

each patch (2.). We find the corresponding patch with the highest feature map norm

by dimension (3.). We concatenate the patches’ positions of the highest norms for a

set of images to represent each feature map’s dimension (4.). We cluster the dimension

representations to obtain the MAGs (5.). More detail in Appendix A.

3.1.1. Decomposition of input features into patches

We decompose the image into non-overlapping patches to evaluate the

stimulus of images’ subregions to the feature maps. Humans can decompose

an image into semantic pieces to understand it in its entirety.

To be able to interpret what CNN-based classifiers “visualize”, we propose

to decompose their feature maps of the highest abstraction level into similar

dimensions. Note that we prefer to use the last convolutional layer because it

can represent high-level semantic concepts, but we do not use fully-connected

layer activations because they lose the “visual awareness”. To proceed, we

start from a CNN like a VGG [38] or a ResNet [18], that we model using the
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formula

Ξ = Ξclassif ◦ Ξenc (1)

(with Ξclassif the classifier following the encoder denoted by Ξenc). The en-

coder includes the network’s layers up to the last convolutional layer. Then,

for a given image I, we decompose the image into patches.

We believe that this patch decomposition is a key ingredient to better

understand about how the network “reasons”. To formalize, let us introduce

some notations. The dataset DS = (Ii, GTi)i∈[1,NbIm] used to train Ξ is made

up of NbIm images Ii and their class GTi (the class number). For a given

i ∈ [1,NbIm], we denote Ii as the ith image of DS. We denote by NbIm(c) as

the number of images of class c ∈ [1,NbClasses ]. For a given class c and for

a given ilocal ∈ [1,NbIm(c)], we will denote Icilocal as the ithlocal image of class

c ∈ [1,NbClasses ] of DS.

We can then introduce our formalism: To decompose the domain D of a

given image I into patches of dimension sp×sp (see Figure 2 (1)), we proceed

this way: D =
⋃

`x∈[1,`max
x ],`y∈[1,`max

y ]P(`x, `y, sp), with `x, `y, `
max
x , `max

y ∈ N,

`max
x , `max

y the number of patches horizontally and vertically (respectively),

and (`x, `y) the relative coordinates of the patch P(`x, `y, sp) described by

P(`x, `y, sp) = [1 + (`x − 1) · sp , `x · sp ]× [1 + (`y − 1) · sp , `y · sp ] (2)

(we obtain then a partition of D).

3.1.2. Calculus of feature maps’ activation per patch

We obtain activations of feature maps by giving each patch to the network

— the response to the stimuli (see Figure 2 (2)). We use the model described

by Equation 1, in which Ξenc includes the network layers up to the last
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convolutional layer. Since for the image i and for the nth
f feature, we have

the 2D mapping Ξenc(., ., nf ) : (x, y) → R, and that we will restrict the

input image to the patch P(`x, `y, sp), we propose to introduce the term

Fi,nf ,(`x,`y),sp : (x, y) → R, which maps an image patch P(`x, `y, sp) into the

nth
f feature map after a forward pass through Ξenc, representing the 2D feature

map activations for the mentioned patch. Now that we have introduced the

formalism to represent feature patches, let us show how we decompose the

“knowledge” of the encoder into concepts.

3.1.3. Identifying important patches for feature map’s dimensions

We want to group feature map dimensions according to their activation

patterns. Therefore, we characterize these dimensions by their patterns. This

characterization is similar to a brain experiment: if part A of the brain is more

activated by emotions than by a task like reading, part A probably knows

the concept of emotions. Instead of using emotions and reading, we give

the patches to the network. Therefore, we identify the patches that activate

a feature map’s dimension the most to represent the mentioned dimension.

The identification is done by locating the selected patch; in this paper, the

process is based on its position in the original image.

Let us choose some image Ii in DS. We consider in the nth
f feature map

corresponding to Ii the one which maximizes the 1-norm as the reference

patch. It is then identified by its parameters:

(`∗x(i, nf ), `∗y(i, nf )) = arg max(`x,`y)

{
||Fi,nf ,(`x,`y),sp ||1

}
. (3)

Intuitively, this position represents the patch where the CNN reacted the

most (see Figure 2 (3)).
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3.1.4. Dimension characterization by the dataset

We have limited (local) information if we use only one image to char-

acterize dimensions. Therefore, we incorporate more images in the process.

Instead of having the feature map’s dimensions characterized by patches of

a single image, we repeat the process with more images to obtain multiple

characterizations. We can then define as “concept” the set of features acti-

vated at (almost) the same location for each image of DS (see Figure 2 (4)).

In other words, by defining the representative of the nth
f feature:

rep(nf ) =
[
`∗x(1, nf ), `∗y(1, nf ), `∗x(2, nf ), . . . , `∗y(NbIm, nf )

]T
, (4)

we obtain a vector in a space (of dimension 2NbIm) which satisfies the prop-

erty that when two features n1
f and n2

f are physically near to each other in the

images of DS, their representation will be near each other, and vice-versa.

3.1.5. Decomposition of feature space into concepts

We use the set of characterizations of a feature map’s dimension to cre-

ate a feature vector representing it. If two dimensions have similar feature

vectors, they activate in similar patches for most images. We consider them

the same concept. Therefore, we cluster the feature vectors for all feature

map’s dimensions to obtain the groups of concepts. This allows us to find

the concepts using any clustering algorithm (in this paper, we use K-means)

to obtain the Maximal Activation Groups (MAG):

{MAG(k)}k∈[1,K] = Clustering(K, {rep(nf )}nf ). (5)

Each term MAG(k) is what we formally define as a DS-relative concept.

They are relative to K and to the clustering algorithm used. Thanks to

them, we can understand the global behavior of the CNN.
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3.2. Global causality visualization: Multiscale-Interpretable Visualization

Figure 3: Multiscale-Interpretable Visualization (Ms-IV). We obtain the final responses

of the network (outputs before Softmax) for a set of images (1.). We occlude one patch

(out of 4) from the image we want to visualize, and we calculate the new model’s response

(2.). We apply Argmax to the image’s model responses to obtain orders according to a

class c. We want two vectors, one ordering all the images, including the original image

(to visualize), and; another ordering all images, except the original one (to visualize), but

including its occluded version. We obtain the differences in the position of the original

and the occluded (3.) to account for the modification in the output space. It is considered

the importance of that patch (Class-aware Order Correlation (CAOC)). We do the same

to obtain CAOC for all patches and filter (based on a threshold) the patches that will

continue in the next hierarchical visualization level (4.). We reduce the size of patches

and repeat the process. We accumulate the importances for all hierarchical levels to, in

the end, multiply by the original image and obtain the visualization (5.). More detail

in Appendix B.

After obtaining the specific concepts, we follow the inverse path: we look
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at what a concept represents in each image. We aim to visualize image

regions with more impact for the concept MAG(k) in the model’s decision,

relying on human understandability, causality, and globalism.

For the sake of simplicity, let us introduce a new term: we define an

occlusion of the image I of domain D on a patch P ⊆ D as �P(I) : D → R

such that for any (x, y) ∈ D, �P(I)(x, y) is equal to I(x, y) when (x, y) 6∈ P ,

and 0 otherwise.

We set a visualization threshold ratio δ ∈ ]0, 1], a minimum patch size

smin
p ∈ N∗ (representing the minimum patch size of a concept), a class c,

the image Icj for visualization, and a concept k. The global causality-based

visualization is performed in five steps, as shown in Figure 3.

3.2.1. Original concept output space

Let us define the term concept output space in order to describe the im-

age’s relation to other dataset images, according to a concept. The concept

output space is the output matrix of the network, for a fixed set of images,

using only the dimensions of the concepts, i.e. zeroing out all the dimensions

belonging to other concepts.

We introduce the notation Activ(I; Ξ) which represents the vector of

dimension NbClasses used as input of the softmax layer in the network Ξ

when we input I. We set at 0 the feature activations not relative to concept

k in Ξ, leading to a “new” neural network Ξk. The other feature activations

are left intact. Then, as illustrated in Figure 3 (1), we compute the following

class-aware matrix, with the images’ activations of class c, for the MAG(k),
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representing the original concept output space:

OSActiv(c, k) =
(
Activ(Icilocal ; Ξk)

)
ilocal∈[1,NbIm(c)]

(6)

3.2.2. Concept output space under input occlusion

Our causal-based visualization employs patch occlusions to identify influ-

ential image regions. Depending on the patch size, we create image-specific

concept output spaces by individually occluding each patch.

We divide the image Icj , where j ∈ [1,NbIm(c)] that we want to visualize

into four patches of the same size sp =
simage

2
: {P(`x, `y, sp)}(`x,`y)∈{0,1}2 (this

partitioning assumes that the image size is a multiple of 2). We perform

occlusion on each patch P(`x, `y, sp) individually, resulting in a partially

occluded image �P(`x,`y ,sp)(Icj ). That will replace the original image Icj in

the original sequence
(
Icilocal

)
ilocal∈[1,NbIm(c)]

.

Let us define OccIcj (Icilocal ) := �P(`x,`y ,sp)(Iilocal ) when ilocal = j and Icilocal
otherwise. Therefore, as presented in Figure 3 (2), the matrix representing

the under-occlusion concept output space, of image Icj , and patch P(`x, `y, sp),

is: OSP(`x,`y ,sp),Activ(c, k) =
(

Activ(OccIcj (Icilocal )); Ξk)
)
ilocal∈[1,NbIm(c)]

3.2.3. Measuring patch importance

As we have the original and each occluded-patch concept output space

for an image, we can verify the changes from the original to the under-

occlusion spaces. To create our globally aware visualization, we need to

verify this impact on the complete space. We propose to use a ranking-

based approach to measure the difference between the original and an under-

occlusion concept output space. We name this approach Class-aware Order

Correlation (CAOC).
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The ranking structure is based on a target class, by ordering the points

in the concept output space from the higher to the lower responses to that

class (class-aware). Note that the order of one point depends also on the

response of the other points in the space (global awareness). This makes

the comparison between the original concept output space ranking and the

under-occlusion concept output space ranking to provide an understanding of

how the space changes under a specific occlusion.

We measure the difference in rankings to determine an importance score.

To evaluate the effect of the patch occlusions, we use rankings. We argsort the

values for a class c in the data points on OSActiv(c, k) and OSP(`x,`y ,sp),Activ(c, k)

to obtain the sequence of positions of the class scores, sorted from highest to

lowest:

Seqc = argsort (OSActiv(c, k)c, decreasing) (7)

Seq ′c = argsort
(
OSP(`x,`y ,sp),Activ(c, k)c, decreasing

)
. (8)

In practice, in the matrices where each row is a data point (a sample’s ac-

tivations), the activation from class c corresponds to column c. Then we

compare these sequences. As this sequence of positions are rankings, they

can be compared using ranking correlation metrics such as Kendall-tau (K).

Calculating this correlation measures how much the patch absence impacts

the complete space. This way, the score of patch P(`x, `y, sp) is obtained by:

CAOC(`x, `y) = K(Seqc, Seq ′c).

However, as only one image was occluded, we propose to use a simpler

calculation of importance. Let us define the image Icj position in the origi-

nal sequence Seqc as InitPos and the position of �P(`x,`y ,sp)(Icj ) in the new

sequence Seq ′c as NewPos�
`x,`y . We define the importance of P(`x, `y, sp) as:
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CAOC(`x, `y) =
∣∣∣InitPos − NewPos�

`x,`y

∣∣∣ (see Figure 3 (3)).

3.2.4. Choosing important patches

The higher the score, the more important the patch. We use a percentage

of the score of the most important patch to define a threshold. Then, we use

this threshold to filter the importance of other patches. The visualization

consists only of sufficiently important patches. We want to consider not only

the highest score as important for visualization. However, if we visualize

all the patches and their respective scores, we obtain a more confusing and

noisy visualization. Therefore, we use a threshold thr based on δ: thr =

max
(
{CAOC(`x, `y)}(`x,`y)

)
× δ. All patches with higher importances will

remain in the process (see Figure 3 (4)).

3.2.5. Reducing patch size to repeat process hierarchically

We perform new occlusions of smaller patch sizes in the sufficiently im-

portant patches by repeating the process from step 2. We stop reducing the

patch size when we reach a predefined smallest size. We compose the final

patch importance by adding up the importance from all patch sizes. We

continue recursively the procedure in the patches satisfying the inequality

Imp(`x, `y) ≥ thr , returning to step 2. This time, with reduced patch size,

while sp is greater than or equal to smin
p .

During this recursive procedure, each position (x, y) ∈ D may have been

treated several times. We deduce the accumulated importance of a position

(x, y) relative to the image Ii by summing all the computed importance terms

where this position was occluded. The final result is called the accumulated

importance matrix and we denote it MImp (see Figure 3 (5)). We finally
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multiply the initial image by MImp and we plot it. In doing so, we have

highlighted important regions.

4. Experiments and results

Here, we present visualizations of the clusters’ dispersion obtained with

MAGE and qualitative experiments to visually compare Ms-IV with other

methods. We reinforce the results with quantitative evaluation (Robustness,

Faithfulness and Localization). Extra experiments in Appendix C.

To complete the experimentation, we present a concept and bias discovery

evaluation with humans. Experiments were performed using two CNN archi-

tectures, ResNet-18 [18] and VGG16 [38], and datasets: cats vs. dogs 1 and

CUB-200-2011 [19] dataset for Localization evaluation. Models trained with

initial weights from Imagenet, learning rate 1e − 7, cross-entropy loss, the

Adam optimizer, and early stop in 20 epochs of non-improving validation loss.

The code is at https://github.com/CarolMazini/unsupervised-IVC.

The cat vs. dog dataset has two classes, dog and cat, with 19,891 images

(9,936 dogs and 9,955 cats) in the training set, 5,109 images (2,564 dogs

and 2,545 cats) in the validation set, and 12,499 in the test set (without

labels). The CUB-200 dataset has 200 classes featuring different bird species.

Besides the class annotation (200 labels), it has the bird’s bounding box and

parts annotation (15 different parts including back, beak, and belly). For

more controlled evaluation, we merged 20 different species of warblers and

20 species of sparrows to separate sparrows from warblers. We used the

1https://www.kaggle.com/competitions/dogs-vs-cats-redux-kernels-edition/data
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training/validation split provided in the dataset. The two classes each one

have 600 images for training and 600 images for validation, totaling 1,200

images in the training set and 1,200 in the validation set.

4.1. Scatter plot of MAG

We performed experiments with different patch sizes to generate feature

map representations (complete experiments in Appendix C). We chose the

one with good final separation of clusters, without being too small (to reduce

computation).

(a) VGG 9 clusters (b) ResNet 11 clusters

Figure 4: Projection of 5120-dimensional representations, from cat vs. dog trained model,

to 2D with UMAP. Figures (a) and (b) represent the plots of feature map dimensions from

VGG16 and ResNet-18, respectively. Colors represent clusters obtained by K-means. We

use k = 9 for VGG and 11 for ResNet, chosen by the Elbow curve method using Inertia.

In Figure 4, we show the dispersion of obtained clusters (high dimension-

ality reduced to 2D using the Uniform Manifold Approximation and Projec-

tion UMAP algorithm [27]). To generate the representation, we used a subset

of 512 images (half from each class), n = 4 (patch size in representation),

and t = 5 (number of patches per image). To group the concepts, we used

K-means, with k ∈ [2, 25[ selected by the Elbow curve method and Inertia.
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The scatter plots, even with the 5120-dimensional representations reduced

to 2-dimensional, show the separations of “clusters of concepts”.

4.2. Multiscale visualization

(a) CAOC (b) PDs

Figure 5: Ms-IV visualizations using CAOC metric to measure patch importance for image

samples (two dogs and two cats) using VGG16/ResNet-18 (explanations in the text).

We present three visualization experiments: i) visualizations based on thr

at {0.25, 0.50, 0.75, 0.90} for changing the acceptance of important patches

(calculated by the percentage thr of the maximum patch importance); ii)
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Figure 6: Attribution maps by IG and OC methods versus Ms-IV: IG and OC do not

allow us to recognize the shapes of the dog or the cat, whereas Ms-IV, illuminating the

initial image, enables us to easily recognize which part of the image is important in the

model’s decision. Three interpretable components were used for LIME visualizations. The

occlusion method uses 7x7 patches, while for Ms-IV we used thr = 0.75.

visualizations comparing CAOC and PDs; and, iii) visualizations comparing

Ms-IV, Integrated Gradients (IG) and Occlusion (OC).

In Fig. 5(a) we show results for two values of thr (0.25 and 0.9) in two

image samples and two architectures, using CAOC to obtain patches contri-

butions. The final value of thr (last column) shows more focused attention

(less bright regions). ResNet18 network focuses more on the animal’s eyes

than VGG. By switching the metric from CAOC to PDs (using the same vi-

sualization multiscale process), we obtain Fig. 5(b). For most visualizations,

we obtained the same light regions. However, for the examples highlighted

by a red dotted rectangle, we see differences: for the dog image (thr = 0.25)

the dog’s paw is highlighted only by CAOC.

These metrics serve for different purposes, CAOC is sparsity-aware: CAOC

metric will differ from PDs when the model’s output space changes density.

If the new patch-disturbed image falls in a sparse space region, the patch
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importance should be smaller, as the region was “less modified” according

to the model. We present in Fig. 6 the comparison between Ms-IV and two

xAI methods: IG and OC.

4.3. Quantitative evaluation

Papers such as Bommer et al. [7], analyze the use of metrics such as Com-

plexity, Robustness, Faithfulness and Localization, directed towards specific

xAI applications. We will discuss their use in our context.

The complexity is evaluated based on the number of presented important

features. A less complex visualization has fewer important features. Ms-

IV uses a δ parameter to regulate this criterion. Higher δ highlights fewer

patches, facilitating interpretation.

Robustness evaluates the impact of adversarial attacks (changing or not

changing the classification) on the explanations. For attacks that change the

sample’s class, we can expect a different explanation (Misclassification);

however, for other attacks that do not change the sample’s class, we expect

the explanations to remain the same (Preserved Class).

For this evaluation, we used the Worst Case Evaluation proposed by

Huang et al. [20]. The method applies a genetic algorithm to find the worst

perturbation (adversarial example) for the interpretability of an image ex-

planation. We generated two types of perturbation: one to change the classi-

fication but not the explanation, and another to change the explanation but

not the classification. We perturbed 30 images (15 per class) by applying a

genetic algorithm with 100 iterations, a population size of 100 particles, and

a selection of 20 particles for the next iterations (reduced numbers due to

computational resource limitations). We used Pearson’s correlation to com-

25



pare the original and perturbed image explanations. We compare Ms-IV to

IG and LIME.

Table 1: Robustness and Faithfulness analysis in the cat vs. dog dataset. (a) Robustness

values were calculated using Worst Case Evaluation for Preserved Class and Misclas-

sification for three visualization methods: IG, LIME, and Ms-IV. Results were derived

using Pearson’s correlation between the original image and Worst Case visualizations.

Higher values are expected for Preserved Class and lower values for Misclassification.

Ms-IV presents a good trade-off between high Preserved Class and low Misclassifica-

tion. (b) Faithfulness analysis based on the percentage of class changes after occlusion

(cl.change), decrease of class output value (Decrease), increase of class output value (In-

crease) using LIME and Ms-IV directed occlusions of 512 images. Additionally, we present

the methods’ comparison of the biggest variation (absolute output class difference) under

occlusion (>). Ms-IV presents bigger output variations.

VGG
Preserved Class Misclassification

IG 0.41 0.52
LIME -0.02 0.08
Ms-IV 0.34 0.14

ResNet
Preserved Class Misclassification

IG 0.43 0.50
LIME 0.078 0.01
Ms-IV 0.26 0.29

(a)

VGG
cl. change Decrease. Increase. >

LIME 0.03 0.83 0.12 0.27
Ms-IV 0.08 0.80 0.10 0.72

ResNet
cl. change Pos. Neg. >

LIME 0.06 0.70 0.23 0.30
Ms-IV 0.08 0.65 0.25 0.69

(b)

The results in Table 1a show high Preserved class robustness for Ms-

IV, closer to the method IG (the best for Preserved class according to

Huang et al. [20]). Methods such as IG are high resolution (pixel-level im-

portance) and have high robustness when modifications do not change clas-

sification results (Table 1a Preserved Class). However, they lose inter-

pretability (example in Figure 6) with noisy visualizations and in robustness

when modifications alter the sample’s class (Table 1a Misclassification).

LIME significantly improves interpretability, but despite its high robustness

26



for misclassification (Table 1a Misclassification), it does not have as much

robustness as IG for preserved classes (Table 1a Preserved Class).

Faithfulness refers to how much a change in an important feature changes

the model’s response. For this metric, it is expected to have different outputs

(and even different classifications) after perturbations. As we constructed an

occlusion-based visualization, we already accounted for perturbation impacts

in the explanations. However, we wanted to verify if the use of occlusion to

construct our visualization induced a higher faithfulness to the visualization

method. To provide a fairer comparison, we compare Ms-IV to LIME, as it

also visualizes image regions instead of pixels.

Results in Table 1b were obtained using 512 images (256 from each class).

We extracted the important region of each image according to both meth-

ods: LIME and Ms-IV. We used these regions as masks to occlude the most

important image parts. The results in the table represent the percentage

of class changes after occlusion (cl.change), decrease of class output value

(Decrease), and increase of class output value (Increase).

Additionally, we evaluated which method disturbs the model’s output

more in important regions checking, for each image, whether LIME or Ms-IV

had the greatest variation (in terms of absolute output class difference) when

occluded (>). Ms-IV shows a greater number of output variations with 72%

of images for the VGG model, and 69% of images for the ResNet model,

indicating higher faithfulness of the selected important regions to the model.

Ms-IV presents a trade-off between the two methods, IG and LIME (Fig-

ure 1a), and provides interpretable components that, when occluded, have a

bigger impact than LIME occlusion components (Table 1b).
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The criterion Localization refers to the ability of a well-trained model to

locate the object of interest in the image (of the correct class). For example,

in a cat/dog classification problem, if we have a cat for which the model

provides the correct answer, the expectation is that the explanation shows

the important region inside the cat region (considering an unbiased model).

As in this paper, we aim to decompose and visualize concepts, so the

idea of localization needed to be adapted. We wanted to evaluate if a MAG

(concept cluster) could show the same concept in different images, relying on

Ms-IV. To evaluate this, we produced MAGs visualizations using different

images and the methods Ms-IV and LIME. Then, we used the human eye

to label the displayed areas as different animal parts (a total of 14 different

labels).

As our focus is to be globally aware, we considered that a good-Locatization

method should show, for different images and the same MAG, the same high-

lighted animal parts. We also evaluated the original idea of localization by

calculating the percentage of background highlighted by the visualizations

(the lower, the better). We used 12 individuals to label the 200 image visual-

izations (reduced amount of visualizations is due to limited human resources).

Table 2a presents the results for 10 images of 5 MAGs from both models,

VGG and ResNet (a total of 200 visualizations). For each MAG, we show

the most frequently labeled animal part within its percentage of appearance

in the analyzed images (the higher, the better). Subsequently, we show

the background percentage in each MAG. MS-IV has the best conventional

localization rates (highlighting fewer background regions) and presents higher

percentages of the same concept for each MAG, especially for VGG.
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To reinforce the comparison, we also performed a localization experiment

with an already parts-labeled dataset, CUB-200-2011 [19]. The dataset has

200 bird classes with 60 images each. We used 20 classes of Warblers together

and 20 classes of Sparrows together, to compose a binary classification prob-

lem. We trained a VGG16 and a ResNet-18 model for this problem, obtaining

a validation accuracy higher than 95%. There were 16 coordinates of anno-

tated parts per image: back, beak, belly, breast, crown, forehead, left eye, left

leg, left-wing, nape, right eye, right leg, right-wing, tail, throat.

First, we found the MAGs for both models. For these bird classifica-

tion models: VGG had 12 concepts and ResNet had 9 concepts. Second, we

found the 100 most activated images for each MAG (each concept). Third,

we generated the visualization, LIME and Ms-IV, for each isolated MAG for

its 100 most activated images. The idea is, to use the most activated images,

to explicitly visualize the concepts. Finally, we calculated the centroid of the

highlighted regions in the visualizations and compared it with the coordi-

nates of the parts. We considered the one with the closest coordinate as the

visualized part. If the visualization centroid was outside the bird’s bounding

box, we considered it a background highlight. Tables 2b and 2c present the

results for both models using LIME and Ms-IV.

These results evince better localization using Ms-IV with fewer back-

ground highlights. We also present the top 2 most frequent concepts in each

cluster. The ideal is to have a high percentage of images highlighting a few

parts. Ms-IV presents an improvement in LIME results, especially for ResNet

model.
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Table 2: Localization for cat vs. dog and CUB datasets. (a) Cat vs. dog dataset con-

sidering 5 MAG’s concepts (10 images each) for VGG and ResNet evaluated in two ways:

Conventional localization – the percentage of background considered important (the lower

the better); and concept localization – the quantity of the same concept in each cluster

(the higher, the better). Ms-IV presents better localization according to 200 visualizations

labeled by 12 individuals. For CUB dataset trained models (Warblers vs. Sparrows task):

(b) percent of background localization and the top2 most-found concepts per MAG; and,

(c) concepts localization for each MAG. On average, Ms-IV provides better results.

VGG
0 1 2 3 4

LIME
0.3 faces /

0.2 bellow eyes
0.5 eyes’
region

0.5 eyes’
region

0.3 chest /
0.4 muzzle

0.3 mouth

Ms-IV 0.4 eyes
0.6 eyes’
region

0.6 eyes’
region

0.7 muzzle
0.4 eyes /
0.2 mouth

% background
LIME 0.2 0.3 0.3 0.0 0.0
Ms-IV 0.1 0.2 0.2 0.0 0.0

ResNet
0 1 2 3 4

LIME
0.3 eyes

and muzzle
0.4 eyes’
region

0.4 eyes’
region

0.2 muzzle /
0.2 fur

0.3 eyes’
region

Ms-IV
0.3 eyes

and forehead
0.3 eyes /
0.4 muzzle

0.6 eyes’
region

0.7 eyes
0.3 eyes’ region

/ 0.2 muzzle
% background

LIME 0.4 0.5 0.2 0.4 0.4
Ms-IV 0.1 0.1 0.2 0.0 0.1

(a)

Mean VGG LIME Ms-IV
Background 0.33 0.25

Top 2 concepts 0.20 0.21
Mean ResNet LIME Ms-IV
Background 0.39 0.26

Top 2 concepts 0.15 0.19

(b)

Cluster Method VGG ResNet Cluster Method VGG ResNet

LIME
Background
Nape
Back

0.26
0.11
0.10

Background
Nape
Left wing

0.33
0.11
0.07

LIME
Background
Crown
Back

0.24
0.17
0.09

Background
Left wing
Crown

0.40
0.08
0.07

0 Ms-IV
Background
Back
Crown

0.09
0.13
0.12

Background
Right wing
Tail

0.21
0.11
0.09

6 Ms-IV
Background
Breast
Nape

0.28
0.10
0.09

Background
Right wing
Beak

0.26
0.11
0.08

LIME
Background
Nape
Back

0.21
0.11
0.09

Background
Tail
Left wing

0.55
0.07
0.06

LIME
Background
Crown
Forehead

0.67
0.08
0.05

Background
Crown
Right wing

0.31
0.11
0.08

1 Ms-IV
Background
Beak
Tail

0.18
0.13
0.10

Background
Crown
Tail

0.24
0.13
0.10

7 Ms-IV
Background
Right wing
Tail

0.43
0.07
0.07

Background
Nape
Back

0.29
0.12
0.09

LIME
Background
Left wing
Nape

0.36
0.09
0.08

Background
Back
Crown

0.39
0.08
0.07

LIME
Background
Nape
Back

0.28
0.12
0.10

Background
Tail
Back

0.33
0.08
0.07

2 Ms-IV
Background
Nape
Left wing

0.14
0.12
0.11

Background
Right wing
Beak

0.19
0.11
0.11

8 Ms-IV
Background
Nape
Crown

0.37
0.09
0.08

Background
Tail
Crown

0.41
0.08
0.07

LIME
Background
Nape
Crown

0.15
0.14
0.14

Background
Beak
Back

0.38
0.08
0.08

LIME
Background
Tail
Back

0.28
0.10
0.10

- -

3 Ms-IV
Background
Right wing
Back

0.23
0.10
0.10

Background
Right wing
Breast

0.26
0.09
0.09

9 Ms-IV
Background
Back
Tail

0.36
0.09
0.08

- -

LIME
Background
Back
Crown

0.32
0.12
0.11

Background
Left wing
Back

0.47
0.06
0.05

LIME
Background
Back
Right wing

0.64
0.09
0.05

- -

4 Ms-IV
Background
Right wing
Beak

0.25
0.12
0.09

Background
Beak
Nape

0.25
0.12
0.10

10 Ms-IV
Background
Right wing
Tail

0.30
0.13
0.09

- -

LIME
Background
Back
Crown

0.42
0.10
0.09

Background
Nape
Beak

0.40
0.08
0.07

LIME
Background
Left wing
Tail

0.21
0.11
0.10

- -

5 Ms-IV
Background
Right wing
Nape

0.25
0.13
0.12

Background
Right wing
Back

0.25
0.09
0.09

11 Ms-IV
Background
Right wing
Tail

0.22
0.17
0.11

- -

(c)
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(a) Visualizations 2 clusters ResNet-18
(b) Visualizations 3 clusters VGG16

Figure 7: Some visualizations obtained for clusters 0 and 1 of ResNet-18, and clusters

2, 5, and 6 of VGG16 (other visualizations in Appendix C.4). We present the selected

concepts for these clusters, by 24 participants, to describe the two classes. According to

the answers, for ResNet-18: cluster 0 presents the eye and muzzle of cats, highlighting

eye and ear of dogs. Cluster 1 presents eye for both classes and muzzle for dogs. For

VGG16: cluster 2 presents eye for both classes. Cluster 5 detects the eye for cats, and

the muzzle and paws for dogs. Cluster 6 presents ears of cats and, the muzzle and

eyes for dogs.

4.4. Knowledge Discovery

In these experiments, we applied the ensemble of methods to find con-

cepts and detect bias. To measure the provided interpretability, the produced

visualizations were analyzed by the 24 individuals selected from computer

and non-computer experts from two countries: Brazil and France. There

were a total of 11 computer experts, including people from industry and

academia. There were a total of 13 non-computer experts including people

from non-academic domains and from the three main domains (in similar

quantities): humanities (sociology, geography, and architecture), biological
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sciences (medicine, physical education), and exact sciences (mathematics) in

different educational stages (undergraduate, graduate, and post-graduate).

Finding concepts: We selected six MAG-generated clusters from ResNet-

18 and VGG16. We visualized each cluster through Ms-IV applied to 16

images (8 cats and 8 dogs) from the top-middle-ranked positions. From a

ranking of 512 images, we started at position 100 to avoid sparsity in higher

and lower positions (possible outliers). We presented the Ms-IV visualiza-

tions of these image subsets to the research participants and asked which

animal part corresponded to the lighter regions in dogs and cats. There were

a total of 12 image subsets (limited analysis to six clusters per network).

Of the 13 concepts, fewer than three of them received most of the partic-

ipants’ votes per cluster. There was an agreement about concepts for both

computer and non-computer experts. Concepts such as eyes and muzzle

were the most frequently observed. We highlight Fig. 7 as an example of

high agreement and variability of concepts: eye, muzzle, paws, and ear.

Table 3: From a total of 24 participants and 8 different bias/non-bias comparisons, 77% of

the responses showed the non-bias group choice as a better separation (results using the cat

vs. dog model). We display the values for computer (Comp.) and non-computer (Non-

comp.) experts to make a selection between Bias and Non-bias. Even non-computer

experts present a high percentage of the non-bias choice.

Comp. Non-Comp. Total Comp. Non-Comp. Total
Bias 0 3 4 7 Bias 4 0 1 1

Non-bias 0 8 9 17 Non-bias 4 11 12 23
Bias 1 3 3 6 Bias 5 2 4 6

Non-bias 1 8 10 18 Non-bias 5 9 9 18
Bias 2 2 4 6 Bias 6 2 5 7

Non-bias 2 9 9 18 Non-bias 6 9 8 17
Bias 3 0 0 0 Bias 7 3 7 10

Non-bias 3 11 13 24 Non-bias 7 8 6 14
Bias Total 15 28 43

Non-bias Total 73 76 149
% Non-bias Total 82% 73% 77%

Bias Detection: We compared a biased and a less biased model (more
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accurate). The analyzed ResNet-18 model was the less biased, we call it the

normal one. We trained an extra ResNet-18 model, initialized with ImageNet

weights, and trained with 100 images, 50 dark cats, and 50 beige dogs.

We generated the biased and unbiased ResNet-18 image subsets to each

concept (as in the finding concepts part). We paired one biased ResNet-18

group and one normal ResNet-18 group. We asked the participants which of

the models seemed to highlight only the important parts to differentiate cats

and dogs, without explaining Neural Network bias.

Results in Table 3 show, that both computer and non-computer experts

found, with high accuracy, the unbiased model (73% of correct for the non-

computer experts). Our visualization facilitates model analysis, even for

non-specialists.

5. Conclusion

We propose a novel way to make CNNs interpretable thanks to the com-

bination of MAGE, to group feature maps into “concepts”, and Ms-IV, to

provide a simple (multiscale) understanding of a given model’s knowledge.

The CAOC metric considers the structure and organization of the model’s

final decision space and provides global awareness of sample perturbations.

In the future, we plan to improve the “clusters quality” through hierarchi-

cal/spectral clustering techniques, and to introduce more subtle segmentation

techniques using mathematical morphology in our multiscale visualization.
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Appendix A. Decomposition of the feature space into concepts:

Maximum Activation Groups Extraction (MAGE)
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ly = 0 ly = 1

lx = 1

01......0 11 1

...

Maximum activation 
coordinates: lx=0, ly=1
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coordinates: lx=1, ly=1
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Feature(I1)

Representation
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ly = 0 ly = 1 ly = 0 ly = 1

lx = 0

lx = 1

lx = 0

lx = 1

Figure A.8: Finding the “position” of a feature fp (in each image of) the data set (illus-

trative example). We start from a sequence (Ii)i of images whose domain is of size 4× 4.

We decompose their common domain into 4 patches of the same size 2 × 2. On the first

image, we observe that among the 4 four subdivisions in the f th
p feature map, the one that

maximizes its 1-norm corresponds to (`x = 1, `y = 1), so we write in the vector (depicted

above) these values: 1 and then 1. We continue this procedure for the next images until we

reach the end of the dataset. This vector represents then where the f th
p feature is located

in the images of the data set; we call it the representative of the feature number fp.

We present in Figure A.8 a schematic example of the proposed represen-

tation in the MAGE process.

Appendix B. Global causality-based visualization: Multiscale- In-

terpretable Visualization (Ms-IV)

In Figure B.9 we visually exemplify the impact of CAOC in a sparse

decision space.

In the sequel, we explain in more detail the algorithm and pseudocode of

Ms-IV.
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Figure B.9: Explanation of the computation of CAOC (on a fictitious scenario). Here,

our dataset is made up of images of one disk or one square, the output is a class (“disk”

or “square”). We have set the concept value to some random k. We plot the activation

distributions in a 2D space: the horizontal coordinate represents how much the sample is

predicted as being a circle, and vertically, how much it is predicted as being a square. We

can see that, by occlusion, one square moves in this space by a distance of 0.07 and one

disk by 0.12. However, we need some quantification of the impact of a concept on the two

classes. Thus, we propose using the ranking correlation between before/after the occlusion

of the most important patch images relative to the concept k. We find that the disk did not

move in the disk’s ranking when we did the occlusion (it remains the “strongest” disk), so

the correlation CAOC(k, disks) is maximal, meaning that concept k does not have much

influence on disks. Conversely, in the case of the square, the square’s position changes

from 3rd to 5th position, leading to a ranking change of 2, thus CAOC(k, squares) is lower,

which means that concept k is important for squares.

We propose here an algorithm (see Algorithm 1 depicted in Figure B.10)

that uses a multiscale hierarchical approach (such as a quad-tree) capable

of highlighting the areas of a given image I (belonging to DS) that are

important to the network’s decision regarding the concept k. This approach

is global in the sense that computations on the entire dataset will have been

completed beforehand. Note that our procedure is different from LIME: even
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...

score = 0 score = 2 score = 1 score = 1

Figure B.10: How our visualization algorithm works. We fix some concept value k and

some image number i. We sort the activations of each image, and we call InitPos the

position of the activation of the current image Ii in the computed sequence. The goal is

to enlighten the areas of the image as much as the concept k is important in each region of

this same image. To this aim, we decompose the initial domain into four patches; it is the

first step of our recursive subdivision. By occluding separately each of these four patches

and computing how much their new position NewPos�`x,`y (in the sequence of activations of

the occluded images) differs from InitPos, we obtain four scores
∣∣∣InitPos −NewPos�`x,`y

∣∣∣
(called the importance). Choosing the maximal score, allows us to deduce in which of these

four patches the concept is represented most. By continuing this recursive subdivision in

the most important patches until we reach the minimal size of a patch, we will know how

much we have to illuminate each coordinate in the image (by adding up the importances

we have computed for each pixel).

though in both cases, we use parts of images to show the model’s knowledge,

in our case we illuminate the image relative to one unique concept at a time.
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For the sake of simplicity, let us introduce a new term: we define an

occlusion of the image I of domain D on a patch P ⊆ D as �P(I) : D → R

such that for any (x, y) ∈ D, �P(I)(x, y) is equal to I(x, y) when (x, y) 6∈ P ,

and 0 otherwise. Now let us formally explain the main steps of our algorithm

(we cope with the recursive part of the algorithm using a list that, to simplify,

will not be detailed:

1. We fix a visualization threshold ratio δ ∈ ]0, 1], a minimal patch size

smin
p ∈ N∗ (representing the minimal patch size of a concept), a class c,

the image Icilocal , and a concept k.

2. We compute the sequence Seq = sort
((

Activ c(Icj ,Ξk)
)
j∈[1,NbIm(c)]

)
and

then the position InitPos of Activ c(Icilocal ,Ξk) within it. This position

represents “how much” Icilocal truly belongs to class c.

3. We divide the image into four patches of the same size sp =
simage

2
re-

sulting in this partition {P(0, 0, sp),P(0, 1, sp),P(1, 0, sp),P(1, 1, sp)}

(we assume that the image size is a multiple of 2).

4. For each (`x, `y) ∈ {0, 1}2:

(a) We occlude Icilocal on the patch P(`x, `y, sp) resulting in �P(`x,`y ,sp)(Icilocal ).

(b) We calculate:

Seq ′ := sort
(
(Activ c(�P(`x,`y ,sp)(Icj ),Ξk))j∈[1,NbIm(c)]

)
and the position NewPos�

`x,`y of Activ c(�P(`x,`y ,sp)(Icilocal ),Ξk) in

it. It will then represent how much Icilocal is still of class c after

occluding the image in the patch domain. If the initial activation is

almost preserved despite the occlusion, we will have NewPos�
`x,`y ≈

InitPos .
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(c) For this reason, we propose to calculate what we call the impor-

tance of the patch P(`x, `y, sp):

Imp(`x, `y) =
∣∣∣InitPos − NewPos�

`x,`y

∣∣∣
5. We compute a threshold thr based on δ: thr = max

(
{Imp(`x, `y)}(`x,`y)

)
×

δ

6. We continue the procedure recursively in the patches that satisfy the

inequality Imp(`x, `y) ≥ thr while sp is greater than or equal to smin
p .

7. During this recursive procedure, each position (x, y) ∈ D may have

been treated several times. We deduce the accumulated importance of

a position (x, y) relative to the image Ii by summing all the computed

importance terms where this position was occluded. The final result is

called the accumulated importance matrix and we denote it MImp.

8. We finally multiply the initial image byMImp and we plot it. We have

highlighted important regions.
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Algorithm 1: Ms-IV algorithm
Input: smin

p ; simage ; δ; I of class c; concept k;

Output: MImp: matrix of importances

Data: dataset of squared images DS

1 Seq := sort

((
Activc(Icj ,Ξk)

)
j∈[1,NbIm(c)]]

)
2 InitPos = Position(Activc(Icilocal ,Ξk), Seq)

3 dim ln :=
simage

smin
p

// dimension of final matrix (smallest patches)

4 MImp := CreateMatrixOfZeros(dim ln, dim ln) // final matrix initialization

5 levelmax := int(
√

dim ln) // final level

6 ListOfCoords := {(0, 0)} // level 0 has only patch (0,0)

7 sp = simage

/* Quadtree-like propagation */

8 for level ∈ [1, levelmax ] do

9 sp :=
sp
2

// new patch size

10 dimlevel := 2level // side dimension

11 MAux
Imp := CreateMatrixOfZeros(dimlevel , dimlevel )

12 MAux,2
Imp

:= CreateMatrixOfZeros(dim ln, dim ln)

/* analysis of selected patches */

13 for (`x, `y) ∈ ListOfCoords do

/* division into 4 patches */

14 for (`a, `b) ∈ [2`x, 2`x + 1]× [2`y, 2`y + 1] do

15 u := dim ln
dimlevel

// number of smallest patches

16 Seq′ := sort
(
(Activc(�P(`a,`b,sp)(I

c
j ),Ξk))j∈[1,NbIm(c)]

)
17 NewPos�`a,`b

:= Position(Activc(�P(`a,`b,sp)(I
c
ilocal

),Ξk), Seq′)

18 Imp = |InitPos − NewPos�`a,`b
| // patch importance

19 MAux
Imp(`a; `b) += Imp

20 MAux,2
Imp

(`au, . . . , (`a + 1)u− 1; `bu, . . . , (`b + 1)u− 1) += Imp

21 MAux
Imp :=

MAux
Imp−minMAux

Imp

maxMAux
Imp

−minMAux
Imp

// normalization

22 MImp +=MAux
Imp

/* choice of patches for next level */

23 ListOfAuxiliaryCoords := {}

24 thr = max(MAux
Imp)× δ // finding threshold value for selection

25 for (`a, `b) ∈ [1, dimlevel ]× [1, dimlevel ] do

26 if MAux
Imp(`a; `b) ≥ thr then

27 ListOfAuxiliaryCoords := ListOfAuxiliaryCoords ∪ {(`a, `b)}

28 ListOfCoords := ListOfAuxiliaryCoords

29 if thr = 0 then

30 break // if no changes in ranking, we early stop
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Appendix C. Methods evaluation

We present the experiments to test MAGE, CAOC, and Ms-IV, using two

CNN architectures, ResNet-18 [18] and VGG16 [38], trained on a classifica-

tion dataset of cats vs. dogs 2.

Appendix C.1. Dataset and training

Table C.4: Accuracy values in training and validation sets for ResNet-18 and VGG16.

We present the results for each class separately and together (total accuracy). VGG16

presents the best accuracy.

Train Val

Cat Dog Total Cat Dog Total

ResNet 98.60 97.82 98.21 97.93 97.79 97.86

VGG 99.09 99.00 99.04 98.47 98.74 98.61

We used 19,891 (9,936 dogs and 9,955 cats) images in the training set,

5,109 (2,564 dogs and 2,545 cats) images in the validation set, and 12,499

in the test set. For the training, we used the pre-trained networks in the

ImageNet dataset. We excluded the networks’ original classification layer

and included a 2-neuron layer followed by softmax activation. The networks

were trained using Cross Entropy loss, Adam optimizer, and a learning rate

of 1e − 7. We saved only the model that minimizes validation loss. We

present in Table C.4 the accuracy values for each model.

2https://www.kaggle.com/competitions/dogs-vs-cats-redux-kernels-edition/data
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Appendix C.2. Evaluating the quality of MAGE

To test MAGE, we varied the representation patch size sp × sp with the

following values: 2, 4, 7, 14, 28 and 56. The number t of patches from each

image to compose the representation was equal to 1, 5, and 10. We used

a subset of 512 images, half from each class. For each configuration, we

applied the k-means, and we varied the number of clusters k ∈ [2, 25[. We

used the metrics Silhouette and Inertia (distance of each sample to its cluster

centroid). Inertia was used to choose the number k of clusters.

Smaller sizes of patches present better quality (higher Silhouette); how-

ever, they fail to capture interpretable structures. To analyze fewer con-

figurations, we visualized the dispersion (scatter plots) and central feature

maps to each cluster using n ∈ {4, 7, 14}, t = 5 (intermediate value of t with

smaller inertia than t = 10). That choice removes the smallest n value (rep-

resenting less interpretable components), and the bigger n values with less

interesting Silhouette values. We selected k, for each configuration by using

the Elbow curve method 3 and Inertia.

We show the scatter plots that compare the spatial position of feature

maps for patch sizes n ∈ {4, 7, 14} in Fig. C.12 for VGG16. The scatter

plot visualizations show greater intra-cluster sparsity for larger patch sizes.

It should be noted that for visualization purposes, we reduced the represen-

tation dimensionality using the UMAP technique [27], with the parameters

n neighbors = 50, min dist = 0.0, and Euclidean distance. Colors designate

the different assigned clusters for each of them.

3https://kneed.readthedocs.io
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(a) VGG – Silhouette (b) VGG – Inertia

(c) ResNet – Silhouette (d) ResNet – Inertia

Figure C.11: Silhouette and Inertia results from K-means with k ∈ [2, 25[ with dif-

ferent sizes and numbers of patches used in the feature map representation, n ∈

{2, 4, 7, 14, 28, 56}, and t ∈ {1, 5, 10}. Figures (a) and (c) present the Silhouette for VGG16

and ResNet respectively. Figures (b) and (d) present the Inertia for VGG16 and ResNet

respectively. The best clusters should maximize the Silhouette, which is between -1 and

1. Inertia is not directly comparable, as we changed representation, but will be used for

finding the best number of clusters k. The representations using small patch sizes seem to

improve this mentioned quality.
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(a) VGG n = 4, 9 clusters (b) VGG n = 7, 8 clusters

(c) VGG n = 14, 8 clusters (d) ResNet n = 4, 11 clusters

(e) ResNet n = 7, 12 clusters (f) ResNet n = 14, 10 clusters

Figure C.12: Smallest values of n seem to present denser clusters. Figures (a), (b), and

(c) represent the scatter plots of feature maps of VGG16 while Figures (d), (e), and (f)

represent those of ResNet according to the representation using n ∈ {4, 7, 14} and t = 5,

respectively. The colors represent the clusters obtained by K-means. We used the value k

equal to 9, 8, and 8 for VGG and, 11, 12, and 10 for ResNet (for each patch size) chosen

by the Elbow curve method from the Inertia presented in Figure C.11(b).
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These results highlight that the size of the patches is a crucial parameter.

Smaller patches can help to provide better concept clusters; however, they

will probably capture fewer interpretable structures (the same xAI pixel-level

technique’s problem). Moreover, when using these smaller patches, the num-

ber of analyzed regions increases together with the number of computations.

On the other hand, big patches will not cluster feature maps well enough,

with poorer evaluation results and bigger sparsity (Fig. C.12). As the feature

map cluster centers were reasonably similar, we continued the experiments

with the n = 4 clusters (small but not the smallest).
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Appendix C.3. Relation between CaOC and Probabilities

(a) VGG – dog (b) VGG – cat

(c) ResNet – dog (d) ResNet – cat

Figure C.13: CaOC and Probabilities difference behave differently. Based on a dog (index

0) and cat (index 1) image, we calculated the difference to 24 other images of each class,

using CaOC and Probabilities difference. We ordered the images according to the distances

obtained by Probabilities difference. CaOC presents discontinuities in the graph in relation

to this order. Even indexes are dogs (Figures (a) and (c)), and odd indexes are cats (Figures

(b) and (d)).

We show the difference between the CAOC metric and the probabilities

difference (PD) used as a metric. We selected 50 images from the dataset

(to make the visualization easier), 25 from each class (dogs as even numbers

and cats as odd numbers), and we calculated the difference from image 0

(dog) and image 1 (cat) to all the others (from their respective classes) using

CAOC and PD. We present the results for the dog class in Fig. C.13. In this

figure, we ordered the images with respect to the distance obtained by PDs to
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(a) VGG16 50 images (b) ResNet18 50 images

Figure C.14: Scatter plots of 50 images using VGG16/ResNet-18 final non-normalized

probabilities. CAOC and PD are based on the dog’s probability axis for dogs and the cat’s

probability axis for cats. Black numbers represent the base samples for the differences in

Fig. C.13. ResNet-18 is sparser.

observe the behavior of CAOC as a function of PD. As PD increases, CAOC

does not follow a continuous behavior. Thus, we closely looked at discontinu-

ities such as sample 34 (Fig. C.13(a)) in Fig C.14. We projected 50 samples

using their classes’ (non-normalized) probabilities as coordinates (that is,

the activations before the softmax). Samples from VGG C.14(a) present

a denser region close to sample 0 than to samples from ResNet18 C.14(b),

which is reflected in Fig. C.13, presenting more ResNet18 discontinuities.

This density-awareness is expected from CAOC. The sparsity represents

fewer model-informative regions (based on the dataset), which thus count

less for deciding on the model’s globally important patterns.
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Appendix C.4. Knowledge Discovering

Finding concepts: We selected six MAG generated clusters from ResNet-

18 and VGG16. We visualized each cluster through Ms-IV applied to 16

images (8 cats and 8 dogs) from the top-middle ranking positions. From a

ranking of 512 images, we started at position 100 to avoid sparsity in higher

and lower positions (possible outliers). We presented the Ms-IV visualiza-

tions of these image subsets to the research participants and asked which

animal part corresponded to the lighter regions in dogs and cats. As we lim-

ited the analysis to six clusters per network, there were a total of 12 image

subsets.

The 12 obtained subsets and answers are presented in Figures C.15, C.16,

and C.17 for ResNet-18 and in Figures C.18, C.19, and C.20 for VGG16.

In general, out of the 13 proposed concepts, fewer than three of them

received most of the participants’ votes for each cluster. There was agreement

about concepts for both computer and non-computer experts. Concepts such

as eyes and muzzle were the most observed.
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Figure C.15: Visualizations obtained for clusters 0 and 1 of ResNet-18 and results of

selected concepts, by 24 participants, to describe the two classes separately. According to

the answers, cluster 0 presents the eye and muzzle of cats, while highlighting the eye

and ear of dogs. Cluster 1 presents the eye for both classes.
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Figure C.16: Visualizations obtained for clusters 2 and 6 of ResNet-18 and results of

selected concepts, by 24 participants, to describe the two classes separately. According to

the answers, cluster 2 presents the eye and muzzle of cats, while highlighting the eye

and forehead of dogs. Cluster 6 presents the muzzle for dogs and a mix of concepts,

eye, muzzle, and forehead, for cats.

57



Figure C.17: Visualizations obtained for clusters 9 and 10 of ResNet-18 and the results of

selected concepts were described separately by 24 participants. According to the answers,

cluster 9 seems not to be well-formed for the cat, but highlights the dog’s eye. Cluster 10

presents the muzzle for dogs and the eyes, below the eyes, and whiskers for cats.

58



Figure C.18: Visualizations obtained for clusters 1 and 2 of VGG16 and results of se-

lected concepts, by 24 participants, to describe the two classes separately. According to

the answers, cluster 1 seems not to detect cats well, highlighting the background, but

highlights the dogs’ eyes and the area between eyes. Cluster 2 presents the eyes for

both animals.
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Figure C.19: Visualizations obtained for clusters 3 and 4 of VGG16 and results of selected

concepts, by 24 participants, to describe the two classes separately. According to the

answers, cluster 3 seems not to detect the muzzle for both animals and the eye for cats.

Cluster 4 presents also the muzzle and eye for cats, but the muzzle and mouth for

dogs.
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Figure C.20: Visualizations obtained for clusters 5 and 6 of VGG16 and results of selected

concepts, by 24 participants, to describe the two classes separately. According to the

answers, cluster 5 seems not to detect the eye for cats and the muzzle and paws for

dogs. Cluster 6 presents the ear of cats and the muzzle and eye for dogs.
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