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We show how resonant (near-field) coupling affects wave transport in disordered media through ultrasonic
experiments in concentrated suspensions. The samples consist of resonant emulsions in which oil droplets are
suspended in a liquid gel. By varying the volume fraction of droplets φ up to 40%, the limits of the independent
scattering approximation are experimentally demonstrated as soon as φ > 10%. For these concentrated samples,
the proximity of resonant scatterers induces a renormalization of the surrounding medium, leading to a reduction
in scattering strength. Hence, maximum scattering is reached at an intermediate droplet concentration (20% <

φ < 30%) where subdiffusive wave transport is observed. These results are very relevant for designing materials
for the study of wave transport phenomena such as Anderson localization.

DOI: 10.1103/PhysRevB.108.L060202

Anderson localization of classical waves in three dimen-
sions (3D) has been unambiguously demonstrated more than
ten years ago [1]. Such an unusual effect (the halt of wave
propagation due to wave interferences) only occurs in strongly
scattering heterogeneous media. When the scattering mean
free path �s (the wave attenuation characteristic length due
to scattering events) is larger than the incident wavelength
λ, interferences are negligible and descriptions based on the
independent scattering and ladder approximations are valid to
describe wave transport [2]. Under these approximations, the
average intensity transport is well described by the diffusion
equation [3]. However, when mesoscopic wave interferences
are significant, they lead to “subdiffusive” transport or local-
ized signatures such as non-Rayleigh speckle statistics [1,4],
wave-function multifractality [5], infinite range correlations
[6], and spatial confinement of intensity [1,7], which is also
revealed in the dynamics of the coherent backscattering cone
[8]. Observations of such mesoscopic phenomena have led
to much activity designing new strongly scattering samples
for both optics and acoustics experiments [9–16]. In this con-
text, one way to decrease the scattering mean free path is to
take advantage of scattering resonances. In acoustics, the me-
chanical contrast between heterogeneities and the surrounding
medium leads to shape resonances [17] (analogous to optical
Mie resonances [18]), characterized by large deformations of
the scattering inclusions (particles, or droplets in the case
of two-fluid media). The wave intensity generated by these
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deformations is characterized by the cross section σs, which is
maximized around resonant frequencies. To link the scatter-
ing properties of an isolated particle to the global scattering
strength of the medium, one can invoke the independent scat-
tering approximation (ISA) [19]. The basic idea of the ISA
is to assume that in a diluted medium, a particle will scatter
the wave at most once in a scattering sequence. Under this
assumption, the scattering can be expressed easily in terms of
the cross section σs ∝ Im{ f (0)}, with f (0) being the forward
scattering amplitude for a single scattering event. Thus, the
scattering mean free path can be written as �s = 1/ησs, with
η being the number of scatterers per unit volume.

In this Letter, we show that an increase of the scatterers’
concentration η is not necessarily a condition that will lead
to a decrease in �s. By probing both coherent and diffusing
ultrasonic wave transport in resonant emulsions, we observe
that coupling between nearby resonant scatterers may result
in a weakening of the scattering strength of the medium.
Our all-fluid suspension of fluorinated (FC40) oil droplets
randomly dispersed in a water-based gel matrix constitutes an
excellent model system for this study. In diluted emulsions
(volume fraction φ = 5%), we have already observed [11] a
strong resonant scattering regime due to high sound speed
contrast between oil droplets (v1 ≡ voil = 0.64 mm/µs) and
the surrounding gel (v0 ≡ vgel = 1.48 mm/µs). By increasing
the concentration, we now show that the scattering strength
initially increases but at a slower rate than predicted by the
ISA. As the concentration is further increased, we demon-
strate that an intermediate concentration between 20% and
30% exists for maximizing the scattering strength. In this
concentration range, the scattering is sufficiently strong that
the transport becomes subdiffusive and is well described by
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FIG. 1. (a) Attenuation coefficient and (b) phase velocity for
φ = 25%. Experimental data (open circles) are compared to predic-
tions by Lloyd and Berry theory (LB, black dashed-dotted line), the
independent scattering approximation (ISA, red dashed line), and the
spectral function approach (SpFA, black solid line).

the self-consistent theory of localization. Beyond this concen-
tration, however, the scattering becomes weaker, and simple
diffusive transport is again found, with the diffusion coeffi-
cient at φ = 40% becoming comparable to its value at φ =
5%. Since the velocity contrast in this emulsion (v1 � v0)
is similar to that found in some strongly scattering optical
systems, our observation of maximum scattering at a concen-
tration that is less than half that of random close packing may
be relevant to finding evidence for the localization of light in
3D [10].

The samples studied here are relatively concentrated all-
fluid suspensions (5% < φ � 40%) with a droplet mean
radius ā = 0.17 mm. This droplet size allows shape reso-
nances to be observed in the MHz range, as these resonances
occur when the wavelength is comparable to the droplet size.
Very low droplet polydispersity (∼3%), crucial for study-
ing the influence of resonances on wave propagation [20],
was ensured by using microfluidic techniques controlled by
robotics [21]. Another advantage of this emulsion system
is its almost negligible acoustic dissipation, due to the low
viscosity of both FC40 oil and water-based gel. Thus the
effects of resonances on wave transport were not obscured by
dissipation effects, allowing diffusive wave transport in pulsed
experiments to be observed over a long range of times and
consequences of mesoscopic interferences to be probed.

Ultrasonic characterization of the samples’ basic acous-
tic properties was performed via ballistic measurements
of ensemble-averaged transmitted acoustic wave pulses, as
described in detail in Refs. [11,21]. Hence, accurate measure-
ments of both the amplitude attenuation coefficient α and the
phase velocity vph were performed, quantifying the impact of
droplet shape resonances on wave propagation as illustrated
in Fig. 1 for φ = 25%. Note that because dissipation is negli-
gibly small, α provides a measure of the scattering mean free
path (�s = 1

2α−1 to an excellent approximation [11,21]).

Figure 1 reveals that predictions based on the independent
scattering approximation (ISA) [19], as well as theories such
as the Lloyd and Berry model (LB) [22] that include higher-
order corrections, do not describe the experimental data well.
In these theories, the wave number k of the ballistic wave can
be written as

k2 = (k′ + jk′′)2 = k2
0 + ηδk0 , (1)

where k′ = ω/vph, k′′ = α, and ω is the angular frequency of
the incident plane wave. Here, δk0 is the modification of the
wave number in the pure matrix k0 due to scattering and can
be expressed as a function of the amplitude of a wave scattered
by an isolated droplet f (θ ),

δk0 = 4π f (0) (ISA),

δk0 = 4π f (0)

− η
4π2

k2
0

[
f 2(0) − f 2(π ) +

∫ π

0

df 2(θ )

dθ

dθ

sin(θ/2)

]
(LB),

(2)

where θ is the angle between the directions of the incident
and scattered waves. Thus, f (0) and f (π ) represent the ampli-
tudes of forward and backward scattered waves, respectively.
Uncorrelated point scatterers are assumed in the ISA model,
making this theory relevant only for dilute media (η � 1).
When η increases, the finite size a of scatterers induces spa-
tial correlations (the “hole correction” [23]) included in LB
theory.

For a concentrated heterogeneous medium in the interme-
diate frequency regime (λ ∼ a), waves incident on a given
scatterer may include substantial contributions from the waves
scattered by nearby scatterers. In this case, the surrounding
matrix may be viewed as an effective medium that depends on
scatterers’ properties [2] and the correction δ depends on the
wave number k. Hence, the implicit equation k2 = k2

0 + ηδk

needs to be solved. A theory using these concepts is the
spectral function approach (SpFA) [2,24]. As shown in Fig. 1,
better agreement is found between our experiments and SpFA
predictions than between these experiments and the ISA or LB
theories.

The scattering concept that is incorporated in the SpFA
is illustrated in Fig. 2(a). We calculate the scattering ampli-
tude fκe (θ ) of the wave scattered by an oil droplet that is
coated with the water-based gel and immersed in an effec-
tive medium, with wave number κe, whose value is to be
determined at each frequency ω. The radius of the coating
b is expressed as a function of the volume fraction of scat-
terers b = a/φ1/3 while the presence of the coating enables
a multiple scattering contribution from structural correlations
between droplets and the matrix to be included. Physically,
the properties of the effective medium take into account the
effect of this scattering from neighboring particles, resulting
in a weakening of the effective contrast between a scatterer
and the surrounding matrix. The spectral function may be
approximated as

S(ω, κe) = −Im〈G〉 ≈ −Im
1

4πη fκe (0)
, (3)
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FIG. 2. (a) Illustration of the scattering problem that has to be
solved to find the dispersion relation of the quasimodes. A droplet
(pale orange) is coated with a layer of gel (blue) and embedded in
a uniform medium (textured green) with wave number κe. (b) Map
of the calculated spectral function S(ω, κe) at φ = 25%. The color
scale [from smallest to largest S(ω, κe)] ranges from purple through
dark and light blue, green and yellow to light and dark red. The
peak values of S(ω, κe) yield the dispersion curve (solid white line,
with a black edge), which is compared with the experimental data
(solid gray circles, with a black edge). The dispersion line in pure
gel (dashed yellow and black line) is also shown.

where 〈G〉 is the average Green’s function of the effective
medium. For each frequency ω, the algorithm scans trial
values of κe to find the optimum value κe = k′ that gives a
maximum of the spectral function S(ω, κe) (i.e., the κe value
corresponding to the least scattering) [2,25]. The maxima of S
for all frequencies ω identify the propagating “quasimodes,”
which have a finite width due to radiative damping. The so-
lutions of Eq. (3) at the peaks of S determine the dispersion
curve (Fig. 2) and allow the calculation of the effective phase
velocity vph = ω/k′ as well as the “renormalized” scattering
cross section σκe=k′ = 4π Im{ fκe=k′ (0)}/k0, from which we
can deduce �s(ω) = 1/ησκe=k′ and α = 1/(2�s). Very good
agreement is found, across the entire frequency range, be-
tween the calculated dispersion relation of the quasimodes
and the experimental data [Fig. 2(b)]. This good agreement
persists not only for the phase velocity vph but also for the
attenuation coefficient α, as shown in Fig. 1.

We characterize next the transport behavior of the multiply
scattered waves by using the transverse confinement method
[1,7]. Using a pointlike source (here a focusing ultrasonic
transducer), the acoustic transmission across a slab of emul-
sion was measured with a needle hydrophone to accurately
resolve the position dependence of the multiply scattered
wave field along the output surface of the sample [21]. When
�s 
 λ, wave interferences can be neglected, the scattered
wave transport is analogous to a random walk process, and the
diffusion approximation [3] can be reliably used to describe
the transport of energy by the multiply scattered waves. In
this case, the transmitted average wave intensity I (ρ, t ) has a
Gaussian spatial shape (the diffusive halo)

I (ρ, t )/I (0, t ) = exp[−ρ2/w2(t )], (4)

(a)

(b)

FIG. 3. (a) Transverse width squared w2(t ) for ρ = 25 mm, fre-
quency 2.50 MHz, and droplet volume fractions φ from 5% to 40%.
At this frequency, w2(t ) grows linearly with time, as shown by the
straight line fits (solid lines) to the data (symbols). (b) Diffusion
coefficient D vs volume fraction φ, comparing experimental values
(symbols) from the linear fits in (a) with ISA and SpFA predictions
(dashed blue and solid red lines, respectively).

where ρ is the transverse distance with respect to the source
(for ρ = 0, the source and receiver are aligned on opposite
sides of the slab). The squared width of the halo, w2(t ),
increases linearly with time, with w2(t ) = 4DBt depending
on the (Boltzmann) diffusion coefficient DB = vE�∗. (Here,
vE and �∗ are the energy velocity and transport mean free
path, respectively [2].) By contrast, when �s ≈ λ or smaller,
destructive interferences slow down the diffusive wave trans-
port, leading to a nonlinear evolution of w2(t ) [1]. The
ultimate limit is Anderson localization, for which the width
squared tends to a constant value [1,26] at long times, in-
dicating a trapping of wave energy in the vicinity of the
source.

For most frequencies between 1 and 3 MHz, the width
squared w2(t ) increases linearly with time, enabling the
diffusion coefficient D to be measured as a function of fre-
quency and concentration (5% � φ � 40%). Figure 3 shows
our results at a representative frequency of 2.5 MHz where
scattering due to droplet resonances is strong (cf. Fig. 1).
Both the slopes of w2(t ) and the values of D vary con-
siderably with concentration, with a minimum in D being
found experimentally near φ = 25%. Even though this min-
imum in D is not a direct measure of maximum scattering
strength (which corresponds to a minimum in k�s), it does
demonstrate that the effects of strong resonant scattering are
greatest at this concentration, since resonant scattering is the
mechanism that causes both �∗ and vE , and hence D, to be
significantly reduced [11,21]. Furthermore, the experimental
evidence that the scattering is maximized at an intermedi-
ate volume fraction between 20% and 30% is confirmed
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by our ballistic measurements, which indicate that k�s is
minimized in this concentration range. This behavior con-
trasts with that observed for suspensions of hard particles
(e.g., glass spheres), where the resonances are weaker and
the strongest scattering was found for random close packing
[3,27].

In Fig. 3(b), we also compare our experimental emulsion
data for D with the predictions of the ISA and the SpFA,
using calculations similar to those described in Ref. [21]. The
relatively good agreement between experiment and the SpFA
model for the diffusion coefficient points to the mechanism
underlying the observation of maximum scattering around
φ = 25%. When there are very strong scattering resonances,
the scattering of waves from nearby scatterers effectively
weakens the overall scattering strength relative to what would
be predicted in the ISA, an effect that is encapsulated in the
model via an approximate effective medium whose proper-
ties become closer to those of individual scatterers. As the
concentration of scatterers increases, the scattering strength
initially increases simply because there are more scatterers,
but it then passes through a maximum as the renormalization
of the effective medium around each scatterer becomes more
pronounced, before decreasing at higher concentrations where
D becomes larger again. While the SpFA model captures the
overall behavior well, it underpredicts the experimentally ob-
served increase in D at φ = 40%, likely reflecting a limitation
due to approximations in the model.

This evidence for maximum scattering at an intermedi-
ate concentration of strongly resonant scatterers motivates a
closer investigation of wave transport in this system. By prob-
ing the behavior near 2.5 MHz for 20% � φ � 30%, we find
evidence of subdiffusive transport at frequencies for which the
scattering mean free path is shortest [28]. Figure 4 shows our
experimental results for the transmitted intensity I (ρ, t ) and
width squared w2

ρ (t ) [with w2
ρ (t ) being defined in the same

way as w2(t ) in Eq. (4)] at a frequency of 2.43 MHz and
at φ = 25%. The clear difference between our experimental
data for w2

ρ (t ) and a diffusive linear evolution (black dashed
line) reveals the subdiffusive wave transport in this resonant
emulsion. In addition to its nonlinear temporal evolution,
the dependence of w2

ρ (t ) on the transverse distance from the
source ρ is another characteristic of subdiffusive wave trans-
port, for which the halo deviates from a Gaussian spatial shape
[1,7]. Hence, in contrast to the diffusive case (e.g., Fig. 3),
it is necessary to insert the subscript ρ in w2

ρ (t ) when the
transport is subdiffusive, as in Fig. 4 [7]. These experimental
observations of subdiffusive behavior are well described by
the self-consistent theory (SCT) of localization [29], which
accounts for the renormalization of the diffusion coefficient
by interferences and for the resulting spatial dependence of
D(r) in finite samples. From the best fit of the SCT to the
experimental data, following the approach detailed in Ref. [7],
we find that the scattering strength k′�s is only ∼5% above
its critical value (k′�s)c, below which Anderson localization
would be reached. Similar behavior is found for φ = 20% and
30%, where k′�s − (k′�s)c is somewhat larger [see the inset in
Fig. 4(b)], but no evidence for subdiffusive behavior is found
at concentrations outside this range. Thus, the data in Fig. 4
further support our observations of maximum scattering near
φ = 25%.

FIG. 4. (a) Temporal evolution of the average transmitted in-
tensity I (ρ, t ) for different values of the transverse distance ρ and
for a frequency ω/2π = 2.43 MHz. The transmitted intensities were
measured at the surface of the sample, and are normalized so that
I (0, t )max = 1. (b) Corresponding w2

ρ (t )/L2, where L = 12 mm is
the thickness of the slab. Experimental data are represented by
symbols and SCT predictions by solid lines. The black dashed line
represents the linear behavior of w2(t )/L2 expected for classical
diffusion. The inset displays the fraction by which the scattering
strength k′�s exceeds its critical value at an Anderson transition,
[k′�s − (k′�s )c]/(k′�s )c determined by the best fits of the SCT to ex-
periment for 20% � φ � 30%. Note that its variation with φ mirrors
the behavior of D plotted in Fig. 3. Here, symbols represent the fitted
values [k′�s − (k′�s )c]/(k′�s )c, with the dashed red line being a guide
to the eye.

Despite the very strong scattering in our resonant emul-
sions that is maximized at intermediate droplet concentra-
tions, the Anderson localization transition could still not be
reached, motivating the search for other fluid or fluidlike
suspensions in which such behavior can be found. Soft mat-
ter techniques have great potential for creating suspensions
with higher scattering properties, as they allow the design
of monodisperse inclusions with controlled sound speeds
and even stronger scattering resonances [30,31]. For exam-
ple, soft porous silicone rubber has a very low sound speed
(v1 ≈ 100 m/s) [32], resulting in suspensions with scattering
strength as high as k′�ext ≈ 0.05 [33]. Such suspensions are
therefore promising candidates once the challenge of fabri-
cating a large number of these spherical particles has been
overcome.

In conclusion, our acoustic experiments on emulsions,
which may be considered a model system for investigating
the effects of resonant scattering on wave transport, show
that the scattering strength increases with droplet concentra-
tion only up to a certain threshold. Beyond this threshold,
due to multiple scattering coupling between nearby reso-
nant droplets, the effective scattering becomes so weakened
that the diffusivity actually increases with concentration.
This coupling effect manifests itself as a deviation from the
ISA and LB theories. However, by taking this effect into
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account via a renormalized effective medium surrounding the
scatterers, the spectral function approach provides a good
overall description of this reduction of scattering strength as
concentration increases. For our resonant emulsions, we find
that the scattering strength is maximized at an intermediate
volume fraction of droplets in the range φ ∈ [20–30]%, lead-
ing to multiply scattered wave transport with a significant
deviation from diffusive behavior that is the most subdiffu-
sive possible in this system [34]. Despite the renormalization
effects causing the reduction in effective wave velocity con-
trast between the surrounding medium and the scatterers,
it should be possible to employ soft matter techniques to
design new resonant suspensions for which this limitation
does not prevent observations of extreme behavior such as

Anderson localization. Since the difference in velocities be-
tween scattering inclusions and their surroundings is similar
for soft matter suspensions in acoustics and typical strongly
scattering media in optics, our findings should be relevant
to wave transport in a quite wide range of heterogeneous
materials.
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