
HAL Id: hal-04190684
https://hal.science/hal-04190684v1

Submitted on 29 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multiple catheter tips tracking method in X-ray
fluoroscopy images by a new lightweight segmentation

network and Bayesian filtering
Hui Tang, Hao Kai Li, Chun Feng Yang, Jean-louis Dillenseger, Gouenou

Coatrieux, Juan Feng, Shou Jun Zhou, Yang Chen

To cite this version:
Hui Tang, Hao Kai Li, Chun Feng Yang, Jean-louis Dillenseger, Gouenou Coatrieux, et al.. A multiple
catheter tips tracking method in X-ray fluoroscopy images by a new lightweight segmentation network
and Bayesian filtering. The International Journal of Medical Robotics and Computer Assisted Surgery,
2023, 19 (6), pp.983-991. �10.1002/rcs.2569�. �hal-04190684�

https://hal.science/hal-04190684v1
https://hal.archives-ouvertes.fr


A multiple catheter tips tracking method in 

X-ray fluoroscopy images by a new 

lightweight segmentation network and 

Bayesian filtering 
 

Hui Tang1, 2, 3, Hao Kai Li1, Chun Feng Yang1, 2, 3, *, Jean-Louis Dillenseger4, 5, Gouenou Coatrieux 6, 

Juan Feng7, Shou Jun Zhou8, *, Yang Chen 1, 2, 3 

1 School of Computer Science and Engineering, Southeast University, Nanjing, China 

2 The Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, 

School of Computer Science and Engineering, Southeast University, Nanjing, China 

3 Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary 

Applications (Southeast University), Ministry of Education, China 

4 Centre de Recherche en Information Biomédicale Sino-Francais, INSERM, University of Rennes 1, 

Rennes 35042, France 

5 Univ Rennes, Inserm, LTSI - UMR 1099, F-35000 Rennes, France 

6 Mines-Telecom Telecom Bretagne, INSERM U1101 La TIM, Brest, France 

7 Shanghai United Imaging Company, Shanghai, China 

8 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China 

Abstract 

During percutaneous coronary intervention (PCI), the guiding catheter plays an important role. 

Tracking the catheter tip placed at the coronary ostium in the X-ray fluoroscopy sequence can obtain 

image displacement information caused by heart beating, which can help dynamic coronary 

roadmap (DCR) overlap on X-ray fluoroscopy images. Due to the low exposure dose, the X-ray 

fluoroscopy is noisy and low contrast, which causes some difficulties in tracking. We developed a 

new catheter tip tracking framework in this paper. First, a lightweight efficient catheter tips 

segmentation network is proposed and boosted by a self-distillation training mechanism. Then, the 

Bayesian filtering post-processing method is used to consider the sequence information to refine the 

single image segmentation results. By separating the segmentation results into several groups based 

on connectivity, our framework can track multiple catheter tips. The proposed tracking framework 

is validated on a clinical X-ray sequence dataset.  

 

Keywords: X-ray fluoroscopy sequence, catheter tips segmentation network, self-distillation 
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1 Introduction 

Coronary artery disease is one of the leading causes of death in worldwide. Percutaneous 

coronary intervention (PCI) is nowadays the preferred minimally invasive surgery for the treatment 

of coronary artery disease due to its advantages low risk of intraoperative complications, quick 

recovery, and excellent curative effects. PCI contains two categories: the balloon angioplasty and 

the implantation of the intracoronary stent. In both ones, interventional cardiologists push forward 

a catheter through complex anatomical interventional pathways to the appropriate location based on 

the position of the catheter tip visible in a fluoroscopy sequence [1].  

Dynamic Coronary Roadmapping (DCR) [2, 3] is an advanced technique that superimposes 

contrast-enhanced coronary angiographic images onto live X-ray fluoroscopy images. DCR 

significantly improves visualization and reduces contrast agent usage during procedures. However, 

in DCR implementation, accurate localization of the catheter tip is vital for achieving effective 

image registration and overlay. Due to the dynamic nature of the beating heart, the coronary arteries 

and catheter tip may experience motion-induced displacements during the cardiac cycle. Such 

displacements can result in misalignment between the angiographic image and the real-time 

fluoroscopy, compromising the precision and reliability of DCR. Tracking the catheter tip placed at 

the coronary ostium in the X-ray fluoroscopy sequence can obtain image displacement information 

caused by heart beating, which can help dynamic coronary artery roadmap overlap on X-ray 

fluoroscopy images. So, it is necessary to check if the catheter tip has been placed at the correct 

position and then, during the intervention, the catheter tips should be always tracked to give the 

position information.  

In order to reduce ionizing radiation for the patient and interventional cardiologists during 

image acquisition, low power X-rays need to be used. The counterpart is that they produce noisy, 

low-contrast images, which makes it difficult to identify the position of the catheter tip. Therefore, 

it is imperative to accurately localize and track the catheter tip in the image sequence to perform 

guidance. 

 
The target of pixel-wise segmentation is to get a binary mask of the region of interest. In this 

work, the target region is the tip of the guiding catheter, as shown in Figure 1. In the original image, 

the target catheter tip has a relatively low gray value. Many works have been proposed to segment 

and track the whole catheter in X-ray fluoroscopy images [4-8]. Only a few works are reported about 

the catheter tips segmentation. So, we propose a tracking framework only for the catheter tips in 

this paper. Teixeira et al. [9] regard the catheter tips detection task as a landmark localization task 

Figure 1 A typical frame of catheter tips segmentation in 2D X-ray fluoroscopy sequence. Left: 
the input image. Middle: position of the catheter tip. Right: the catheter tip is overlayed in red 
in the input image. 
 



and introduce a loss function called “Adaloss” which adapts the target precision during the training. 

However, this method cannot fully segment the catheter tip and the “Adaloss” can’t be used in the 

segmentation task. Ma et al. [2] track the catheter tip by concatenating the output of a convolutional 

neural network and the output of a particle filtering framework, but it doesn’t take the high resource 

occupancy of the network into account and cannot track multiple targets per frame. 

Different from the normal segmentation tasks, the segmentation of the catheter tip is a 

challenging task for the following four reasons: (1) the source X-ray fluoroscopy images have 

disadvantages of low contrast, low signal-to-noise ratios, and non-uniform illumination; (2) the 

movement of the catheter tip is irregular between frames due to the heartbeat, which makes it hard 

to track; (3) the presence of other body tissues with similar characteristics is likely to cause false 

detection; (4) in order to apply the catheter tips segmentation method to the mobile medical 

equipment, it has high requirements in low computing resource occupancy and high inference speed. 

To solve the four problems mentioned above, a novel automatic framework for catheter tips 

segmentation and tracking is proposed in this paper. In the catheter tips segmentation stage, a new 

convolutional neural network based on the encoder-decoder architecture is proposed. The 

lightweight encoder part of the proposed model is composed of the inverted residual convolution 

block used in MobileNetV3 [10], which can improve the inference speed with acceptable accuracy. 

To overcome image quality problems such as low signal-to-noise ratio, a pyramid-style feature 

combination step is designed in the decoder to enrich features with high-level context. In addition, 

the self-distillation training mechanism is used to reinforce representation learning of this network. 

Finally inspired by Ma et al. [2], an improved temporal tracking method based on Bayesian filtering 

is used in the catheter tip tracking stage. We expanded the work from only tracking a single catheter 

tip to the ability of tracking multiple catheter tips.  

In conclusion, the main contributions are:  

1) A new lightweight segmentation network architecture is proposed to accurately segment the 

catheter tip in the X-ray fluoroscopy image. It includes a lightweight encoder and a multi-scale 

feature fusion decoder. 

2) A self-distillation mechanism is applied in the training phase of the catheter tips 

segmentation network. It improves the representation learning of itself without bringing any 

computational cost during the inference phase. 

3) A tracking method based on Bayesian filtering is applied and improved. The improved 

method considers the convolutional neural network’s segmentation result of the catheter tips as the 

likelihood terms of Bayesian filtering and uses multi-objective Bayesian filtering to track multiple 

catheter tips simultaneously. 

The paper is organized as follows. In Section 2, the three contributions mentioned above will 

be separately introduced in detail: lightweight catheter tips segmentation network architecture, self-

distillation training mechanism, and multi-objective Bayesian filtering. Section 3 is the 

configuration related to the experiments, including the dataset, data argument method, comparison 

work, implementation details, and evaluation metrics. Moreover, experiments on the three 

innovation points verify the effectiveness of each innovation point. Section 4 is the summarization 

of this work. 



2 Methods 

The proposed catheter tips segmentation method contains three main parts: network 

architecture, training mechanism, and post-processing. Lightweight network architecture and the 

training mechanism are proposed to segment the catheter tips. The trained network is then light 

enough to be used on mobile medical equipment. Nevertheless, post-processing is still needed to 

reduce the false segmentation rate of the model which is quite high because of the intravascular 

contrast agent. 

2.1 Catheter Tip Segmentation Network 

The proposed catheter tips segmentation network is an encoder-decoder structure comprised 

of four encoders E1~E4 and one decoder D, as shown in Figure 2. To build a mobile model, 

MobileNetV3 [10] is chosen as the lightweight encoder and connected with one selected decoder. 

The encoder is built on efficient building blocks which introduce lightweight attention modules 

based on squeeze and excitation (SE) [11] into the linear bottleneck and inverted residual structure. 

This block is named Mobile Block, which has two types: with and without a shortcut. The detail 

structure of the Mobile Block with a shortcut is illustrated in Figure 3. The Mobile Block without a 

shortcut has a down-sampling operation since the size of the input is not equal to the output. The 

other components of the two types are the same: a 1 x 1 expansion convolution layer followed by a 

depth-wise separable convolution layer, a squeeze and excitation layer before a 1 x 1 projection 

layer. 

 

Mobile Block 

The detailed structure of the Mobile Block with a shortcut is shown in Figure 3. The first 1 x 

1 convolution layer expands the number of input channels, which is opposite to the residual block 

[12] that decreases the number of input channels first. The second layer is called a depth-wise 

convolution, it performs lightweight filtering by applying a single convolutional filter to each input 

channel which is responsible for computing the feature inside per channel. The third layer is the 

squeeze and excitation module [11], which captures attention from the expanded representation. 

The last layer is a 1 x 1 convolution layer, called a point-wise convolution, which computes the 

linear combinations between each channel and decreases the number of input channels. Finally, the 

Figure 2 The architecture of the proposed catheter tips segmentation network. ‘*’ means 
multiple blocks concatenation. ‘x2’, ‘x4’ means bilinear up-sampling operation. 

 



input and output are connected with a residual connection only if they have the same number of 

channels. This inverted residual structure maintains a compact representation at the input and the 

output while expanding to higher-dimensional feature space and extracting attention by the SE 

module internally to increase the expressiveness of nonlinear channel transformations.  
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NL
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Figure 3 The architecture of the Mobile Block with a shortcut (MB-s). 

Encoder 

The encoder is built on a combination of the Mobile Block. As shown in Figure 2, the encoder 

of the catheter tips segmentation network contains an initial fully convolution layer transforming 

from 1 to 16 channels, with stride 2, followed by 12 Mobile Blocks and those blocks are divided 

into four parts: E1~E4. With the exception of the first encoder, E2~E4 starts with a Mobile Block, 

with stride 2, which halves the length and width of the input. The encoder structure is a lightweight 

version model proposed by Howard et al. [10], it uses Network Architecture Search (NAS) to 

optimize each network block and search per layer for the number of filters, which gives full play to 

the feature extraction ability of the encoder. 

Decoder  

The proposed decoder module is illustrated in the lower part of Figure 2. According to 

DeepLabV3+ [13], not all the features of the encoder modules are essential to contribute to the 

decoder module. Therefore, three main features from all the mobile blocks are extracted. 

Specifically, the outputs of E2 ~ E4 are considered as low-level, middle-level, and high-level 

features respectively. The decoder is designed as an efficient feature up-sampling module to fuse 

all level features from the encoder. In order to reduce the computation complexity, a 1 x 1 

convolution followed by a bilinear up-sampling operation is firstly applied to reduce channels and 

match the size of the low-level feature maps. Then, all the three-level features are added together 

and up-sampled by a factor of 4 to make the final prediction. 

Segmentation loss 

The segmentation loss 𝐿𝑠𝑒𝑔 is the standard Dice loss [14]. The Dice loss aims at increasing 

the intersection of union between the predicted catheter tip image 𝑦 and ground truth catheter tip 

mask 𝑦′, defined as: 

𝐿𝑠𝑒𝑔(𝑦, 𝑦′) = 1 −
2 ∑ 𝑦′

𝑘𝑦𝑘𝑘

∑ 𝑦′
𝑘𝑘 + ∑ 𝑦𝑘𝑘

(1) 

where 𝑦′𝑘 and 𝑦𝑘 are respectively the pixels of the mask 𝑦′ and the output image 𝑦. 



2.2 Self-distillation Training Mechanism 

Compared to the normal knowledge distillation mechanism [15], self-distillation (SD) allows 

the catheter tips segmentation network to the reinforce representation learning of itself without the 

need of a teacher network. In our specific case, the SD training mechanism performs layer-wise and 

top-down feature distillation to enhance the representation learning process. More specifically, it 

exploits the output of the channel fusion modules which are linked out from the output of E2 ~ E4, 

as shown in Figure 2. 

Activation maps generation 

To generate the distillation targets for lower layers, each layer needs to be converted to an 

activation map with the same size. The activation generation mapping function is defined as 

G: 𝑅𝐶𝑡×𝐻𝑡×𝑊𝑡 → 𝑅𝐻𝑡×𝑊𝑡, where 𝐶𝑡, 𝐻𝑡, and 𝑊𝑡 denote the size of the channel, height, and width, 

respectively. The mapping function computes statistics of features values across the channel 

dimension, which is represented by “Channel Fusion” part in Fig. 2. It is defined as follows: 

G𝑠𝑢𝑚
2 (𝑥𝑡) =  ∑ |𝑥𝑡𝑖|

2
𝐶𝑡

𝑖=1
(2) 

where 𝑥𝑡  ∈  𝑅𝐶𝑡×𝐻𝑡×𝑊𝑡 denotes the 𝑡-th output of the three encoders, 𝑥𝑡𝑖 denotes the 𝑖-th slice 

of 𝑥𝑡 in the channel dimension. From the network structure illustrated in Figure 2, we can get that 

the range of 𝑡 is 1 to 3.  

Self-distillation for training 

The layer-wise distillation loss is defined as follows: 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙(𝑥𝑡 , 𝑥𝑡+1) = ∑ 𝐿𝑑(Φ(𝑥𝑡), Φ(𝑥𝑡+1))

2

𝑡=1

(3) 

where Φ(. )  =  𝐵(G𝑠𝑢𝑚
2 (. ))  denotes the activation maps generation and 𝐵(. )  denotes a 

conditional Bilinear up-sampling, that is, if the size is not matched then the up-sampling is use. Here, 

𝐿𝑑 is typically defined as a 𝐿2 loss. 

The total training loss is defined as follows: 

𝐿 = 𝐿𝑠𝑒𝑔(𝑦, 𝑦′) + 𝛼𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙(𝑥𝑡 , 𝑥𝑡+1) (4) 

where the parameter 𝛼 is a coefficient which balances the influence of segmentation loss and 

distillation loss during the training phase, 𝑦 is the segmentation map produced by the network and 

𝑦′ is the binary mask of the catheter tip. 

2.3 Multi-objective Bayesian Filtering Tracking Method 

In the above segmentation task, only the image characteristics are considered without any 

context information between the neighbor frames in the video so that the false segmentation is 

inevitable. In order to solve this problem, a tracking method based on Bayesian filtering is applied 

as post-process to reduce the false detection rate and improve the robustness of the whole process. 

Bayesian Filtering tracking is a temporal tracking method which uses information from the previous 

frames. It can put additional constraints in the model which makes the tracking more robust. 



Theory of Bayesian Filtering 

Bayesian filtering is a state-space approach aiming at estimating the true state of a system that 

changes over time from a sequence of noisy measurements made on the system [2]. So, it is applied 

to remove false segmentations by considering them as noise. The formula can be written as:  

𝑃(𝐱𝑡 ∣ 𝐳0:𝑡) ∝ 𝑃(𝐳𝑡 ∣ 𝐱𝑡)𝑃(𝐱𝑡|𝐳0:𝑡−1) (5) 

where 𝐱𝑡 denotes the pixel coordinates of the catheter tip in the t-th frame and 𝐳𝑡 denotes the t-th 

image in the X-ray sequence.  

The posterior probability 𝑃(𝐱𝑡 | 𝐳0:𝑡) means the estimation of 𝐱𝑡 in the t-th frame based on 

the set of all available observations  𝐳0, . . . , 𝐳𝑡 up to frame t. According to Eq. (5), the posterior 

probability depends linearly on the likelihood 𝑃(𝐳𝑡 ∣ 𝐱𝑡) and the prior probability 𝑃(𝐱𝑡 | 𝐳0:𝑡−1). 

According to the total probability formula, the prior probability 𝑃(𝐱𝑡 | 𝐳0:𝑡−1) can be written as: 

𝑃(𝐱𝑡 ∣ 𝐳0:𝑡−1) = ∑ 𝑃( 𝐱𝑡 ∣∣ 𝐱𝑡−1 )𝑃( 𝐱𝑡−1
𝑘 ∣∣ 𝐳0:𝑡−1 )

𝑘

 (6) 

where k denotes the segmented multiple catheter tips in the t-1th frame. The posterior 

probability 𝑃(𝐱𝑡 | 𝐳0:𝑡) can be simplified as a belief probability, denoted by 𝐵𝑒𝑙(𝐱𝑡). Since 𝐱𝑡 

represents the coordinates of the catheter tip. Eq. (5) can be rewritten as: 

𝐵𝑒𝑙(𝐱𝑡) ∝ 𝑃(𝐳𝑡 ∣ 𝐱𝑡) ∑ 𝑃( 𝐱𝑡 ∣∣ 𝐱𝑡−1 )𝐵𝑒𝑙(𝐱𝑡−1
𝑘 )

𝑘

(7) 

In our application case, the segmentation network takes the t-th frame in the X-ray image 

sequence as the input and outputs a probability diagram with the same size. The output result 

indicates the probabilities of each location to belong to the catheter tip. This probability map can be 

considered as the likelihood 𝑃(𝐳𝑡 ∣ 𝐱𝑡)  in Eq. (7). The probability 𝐵𝑒𝑙(𝐱𝑡−1) , also the 

𝑃( 𝐱𝑡−1 ∣∣ 𝐳0:𝑡−1 ) in Eq. (5), denotes the previous result of the Bayesian filtering. The probability 

𝑃(𝐱𝑡 ∣ 𝐱𝑡−1) represents the mapping of coordinates from the previous frame to the current frame. 

Here it is computed by the optical flow method [16]. In the summation term, the integral of the 

product of the two probabilities indicates that the model estimates the current catheter tip 

coordinates based on the result of the last filtering and the coordinate mapping from the previous 

frame to the current frame. 

Multi-objective tracking 

There are two steps in Bayesian filtering: prediction and update. In the prediction stage, the 

prior probability 𝑃(𝐱𝑡 | 𝐳0:𝑡−1)  is replaced by the locations of the catheter tip in the t-th frame 

which are predicted based on the previous t-1 frames. In the update stage, the posterior probability 

𝐵𝑒𝑙(𝐱𝑡) is generated according to Eq. (7), which multiplies the prior probability of the prediction 

stage by the current (t-th frame) probability map. 

In our specific clinical data and unlike the situation handled by Ma H. et al. [2] with only one 

catheter tip in the frames, there are multiple catheter tips in one frame. To be compatible with the 

multiple catheter tips situation, the segmentation results of the first frame are separated into several 

groups according to the connectivity information. Each group stands for one possible catheter tip. 

For each group, Bayesian filtering is applied to update the information of the current frame, based 

on the following rules. 

The output of the segmentation network is separated into two classes: active and inactive ones. 

In the prediction stage, all groups of the catheter tip locations will be predicted. In the update stage, 

each predicted location will be searched in a limited distance and updated to the nearest location 



according to the output of the segmentation network. Among the updated locations, the ones 

belonging to the active group will be displayed in the current t-th frame and the times of being 

updated will be calculated for further usage. The ones belonging to the inactive group or without 

enough updated times keep the current state and wait for being updated or activated in the next 

update stage. After each update phase, the active and inactive groups are re-divided according to the 

updated times of the locations. The multi-objective Bayesian filtering tracking method of catheter 

tip is summarized in Algorithm 1. 

 

Algorithm 1 multi-objective Bayesian filtering tracking method of catheter tip 

structure {x = coordinate, times=0, active_flag=false}, denotes one tip 

Input: image sequence 𝐳0:𝑇, the segmentation model Seg, number of frames T 

Initialize:  

Connection domain analysis of 𝑆𝑒𝑔(𝐳0) → 𝐱0
0:𝑘  

Put the initial results to the inactive set 𝐱0
0:𝑘 → 𝑆𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 

The number of targets: 𝑁𝑠 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑎𝑐𝑡𝑖𝑣𝑒) 

for t=1:T do 

 Compute optical flow 𝑂𝑡−1 from 𝐳𝑡−1 to 𝐳𝑡, which is 𝑃( 𝐱𝑡 ∣∣ 𝐱𝑡−1 ) 

    Calculate the probability map from 𝑆𝑒𝑔(𝐳𝑡), denote as 𝑚𝑎𝑝𝑡 

 for 𝑘 = 1: 𝑁𝑠 do 

  Predict the current connection domain according to the optical flow 𝑂𝑡−1(𝐱𝑡−1
𝑘−1) → 𝐱𝑡

𝑘  

  if 𝑚𝑎𝑝𝑡(𝐱𝑡
𝑘) > 0.5 then 

             Update the current tracking times 𝐱𝑡
𝑘 . 𝑡𝑖𝑚𝑒𝑠 + 1 → 𝐱𝑡

𝑘. 𝑡𝑖𝑚𝑒𝑠 

        end if 

        if 𝐱𝑡
𝑘. 𝑡𝑖𝑚𝑒𝑠 > 𝑡/3 then 

             Put the current instance to the active set 𝐱𝑡
𝑘 → 𝑆𝑎𝑐𝑡𝑖𝑣𝑒  

             Show the result 

        else 

             Put the current instance to the inactive set 𝐱𝑡
𝑘 → 𝑆𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 

        end if 

end for 

 end for 

3 Experiments and Results 

3.1 Dataset 

The data used in this paper are provided by the Shanghai United Imaging Company. They 

consist of 9884 anonymized clinical X-ray fluoroscopic images selected from 173 angiogram 

sequences. The size of the images is 512 x 512 and the pixel intensity range is [0, 255]. The labels 

of the catheter tips are manually annotated by two experienced cardiac radiologists with double-

checking.  

The dataset is divided into three sets: the training dataset with 7885 images, the validation 

dataset with 1072 images and the test dataset with 927 images (around 8:1:1). To avoid the 



inappropriate dataset division, the above three datasets are divided manually to ensure that images 

from the same sequence (patient) are put in the same set. We also use an image transformation for 

data enhancement to overcome the over-fitting problem. In the training phase, both the input images 

and the corresponding label are randomly flipped and rotated between -15° and 15°. Each training 

round stopped at the 200th epoch. 

3.2 Baseline and Implementation Details 

There is no network model dedicated to segment the catheter tip. So, five representative 

segmentation networks: U-net [17], Attention U-net [18], DeepLabV3+ [13], DFA-net [19] and 

HRNet [20] are chosen to be compared with the proposed lightweight catheter tip segmentation 

network. U-net is a classical medical image segmentation network that is widely used as the baseline 

of other work. Attention U-net is a variant of U-net, which has better feature extraction ability than 

U-net. DeepLabV3+ is a well-known image segmentation network dealing with natural light scenes. 

It combines spatial pyramid pooling module into the encoder-decoder structure which made it state-

of-the-art at that time. DFA-net is a lightweight semantic segmentation network with a balance of 

speed and accuracy. HRNet achieved the state-of-the-art on several challenging datasets in computer 

vision with an encoder-decoder architecture. 

The proposed method is implemented in Python and all segmentation networks are 

implemented by PyTorch library (version 1.6.0) with one NVIDIA RTX 2080ti GPU. In the training 

phase of all segmentation networks, all networks are trained using Adam optimization with weight 

decay set as 10-4. The base learning rate is set as 10-3 and the learning rate per iteration is calculated 

by “poly” learning rate policy. Specifically, the base learning rate is multiplied by (1 −
𝑖𝑡𝑒𝑟

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟
)0.9 

per iteration. 

3.3 Evaluation Metrics 

Two evaluation metrics Dice and Precision coefficient are chosen to measure the accuracy of 

the segmentation results, which are defined as following.  

𝐷𝑖𝑐𝑒 =
2‖𝑋∩𝑌‖

‖𝑋‖+‖𝑌‖
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                        (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (9) 

where TP (True Positive) denotes the number of correctly predicted catheter tip pixels, FP (False 

Positive) denotes the false positive pixels, and FN (False Negative) indicates the false negative 

pixels. The 𝐷𝑖𝑐𝑒 coefficient is used to measure the similarity between the segmentation result X 

and the ground truth mask Y. Since the catheter tip segment task is sensitive to the false segmentation 

due to the influence of contrast agents, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  coefficient is used to evaluate the 

segmentation accuracy.  

Besides the above two coefficients, the number of trainable parameters in the segmentation 

network and the inference time are also used to evaluate the network efficiency. The runtime is 

obtained by calculating the average inference time of 100 input samples. 

To evaluate the tracking algorithm on the sequence, the average false detection rate on the 

image-wise and the sequence-wise are estimated to measure the algorithm’s performance. The 



intersection-over-union (IoU) between tracking results and labels is chosen to judge whether a 

catheter tip is correctly detected. Tracking results whose IoUs are less than 0.5 are considered as FP. 

Then, the average false detection rate per image 𝑓𝑖 and per sequence 𝑓𝑠 are defined as:  

𝑓𝑖 =
𝑁𝐹𝑃

𝑁𝑡𝑜𝑡𝑎𝑙

(9) 

𝑓𝑠 =
∑

𝑁𝐹𝑃
𝑁𝑖

𝑛
𝑖=0

𝑁𝑠

(10) 

where NFP is the number of images that have false positive detection; Ntotal is the number of images; 

Ni is the number of images of the i-th sequence; 𝑁𝑠 is the number of sequences. 

3.4 Experimental results 

The decoder architecture 

 

For the decoder, three commonly used architectures are chosen for comparison. They are Lite 

R-ASPP decoder (Spatial Pyramid Pool, SPP) used in the model MobileNetV3 [10], “Concatenate” 

used in the model U-net [17] and “Add” used in the model DFA-net [19]. The structures of the three 

decoders are shown in Figure 4. The selection decision of the decoder is made according to the 

experimental results. 

All of the decoder architectures take the same multi-level features provided by encoder blocks 

as input and combine features with different operations. Table 1 summarizes the experimental 

results with the three decoder architectures. It can be observed that the results obtained with the 

addition of multi-level features (Add) are better than the results of the other two for all the metrics. 

The catheter tip is in a rectangular ROI with a low gray value in X-ray images which means that the 

feature is simple. Combining features by addition not only makes full use of information at the 

channel level, but also reduces the number of parameters and the runtime. 

Figure 4 Three different decoder structures. From top to bottom: Spatial Pyramid Pool (SPP), 

Concatenate, Add. 

 



The Dice and Precision results of the segmentation on the validation dataset with the three 

decoders are shown in Figure 5. It can be seen that the Add decoder (pink in Figure 5) achieves the 

best performance throughout the training phase. This reliable performance indicates that the selected 

decoder architecture is suitable for the catheter tips segmentation task. 

 

Table 1 Performance of different decoder architectures. 

Decoder architecture Dice 

 (%) 

Precision 

 (%) 

Parameters  

(million) 

Runtime  

(ms) 

SPP 74.27 78.07 1.4 9.21 

Concatenate 75.68 80.45 1.2 8.91 

Add 77.47 81.82 1.2 8.72 

 

Figure 5 Comparison of the segmentation performance with different architectures. left: the evolution 

of the dice coefficient value with increasing number of epochs, right: the evolution of the precision 

coefficient value with increasing number of epochs. 

The self-distillation training mechanism 

The proposed catheter tip segmentation network is trained on 300 epochs with and without 

self-distillation. As recommended by Hou et al. [21], we added the self-distillation training 

mechanism at the 200-th epoch, which achieves higher performance than adding it at the beginning 

of the training phase. 

Table 2 Performance of different weighting factor settings. 

Weighting factor Dice (%) Precision (%) 

0 77.47 81.82 

0.001 77.03 81.38 

0.0007 76.77 81.33 

0.0005 77.65 83.38 

0.0003 77.48 82.36 

0.0001 77.35 83.00 

 

Some experiments were done to further investigate the weighting factor 𝛼 in the loss function. 

When 𝛼 equals to zero, it means that the self-distillation is not taken into account. The test interval 

of 𝛼 is determined by the order of magnitude of the two losses 𝐿𝑠𝑒𝑔 and 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 in Eq. (4). Table 

2 shows that with the increasing weighting factor of the self-distillation loss, the performance of the 

model fluctuates but reaches a peak on both Dice and Precision when the factor is 0.0005. With the 



best experimental factor of 0.0005, the self-distillation training mechanism increases the precision 

of the lightweight catheter tip segmentation network from 81.82% to 83.38% with the same model 

size and inference time. This proves that the self-distillation training mechanism improves the 

representation learning of itself without bringing any additional computational cost. 

The proposed catheter tip segmentation network 

Several segmentation networks listed in Section 3.2 are tested for comparison in this section. 

All segmentation networks are trained under the same configurations, such as dataset, number of 

training epochs, loss function, and so on. As shown in Table 3, in terms of accuracy (Dice and 

Precision), the proposed method is at the same level with DeepLabV3+ [13]. With the self-

distillation training mechanism (SD), the proposed method achieved the best accuracy among all 

the tested models. Because the proposed network structure has less parameters, it has better runtime 

than all the other tested models. With self-distillation training, the accuracy of the proposed model 

is improved without any increase on parameter number.  

Table 3 Performance of different network architectures. According to the number of parameters, the 

comparison studies are divided into two groups: large models (the first group) and small models (the 

second group). 

Models Dice (%) Precision (%) Parameters 

(million) 

Runtime (ms) 

U-Net [17] 76.05 81.35 31.0 62.79 

Attention U-Net [18] 76.40 79.58 34.9 83.87 

DeepLabV3+ [13] 77.72 82.93 40.5 77.48 

HRNet-big [20] 76.56 81.24 65.6 54.92 

DFA-Net [19] 71.40 78.26 1.8 47.33 

HRNet-small [20] 75.05 80.91 9.9 19.64 

Proposed net without SD 77.47 81.82 1.2 8.72 

Proposed net with SD 77.65 83.38 1.2 8.72 

 

Some visual segmentation results of some cases generated by U-Net, DeepLabV3+, and the 

proposed work are shown in Figure 6. The first column is the original X-ray fluoroscopy image. In 

each image the regions of interest which contain the catheter tip are placed in the irrelevant area. 

The original image in the first row only includes one catheter tip, but all the tested networks tell two 

catheter tips. One possible reason could be that the characteristics of the catheter tip are too simple 

to be distinguished. So, it is necessary to use post-processing to eliminate such false detections. The 

original image in the second row includes two catheter tips in which the upper one is more difficult 

to recognize. The U-net (the second column) and the DeepLabV3+ (the third column) only tell the 

other catheter tip and lose the upper one. The proposed network can accurately detect both the two 

ones, which indicates the power of the proposed network. The original image in the last row includes 

one catheter tip. All the three networks tell the correct one, but U-net detects some redundant regions 

with similar features, which indicates that its generalization ability is the worst of the three. It is in 

accordance with the numerical results shown in Table 3. DeepLabV3+ correctly detect the target 

area, but the segmentation results are incomplete because of the lack of a well-designed decoder 

architecture. Overall, the proposed network performs the best in the single image catheter tips 



segmentation task. It has a strong generalization ability to identify target with insignificant features 

and the decoder architecture is also well designed for the target task. 

 

The Bayesian Filtering based post-processing Tracking Method 

After segmentation, the Bayesian filtering is used to further refine the segmentation results. To 

show the effect of the Bayesian filtering based post-processing tracking method, DeepLabV3+ [13] 

is chosen for comparison because it has the best segmentation performance among other large 

networks. The numerical metrics are the average false detection rate per image (Eq. (9)) and per 

sequence (Eq. (10)). As shown in Table 4, the false detection on image-wise is reduced by about 5 

times and that on sequence-wise is reduced by about 4 times. This means that the introduction of 

temporal information can significantly improve the accuracy of the segmentation. 

Table 4 Average false detection rate on image-wise and sequence-wise before and after Bayesian 

filtering. 

methods Image-wise (%) Sequence-wise (%) 

Before After Before After 

DeepLabV3+ 21.29 4.54 18.45 4.11 

Proposed network with SD 10.60 2.36 8.72 2.08 

 

Figure 6 The results of different segmentation network. (a) X-ray fluoroscopy images, the magnified 

areas indicate the correct location of the catheter tips. (b) to (d) are segmentation results of U-net, 

DeepLabV3+, and the proposed method. The red areas are the segmented catheter tips. The green 

arrows point at the ground-truth locations of the catheter tips. 

 

(a) Original images (b) U-net (c) DeepLabV3+ (d) Proposed method 



 

Figure 7 shows some qualitative results of the multi-objective Bayesian filtering tracking 

method. There is one catheter tip in Case 1, two tips in Case 2 and Case 3. The segmentation results 

are first marked in red and then when the segmented tips are confirmed by the tracking method, they 

will be marked in green. So the mis-segmented regions are marked in red. It can be seen in Case 1, 

which is from the same case as the first row of Figure 6, that the false segmentation result (red area) 

is corrected after applying the post-processing tracking method (Frame 2 and Frame 4). From Case 

2 and Case 3, we can see that the improved Bayesian filtering method is able to track multiple 

catheter tips and exclude the mis-segmented regions in the cases with multiple catheter tips.  

4 Conclusion and discussions 

In this paper, a new method is proposed and validated to segment the catheter tip in X-ray 

image sequences. The method consists of two steps. First, a segmentation network is designed and 

trained using the self-distillation training mechanism to segment the catheter tips. Second, the 

segmentation result is refined by the Bayesian filtering post-processing method that merges the 

information from the previous images in the same sequence. The proposed method is validated on 

several clinical X-ray fluoroscopy sequences. The experiment results show that compared to some 

state-of-art segmentation models, the proposed method achieved the best segmentation accuracy 

Figure 7 Tracking results of the catheter tip after applying the multi-objective Bayesian filtering 

method. Each row is the result of one case. The areas in red or green are both the results of 

segmentation network. The green area is the final positive results of the proposed tracking method. 

The red area is positive results of the segmentation but negative results of the tracking method, so the 

red areas are mis-segmented regions excluded through the tracking method. There is one catheter tip 

in Case 1, two catheter tips in Case 2 and Case 3. 



with the least runtime. The Bayesian filtering post-processing method can reduce the false detection 

rate. 

Following the injection of contrast agents, the catheter tip segmentation network often 

produces numerous false positive detections, obscuring the true catheter tip target. Involving the 

temporal information to infer the current position of the catheter tip may potentially enable 

concurrent contrast agent injection and catheter manipulation, thereby shortening the surgical 

process. Although the proposed catheter tip segmentation and tracking method gives some positive 

results, there is still some limitations in real applications. The X-ray images are two-dimensional, 

so the projection direction may be parallel to the catheter tip. In this case, the catheter tip appears 

as a ring style shape in the X-ray images. We didn’t involve this kind of cases in the training set, so 

the model cannot be used in this special situation, which is the most severe restriction associated 

with the dataset.  
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