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EXCURSION DECOMPOSITION OF THE 2D CONTINUUM GFF

JUHAN ARU, TITUS LUPU, AND AVELIO SEPÚLVEDA

Abstract. In this note we show that the 2D continuum Gaussian free field (GFF) ad-
mits an excursion decomposition that is on the one hand similar to the classical excursion
decomposition of the Brownian motion, and on the other hand can be seen as an FK rep-
resentation of the continuum GFF. In particular, 2D continuum GFF can be written as an
infinite sum of disjoint positive and negative sign excursions, which are given by Minkowski
content measures of clusters of a critical 2D Brownian loop soup with i.i.d. signs. Although
the 2D continuum GFF is not even a signed measure, we show that the decomposition to
positive and negative parts is unique under natural conditions

1. Introduction

The 2D continuum Gaussian free field (GFF) is a universal model of a continuum height
function and has become a central object in the study of conformally invariant continuum
random geometry. The main reason for this is its strong connections with other objects like
for example Schramm-Loewner Evolution, Brownian loop soup and Liouville quantum grav-
ity measures (see e.g. overviews [GHS19, WP21, BP23]) and several known or conjectured
convergence results towards the Gaussian free field [NS97, Ken01, RV07, BLR20].

In this note, we explain how to prove a decomposition of the 2D continuum Gaussian free
field into an (infinite) sum of signed measures with disjoint supports. This decomposition
is unique under natural conditions and can be obtained as a scaling limit of an honest
excursion decomposition of the metric graph GFF. Thus our result says that there is a
natural decomposition of the GFF into negative and positive parts, despite the fact that
the field is not pointwise defined and not even a signed measure. On the one hand, the
obtained decomposition shares many properties with the classical excursion decomposition
of Brownian motion [Itô72] (but also exhibits some new surprising ones). On the other hand,
our decomposition can be also seen as an FK representation of the continuum GFF.

We work in an open bounded simply-connected domain D ⊂ C, and we consider Φ a zero
boundary Gaussian free field on D. To fix a normalization, we consider the GFF as the field
coming from the following functional integral

exp
(
− 1

2

∫
D

‖∇ϕ‖2
)
Dϕ.
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More precisely, Φ is the centred Gaussian process with covariance given by the Dirichlet
Green’s function GD(z, w) function with the following divergence on the diagonal

GD(z, w) ∼ 1

2π
log |z − w|−1.

With this normalization, the value of the height gap (used later and introduced in [SS09])
is 2λ =

√
π/2.

The main contribution of this paper comes in three theorems: first we state the existence
and uniqueness of an excursion decomposition, second we list properties of this decompo-
sition, that mirror strongly those of the excursion decomposition of the one dimensional
Brownian motion and make connections with the 2D critical Brownian loop soup. Finally,
we show that the naturally defined excursion decomposition of the metric GFF converges to
the excursion decomposition of the continuum GFF. Further contributions are Proposition
36, which describes the continuum GFF as a rescaled limit of a random field spin model
and explains the FK-representation point of view for the decomposition, Conjecture 39 that
predicts what should be the continuum limit of the excursion decomposition of the discrete
GFF and Proposition 31 that obtains uniform continuity of crossing probabilities of annuli
by sign clusters of the metric graph GFF. We make use of known couplings between GFF,
CLE4 and Brownian loop soup [SS09, SW12, ASW17, QW18, ALS20a, ALS20b] and build
on techniques introduced in [SS13, ASW17, ALS20a, ALS20b]; the most technical part of
the paper is the proof of uniqueness.

The existence of the excursion decomposition is given in the following theorem.

Theorem 1 (Excursion decomposition of the 2D Gaussian free field). Let Φ be a zero
boundary GFF in D. There exists a unique collection of positive measures (νk)k≥1 with
supports (Ck)k≥1, and a collection of signs (σk)k≥1, such that the following conditions hold:

(1) We can write

Φ = lim
N→∞

N∑
k=1

σkνk, (1.1)

where the sum is ordered by decreasing size of the diameter of Ck. The sum converges
almost surely in all the Sobolev spaces H−1−ε(D) (i.e. for the Sobolev norms) for
ε > 0.

(2) The decomposition satisfies the following Markov property. For any smooth simple
path γ ⊂ D, starting from the boundary, let γexc denote the closure of the union of
all sets Ck that intersect γ. We can write almost surely Φ = Φγexc + Φγexc , with

Φγexc =
∑

k:Ck∩γ 6=∅

σkνk,

where the sum is again ordered by decreasing size of diameter of Ck and converges
almost surely in all the Sobolev spaces H−1−ε(D), for ε > 0. Further, conditionally
on γexc, the field Φγexc is independent of Φγexc and has the law of a zero boundary
GFF in the domain D\γexc.

(3) The collection (Ck)k≥1 is pairwise disjoint, locally finite1, and further each Ck is
connected.

1Locally finite means that for any ε > 0 there are finitely many Ck with diameter bigger than ε.
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We call (Ck)k≥1 the (sign) excursion clusters, (νk)k≥1 the sign excursions and the triplet
(Ck, σk, νk)k≥1 the excursion decomposition of Φ.

Further properties of the excursion decomposition are listed in the following theorem.

Theorem 2 (Properties of the excursion decomposition). Let Φ be a zero boundary GFF
in D and ((Ck, νk, σk))k≥1 respectively the excursion clusters, the measure and their signs in
the excursion decomposition of Theorem 1. Then, the following properties hold:

(1) The excursion decomposition ((Ck, νk, σk))k≥1 is measurable w.r.t. Φ.
(2) In the joint law of ((Ck, νk, σk))k≥1, the signs (σk)k≥1 are independent of the rest and

have the law of i.i.d. Rademacher random variables.
(3) For all k ≥ 1, the measures νk are given by Minkowski content measure of Ck defined

by

νk(f) := lim
r→0

1

2
| log r|1/2

∫
D

f(z)1d(z,Ck)≤rdz,

for all f ∈ C(D). In particular for all k ≥ 1, νk is determined by Ck.
(4) The law of (Ck)k≥1 equals to that of (topological closures of) clusters of a 2D Brownian

loop soup at the critical intensity α = 1/2 in D, ordered by decreasing diameter.
Further, the collection of outer boundaries of the outermost clusters (Ck)k≥1 has the
law of CLE4.

Further, one can justify the name excursion decomposition by showing a convergence re-
sult from the well defined excursion decomposition on the metric graph GFF. See Section 5
for the exact set-up and see Conjecture 39 for the case of the discrete GFF, whose excursion
decomposition, we believe, converges to a different continuum decomposition where individ-
ual ‘excursions’ are still positive and negative measures, but signs are no longer independent,
they rather alternate with nesting.

Theorem 3 (Convergence of the excursion decomposition). Let Φ be a zero boundary GFF
on D and φ̃n be a sequence of zero boundary metric graph GFFs on D̃n that are coupled with
a GFF Φ such that a.s. φ̃n → Φ in H−ε(D), for some ε > 0. Further, take (C̃n

k , ν̃
n
k , σ̃

n
k )k≥1

the excursion decomposition of φ̃n.
We have that for every k > 0, C̃(n)

k → Ck, ν̃
(n)
k → νk and σ̃(n)

k → σ as n → ∞, where the
convergence is in probability and in the Hausdorff topology for the first component, and in
the weak topology of measures for the second component.

Let us elaborate on these theorems via some further remarks.
i. It is known that the 2D continuum Gaussian free field is not a signed measure and in
particular it cannot be written as a difference of two sigma-finite positive measures. Thus
such a rewriting as a sum of disjoint signed measures is in itself already non-trivial.

ii. Previously a similar decomposition was known for the continuum limit of the magneti-
zation field of the critical 2D Ising model, in which case it is the continuum analogue
of the standard FK representation of the lattice Ising model. The continuum limit of
the magnetization field was constructed in [CGN15]. The continuum FK decomposition
was conjectured in [CN09], and the proof finalized in [CJN21]. 2 A crucial input was
the detailed understanding of the scaling limits of interfaces and correlation functions

2We are grateful to F. Camia for clarifying this history of the Ising decomposition.
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of the critical Ising and FK-Ising models [CDCH+14, CDCH16, CHI15, CS12, Smi10].
As a difference to the free field case, in the Ising setting the renormalised area measures
are constructed via a convergence argument from the discrete area measures and in the
continuum limit the excursion decomposition is not measurable with respect to the con-
tinuum magnetization field. This failure of measurability comes from the fact that two
different continuum FK clusters can touch and there are several ways to split an Ising
spin cluster into FK clusters.

iii. In fact, similar to the Ising case mentioned above, also our excursion decomposition can
be seen as a continuum FK representation of the GFF. Indeed, as observed in [LW16], the
sign clusters of the metric graph GFF φ̃n can be seen as a certain FK representation for
the random-field Ising model of the discrete GFF given by sign(φn). Proposition 36 shows
that the continuum GFF is a renormalized scaling limit of this model, making the FK-
viewpoint more precise. Interestingly, this FK decomposition which is not measurable
w.r.t. discrete GFF, becomes measurable in the continuum limit.

iv. Related to the previous comment, we believe that the excursion decomposition of the
discrete GFF does not converge to our continuum decomposition - see Conjecture 39
for a precise statement. This alternative continuum decomposition of the continuum
GFF does not satisfy equally nice independence properties, e.g. the signs of the sign
excursions are not independent.

v. The existence of a decomposition of the 2D continuum GFF into a signed sum of measures
(without uniqueness, measurability and an explicit description of the structure of the
decomposition) could be also obtained using subsequential convergence results from the
metric graph, using results from [Lup18] but no further SLE theory.

vi. To prove existence and uniqueness of the decomposition we only need to use basic prop-
erties of the GFF and its local sets (including CLE4, SLE4), and thus in particular we
do not use isomorphism theorems. In fact also the excursion clusters have a writing in
terms of only the nested CLE4: see Remark 17.

vii. We expect the existence and uniqueness of the decomposition, and all the properties to
hold also in non-simply-connected domains. However, it adds some technicalities that
we decided not to address in this work.

viii. The convergence of the sum can most likely be improved to H−ε for all ε > 0.
ix. For the convergence in (1.1), the compensation induced by the sign is crucial, and the

total variation measure Σi≥1νi diverges in every open subset of D. There is some freedom
in the specific order on the clusters (Ci)i≥1. However, it is important to fix the order
independently of the signs (σi)i≥1. Notice that we do not a priori ask any independence
properties of the signs, and obtain them as a corollary.

x. One may wonder what would be the minimal assumption to have uniqueness of the
decomposition above. However, the answer might not be straightforward: 1) as already
mentioned, we expect there to be another natural excursion decomposition that comes
from the convergence of the excursion decomposition of the discrete GFF 2) as soon
as one works in classes of irregular functions such decompositions are in general not
unique without further assumptions. Indeed, even for example the Hahn decomposition
of signed measures is unique only up to measure 0 sets. Or, for a concrete example,
consider the case of Brownian motion on [0, 1], but seen as a probability measure of
L2([0, 1]). Now let’s look for decompositions of [0, 1] into closed connected disjoint sets

4



where Brownian Motion is either non-positive or non-negative. It is easy to see that,
unless we invoke some extra conditions - like a certain Markov property after discovering
some excursions, or independence of signs of excursions, or possibly some maximality
property -, we can in addition to the natural decomposition, where we take the support
of each excursion, also find many others. Indeed, we can always first take the natural
decomposition, but then further write any of these closed intervals as a countable union
of smaller closed intervals, up to a zero measure set. As long as we work in L2([0, 1]),
the remaining zero measure set can be just forgotten and all the above-listed conditions
would be satisfied.

xi. This theorem can be further tweaked to write the 2D continuum GFF using Poisson point
processes of excursions very similarly to the classical writing of the Brownian motion by
concatenating a Poisson point process (PPP) of Brownian excursions. Indeed, as shown
in [WW13], one can define an infinite measure on the space of loops pinned at a uniform
point on the boundary, such that the whole CLE4 can be constructed using a single
PPP with this intensity measure - see [WW13] Section 4, or [AS18] Section 6.1 for a
more detailed explanation. Now, as mentioned, CLE4 gives only the outer boundaries of
the outermost excursion clusters, but one can further include the clusters and the sign
measures in the above-mentioned intensity measure to obtain an intensity measure for
clusters pinned at boundary. This way one obtains a way to sample all the outermost
clusters via a PPP; one further iterates in the interiors of each cluster to get the full
decomposition.

xii. It would be very interesting to see similar decompositions for other random distributions
and indeed, Jego, Lupu and Qian manage to prove similar decompositions for random
fields constructed from sub-critical Brownian loop soups [JLQ23]. Among other things,
they also give an alternative proof for existence of the decomposition in the critical case
that does not rely local sets of the GFF (nor CLE4, SLE4), but that does not provide
uniqueness and measurability.

The rest of this note is structured as follows: we collect definitions of main objects in
Section 2; in Section 3 we prove the existence part of Theorem 1 and deduce the properties
of Theorem 2. In Section 4 we prove the uniqueness of the decomposition and in Section 5
the convergence. Finally, in Section 6 we discuss several further aspects: firstly, we prove
uniform continuity of crossing probabilities on metric graphs. We then explain how to see
the continuum GFF as a scaling limit of spin models and why our decomposition can be
alterantively seen as a FK representation. In the same section we also discuss the conjectured
scaling limit of the excursion decomposition of the discrete GFF.

Acknowledgement. The authors are thankful two Wendelin Werner for many useful and
inspiring discussions at their time in ETH. The research of J.A. is supported by Eccel-
lenza grant 194648 of the Swiss National Science Foundation and he is a member of NCCR
Swissmap. The research of A.S is supported by Grant ANID AFB170001, FONDECYT
iniciación de investigación N° 11200085 and ERC 101043450 Vortex.

2. Definitions and preliminaries

For the convenience of the reader, we collect here the definitions of the 2D continuum
Gaussian free field and its local sets, CLE4 and Brownian loop soup. For more information,
see e.g. preliminaries of [ALS20a, ALS20b] or the book [WP21].
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The continuum Gaussian free field (GFF) is the generalisation of Brownian motion, re-
placing the time axis by a d-dimensional domain. More precisely, it is defined as follows.

Definition 4 (Gaussian free field). Let D ⊆ C denote a finitely connected domain. The 2-
dimensional zero boundary continuum GFF in D is the centred Gaussian process (Φ, f)f∈C∞c (C)

whose covariance is given by

E [(Φ, f)(Φ, g)] =

∫ ∫
D×D

f(z)GD(z, w)g(w) dzdw; f, g ∈ C∞c (C),

where GD denotes the zero boundary Green’s function for the Laplacian in D.

For any open set U that is a union of countably many finitely-connected domains, we
define the zero boundary GFF on U as a disjoint union of independent zero boundary GFFs
in the connected components. The GFF is almost surely in H−ε(U) for any ε > 0, but we
can also consider the GFF as a random distribution on larger domains U ′ ⊇ U , extending
it outside of U by zero. The continuum GFF can be essentially characterized by its Markov
property [BPR20, BPR21, AP22] and random sets coupled with the GFF that satisfy a
strong Markov property are called local sets. For a more general discussion of local sets and
their properties we refer to [Aru15, SS13, WP21].

Definition 5 (Local sets). Consider a random triple (Φ, A,ΦA), where Φ is a GFF in D, A is
a random closed subset of D and ΦA a random distribution that can be viewed as a harmonic
function when restricted to D\A. We say that A is a local set for Φ if conditionally on
(A,ΦA), ΦA := Φ− ΦA is a GFF in D\A.

We list here some properties of local sets that we use implicitly or explicitly, see for instance
[SS13, Aru15] for derivations and further properties.

Lemma 6. The following properties hold for local sets of the GFF.
(1) Any local set can be coupled in a unique way with a given GFF: Let (Φ, A,ΦA, Φ̂A) be

a coupling, where (Φ, A,ΦA) and (Φ, A,Φ′A) satisfy the conditions of this definition.
Then, a.s. ΦA = Φ′A. Thus, being a local set is a property of the coupling (Φ, A), as
ΦA is a measurable function of (Φ, A).

(2) If A and B are local sets coupled with the same GFF Φ, and (A,ΦA) and (B,ΦB)
are conditionally independent given Φ, then A ∪ B is also a local set coupled with Φ
and the boundary values of ΦA∪B agree with those of ΦB or ΦA at every point of the
boundary of A ∪ B that is of positive distance of A or B respectively3. Additionally,
B\A is a local set of ΦA with (ΦA)B\A = ΦB∪A − ΦA .

(3) Let (Φ, (An)n∈N, (ΦAn))n∈N a sequence of conditionally independent local sets coupled
with the same GFF Φ. Furthermore, assume that An is increasing. Then A∞ =⋃
n∈NAn is a local set. Furthermore, if a.s. for all n ∈ N, An is connected to the

boundary, then a.s. ΦAn → ΦA.

In particular, we will use the existence and uniqueness of the following type of local sets:
two-valued local sets introduced in [ASW17] and studied in [ALS20a], and first passage sets,
introduced in [ALS20a, ALS20b]. For definitions of thin local sets, bounded type local sets
we refer e.g. to [ASW17, ALS22].

3We say that ΦA∪B agrees with ΦA at a point x ∈ ∂(A ∪ B) ∩ ∂A if for any sequence of xn /∈ A ∪ B
converging to x, ΦA∪B(xn)− ΦA(xn)→ 0 as n→∞.
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Theorem 7 (Two-valued local sets: existence and uniqueness). Let a, b > 0 be such that
a + b ≥ 2λ. Then one can couple a thin4 bounded type local set A−a,b 6= ∅ with a GFF Φ
such that in each connected component O of D\A−a,b the harmonic function ΦA is equal to
either −a or b. Moreover, the sets A−a,b are

• unique in the sense that if A′ is another BTLS coupled with the same Φ, such that
a.s. it satisfies the conditions above, then A′ = A−a,b almost surely;
• measurable functions of the GFF Φ that they are coupled with;
• monotone in the following sense: if [−a, b] ⊂ [−a′, b′] with b + a ≥ 2λ, then almost
surely, A−a,b ⊂ A−a′,b′.

It was observed in [ASW17] that the Minkowski dimension of all of any two-valued set
is a.s. strictly smaller than 2 (the a.s. Hausdorff dimension was precisely calculated in
[SSV22]); we will make use of this fact for this for A−2λ,2λ.

Two-valued local sets are of importance for us as the boundaries of sign excursions in our
decomposition are given by iterating two-valued local sets A−2λ,2λ. The excursion clusters
themselves are given by first passage sets.

Definition 8 (First passage set). Let a ∈ R and Φ be a GFF in D. We define the first
passage set of Φ of level −a as the local set of Φ such that ∂D ⊆ A−a, with the following
properties:

(1) Inside each connected component O of D\A−a, the harmonic function ΦA−a |D\A−a
is equal to −a.

(2) ΦA−a +a ≥ 0, i.e., for any smooth positive test function f we have (ΦA−a +a, f) ≥ 0,
in other words ν := ΦA−a + a is a positive measure with support A−a.

The key result is the following.

Theorem 9. [Theorem 4.3 and Proposition 4.5 of [ALS20a], Proposition 5.7 of [ALS20b]]For
all a ≥ 0, the first passage set, A−a, of Φ of level -a exists and satisfies the following
properties:

(1) Uniqueness: if A′ is another local set coupled with Φ and satisfying Definition 8, then
a.s. A′ = A−a.

(2) Measurability: A−a is a measurable function of Φ.
(3) Monotonicity: If a ≤ a′, then A−a ⊆ A−a′
(4) Local finiteness: for any ε > 0 there are only finitely many connected components of

D \A−a of diameter larger than ε.

2.1. Couplings between different objects. It was shown in [SS09, SS13] that SLE4 can
be seen as a contour line of the continuum GFF. Miller & Sheffield [MS11] discovered that
also CLE4 can be coupled as with the GFF. In [ASW17] this latter coupling was rephrased
in the language of two-valued sets - the two-valued set A−2λ,2λ has the law of a CLE4 carpet.

Theorem 10 (Section 4 of [ASW17]). Let Φ be a GFF in D and A−2λ,2λ be its TVS of levels
−2λ and 2λ. Then A−2λ,2λ has the law of CLE4 carpet. Moreover, it satisfies the following
properties:

(1) The loops of A−2λ,2λ (i.e. the boundaries of the connected components of D\A−2λ,2λ)
are continuous simple loops. A−2λ,2λ is the closure of the union of all loops.

4Thin means that ΦA is a.s. equal to a harmonic function everywhere, see [Sep19].
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(2) The collection of loops of A−2λ,2λ is locally finite, i.e. for any ε > 0 there are only
finitely many loops that have diameter bigger than ε.

(3) Almost surely no two loops of A−2λ,2λ intersect, nor does any loop intersect the bound-
ary; also almost surely every fixed point is surrounded by some loop.

(4) The conditional law of the labels of the loops of A−2λ,2λ given A−2λ,2λ is that of i.i.d.
random variables taking values ±2λ with equal probability.

From the ground-setting work of Sheffield and Werner, we know further that in simply-
connected domains CLE4 loops can be described using the critical Brownian loop soup (BLS).

Theorem 11 (Theorem 1.6 in [SW12]). Let D be a simply-connected domain and consider
the critical Brownian loop-soup L in D. Then CLE4 loops are exactly the outer boundaries
of the outermost clusters of this Brownian loop soup.

This theorem together with Theorem 10 implies the following Markov property for A−2λ,2λ

Proposition 12. Let Φ be a GFF in a simply connected domain D and γ : [0, 1] 7→ D be a
simple continuous curve such that γ(0) ∈ ∂D and γ((0, 1)) ⊆ D. Define γext the closure of
the union of all loops of a A−2λ,2λ that intersect γ. We have that γext is a BTLS of Φ, where
Φγext can be characterised as follows. Take I the union of the interior all loops ` of A−2λ,2λ

that intersect γ, then Φγext(z) = ±2λ for any z ∈ I and Φγext(z) = 0 for all z ∈ D\I.

In fact, the relation of Theorem 11 can be further strengthened. First in [QW19] the
authors show that one can couple the critical Brownian loop soup, CLE4 and the zero
boundary GFF on the same probability space such that CLE4 describes the outer boundaries
of outermost BLS clusters as above and the Wick square of the GFF equals the renormalised
occupation time of the BLS. We will not use this statement directly, however we use a certain
strengthening that further identifies the Brownian loop soup clusters given their boundary
with first passage sets defined and constructed in [ALS20a].

Proposition 13 (Corollary 5.4 in [ALS20b]). Let D be a simply connected domain. Con-
ditionally on the outer boundary ` of a Brownian loop-soup cluster in LD1/2, the topological
closure of the cluster itself is distributed like a first passage set A−2λ inside Int(L), the
interior surrounded by Υ.

Finally, it was observed in [ALS20a] that one can identify the GFF restricted to a first
passage set by its Minkowski content measure.

Theorem 14 (Theorem 5.1 in [ALS20a]). Let D be simply-connected and Φ a GFF and
suppose A−a is a first passage set of level −a. Writing Φ = ΦA−a + ΦA−a as in Definition
5, we obtain the following. The measure νA−a := ΦA−a + a is a measurable function of A−a.
Moreover, it is proportional to the Minkowski content measure in the gauge r 7→ | log(r)|1/2r2.
More precisely, almost surely for any continuous f compactly supported in D,

νA−a = lim
r→0

1

2
| log(r)|1/2

∫
D

f(z)1d(z,A−a)≤rdz.

3. Existence of the excursion decomposition and its properties

In this section, we prove the existence of the excursion decomposition together with the
properties stated in Theorem 2. These both follow rather directly from the theory of bounded
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type local sets and first passage sets of the GFF, though some care is needed in collecting
and combining the results and techniques and in taking care of lack of absulte convergence.

We start by an elementary estimate on the H−1 norm of a GFF on open strongly non-
connected sets that can be written disjoint unions of open domains of small diameter. This
lemma is used to show that contributions to the excursion decomposition coming from small
excursions can be summed.

Lemma 15. Suppose D̂n ⊆ D is a sequence of decreasing open set (not necessarily connected)
such that the maximal diameter over its connected components goes to 0 as ε→ 0. Consider
ΦD̂n a GFF in D̂n. Then E

[
‖ΦD̂n‖2

H−1(D)

]
→ 0, as n→∞

Proof. This follows from the dominated convergence theorem (GD̂n
≤ GD) and the compu-

tation

E
[
‖ΦD̂‖2

H−1(D)

]
=

x

D̂×D̂

GD(x, y)GD̂(x, y)dxdy → 0, as n→∞.

�

We are now ready to prove the existence part of the main theorem.

Proof of the existence of an excursion decomposition in Theorem 1. We start by considering
the coupling (Φ,CLE4 = (`k)k≥k, (σk)k≥1) between the GFF, CLE4 loops and the i.i.d. signs
coming from Theorem 10. We can order the loops in descending order of their diameter.
Note that this theorem implies the almost sure equality

Φ =
∑
k≥1

2λσk1Int(`k) + ΦInt(`k),

where given the CLE4 loops (`k)k≥1, ΦInt(`k) are independent zero boundary GFFs5 inside
Int(`k) and (σk)k≥1 are i.i.d. Rademacher random variables.

Using Lemma 15 to control the tails, we can restrict our attention to the subset Jε of
k ∈ N such that the diameter of Ck is at least ε > 0. As the set of CLE4 loops is locally
finite, Jε is finite.

Now, consider k ∈ Jε. Conditionally on `k the law of Φ restricted to Int(`k) is equal to
that of 2λσk + ΦInt `k , where the conditional law of ΦInt(`k) is that of a GFF in Int(`k). We
now sample Ak := A−2λ(σkΦ

Int(`k)) and define the positive measure νk := σkΦ
Int(`k)
Ak

+ 2λ.
This measure is supported in Ak thanks to Definition 8. We then have that

2λσk + ΦInt(`k) = σkνA−2λ
+ ΦInt(`k)\A−2k .

Thus we obtain the following decomposition

Φ =
∑
k∈Jε

(
σkνAk + ΦInt(`k)\Ak

)
+
∑
k′ /∈Jε

(
2λσk′1Int `k′

+ ΦInt(`k′ )
)
,

where the outermost boundaries `k and `k′ are ordered in the descending order of their
diameter. We now iterate this process inside each connected component of D \

⋃
k∈Jε Ak.

To write down the result of this iterative construction, we need to fix some notation. We
denote the outermost loops and clusters of the n−th iteration that themselves have diameter

5Note that ΦA−2λ,2λ =
∑

k ΦInt(`k)
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larger than ε by (`n,k)k∈Jn,ε , (Cn,k)k∈Jn,ε , having ordered them decreasingly by diameter, and
the corresponding signs and Minkowski measures by (σn,k)k∈Jn,ε , (νn,k)k∈Jn,ε .

The iteration then gives us the following almost sure equality:

Φ =
∑

k∈∪n≤NJn,ε

(
σkνAn,k + ΦInt(`n,k\An,k)

)
+
∑

(n′,k′):
k′ /∈Jn′,ε
n′≤N

(
2λσk1Int(`k) + ΦInt(`n,k)

)
,

where again the ordering in the first finite sum is along decreasing size of the diameter. This
writing allows us to apply Lemma 15 directly to obtain an error of order oε(1) independently
of the level of iteration N on the second term. Part (1) of Theorem 1 now follows from the
a.s. martingale convergence theorem and the fact that for any ε > 0, there is almost surely a
finite N such that all loops of diameter larger than ε have been discovered (for a single level
this is just local finiteness of CLE4, for the nested version see e.g. Theorem 1.5 in [APP23]).

The properties listed in (3) of Theorem 1 for the excursion clusters (Ck)k≥1 hold by con-
struction. The Markov property follows from the following claim combined with the argu-
ment above that again shows we can sum the sign excursions in their decreasing order of
diameter.

Claim 16. Consider γ a smooth simple path in D starting from the boundary. Let (Ck, `k)k∈I
be the collection of outermost clusters with Ck ∩ γ 6= ∅ and denote their outer boundaries by
`k. Let Iε denote the set of k ∈ I for which the diameter of Ck is at least ε and define Aε =
∪k∈IεCk ∪ ∪k∈I`k. Then Aε is a local set, such that φAε =

∑
i∈Iε σiνi +

∑
i∈I\Iε 2λσi1z∈IntLi.

Proof. The claim follows directly from iterating the Markov property of A−2λ,2λ in Proposi-
tion 12, together with the strong Markov property of FPS and the construction above.

�

�

We proceed to discuss further properties of the excursion decomposition, i.e. Theorem 2,
assuming uniqueness of the decomposition. In essence, this amounts to handpicking a few
interesting results from the literature.

We are now ready to give a proof of Theorem 2, assuming already uniqueness.

Proof of Theorem 2. Properties (1) and (2) follow directly from the construction given above.
Property (3) follows from the construction of the excursion clusters and excursions via First
passage sets of height ±2λ and Theorem 14.

The law of outer boundaries of outermost clusters is also clear from the construction. The
identification with clusters of 2D Brownian loop soup follows further from iterating Theorem
11 to identify the outer boundaries of critical BLS clusters with those of excursion clusters
in the construction above, and Theorem 13 to identify the critical BLS clusters with the
excursion clusters above. �

To finish this section, we explain here how the whole sign cluster could be seen by iter-
ating CLE4. Such iterations were first considered in [Aïd15] to give a geometric martingale
approximation of the Liouville measure; the relation to Brownian loop soup clusters became
clear with [ALS20a, ALS20b].

10



Remark 17. [Sign cluster via nested CLE4] We saw that conditionally on the outer boundary
of an excursion cluster, the cluster itself is distributed as the FPS of height 2λ. However,
there is a way to obtain first passage sets using iterations of two-valued sets; for example,
see Lemma 2.5 in [APS20] and the discussion under it. Indeed, the it is explained there
that FPS of level 2λ can be obtained by iterating two-valued local sets A−2λ,2λ until every
connected component of the complement has boundary conditions 2λ. More precisely, we
start by sampling A−2λ,2λ and we repeat the construction inside each loop which does not
have the label 2λ. This way we observe around each point a random walk with values in 2λZ,
stopped at reaching 2λ. As A−2λ,2λ has the law of CLE4, and the signs of labels ±2λ are
i.i.d., we have a way of describing the whole sign cluster using iterated CLE4 via a structure
of branching simple random walks.

4. Uniqueness of the excursion decomposition

In this section, we prove the uniqueness part of Theorem 1. Throughout this section
(νk, Ck, σk)k≥1 denotes the excursion decomposition constructed in Section 3, and (µ̂k, Ĉk, σ̂k)k≥1

is another decomposition that satisfies the properties of Theorem 1 for the same GFF Φ.
By conformal invariance we may assume that we work in the unit disk D throughout this
section.

The proof of uniqueness is dissected into following propositions. We first show that the
excursion clusters in the construction of the previous section are in a certain sense minimal:

Proposition 18. Almost surely, for every k ∈ N there exists k̂(k) ∈ N such that Ck ⊆ Ĉk̂(k).

This already implies that almost surely each excursion decomposition has a cluster sur-
rounding any fixed point of the domain.

Then, we show that the signs of intersecting sign clusters of the two decompositions
introduced above have to match.

Proposition 19. Let k̂(k) be as in Proposition 18. Then almost surely, σk = σ̂k̂(k).

Next, we argue that there is a 1-1 correspondence between the clusters.

Proposition 20. The function k → k̂(k) of Proposition 18 is almost surely injective.

And we finalise the list of propositions by arguing that the clusters are almost surely equal;
the equality of measures is concluded in the proof of the theorem.

Proposition 21. For all k ≥ 1, with k → k̂(k) as above, we have Ck = Ĉk̂(k) almost surely.
Moreover, the function k → k̂(k) is also almost surely surjective.

We now describe a certain way of exploring excursion clusters using local set processes,
then prove the propositions one by one, and finish the section by concluding the proof of the
theorem.

4.1. A local set exploration of excursion clusters. Throughout the proofs we will make
use of the following local set, obtained by exploring the clusters around a line segment until
some stopping time.

11



Lemma 22. Let γ : [0, 1] 7→ D be a simple curve. We define γ̂exc(t) as the union of all
Ĉk that intersect γ([0, t]) and take τ a stopping time for the filtration Ft :=

∨
s≤t σ(γ̂exc(s)).

We have that γ̂exc(τ) is also a local set, more precisely Φ = Φγ̂exc(τ) + Φγ̂exc(τ) where condi-
tionally on γ̂exc(τ) the law of Φγ̂exc(τ) is a zero boundary GFF in D\γ̂exc(τ) and Φγ̂exc(τ) =∑

k σkνk1Ck∩η 6=∅ (where again the sum is ordered by descending diameter size of clusters).

Proof. As by the Markov property of the excursion decomposition (γ̂exc(t))t∈[0,1] is a family
of increasing local sets, this strong Markov property follows from Lemma 1.3.13 in [Aru15]
(in this thesis a continuous process of local sets is considered, but for a right-continuous
process like here the proof works equally well). �

To circumvent some technicalities, we have to tweak this local set further to be able to
also explore only a subset of the excursions intersecting the line; this is done so that any
non-contractible simple loop around the origin contained in the local set processes, has to
be in fact a subset of a single explored non-contractible cluster:

Proposition 23. Let γ be the straight line segment from −i to 0 and define γ̂exc to be the
closure of the union of all Ĉk that intersect γ. For any ε > 0, there exists a local set χε that
has the following property:

(1) It is equal to the closed union of certain excursions of (Ĉk)k≥1.
(2) It is contained in γ̂exc, and contains any cluster Ĉk that surrounds 0 with diameter

bigger than or equal to ε.
(3) if there is a simple loop ` ⊆ χε with diameter bigger than ε that surrounds 0, then

there exists k such that ` ⊆ Ĉk.
(4) any simple loop ` ⊆ D of diameter at least ε surrounding the origin has to either be

contained in χε or hit at least two different prime ends of D \ χε.

Proof of Proposition 23. We construct the set χε recursively. We first define the stopping
time

τ̂ 0 := inf{t ∈ [0, 1] : ∃δ > 0,∃O c.c. of B(0, 1)\(γ̂exc(t) ∪ γ |[−i,−δi]) with 0 ∈ O and ∂D ∩ O = ∅}.

On the event τ̂ 0 = 1, we just set χε = γ̂exc and by definition of τ̂ 0 all the conditions hold
and there is no cluster surrounding the origin. In fact we will see a posteriori that this event
has zero probability and there will be some cluster surrounding 0 with positive probability,
but for now this cannot be excluded.

We now work on the event τ̂ 0 < 1. Then γ̂exc(τ 1)\
⋃
t<τ1 γ̂

exc(t) is equal to a certain
excursion Ĉk. If this excursion surrounds 0 and has diameter smaller than or equal to ε
we finish our exploration and define χε = γ̂exc0 (τ 0) := γ̂exc(τ 0); by definition it satisfies the
desired conditions.

If the above is not the case, we will continue our exploration as follows. Note that γ̂exc(τ 0)

is a local set and that the set of excursions (Ĉk : Ck ∩ γ̂exc(τ 0) = ∅)k≥1 generate an excursion
decomposition of the GFF Φγ̂exc(τ0). Let

x̂ := sup{=(x) : x ∈ γ̂exc(τ 1) ∩ γ}
where =(x) denotes the imaginary part of x and consider the line γ1 that goes from −ix̂ to
−εi. We now define τ̂ 1 as above, but with γ1 in the role of γ - i.e. in words, if a cluster
appears such that γ̂exc(τ 0)∪[−i,−δi] disconnects the origin from the boundary of the domain,
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we stop and start exploring from the top-most point of γexc(τ 0) on the imaginary axis. We
again stop if an excursion surrounding 0 with diameter smaller or equal than ε appears or
if τ̂ 1 = 1. Denoting this new bit of exploration by γ̂exc1 (τ 1), we set χε = γ̂exc(τ 0) ∪ γ̂exc1 (τ 1).
Otherwise we keep on going.

If this procedure finishes at a finite step j we set χε = γ̂exc(τ 0)
⋃j
i=1 γ̂

exc
i (τ i) and otherwise

we set χε = γ̂exc(τ 0)
⋃
i≥1 γ̂

exc
i (τ i). In the latter case we must have that τj → 1 because the

set of clusters is locally finite.
We now need to prove that these sets satisfy the claimed properties. (1) and (2) are clear

from construction, as any cluster surrounding 0 would need to appear at some τj with τj < 1.
To see the point (3), we note that by definition there can be no simple loops ` surround-

ing 0 contained in
⋃
t<τj+1

γ̂excj (t)\γ̂excj−1(τj) and furthermore
(⋃

t<τj+1 γ̂
exc
j (t)

)
∩ γ̂excj−1(τj) and(⋃

t<τj+1
γ̂excj (t)

)
∩ γ̂excj (τj+1) both have exactly one point and thus there can not be a simple

loop going between
⋃
t<τj+1 γ̂

exc
j (t) and either γ̂excj (τj+1) or γ̂excj−1(τj). This proves (3) for the

case if the procedure finishes at a finite step j and τj < 1, in the other case no such loop `
exists.

The last property follows from the fact that by construction χε either separates the origin
from the boundary using a set of diameter less than ε or contains the origin. �

4.2. Proofs of propositions. Let us start this subsection by proving Proposition 18.

Proof of Proposition 18. It suffices to prove the proposition for any cluster Ck that surrounds
0. Let γ be the straight line segment from −i to 0 and define γ̂exc to be the closure of the
union of all Ĉk that intersect γ as before and consider the local set χε from Lemma 23.

We now work recursively starting from the outermost cluster surrounding the origin. In
this aim, we construct A−2λ,2λ, say via SLE4(−2) like in [ASW17], and we consider k ∈ N
such that the outer boundary of Ck is in A−2λ,2λ and surrounds 0 (i.e. Ck is the outer-most
excursion surrounding 0); we let Lk ⊆ A−2λ,2λ denote this outer boundary. We start by
showing that Lk is contained in some Ĉk̂(k).

Claim 17 of [ASW17] implies that if this level line loop Lk intersects D \ χε, it can touch
χε in at most two of its prime ends of (at the start and at the end of the loop). Furthermore,
this can be strengthened. Indeed, using the same proof as that of Claim 17 of [ASW17],
one can see that the level line Lk can touch only at one prime end: the same proof implies
that after the starting point a small enough initial segment of the loop remains only in the
vicinity of one single prime end. Thus by Proposition 23 we conclude that on the event that
Lk has diameter larger than ε, it has to be contained in one Ĉk̂(k). By taking ε→ 0, we see
that this holds almost surely.

We now show that the whole cluster Ck is contained in Ĉk̂(k). To do this, recall from the
construction in Section 3 that given the outer boundary, the cluster Ck is constructed by
taking A−2λ inside the connected component of D\Lk containing 0. Further, by uniqueness
of FPS, we can use the following iterative recipe to construct A−2λ: to obtain Ak, we sample
A−λ,λ inside the connected component of D\Ak−1 that contains 0, unless the boundary value
is already equal to 0. We can now use the argument given in Uniqueness in Section 6 of
[ASW17] to see that each Ak is contained in γ̂exc. Indeed, the fact that level lines used to
construct A−λ,λ do not self-intersect and the fact that if they enter any connected component
of D\γ̂exc they cannot touch the boundary of γ̂exc (Lemma 16 of [ASW17]) imply that they
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cannot enter any connected component of D\γexc at all. This concludes the proof that the
outermost cluster Ck surrounding 0 is contained in Ĉk̂(k).

To show that the next cluster Ck′ surrounding 0 is also contained in some excursion Ĉk̂(k′)

it suffices to note that the law of Φ restricted to the connected component O containing 0
of D\Ck is that of a GFF in D\Ck. This implies that the restriction of (Ĉk, µ̂k, σ̂k)k≥1 to
O is also that of an excursion decomposition of that GFF and so we can repeat the above
procedure.

�

Next up is Proposition 19. The idea is to recover the sign of the cluster by using well-
chosen positive test functions whose support is contained in a small neighbourhood of the
set.

Proof of Proposition 19. Similarly to above, it suffices to prove the claim for the outermost
cluster Ck surrounding 0. Let γ : [0, 1] 7→ B(0, 1) be a straight line from −i to 0 and Ĉk (or
Ck) be the outermost cluster surrounding 0. Define

τ := inf{t ∈ [0, 1] : Ck ∈ γexc(t)}. (4.1)

Then γexc(τ) is a local set by Lemma 22. Further, by Proposition 18, we know that for all
t ∈ [0, 1], it holds that γexc(t) ⊆ γ̂exc(t). Thus γ̂exc(τ) is also a local set and it contains the
cluster Ĉk̂(k)). Observe that by construction the closure of

⋃
t<τ γ

exc(t) intersects Ck only at
x̂ = γ(τ) and that the same holds for Ĉ.

Claim 24. Let A ⊆ Ĉk\{x̂} be a closed set of positive diameter that is measurable w.r.t.
γ̂exc(τ). Consider (fn : D 7→ [0, 1])n≥1, a a family of smooth functions all taking value 1 on A
and equal to 0 for all points of distance at least 2−n of Ĉk. Further, assume that conditionally
on γ̂exc(τ), fn are independent from the GFF Φγ̂exc(τ̂).

Then, almost surely if ν̂k(A) > 0, lim inf(Φ, fn) ≥ ν̂k(A) and if ν̂k(A) < 0, lim inf(Φ, fn) ≤
−ν̂k(A).

Before proving the claim, let us see how it implies the proposition. First, as the claim
holds for clusters of any excursion decomposition satisfying the conditions of Theorem 1, it
holds in particular also for the one constructed via CLE4 and FPS in the previous section,
i.e. if we omit all the hats on C-s in the statement.

Further, as γexc(τ) is a local set contained in γ̂exc(τ), it is conditionally independent of
Φγ̂exc(τ). We can now apply the claim with a closed set A ⊆ Ck \ {x̂}, and functions fn
chosen depending only on γ̂exc(τ) and Φγ̂(τ) twice (once for Ck, once for Ĉk̂(k)) to obtain the
proposition.

It remains to argue the claim.

Proof of Claim 24. We can use the local set property of γ̂exc(τ) to write

(Φ, fn) = (Φγ̂exc(τ), fn) + (Φγ̂exc(τ), fn).

By conditioning on γ̂exc(τ) we can see that the variance of (Φγ̂exc(τ̂), fn) goes to 0. We
conclude by noting that there exists an n such that the support of fn does not intersect the
closure of

⋃
t<τ̂ γ̂

exc(t). �

�
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We now turn to Proposition 20 and start with a preliminary lemma.

Lemma 25. For any connected component O of D\Ck that does not contain ∂D we have
that O ∩ Ĉk̂(k) = ∅. In particular, if `k is the outer boundary of Ck and O′ is the interior,

then Ĉk̂(k) ∩ O′ = Ck.

Proof. We show it for the connected component containing 0. Define τ as in the proof of
Proposition 19. Note that O is also the connected component of D\γexc(τ) that contains 0.
Because Ck ⊆ Ĉk̂(k) we have that O∩ γ̂exc(τ) is equal to O∩ Ĉk̂(k). Lemma 6 (2) then implies
that O ∩ Ĉk̂(k) is a local set of Φγexc(τ)|O. Conditionally on γexc and the sign of the cluster
Ck (WLOG we assume it +1), we see that restricted to O, (Φγexc(τ))Ĉk̂(k)

≥ 0. The first part

of Proposition 4.5 of [ALS20a] now implies that O ∩ Ĉk̂(k) has to be empty.
The second statement follows directly. �

We can now prove Proposition 20, which is maybe the trickiest of the four.

Proof of Proposition 20. By Proposition 18 we know that for each Ck, there is some k̂ with
Ck ⊆ Ĉk̂. We start by showing that the signs σk, σk′ are independent even when we further
condition on the event Ek,k′ that they do not belong to the same cluster of (Ĉk)k≥1, i.e. on
the event,

Ek,k′ = {k̂(k) 6= k̂(k′)}.
This is formalized by the following lemma

Lemma 26. We have that

E
[
(σkνk, 1)(σk′νk′ , 1)1Ekk′

]
= 0.

Using this lemma, we can argue that the function k → k̂(k) is injective. Indeed, for any
points z1, . . . , zn and any nesting levels j1, . . . , jn, there is some N such that all clusters
surrounding these points up to these nesting levels are contained in the first N clusters when
ordered by the decreasing size of diameter. We can now write

E

( N∑
k=1

(σkνk, 1)

)2
 =

N∑
k=1

E
[
(νk, 1)2

]
. (4.2)

Using the lemma we can alternatively write the LHS as:

E

( N∑
k=1

(σkνk, 1)

)2
 =

N∑
k=1

E
[
(νk, 1)2

]
+
∑
k 6=k′

E
[
(σkνk, 1)(σk′νk′ , 1)1Ec

k,k′

]
.

But on the event Ec
(z,j),(w,h), we have that σk = σk′ and thus all the terms in the second sum

are non-negative. But then they have to actually be equal to zero by (4.2). As this holds for
any collection of z1, . . . , zn and any nesting heights, and all clusters can be listed this way,
we obtain that k → k̂(k) is injective.

It remains to prove the lemma.
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Proof of Lemma 26. In this proof, it will be useful to denote clusters using the point they
surround and their level of nesting as follows: for z ∈ D and j ∈ N, we denote Cz,j denote
respectively the j−th outermost cluster that surrounds z. So we now fix z, z′ ∈ D and
j, j′ ∈ N and denote k = k(z, j) and k′ = k(z′, j′) the k and k′ such that Ck = Cz,j and
Ck′ = Cz′,j′ respectively. We remark that all clusters Ck can be listed by considering only
dyadic z ∈ D.

We first prove the lemma when both clusters are outer-most, i.e. when j = j′ = 1.
Consider the local set γ̂exc(τz ∧ τz′) along a line segment γ from the boundary to z and then
to w, stopped at time τz∧τw, when either a cluster of the decomposition (Ĉk)k≥1 around z or
w appears. Assume, WLOG that it is Ĉz,1 that appears. In that case, and on the event Ek,k′ ,
we have that Cz′,1 ∩ Ĉz,1 = ∅. Denote by O′ the connected component of D\γ̂exc(τz ∧ τz′)
that contains z′. Further, we define O as follows.

(1) Either Cz,1 ⊆ Ĉz,1, in which case we define O = ∅;
(2) or Cz,1∩Ĉz,1 = ∅, in which case we defineO as the connected component of D\γ̂exc(τz∧

τz′) that contains z.

Note that in both cases O ∩O′ = ∅. We further claim the following.

Claim 27. Let A be the closure of the union of the outer-most boundaries of the outer-most
clusters of (Ck)k≥1 that are contained in either O or O′. Then a.s. A restricted to both O
or O′ is equal to A−2λ,2λ of Φγ̂exc(τz∧τz′ ) restricted to O or O′, respectively.

Proof of the claim. The set A ∪ γ̂exc(τz ∧ τz′) is a local set that, restricted to O ∪ O′ is a.s.
equal to A−2λ,2λ ∪ γ̂exc(τz ∧ τz′). This is because by construction in Section 3 the collection
outer-most boundaries of the outermost loops of Ck is equal to the collection of loops of
A−2λ,2λ.

Further, by Lemma 6, have that for any x ∈ O′∩D\(A−2λ,2λ∪ γ̂exc(τz ∧ τz′), the harmonic
function Φγ̂exc(τz∧τz′ ) is equal to ±2λ. Thus by (2) Lemma 6, we see that A is a local set
of Φγ̂exc(τz∧τz′ ) restricted to O′ is thin (because as a subset of A−2λ,2λ of Φ, its Minkowski
dimension is smaller than 2) and its harmonic function is equal to ±2λ. We conclude using
the uniqueness of TVS, Theorem 7, that it is equal to A−2λ,2λ of Φγ̂exc(τz∧τz′ ) restricted to
O′. The same argument holds for O, in case it is nonempty. �

We now notice that A is measurable w.r.t. Φγ̂exc(τz∧τz′ ), and that conditionally on γ̂exc(τz∧
τz′), Φγ̂exc(τz∧τz′ ) is independent of Φγ̂exc(τz∧τz′ ). So now, if we are on the case (1)

E
[
σkσk′(νk, 1)(νk′ , 1)1Ek,k′1(1)

]
= E

[
σk(νk, 1)E

[
σk′(νk′ , 1) | γ̂exc(τz ∧ τz′),Φγ̂exc(τz∧τz′ )

]
1Ek,k′1(1)

]
= 0,

where we use that the event (1) and Ek,k′ are measurable with respect to γexc(τz∧τz′),ΦΦγ̂
exc(τz∧τz′ )

(recall that γexc(τz∧τz′) ⊆ γ̂exc(τz∧τz′)), and the previous claim together with the construc-
tion of the decomposition (Ck, σk, νk)k≥1 in Section 3.
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For the case (2), a similar computation is needed:

E
[
σkσk′(νk, 1)(νk′ , 1)1Ek,k′1(2)

]
= E

[
E
[
σk′(νk′ , 1) | γ̂exc(τz ∧ τz′),Φγ̂exc(τz∧τz′ )

]
E
[
σk(νk, 1) | γ̂exc(τz ∧ τz′),Φγ̂exc(τz∧τz′ )

]
1Ek,k′1(2)

]
= 0.

Here we used the claim above together with the fact that Φγ̂exc(τz∧τz′ ) restricted to disjoint
components O,O′ are independent.

For clusters at further levels we discover γ̂exc(τz ∨ τz′), i.e. we wait until both outermost
clusters appear, and then iterate inside the connected components of complement of γ̂exc(τ2)
containing either z or z′ as above. �

�

Finally, Proposition 21 follows by some further considerations on local sets and by also
using the known Minkowski dimension of A−2λ,2λ.

Proof of Proposition 21. We start by showing that Ck = Ĉk̂(k) almost surely. By Proposition
18, we have that Ck ⊆ Ĉk̂(k). Further by Lemma 25, we know that Ck̂(k) \ Ck can only
intersect the connected component O of D \ Ck that contains ∂D on its boundary.

Like in the proof of Claim 26, all clusters can be listed from outermost towards the interior
around dyadic points zk. Thus it suffices to prove Ck = Ĉk̂(k) for outermost clusters and this
in turn follows from showing the following claim: for any curve γ along the dyadics starting
from ∂D to some zk, we have that the complements O, Ô of A = γexc(1) and Â = γ̂exc(1),
which share boundary with D, agree almost surely. To see this observe that both A, Â
are local sets, and by Lemma 6 (2), Â \ A is also a local set of φγexc(1) restricted to O.
Further, as Ck ⊆ Ck̂(k) and by Proposition 20 the function k → k̂(k) is injective, we see that
Â \ A ⊆ A−2λ,2λ(D). Hence Â \ A has Minkowski dimension strictly less than 2 [ASW17]
and it is a thin local set of φO, connected to boundary with zero boundary values. Thus by
Lemma 9 of [ASW17] it is almost surely empty.

It remains to show that the function k → k̂ is surjective. This follows from a very similar
argument as above. Indeed, observe that any cluster Ĉk∗ that is not equal to some Ck is
contained in the closed union of outer boundaries of Ck in some finite iteration step of the
construction of the excursion decomposition (Ck, νk, sk)k≥1. But these outer boundaries are
given by independent copies of A−2λ,2λ. Thus we can repeat the argument above to obtain
that such clusters of positive diameter do not exist. To see that there are no clusters whose
support is just a point, we recall that almost surely the 2D GFF does not put any mass on
single points.

�

4.3. Conclusion of the uniqueness of the excursion decomposition.

Proof of uniqueness in Theorem 1. Take (σk, νk, Ck) and (σ̂k, ν̂k, Ĉk) two decompositions, where
the first one is the one constructed in the previous section. From Proposition 18 we know
that for every k there is k̂(k) such that Ck = Ĉk̂(k) and by Propositions 20, 21 this assignment
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is bijective. We also know that the signs agree, so it suffices to show that the measures νk,
ν̂k agree.

To see this observe that for any simple curve γ from the boundary and for any time t
a.s., we have that γexc(t) = γ̂exc(t). But now notice that by the Markov decomposition, we
can conclude that almost surely for any curve γ along the dyadics and any rational time in
H−1−ε(D)

φγexc(t) = φ̂γexc(t).

But the local set process γexc(t) is right-continuous, and for any decreasing sets Dn with⋂
Dn = D, ΦDn is also continuous. We conclude that in fact for all times t ∈ [0, 1], it holds

that
φγexc(t) = φ̂γexc(t)

and in particular it holds at the appearance of any cluster of diameter at least ε. This
concludes that in fact for all k ≥ 1, we have νk = ν̂k̂(k) and the theorem follows.

�

5. Convergence from the metric graph

In this section, we prove the convergence of the excursion decomposition of the metric
graph GFF to that of the continuum GFF. We will work in the same set-up as in Section
4.1 of [ALS20b], except that the domain D will always be simply connected.

For all n ≥ 1, let φ̃n be a metric GFF in a bounded graph Dn ⊆ (2−nZ)2. We define
(C̃

(n)
k , σ̃

(n)
k , ν̃

(n)
k )k≥1 as the sequence of sign clusters of φ̃n, the respective signs and sign ex-

cursions, ordered by decreasing size of cluster diameter. Here, by a sign excursion we mean
the absolute value of the restriction of the GFF to the cluster C̃(n)

k , i.e.

ν̃
(n)
k (dx) = σ̃

(n)
k φ̃n(x)1

x∈C̃(n)
k
dx.

We now take a sequence of (metric) graphs D̃n ⊆ (2−nZ)2 converging to a bounded and
simply connected domain D ⊆ C in the sense that their complements inside some large box
[−C,C]2 ⊇ D converge in the Hausdorff topology (as in Section 4.1.1 of [ALS20b]).

The main result of this section is the following.

Theorem 28 (Convergence of the excursion decomposition). Let φ̃n be a sequence of zero
boundary metric graph GFFs on D̃n that are coupled with a GFF Φ such that a.s. φ̃n → Φ
in, say, H−ε.

Then for every k > 0, C̃(n)
k → Ck, ν̃

(n)
k → νk and σ̃

(n)
k → σ as n → ∞, where the

convergence is in probability and in the Hausdorff topology for the first, and in the weak
topology of measures for the first and second components respectively.

In large lines, one could say that the theorem follows by patching together different con-
vergence results for each element, all of which are already present in the literature. This
patching, however, does require some care, mainly to rule out different possible spurious
contributions from microscopic clusters. Notice that we will not use the uniqueness claim
of the theorem to identify the limit; rather we will identify excursion clusters, signs and
measures one by one.
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We start from a lemma that ensures the tightness of the sequences of measures (ν̃
(n)
k )n≥0

and allows us to see that no spurious extra mass is produced in the limit by infinitesimal
excursion clusters.

Lemma 29. Let (C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k ) be an excursion decomposition of the metric graph GFF φ̃n

and let J be any (deterministic) index set. Then for any q ∈ N

E
[
(φ̃n, f)2q

]
≥
∑
k∈J

E
[
(ν̃

(n)
k , f)2q

]
+ E

[
(1

D̃n\∪k∈J C̃
(n)
k
φ̃n, f)2q

]
. (5.1)

and
E
[
(φ̃n, f)2

]
=
∑
k∈J

E
[
(ν̃

(n)
k , f)2

]
+ E

[
(1

D̃n\∪k∈J C̃
(n)
k
φ̃n, f)2

]
(5.2)

Proof. For the inequality (5.1), it suffices to prove it for any finite index set and any q ≥ 1,
then the case of infinite index sets follows by dominated convergence. We decompose

φ̃n =
∑
k∈J

σ̃
(n)
k ν̃

(n)
k + 1

D̃n\∪k∈J C̃
(n)
k
φ̃n.

Then, we write E[(φ̃n, f)2q] as the sum of three types of terms, the first being∑
k∈J

E[(ν̃
(n)
k , f)2q] + E[(1

D̃n\∪k∈J C̃
(n)
k
φ̃n, f)2q],

the second type of terms are a binomial coefficients times

E[(σ̃
(n)
k ν̃

(n)
k , f)p(1

D̃n\∪k∈J C̃
(n)
k
φ̃n, f)2q−p]

and the last type of terms are constant times

E[(σ̃
(n)
k ν̃

(n)
k , f)p(σ̃

(n)
j ν̃

(n)
j , f)2q−p],

with k 6= j.
Now, when p is even, we can lower bound the second and third types of terms by 0.

However, we claim that when p is odd, they are equally zero by sign symmetry. Indeed,
conditionally on (C̃

(n)
k , σ̃

(n)
k , ν̃

(n)
k )k∈J , the field 1

D̃n\∪k∈J C̃
(n)
k
φ̃n has the same distribution as its

additive inverse. Thus for p odd∑
k∈J

E[(σ̃
(n)
k ν̃

(n)
k , f)p(1

D̃n\∪k∈J C̃
(n)
k
φ̃n, f)2q−p] = 0.

But also all the signs σ̃(n)
k are i.i.d. Rademacher random variables, thus also for all j 6= k ∈ J

E[(σ̃
(n)
k ν̃

(n)
k , f)p(σ̃

(n)
j ν̃

(n)
j , f)2q−p] = 0

and we conclude the first part. The second part for finite index sets follows from the com-
putation above, as in the case q = 1, there are no cross-terms with even exponents; for
the infinite sums, we can use dominated convergence, guaranteed by say the case q = 2 in
(5.1). �

Proof of Theorem 28. We start by noting that thanks to the uniqueness of the excursion
decomposition and Lemma 4.10 of [ALS20b], we only need to prove convergence in law of
(φ̃n, (C̃

(n)
k , σ̃

(n)
k , ν̃

(n)
k )k) as n→∞.
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Now, φ̃n are tight by assumption; for any k, C̃(n)
k are tight as random closed sets in a com-

pact domain, σ̃(n)
k are tight as±1 valued random variables and finally ν̃(n)

k are tight by the first
equality in Lemma 29. Thus, using Tychonoff theorem, we see that (φ̃n, (C̃

(n)
k , σ̃

(n)
k , ν̃

(n)
k )k)

is tight, and thus we can find a subsequence of it (we denote it the same way) and use
Skorokhod’s representation theorem to obtain the almost sure convergence

(φ̃n, (C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k )k)→ (Φ̂, (Ĉk, σ̂k, ν̂k)k).

We just need to identify (Φ̂, (Ĉk, σ̂k, ν̂k)k) as the elements of the excursion decomposition.
First, it is clear that (σ̂k)k are i.i.d. Radamacher random variables and Φ̂ is a GFF in D.

First, note that if we only study the outer most clusters C̊(n)
k := Ĉ

(n)
k(k) (i.e. those that

are not surrounded by any other cluster), then the outer boundaries of those outermost
clusters converge to the loops of CLE4 in the sense that the outer boundaries of the m
largest outermost discrete clusters converge to outer boundaries m largest continuum ones,
and moreover the closed union of all outermost cluster boundaries converges to CLE4 - these
statements follow from the work in [Lup18]. More precisely, the main statement of that paper
does not directly apply these claims - it does not exclude long thin filament-like clusters with
limits in the interior of CLE casket; however with further work it can be deduced with the
same methods; see e.g. Lemma 4.13 in [ALS20b] for a context, where similar care is needed,
or proof of Lemma 6 of [QW19].

Now, notice that once we manage to identify the outermost clusters, their signs and
measures, then we can recursively continue. Indeed, as the closure of the union of outermost
clusters C̊(n)

k is a local set for all n, we conclude that in the limit, conditionally on the closure
of the union of all outermost clusters C̊k, the law of Φ̂ restricted to D \ (∪kC̊k) is that of
a zero boundary GFF in D \ (∪kC̊k). Thus we see that once we can deal with outermost
excursions, the convergence will also hold for excursions that are surrounded by finitely many
excursions. As for any ε > 0 the number of excursions of diameter bigger than ε is almost
surely finite, we have reduced the proposition to proving convergence for outermost clusters.
This convergence is the content of the following claim.

Claim 30. Fix any loop ` of A−2λ,2λ and consider the sequence of clusters C̊(n)
k whose outer

boundaries converge to `. Then C̊
(n)
k converges to the union of ` with the FPS A±2λ of the

GFF ΦA−2λ,2λ restricted to O, the interior of `. Furthermore, ν̊(n)
k converges to the measure

νA±2λ
associated to this FPS.

Proof of Claim 30. First, we note that the union of all outermost clusters C̊(n)
k is a local

set of φ̃n, thus its limit C̊k is a local set of Φ̂ by Lemma 6. Further, when restricted to
the interior O of the outermost boundary ` of the cluster C̊k, this limit is a local set that
satisfies the properties of an FPS of level ±2λ (for the GFF ΦA−2λ,2λ restricted to O). Thus
it is equal to this set by the uniqueness of FPS, Theorem 9. In particular, this means that
C̊k, the limit of C̊(n)

k , is equal to some outermost cluster Ck(k).
To identify the limiting excursion measures, we will follow a strategy similar to what was

used in Section 4 to deduce the equality of excursion clusters and excursion measures by a
no extra mass argument. Additional convergence issues are taken care by Lemma 29. Let
us flesh it out here.
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First, as no other subsequential limit of an outermost cluster C̊k can intersect O, we
conclude from the Markov decomposition w.r.t. the FPS A±2λ in O that

ν̊k := lim
n→+∞

ν
(n)
k ≥ νk(k) (5.3)

in terms of positive measures.
Further, one needs to show that there is no extra mass on the subsequential limiting

clusters, that is possibly compensated by some infinitesimal excursions in the limit.
To see this, recall that the closure of the union of outermost clusters C̊k forms a local set.

Also, from the argument above we see that this local set is equal to the local set obtained by
taking CLE4 and first passage sets of height ±2λ inside each of the cluster, i.e. it is equal
to the closed union of outermost clusters C̊k. Let us denote this set by A.

By Lemma 29, we can write the sum over outermost excursion clusters C̊k,

E
[
(Φ, 1)2)

]
=
∑
k

E
[
(νk(k), 1)2

]
+ E

[
(ΦA, 1)2

]
.

On the other hand, by the claim above and the first point of Lemma 29, dominated conver-
gence gives us that for any k

E
[
(̊ν

(n)
k , 1)2

]
→ E

[
(̊νk, 1)2

]
.

Similarly, by Corollary 4.5 from [ALS20b] and part 1 of Lemma 29 we also have that
E
[
(φ̃A

(n)

n , 1)2
]
→ E

[
(ΦA, 1)2

]
, where A(n) denotes the local set given by the closed union of

C̊
(n)
k . Thus we also have

E
[
(Φ, 1)2)

]
=
∑
k

E
[
(̊νk, 1)2

]
+ E

[
(ΦA, 1)2

]
.

But now recall that ν̊k ≥ νk(k), from where we see that in fact we have to have a one to
one correspondence between clusters with positive measure, and the equality has to hold in
(5.3).

�

�

6. Further comments and conjectures: crossing probabilities, 2D
continuum GFF as a limit of spin models and the excursion

decomposition of the DGFF

6.1. Uniform continuity of crossing probabilities by sign excursions. First we deal
with the continuity, uniformly with respect to the scale, of annuli crossing probabilities by
metric graph excursion clusters. 6 This confirms the assumption in Remark 2 of [DW20]. A
similar statement for first passage sets was proved in Corollary 5.1 in [ALS20b].

The set-up is as follows. Consider D = (−1, 1)2, and let D̃n be the metric graph approx-
imation of D in the square lattice 1

n
Z2. Let φ̃n be the metric graph GFF on D̃n with 0

boundary conditions. For a ∈ (0, 1), let Sa denote the square contour Sa = ∂((−a, a)2) For

6We hereby send greetings to Jian Ding who asked us this question.
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a ≤ b ∈ (0, 1), let pn(a, b) the probability that there is a sign cluster of φ̃n that crosses from
Sa to Sb, i.e. crosses the annulus [−b, b]2 \ (−a, a)2.

Note that pn(a, a) = 1 and that for fixed n, the function pn(a, b) is continuous on {a, b ∈
(0, 1)2 : a ≤ b}. Indeed, this is due to the fact that for a ∈ (0, 1) fixed, a.s., if a cluster of
φ̃n intersects Sa, then it also intersects (−a, a)2 and D \ [−a, a]2. However, we are interested
in the continuity of (a, b) 7→ pn(a, b) uniformly in n ≥ 1. We will deduce this from the
convergence of excursion clusters and continuity in the continuum.

Denote by p(a, b) further the probability that there is an excursion cluster of the continuum
GFF Φ on D that crosses from Sa to Sb and observe that again, p(a, a) = 1.

Proposition 31 (Uniform continuity of crossing probabilities). The following holds.
(1) The function p(a, b) is continuous on {a, b ∈ (0, 1)2 : a ≤ b}.
(2) The sequence (pn(a, b))n≥1 converges to (p(a, b))n≥1 uniformly on compact subsets of
{a, b ∈ (0, 1)2 : a ≤ b}.

(3) In particular, the functions (a, b) 7→ pn(a, b) are continuous uniformly in n ≥ 1 on
any compact subset of (0, 1)2.

Remark 32. Note that p(a, b) is not continuous on {a, b ∈ [0, 1]2 : a ≤ b}, that is if one
allows a = 0 or b = 1. For instance,

lim
a→1

p(a, 1) = 0 6= lim
a→1

p(a, a) = 1.

We now prove the proposition.

Proof of Proposition 31. Point (3) is a direct consequence of (1) and (2); and point (2) follows
from the convergence of clusters; see Theorem 28.

Finally, (1) follows by combining the following 3 facts.
• First, given a fixed a ∈ (0, 1), a.s. there exists an excursion cluster of Φ intersecting
Sa. This follows e.g. from the fact that a.s., there is a Brownian loop in the Brownian
loop soup that intersects Sa.
• Second, given a fixed a ∈ (0, 1), a.s., if an excursion cluster intersects Sa, then it also
intersects (−a, a)2 and D \ [−a, a]2, that is to say no excursion cluster is tangential
to Sa. This is Lemma 33 below.
• Third, for every ε > 0, there are a.s. finitely many excursion sets of diameter larger
than ε - this is the local finiteness conditions in Theorem 1.

�

It remains to state and prove the above-mentioned Lemma 33.

Lemma 33 (Non-tangency of excursion clusters). Fix a ∈ (0, 1). Then

P(∃C excursion cluster of Φ, C∩Sa 6= ∅, but C∩(−a, a)2 = ∅ or C∩(D\[−a, a]2) = ∅) = 0.

Proof. Denote

pext(a) = P(∃C excursion cluster of Φ, C ∩ Sa 6= ∅, C ∩ (−a, a)2 = ∅),
pint(a) = P(∃C excursion cluster of Φ, C ∩ Sa 6= ∅, C ∩ (D \ [−a, a]2) = ∅).

We claim that there can be at most countably many a ∈ (0, 1) such that pext(a) > 0 or
pint(a) > 0. Indeed, let be (Ck)k≥1 an enumeration of excursion clusters, for instance by
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decreasing diameter. Denote

ak = sup{a ∈ (0, 1) : Ck ∩ Sa 6= ∅}, ak = inf{a ∈ (0, 1) : Ck ∩ Sa 6= ∅}.
If pext(a) > 0, resp. pint(a) > 0, then a is an atom for the distribution of ak, resp. ak, for
at least one of the k ≥ 1. And the number of atoms of a probability distribution is at most
countable.

We further claim that the functions a 7→ pext(a) and a 7→ pint(a) are both non-decreasing.
Therefore, being empty is the only way for the sets p−1

ext((0, 1]) and p−1
int((0, 1]) to be at most

countable.
First, let us explain the monotonicity of a 7→ pint(a). Let a < b ∈ (0, 1). Let Φ2 be

the continuum GFF on the smaller square (−a/b, a/b)2, with 0 boundary conditions. The
excursion sets of Φ and Φ2 are naturally coupled, by using the same Brownian loop soup in
D. The restriction of this Brownian loop soup to (−a/b, a/b)2 is a Brownian loop soup in
(−a/b, a/b)2. In this coupling, an excursion set of Φ that is contained in (−a/b, a/b)2 is also
an excursion set of Φ2. Therefore,

pint(a) ≤ P(∃C excursion cluster of Φ2, C ∩ Sa 6= ∅, C ∩ ((−a/b, a/b)2 \ [−a, a]2) = ∅).
But, by scaling, the right-hand side above equals pint(b).

The monotonicity of a 7→ pext(a) is only slightly more complicated. Let a < b ∈ (0, 1). Let
Φ3 be the continuum GFF on the larger square (−b/a, b/a)2, with 0 boundary conditions.
We couple the excursion clusters of Φ and Φ3 by using the same Brownian loop soup on
(−b/a, b/a)2. If C is an excursion set of Φ3 such that C ∩ Sb 6= ∅ and C ∩ (−b, b)2 = ∅,
then by removing the Brownian loops intersecting (−b/a, b/a)2 \D, the cluster C splits into
countably many clusters (C ′j)j≥1, each of the C ′j being an excursion cluster for Φ. Since no
Brownian loop is tangent to Sb, and by local finiteness of the excursion clusters of Φ, at least
one of the C ′j has to intersect Sb, and therefore is also tangent to Sb. Thus,

pext(b) ≥ P(∃C excursion cluster of Φ3, C ∩ Sb 6= ∅, C ∩ [−b, b]2 = ∅).
By scaling, the right-hand side above equals pext(a). �

6.2. 2D continuum GFF as a limit of spin models and the corresponding FK rep-
resentation. Recall the correspondence between the Ising model and its FK representation:

Theorem 34 (FK representation of the Ising model). Let (σv)v∈V be the free boundary Ising
model on a graph G = (V,E) with inverse temperature β and edge-weights (Je)e∈E.

Then its FK representation is the bond percolation configuration (ωe)e∈E on G, defined on
the same probability space, that satisfies the following properties with pe = 1− e−2βJe:

(1) Its marginal law is given by a bond percolation with the law:

P(ωe) ∝ Πe∈Ep
ωe
e (1− pe)1−ωe2#clusters

(2) Its conditional law given (σv)v∈V is obtained by picking for each edge and independent
Ber(pe) random variable and setting ωe = 1 if and only if σv = σw and this random
variable is equal to 1.

Now, consider the zero boundary discrete GFF (DGFF) φG on a graph G = (V,E) and
let Gi be the subgraph induced by interior vertices. One can interpret its sign field σG(v) :=
sign(φG(x)) defined on the graph Gi as a random field Ising model, with temperature 1 and
the random coupling constants given by Je = |φG(v)φG(w)| for any edge e = (v, w). A nice
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observation of [LW16] is that the sign clusters of the naturally related metric graph GFF φ̃G

form a FK-representation of this random field Ising model:

Proposition 35 (FK representation via metric graph GFF). Consider a zero boundary
DGFF φG on a graph G = (V,E) and the zero boundary metric graph GFF φ̃G obtained by
extrapolating φG to the line graph G̃ of G using independent Brownian bridges over each edge
(v, w) of time-length 1 and endpoints φG(v), φG(w).

Consider now the bond percolation (ωe)e∈Ei on Gi where we set ωe = 1 if and only if φ̃G
has the same sign throughout the edge e. Then ωe forms a FK-representation of the random
field Ising model sign(φG).

Recall from Theorem 3 that the sign clusters of the metric graph GFF φ̃n, defined on
the lattice approximation of a simply connected domain D and converging to a continuum
GFF ΦD, converge to our excursion decomposition of ΦD. This joined together with the
following proposition explains why it is justified to call our excursion decomposition the
FK-representation of the continuum GFF. Notice that interestingly this FK-representation
is not measurable w.r.t. the field in the discrete, yet becomes measurable in the limit!

Proposition 36 (Continuum GFF as a limit of random field Ising model). Consider a
sequence of lattice graphs Dn ⊆ (2−nZ)2 converging to a bounded and simply connected
domain D ⊆ C in the sense that their complements inside some large box [−C,C]2 ⊇ D
converge in the Hausdorff topology.

Let φn be the zero boundary DGFF defined on Dn, set c1 :=
√
π/2 and define sn(v) :=

c1

√
E [φn(v)2] signφn to be sign of the DGFF defined in the interior of Dn. Then for any

continuous bounded compactly supported f on D, if we denote by fn its restriction to the
interior of Dn, we have that as n→∞,

E
[
(φn − sn, fn)2

]
→ 0.

Here (fn, gn) := n−2
∑

v∈Dn fn(v)gn(v) is chosen such that it converges to the continuum
inner product.

Further, if φ is the zero boundary GFF on D and φn → φD in probability in H−1−ε(D)
(when properly interpolated), then also sn → φD in probability in H−1−ε(D).

This follows from a simple computation, based on the following elementary lemma:

Lemma 37. Let X, Y be jointly Gaussian with variance 1 and correlation ρ � 1. Then
E(sign(X) sign(Y )) = 2

π
ρ+O(ρ2) and E(X sign(Y )) =

√
2
π
ρ+O(ρ2).

Proof. The density of (X, Y ) at (x, y) is given by
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 + y2 − ρxy)

)
.

For ρ� 1, we can write it as a perturbation of the independent vector
1

2π
√

1− ρ2
exp

(
− 1

2(1− ρ2)
(x2 + y2)

)
(1 + ρxy +O(ρ2x2y2)).

We can now directly calculate

E(sign(X) sign(Y )) = ρE(XY/|XY |) = ρE(|X̃|)2 +O(ρ2),
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where X̃ is a Gaussian of variance 1− ρ2. This gives us

E(sign(X) sign(Y )) =
2

π
ρ+O(ρ2).

The other calculation can be done similarly or by writing Y = ρX+Z with Z and independent
Gaussian of variance 1− ρ2. �

One could in fact avoid the lemma above by using an explicit formula for the correlation of
signs of joint Gaussians: E(sign(X) sign(Y )) = 2

π
arcsin(ρ), with notations as in the lemma.

However, this lemma also generalizes to the case of the angle of a vector-valued GFF, see
the remark just after the proof.

Proof of Proposition 36. We start by noting that E [(φn − sn, fn)2] is equal to

n−2
∑

v,w∈Dn

fn(v)fn(w)E [φn(v)φn(w) + sn(v)sn(w)− φn(v)sn(w)− φn(w)sn(v)] .

But now (φn(v), φn(w)) is a Gaussian vector with variance E [φn(v)2] ,E [φn(w)2] and cor-
relation E [φn(v)φn(w)] given by the zero boundary Green’s function. In particular, as the
former grow like c logN and the latter remains bounded for ‖v − w‖2 > ε for any ε > 0, we
can apply the lemma outside of the near-diagonal ‖v−w‖2 ≤ ε to obtain that the sum over
‖v−w‖2 ≥ ε is bounded by cε(log n)−1 and thus converges to zero as n→∞. The diagonal
part can be bounded by O(ε2 log |ε|) by a direct calculation. As this holds for any ε > 0, we
obtain the first claim.

To see the final part of the proposition, notice that we can similarly bound the H−1-
norm of sn interpolated sufficiently nicely over the squares (e.g. linearly over edges and the
harmonically inside the squares). Indeed, denoting this interpolation by s̃n, its expected
squared H−1-norm is given by∫

D

∫
D

G(z, w)E[s̃n(z)s̃n(w)]dzdw

and we can use the lemma above to bound it uniformly in n. This gives tightness in H−1−ε

and thus the claim follows. �

Remark 38. As mentioned above, if one considers vector-valued DGFFs, i.e. a vector
(φ1

n, . . . , φ
d
n) of independent GFFs, one can generalize the lemma above and then the same

proof shows that the angle of the DGFF also converges to the continuum vector-valued GFF,
with c1 replaced by another constant cd. This adds yet another layer to the connection between
the spin O(N)-models and vector-valued GFF, see e.g. [AGS22] for the usefulness of such
connections.

6.3. Conjectured limit of the excursion decomposition of the DGFF. We finish the
article by discussing the scaling limit of the excursion decomposition of the discrete GFF.
Let us start by stating the conjecture in a slightly informal way (a precise statement would
be similar to Theorem 3).

The set-up is as follows. We consider a sequence of lattice graphsDn ⊆ (2−nZ)2 converging
to a bounded and simply connected domainD ⊆ C in the sense that their complements inside
some large box [−C,C]2 ⊇ D converge in the Hausdorff topology. As before, we denote by
φn the zero boundary DGFF defined on Dn. We will write (En

k , θ
n
k , µ

n
k)k≥1 for the excursion
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decomposition of φn, where the components the denote the sign excursion clusters, their
signs and the DGFF restricted to them.

Conjecture 39. Consider a sequence of lattice graphs Dn ⊆ (2−nZ)2 converging to a bounded
and simply connected domain D ⊆ C in the sense that their complements inside some large
box [−C,C]2 ⊇ D converge in the Hausdorff topology.

Let φn be the zero boundary DGFF defined on Dn, such that φn → Φ almost surely in,
say, H−ε and let (En

k , θ
n
k , µ

n
k)k≥1 be the excursion decompositions of the DGFFs. Then these

converge to a decomposition (Ek, θk, µk)k≥1 described as follows:
• The union of outermost positive clusters is given by A−λ and the union of outermost
negative clusters by Aλ. Each individual cluster is given by taking A−λ or Aλ in the
holes of A−λ,λ of sign λ or −λ respectively.
• Further clusters are defined recursively: in the holes surrounded by each negative
cluster (i.e. a hole with boundary value λ) a positive cluster is given by A−λ and in
the holes surrounded by a positive cluster we obtain negative clusters by taking Aλ.

Further, given the clusters, the signs are determined up to a global multiplication by −1 and
the sign excursions (µk)k≥1 are given by the Minkowski content measures of (Ek)k≥1 in the
same gauge as in Theorem 2

Notice that A−λ for a GFF with boundary value λ has the same law as A−2λ of a zero
boundary GFF. The reason why the boundary values are equal to ±λ for the sign clusters
is the same as why the height gap appears in [SS09].

The heuristic for the conjecture goes as follows. Consider the discrete GFF with zero
boundary conditions say on the triangular lattice in some domain. Then it was shown in
[SS09] that the level line from x to y on the domain boundary converges to SLE4(−1,−1).
Moreover, it was observed that one can have the joint convergence of level lines between any
pair of a countable collection of boundary points. In [AS18] it was noticed that this collection
of level lines would be equal to A−λ,λ. Thus the "outer" boundaries of the cluster connected
to the boundary should be given by A−λ,λ. Let us now consider the positive cluster. It has
boundary values λ in the limit. In the discrete, to obtain the discrete cluster we could start
by taking the metric graph sign cluster connected to this boundary. After exploring this,
we would then again see a zero boundary GFF but now for a metric graph. To obtain the
discrete sign cluster, we would need to continue to explore, but we would be in the same
situation as in the beginning - we would need to explore the boundaries of sign clusters for a
zero boundary GFF. In the continuum limit this should correspond to another copy of A−λ,λ,
although this does not directly follow from [SS09]. Iterating this way we get the following
continuum description: the outermost positive cluster is given by taking A−λ,λ, then FPS
A0 in the loops and then again A−λ,λ in all the components that now have zero boundary
condition. These steps are iterated until there are no boundaries with 0 or λ boundary value.
It follows from uniqueness of first passage sets, Theorem 9 that this set is exactly equal to
A−λ. Similar considerations support the next steps of the conjecture.
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