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EXCURSION DECOMPOSITION OF THE 2D CONTINUUM GFF

JUHAN ARU, TITUS LUPU, AND AVELIO SEPÚLVEDA

Abstract. In this note we show that the 2D continuum Gaussian free �eld (GFF) admits
an excursion decomposition similar to the classical excursion decomposition of the Brownian
motion. In particular, 2D continuum GFF can be written as an in�nite sum of disjoint
positive and negative sign excursions, which are given by Minkowski content measures of
clusters of a critical 2D Brownian loop soup with i.i.d. signs. Although the 2D continuum
GFF is not even a signed measure, we show that the decomposition to positive and negative
parts is unique under natural conditions.

1. Introduction

The 2D continuum Gaussian free �eld (GFF) is a universal model of a continuum height
function and has become a central object in the study of conformally invariant continuum
random geometry. The main reason for this is its strong connections with other objects like
for example Schramm-Loewner Evolution, Brownian loop soup and Liouville quantum grav-
ity measures (see e.g. overviews [BP23, GHS19, WP21]) and several known or conjectured
convergence results towards the Gaussian free �eld [Nad97, Ken01, RV07, BLR20].
In this note, we explain how to prove a decomposition of the 2D continuum Gaussian free

�eld into an (in�nite) sum of signed measures with disjoint supports. This decomposition
is unique under natural conditions and can be obtained as a scaling limit of an honest
excursion decomposition of the metric graph GFF. Thus our result says that there is a natural
decomposition of the GFF into negative and positive parts, despite the fact that the �eld is
not pointwise de�ned and not even a signed measure. The obtained decomposition shares
many properties with the classical excursion decomposition of Brownian motion [Itô71], but
also exhibits some new surprising ones.
We work in an open bounded simply-connected domain D ⊂ C, and we consider Φ a zero

boundary Gaussian free �eld on D. To �x a normalization, we consider the GFF as the �eld
coming from the following functional integral

exp
(
− 1

2

∫
D

∥∇φ∥2
)
Dφ.

More precisely, Φ is the centred Gaussian process with covariance given by the Dirichlet
Green's function GD(z, w) function with the following divergence on the diagonal

GD(z, w) ∼
1

2π
log |z − w|−1.
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With this normalization, the value of the height gap (used later and introduced in [SS09])

is 2λ =
√

π/2.
The contribution of this paper comes in three theorems: �rst we state the existence and

uniqueness of an excursion decomposition, second we list properties of this decomposition,
that mirror strongly those of the excursion decomposition of the one dimensional Brownian
motion and make connections with the 2D critical Brownian loop soup. Finally, we show
that the naturally de�ned excursion decomposition of the metric GFF converges to the
excursion decomposition of the continuum GFF. We make use of known couplings between
GFF, CLE4 and Brownian loop soup [SS09, SW12, ASW17, QW18, ALS20a, ALS20b] and
build on techniques introduced in [SS13, ASW17, ALS20a, ALS20b].
The existence of the excursion decomposition is given in the following theorem.

Theorem 1 (Excursion decomposition of the 2D Gaussian free �eld). Let Φ be a zero
boundary GFF in D. There exists a unique collection of positive measures (νk)k≥1 with
supports (Ck)k≥1, and a collection of signs (σk)k≥1, such that the following conditions hold:

(1) We can write

Φ = lim
N→∞

N∑
k=1

σkνk, (1.1)

where the sum is ordered by decreasing size of the diameter of Ck. The sum converges
almost surely in all the Sobolev spaces H−1−ε(D) (i.e. for the Sobolev norms) for
ε > 0.

(2) The decomposition satis�es the following Markov property. For any smooth simple
path γ ⊂ D, starting from the boundary, let γexc denote the closure of the union of
all sets Ck that intersect γ. We can write almost surely Φ = Φγexc

+ Φγexc , with

Φγexc =
∑

k:Ck∩γ ̸=∅

σkνk,

where the sum is again ordered by decreasing size of diameter of Ck and converges
almost surely in all the Sobolev spaces H−1−ε(D), for ε > 0. Further, conditionally
on γexc, the �eld Φγexc

is independent of Φγexc and has the law of a zero boundary
GFF in the domain D\γexc.

(3) The collection (Ck)k≥1 is pairwise disjoint, locally �nite1, and further each Ck is
connected.

We call (Ck)k≥1 the (sign) excursion clusters, (νk)k≥1 the sign excursions and the triplet
(Ck, σk, νk)k≥1 the excursion decomposition of Φ.

Further properties of the excursion decomposition are listed in the following theorem.

Theorem 2 (Properties of the excursion decomposition). Let Φ be a zero boundary GFF
in D and ((Ck, νk, σk))k≥1 respectively the excursion clusters, the measure and their signs in
the excursion decomposition of Theorem 1. Then, the following properties hold:

(1) The excursion decomposition ((Ck, νk, σk))k≥1 is measurable w.r.t. Φ.
(2) In the joint law of ((Ck, νk, σk))k≥1, the signs (σk)k≥1 are independent of the rest and

have the law of i.i.d. Rademacher random variables.

1Locally �nite means that for any ε > 0 there are �nitely many Ck with diameter bigger than ε.
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(3) For all k ≥ 1, the measures νk are given by Minkowski content measure of Ck de�ned
by

νk(f) := lim
r→0

1

2
| log r|1/2

∫
D

f(z)1d(z,Ck)≤rdz,

for all f ∈ C(D). In particular for all k ≥ 1, νk is determined by Ck.
(4) The law of (Ck)k≥1 equals to that of clusters of a 2D Brownian loop soup at the critical

intensity α = 1/2 in D, ordered by decreasing diameter.

Further, one can justify the name excursion decomposition by showing a convergence result
from the well de�ned excursion decomposition on the metric graph GFF. See Section 5 for
the exact set-up.

Theorem 3 (Convergence of the excursion decomposition). Let Φ be a zero boundary GFF

on D and ϕ̃n be a sequence of zero boundary metric graph GFFs on D̃n that are coupled with
a GFF Φ such that a.s. ϕ̃n → Φ in H−ε(D), for some ε > 0. Further, take (C̃n

k , ν̃
n
k , σ̃

n
k )k≥1

the excursion decomposition of ϕ̃n.

We have that for every k > 0, C̃
(n)
k → Ck, ν̃

(n)
k → νk and σ̃

(n)
k → σ as n → ∞, where the

convergence is in probability and in the Hausdor� topology for the �rst component, and in
the weak topology of measures for the second component.

Let us elaborate on these theorems via some further remarks.

• It is known that the 2D continuum Gaussian free �eld is not a signed measure and in
particular it cannot be written as a di�erence of two sigma-�nite positive measures.
Thus such a rewriting as a sum of disjoint signed measures is in itself already non-
trivial. Previously this was known for the continuum limit of the magnetization �eld
of the Ising model [CGN15], but interestingly in that context the decomposition is
not measurable with respect to the continuum magnetization �eld itself.

• The existence of a decomposition into a signed sum of measures (without uniqueness,
measurability and an explicit description of the structure of the decomposition) could
be also obtained using subsequential convergence results from the metric graph, using
results from [Lup18] but no further SLE theory.

• To prove existence and uniqueness of the decomposition we only need to use basic
properties of the GFF and its local sets (including CLE4, SLE4), and thus in particular
we do not use isomorphism theorems. In fact also the excursion clusters have a writing
in terms of only the nested CLE4: see Remark 17.

• We expect the existence and uniqueness of the decomposition, and all the properties
to hold also in non-simply-connected domains. However, it adds some technicalities
that we decided not to address in this work.

• The convergence of the sum can most likely be improved to H−ε for all ε > 0.
• For the convergence in (1.1), the compensation induced by the sign is crucial, and
the total variation measure Σi≥1νi diverges in every open subset of D. There is some
freedom in the speci�c order on the clusters (Ci)i≥1. However, it is important to �x
the order independently of the signs (σi)i≥1. Notice that we do not a priori ask any
independence properties of the signs, and obtain them as a corollary.

• One may wonder if any Markov property at all is necessary to prove the uniqueness
of the decomposition. For example, in the case of Brownian motion on [0, 1] it su�ces
for uniqueness to ask that we can decompose [0, 1] into disjoint closed sets where BM
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is either non-positive or non-negative (and not fully zero) together with a residual
set where BM is equal to zero. Yet, observe that without the �nal condition on
the residual set, the uniqueness is not so clear: one could further decompose the
support of any positive or negative excursion to countable many connected closed
sets, by giving up a set of zero measure. On that set BM would not be zero, but
all other conditions would be satis�ed. In particular, if one decomposes Brownian
motion in the sense of L2 to closed disjoint sets where BM is either non-positive or
non-negative, this decomposition would not be unique without some extra condition
like the Markov property after discovering some excursions, or independence of signs
of excursions (which would be implied by a reasonable Markov property).

• This theorem can be further tweaked to write the 2D continuum GFF using a Poisson
point process of excursion very similarly to the classical writing of the Brownian
motion by concatenating a PPP of Brownian excursions.

• A similar decomposition can be given also for the Wick powers of the GFF, although
interestingly the measurability part is again an issue. This will either appear in a
second version of the current paper, or in a separate note.

• It would be very interesting to see similar decompositions for other random distribu-
tions and indeed an upcoming work by Jego, Lupu and Qian manages to prove similar
decompositions for random �elds constructed from sub-critical Brownian loop soups
[JLQ23]. Among other things, they will also give an alternative proof for existence
of the decomposition in the critical case that does not rely local sets of the GFF (nor
CLE4, SLE4), but that does not provide uniqueness and measurability.

The rest of this note is structured as follows: we collect de�nitions of main objects in
Section 2; in Section 3 we prove the existence part of Theorem 1 and deduce the properties
of Theorem 2. In Section 4 we prove the uniqueness of the decomposition and in Section 5
the convergence.

2. Definitions and preliminaries

For the convenience of the reader, we collect here the de�nitions of the 2D continuum
Gaussian free �eld and its local sets, CLE4 and Brownian loop soup. For more information,
see e.g. preliminaries of [ALS20a, ALS20b] or the book [WP21].
The continuum Gaussian free �eld (GFF) is the generalisation of Brownian motion, re-

placing the time axis by a d-dimensional domain. More precisely, it is de�ned as follows.

De�nition 4 (Gaussian free �eld). Let D ⊆ C denote a �nitely connected domain. The 2-
dimensional zero boundary continuum GFF in D is the centred Gaussian process (Φ, f)f∈C∞

c (C)
whose covariance is given by

E [(Φ, f)(Φ, g)] =

∫ ∫
D×D

f(z)GD(z, w)g(w) dzdw; f, g ∈ C∞
c (C),

where GD denotes the zero boundary Green's function for the Laplacian in D.

For any open set U that is a union of countably many �nitely-connected domains, we
de�ne the zero boundary GFF on U as a disjoint union of independent zero boundary GFFs
in the connected components. The GFF is almost surely in H−ε(U) for any ε > 0, but we
can also consider the GFF as a random distribution on larger domains U ′ ⊇ U , extending
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it outside of U by zero. The continuum GFF can be essentially characterized by its Markov
property [BPR20, BPR21, AP22] and random sets coupled with the GFF that satisfy a
strong Markov property are called local sets. For a more general discussion of local sets and
their properties we refer to [Aru15, SS13, WP21].

De�nition 5 (Local sets). Consider a random triple (Φ, A,ΦA), where Φ is a GFF in D, A is
a random closed subset of D and ΦA a random distribution that can be viewed as a harmonic
function when restricted to D\A. We say that A is a local set for Φ if conditionally on
(A,ΦA), Φ

A := Φ− ΦA is a GFF in D\A.

We list here some properties of local sets that we use implicitly or explicitly, see for instance
[SS13, Aru15] for derivations and further properties.

Lemma 6. The following properties hold for local sets of the GFF.

(1) Any local set can be coupled in a unique way with a given GFF: Let (Φ, A,ΦA, Φ̂A) be
a coupling, where (Φ, A,ΦA) and (Φ, A,Φ′

A) satisfy the conditions of this de�nition.
Then, a.s. ΦA = Φ′

A. Thus, being a local set is a property of the coupling (Φ, A), as
ΦA is a measurable function of (Φ, A).

(2) If A and B are local sets coupled with the same GFF Φ, and (A,ΦA) and (B,ΦB)
are conditionally independent given Φ, then A ∪ B is also a local set coupled with Φ
and the boundary values of ΦA∪B agree with those of ΦB or ΦA at every point of the
boundary of A ∪ B that is of positive distance of A or B respectively2. Additionally,
B\A is a local set of ΦA with (ΦA)B\A = ΦB∪A − ΦA .

(3) Let (Φ, (An)n∈N, (ΦAn))n∈N a sequence of conditionally independent local sets coupled
with the same GFF Φ. Furthermore, assume that An is increasing. Then A∞ =⋃

n∈N An is a local set. Furthermore, if a.s. for all n ∈ N, An is connected to the
boundary, then a.s. ΦAn → ΦA.

In particular, we will use the existence and uniqueness of the following type of local sets:
two-valued local sets introduced in [ASW17] and studied in [ALS20a], and �rst passage sets,
introduced in [ALS20a, ALS20b]. For de�nitions of thin local sets, bounded type local sets
we refer e.g. to [ASW17, ALS22].

Theorem 7 (Two-valued local sets: existence and uniqueness). Let a, b > 0 be such that
a + b ≥ 2λ. Then one can couple a thin3 bounded type local set A−a,b ̸= ∅ with a GFF Φ
such that in each connected component O of D\A−a,b the harmonic function ΦA is equal to
either −a or b. Moreover, the sets A−a,b are

• unique in the sense that if A′ is another BTLS coupled with the same Φ, such that
a.s. it satis�es the conditions above, then A′ = A−a,b almost surely;

• measurable functions of the GFF Φ that they are coupled with;
• monotone in the following sense: if [−a, b] ⊂ [−a′, b′] with b + a ≥ 2λ, then almost
surely, A−a,b ⊂ A−a′,b′.

It comes out [ASW17] that the Minkowski dimension of all of any two-valued set is a.s.
strictly smaller than 2 (it was precisely calculated in [SSV22]); we will make use of this fact

2We say that ΦA∪B agrees with ΦA at a point x ∈ ∂(A ∪ B) ∩ ∂A if for any sequence of xn /∈ A ∪ B
converging to x, ΦA∪B(xn)− ΦA(xn) → 0 as n → ∞.

3Thin means that ΦA is a.s. equal to a harmonic function everywhere, see [Sep19].
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for this for A−2λ,2λ. Indeed, the boundaries of sign excursions will turn out to be two-valued
local sets A−2λ,2λ. The clusters themselves are given by �rst passage sets.

De�nition 8 (First passage set). Let a ∈ R and Φ be a GFF in D. We de�ne the �rst
passage set of Φ of level −a as the local set of Φ such that ∂D ⊆ A−a, with the following
properties:

(1) Inside each connected component O of D\A−a, the harmonic function ΦA−a |D\A−a

is equal to −a.
(2) ΦA−a +a ≥ 0, i.e., for any smooth positive test function f we have (ΦA−a +a, f) ≥ 0,

in other words ν := ΦA−a + a is a positive measure with support A−a.

The key result is the following.

Theorem 9 (Theorem 4.3 and Proposition 4.5 of [ALS20a], Proposition 5.7 of [ALS20b]).
For all a ≥ 0, the �rst passage set, A−a, of Φ of level -a exists and satis�es the following
properties:

(1) Uniqueness: if A′ is another local set coupled with Φ and satisfying De�nition 8, then
a.s. A′ = A−a.

(2) Measurability: A−a is a measurable function of Φ.
(3) Monotonicity: If a ≤ a′, then A−a ⊆ A−a′

(4) Locally �niteness: for any ε > 0 there are only �nitely many connected components
of D \A−a of diameter larger than ε.

2.1. Couplings between di�erent objects. We �rst that from the connection between
GFF and CLE4 that was �rst discovered by Miller & She�eld [MS11], based on the work
of Schramm and She�eld [SS13], and it says that CLE4 can be coupled as a local set of the
GFF. In [ASW17] this was rephrased in the language of two-valued sets - the set A−2λ,2λ has
the law of a CLE4 carpet.

Theorem 10 (Section 4 of [ASW17]). Let Φ be a GFF in D and A−2λ,2λ be its TVS of levels
−2λ and 2λ. Then A−2λ,2λ has the law of CLE4 carpet. Moreover, it satis�es the following
properties:

(1) The loops of A−2λ,2λ (i.e. the boundaries of the connected components of D\A−2λ,2λ)
are continuous simple loops. A−2λ,2λ is the closure of the union of all loops.

(2) The collection of loops of A−2λ,2λ is locally �nite, i.e. for any ε > 0 there are only
�nitely many loops that have diameter bigger than ε.

(3) Almost surely no two loops of A−2λ,2λ intersect, nor does any loop intersect the bound-
ary.

(4) The conditional law of the labels of the loops of A−2λ,2λ given A−2λ,2λ is that of i.i.d.
random variables taking values ±2λ with equal probability.

From the ground-setting work of She�eld and Werner, we know further that in simply-
connected domains CLE4 loops can be described using the critical Brownian loop soup.

Theorem 11 (Theorem 1.6 in [SW12]). Let D be a simply-connected domain and consider
the critical Brownian loop-soup L in D. Then CLE4 loops are exactly the outer boundaries
of the outermost clusters of this Brownian loop soup (BLS).

This theorem together with Theorem 10 implies the following Markov property for A−2λ,2λ
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Proposition 12. Let Φ be a GFF in a simply connected domain D and γ : [0, 1] 7→ D be a
simple continuous curve such that γ(0) ∈ ∂D and γ((0, 1)) ⊆ D. De�ne γext the closure of
the union of all loops of a A−2λ,2λ that intersect γ. We have that γext is a BTLS of Φ, where
Φγext can be characterised as follows. Take I the union of the interior all loops ℓ of A−2λ,2λ

that intersect γ, then Φγext(z) = ±2λ for any z ∈ I and Φγext(z) = 0 for all z ∈ D\I.

In fact, the relation of Theorem 11 can be further strengthened. First in [QW19] the
authors show that one can couple the critical Brownian loop soup, CLE4 and the zero
boundary GFF all in one coupling where both CLE4 describes the outer boundaries of
outermost BLS clusters as above, but also the Wick square of the GFF equals the renormalied
occupation time of the BLS. We will not use this statement directly, however we use a certain
strengthening that further identi�es the Brownian loop soup clusters given their boundary
with �rst passage sets de�ned and constructed in [ALS20a].

Proposition 13 (Corollary 5.4 in [ALS20b]). Let D be a simply connected domain. Con-
ditionally on the outer boundary ℓ of a Brownian loop-soup cluster in LD

1/2, the topological

closure of the cluster itself is distributed like a �rst passage set A−2λ inside Int(L), the
interior surrounded by Υ.

Finally, one can identify the GFF restricted to a �rst passage set by its Minkowski content
measure.

Theorem 14 (Theorem 5.1 in [ALS20a]). Let D be simply-connected and Φ a GFF and
suppose A−a is a �rst passage set of level −a. Writing Φ = ΦA−a + ΦA−a as in De�nition
5, we obtain the following. The measure νA−a := ΦA−a + a is a measurable function of A−a.

Moreover, it is proportional to the Minkowski content measure in the gauge r 7→ | log(r)|1/2r2.
More precisely, almost surely for any continuous f compactly supported in D,

νA−a = lim
r→0

1

2
| log(r)|1/2

∫
D

f(z)1d(z,A−a)≤rdz.

3. Existence of the excursion decomposition and its properties

In this section, we prove the existence of the excursion decomposition together with the
properties stated in Theorem 2. The proof follows rather directly from the theory of bounded
type local sets and �rst passage sets of the GFF, though some care is needed in collecting
and combining the results and techniques. The most technical part consist in proving the
Markov property of the decomposition.
We start by an elementary estimate on the H−1 norm of a GFF open sets that are disjoint

unions of domains of small diameter. This lemma is used to show that contributions to the
excursion decomposition coming from small excursions can be summed.

Lemma 15. Suppose D̂n ⊆ D is a sequence of decreasing open set (not necessarily connected)
such that the maximal diameter over its connected components goes to 0 as ε → 0. Consider

ΦD̂n a GFF in D̂n. Then E
[
∥ΦD̂n∥2H−1(D)

]
→ 0, as n → ∞
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Proof. This just follows from the dominated convergence theorem (GD̂n
≤ GD) and the

computation

E
[
∥ΦD̂∥2H−1(D)

]
=
x

D̂×D̂

GD(x, y)GD̂(x, y)dxdy → 0, as n → ∞.

□

We are now ready to prove the existence part of the main theorem.

Proof of the existence of an excursion decomposition in Theorem 1. We start by considering
the coupling (Φ,CLE4 = (ℓk)k≥k, (σk)k≥1) between the GFF, CLE4 loops and the i.i.d. signs
coming from Theorem 10. We can order the loops in descending order of their diameter.
Note that this theorem implies the almost sure equality

Φ =
∑
k≥1

2λσk1Int(ℓk) + ΦInt(ℓk),

where given the CLE4 loops (ℓk)k≥1, Φ
Int(ℓk) are independent zero boundary GFFs4 inside

Int(ℓk) and (σk)k≥1 are i.i.d. Rademacher random variables.
Using Lemma 15 to control the tails, we can restrict our attention to the subset Jε of

k ∈ N such that the diameter of Ck is at least ε > 0. As the set of CLE4 loops is locally
�nite, Jε is �nite.
Now, we take k ∈ Jε. Conditionally on ℓk the law of Φ restricted to Int(ℓk) is equal to

that of 2λσk + ΦInt ℓk , where the conditional law of ΦInt(ℓk) is that of a GFF in Int(ℓk). We

now sample Ak := A−2λ(σkΦ
Int(ℓk)) and de�ne the positive measure νk := σkΦ

Int(ℓk)
Ak

+ 2λ.
This measure is supported in Ak thanks to De�nition 8. We then have that

2λσk + ΦInt(ℓk) = σkνA−2λ
+ ΦInt(ℓk)\A−2k .

Thus we obtain the following decomposition

Φ =
∑
k∈Jε

(
σkνAk

+ ΦInt(ℓk)\Ak
)
+

∑
k′ /∈Jε

(
2λσk′1Int ℓk′ + ΦInt(ℓk′ )

)
,

where the outermost boundaries ℓk and ℓk′ are ordered in the descending order of their
diameter. We now iterate this process inside each connected component of D \

⋃
k∈Jε Ak.

We denote the outermost loops and clusters of the n−th iteration that themselves have
diameter larger than ε by (ℓn,k)k∈Jn,ε , (Cn,k)k∈Jn,ε , having ordered them decreasingly by di-
ameter, and the corresponding signs and Minkowski measures by (σn,k)k∈Jn,ε , (νn,k)k∈Jn,ε .
The iteration of the construction allows us to write the following almost sure equality:

Φ =
∑

k∈∪n≤NJn,ε

(
σkνAn,k

+ ΦInt(ℓn,k\An,k)
)
+

∑
(n′,k′):
k′ /∈Jn′,ε
n′≤N

(
2λσk1Int(ℓk) + ΦInt(ℓn,k)

)
,

where again the ordering in the �rst �nite sum is along decreasing size of the diameter. This
writing allows us to apply Lemma 15 directly to obtain an error of order oε(1) independently
of the level of iteration N on the second term. The existence of the decomposition now
follows from the a.s. martingale convergence theorem and the fact that for any ε > 0, there

4Note that ΦA−2λ,2λ =
∑

k Φ
Int(ℓk)
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is almost surely a �nite N such that all loops of diameter larger than ε have been discovered.
This follows directly from the locally �niteness of CLE4 and FPS.
All the properties listed in the Theorem for the excursion clusters (Ck)k≥1 hold by construc-

tion. The Markov property follows from the following claim combined with the argument
above that again shows we can sum the sign excursions in their decreasing order of diameter.

Claim 16. Consider γ a smooth simple path in D starting from the boundary. Let (Ck, ℓk)k∈I
be the collection of outermost clusters with Ck ∩ γ ̸= ∅ and denote their outer boundaries by
ℓk. Let Iε denote the set of k ∈ I for which the diameter of Ck is at least ε and de�ne Aε =
∪k∈IεCk ∪ ∪k∈Iℓk. Then Aε is a local set, such that ϕAε =

∑
i∈Iε σiνi +

∑
i∈I\Iε 2λσi1z∈IntLi

.

Proof. The claim follows directly from iterating the Markov property of A−2λ,2λ in Proposi-
tion 12, together with the strong Markov property of FPS and the construction above.

□

□

We now proceed to discuss further properties of the excursion decomposition. In essence,
this amounts to collecting and applying a few interesting results from the literature.
We are now ready to give a proof of Theorem 2, assuming already uniqueness.

Proof of Theorem 2. Properties (1) and (2) follow directly from the construction given above.
Property (3) follows from the construction of the excursion clusters and excursions via First
passage sets of height ±2λ and Theorem 14.
The identi�cation with clusters of 2D Brownian loop soup follows further from iterating

Theorem 11 to identify the outer boundaries of critical BLS clusters with those of excursion
clusters in the construction above, and Theorem 13 to identify the critical BLS clusters with
the excursion clusters above. □

Remark 17. Indeed, as above, we know that conditioning on the outer boundary of an
excursion cluster, the cluster itself is distributed as the FPS of height 2λ. But now by
Lemma 2.5 in [APS20] and the discussion under it, we see that this FPS can be obtained by
iterating the two-valued local set A−2λ,2λ until every component has label 2λ. As A−2λ,2λ has
the law of CLE4, we indeed have a way of describing the whole sign cluster using iterated
CLE4.

4. Uniqueness of the excursion decomposition

In this section, we prove the uniqueness part of Theorem 1. Throughout this section
(νk, Ck, σk)k≥1 denotes the excursion decomposition constructed in Section 3, and (µ̂k, Ĉk, σ̂k)
is another decomposition that satis�es the properties of Theorem 1 for the same GFF Φ.
By conformal invariance we may assume that we work in the unit disk D throughout this
section.
The proof of uniqueness relies on two preliminary propositions. We �rst show that the

excursion clusters in the construction of the previous section are in a certain sense minimal:

Proposition 18. A.s. for any k ∈ N there exists k̂(k) ∈ N such that Ck ⊆ Ĉk̂(k).

Then, we show that the signs of intersecting sign clusters of the two decompositions
introduced above have to match.
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Proposition 19. Let k̂(k) be as in Proposition 18, we have that a.s. σk = σ̂k̂(k).

Next, we argue that there is a 1-1 correspondence between the clusters.

Proposition 20. The function k → k̂(k) of Proposition 18 is also injective.

And we conclude by by saying that the clusters are almost surely equal; the equality of
measures is concluded in the proof of the theorem.

Proposition 21. For all k ≥ 1, with k → k̂(k) as above, we have Ck = Ĉk̂(k). Moreover,

the function k → k̂(k) is also surjective.

Throughout the proofs we will make use of the following local set, obtained by exploring
the clusters around a line segment until some stopping time.

Lemma 22. Let γ : [0, 1] 7→ D be a simple curve. We de�ne γ̂exc(t) as the union of all Ĉk

that intersect γ([0, t]) and take τ a stopping time for the �ltration Ft :=
∨

s≤t σ(γ̂
exc(s)). We

have that γ̂exc(τ) is also a local set, more precisely Φ = Φγ̂exc(τ)+Φγ̂exc(τ) where conditionally

on γ̂exc(τ) the law of Φγ̂exc(τ) is a GFF in D\γ̂exc(τ) and Φγ̂exc(τ) =
∑

k σkνk1Ck∩η ̸=∅ (where
again the sum is ordered by descending diameter size of clusters).

Proof. As by the Markov property of the excursion decomposition (γ̂exc(t))t∈[0,1] is a family of
increasing local sets, this strong Markov property follows from Lemma 1.3.13 in [Aru15]. □

In fact, to circumvent some technical issues, we have to tweak this local set further to be
able to also explore only a subset of the excursions intersecting the line:

Lemma 23. Let γ be the straight line segment from −i to 0 and de�ne γ̂exc to be the closure
of the union of all Ĉk that intersect γ. For any ε > 0, there exists a local set χε that has the
following property:

(1) It is equal to the union of certain excursion of (Ĉk)k.

(2) It is contained in γ̂exc, and contains any cluster Ĉk that surrounds 0 with diameter
bigger than or equal to ε.

(3) if there is a simple loop ℓ ⊆ χε with diameter bigger than ε that surrounds 0, then

there exists k such that ℓ ⊆ Ĉk.

Proof of Lemma 23. We construct the set recursively. We �rst de�ne the stopping time

τ̂ 1 := inf{t ≥ 0 : ∃δ > 0,∃O c.c. of B(0, 1)\(γ̂exc(t) ∪ γ |[−i,−δi]) with 0 ∈ O and ∂D ∩ O = ∅}.

Note that γexc(τ 1)\
⋃

t<τ1 γ
exc(t) is equal to a certain excursion Ĉk. If this excursion sur-

rounds 0 and has diameter smaller than or equal to ε we �nish our iteration and de�ne
χε = γexc(τ 1); by de�nition it satis�es the desired conditions.
If the above is note the case, we note that γ̂exc(τ 1) is a local set and that the set of

excursions (Ĉk : Ck ∩ γ̂exc(τ 1) = ∅)k≥1 generate an excursion decomposition of the GFF

Φγ̂exc(τ1). We de�ne

x̂ = sup{ℑ(x) : x ∈ γexc(τ 1) ∩ γ}
where ℑ(x) denotes the imaginary part of x and consider the line γ1 that goes from −ix̂
to −εi. In this case we de�ne τ̂ 2 in the analogue way with γ1 instead of γ and iterate the
procedure above. This procedure �nishes at a �nite step j, because the set of clusters is
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locally �nite and at some point τ̂ j discovers a loop that surrounds 0 whose diameter is less
than or equal to ε.
We now need to prove that this sets satis�es the claimed properties. (1) and (2) are clear

from construction. Moreover, if a cluster Ĉk intersects γ and separates 0 from the boundary,
then it has to appear at one of the times τ̂ j.
To see the point (3), we note that by de�nition there can be no simple loops ℓ surround-

ing 0 contained in
⋃

t<τj+1
γ̂exc
j (t)\γ̂exc

j−1(τj) and furthermore
⋃

t<τj+1 γ̂
exc
j (t) ∩ γ̂exc

j−1(τj) and⋃
t<τj+1

γ̂exc
j (t) ∩ γ̂exc

j (τj+1) both have exactly one point and thus there can not be a simple

loop going between
⋃

t<τj+1 γ̂
exc
j (t) and either γ̂exc

j (τj+1) or γ̂
exc
j−1(τj). □

Let us now start proving the propositions.

Proof of Proposition 18. It su�ces to prove the proposition for any cluster Ck that surrounds
0. Let γ be the straight line segment from −i to 0 and de�ne γ̂exc to be the closure of the
union of all Ĉk that intersect γ as before and consider the local set χε from Lemma 23.
We now work recursively: we start by building A−2λ,2λ,say via SLE4(−2) like in [ASW17],

and we consider k ∈ N such that the outer boundary of Ck is in A−2λ,2λ and surrounds 0
(i.e. Ck is the outer-most excursion surrounding 0); we let Lk ⊆ A−2λ,2λ denote its outer

boundary. We aim to show that Lk is contained in some Ĉk̂(k).

By Claim 17 of [ASW17] we see that a priori Lk can touch at most two-prime ends of
χε (at the start and at the end of the loop). Furthermore, using the same proof as that of
Claim 17 of [ASW17] one can see that we can touch only one prime end. This is because the
loop is simple, and thus at the beginning of the curve it can intersect only one prime end.
Then, on the event that Ck intersect γ |[−i,−εi] the construction of the loop implies that the
SLE4-type curve that makes the loop is a generalized level line of the GFF in D\χε and by
Lemma 16 of [ASW17] it can only hit at the starting prime end. Given that Lk ⊆ γexc is a

simple loop, then either it has diameter smaller than ε or it has to be contained in one Ĉk̂(k)

by Lemma 23. By taking ε → 0, we show that there always has to be on such Ĉk̂(k).

We now show that the whole cluster Ck is contained in Ĉk̂(k). To do this, recall that given
the outer boundary, Ck is constructed by taking A−2λ inside the connected component of
D\Lk containing 0. We can use the following iterative construction: to obtain Ak, we sample
A−λ,λ inside the connected component of D\Ak−1 that contains 0, unless the boundary value
is already equal to 0. We can now use the same argument as under Uniqueness in Section 6
of [ASW17] to see that each Ak is contained in γ̂exc. Indeed, the fact that level lines used to
construct A−λ,λ do not self-intersect and the fact that if they enter any connected component
of D\γ̂exc they cannot touch the boundary γexc imply that they cannot enter any connected
component of D\γexc at all.
To show that the next excursion Ck′ surrounding 0 is also contained in some excursion

Ĉk̂(k′) it su�ces to note that, the law of Φ restricted to the connected componentO containing

0 of D\Ck is that of a GFF in D\Ck. This implies that the restriction of (Ĉk, µ̂k, σ̂k)k≥1 to
O is also that of an excursion decomposition, so we can repeat the above procedure.

□

We now prove Proposition 19. To do this we show that we can recover the sign of the
cluster by integrating positive function whose support are close to it.

11



Proof of Proposition 19. Similarly to above, it su�ces to prove the claim for the outermost
cluster Ck surrounding 0. Let γ : [0, 1] 7→ B(0, 1) be a straight line from −i to 0 and Ĉk (or
Ck) be the outermost cluster surrounding 0. De�ne

τ := inf{t ∈ [0, 1] : Ck ∈ γexc(t)}. (4.1)

By Proposition 18, we know that for all t ∈ [0, 1], it holds that γexc(t) ⊆ γ̂exc(t). Thus

γ̂exc(τ) is also a local set, and as it contains the cluster Ĉk̂(k)). Observe that by construction

the closure of
⋃

t<τ γ
exc(t) intersects Ck only at x̂ = γ(τ) and that the same holds for Ĉ.

Claim 24. Let A ⊆ Ĉk\{x̂} be a closed set of positive diameter that is measurable w.r.t.
γ̂exc(τ). Consider (fn : D 7→ [0, 1])n≥1, a a family of smooth functions all taking value 1 in A

and equal to 0 for all points of distance at least 2−n of Ĉk. Further, assume that conditionally
on γ̂exc(τ), fn are independent from the GFF Φγ̂exc(τ̂).
Then, almost surely if ν̂k(A) > 0, lim inf(Φ, fn) ≥ ν̂k(A) and if ν̂k(A) < 0, lim inf(Φ, fn) ≤

−ν̂k(A).

As this holds for clusters of any excursion decomposition, it holds in particular also for
the one constructed in the previous section, i.e. if we omit all the hats in the claim.
Further, by Proposition 18, we know that γexc(τ) is a local set contained in γ̂exc(τ). In

particular, it is conditionally independent of Φγ̂(τ). We can now apply the claim with a closed
set A ⊆ Ck \ {x̂}, and functions fn chosen depending only on γ̂(τ) and Φγ̂(τ) twice (once for

Ck, once for Ĉk̂(k) to obtain the proposition.
It remains to argue the claim.

Proof of Claim 24. We can use the local set property of γ̂exc(τ) to write

(Φ, fn) = (Φγ̂exc(τ), fn) + (Φγ̂exc(τ), fn).

By conditioning on γ̂exc(τ) we can see that the variance of (Φγ̂exc(τ̂), fn) goes to 0. We
conclude by noting that there exists an n such that the support of fn does not intersect the
closure of

⋃
t<τ̂ γ̂

exc(t). □

□

Before showing Proposition 20 let us state the following lemma.

Lemma 25. For any connected component O of D\Ck that does not contain ∂D we have

that O ∩ Ĉk̂(k) = ∅. In particular, if ℓk is the outer boundary of Ck and O′ is the interior,

then Ĉk̂(k) ∩ O′ = Ck.

Proof. We show it for the connected component containing 0. De�ne τ as in the proof of
Proposition 19. Note that O is also the connected component of D\γexc(τ) that contains

0. Because Ck ⊆ Ĉk̂(k) we have that O ∩ γ̂exc(τ) is equal to O ∩ Ĉk̂(k). The theory of local

sets implies then that O ∩ Ĉk̂(k) is a local set of Φγexc(τ) restricted to O. Conditionally on

γexc and the sign of the cluster Ck (WLOG we assume it +1), we see that restricted to O,
(Φγexc(τ))Ĉk̂(k)

≥ 0. The �rst part of Proposition 4.5 of [ALS20a] implies that this set has to

be empty.
The second statement follows directly. □
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Proposition 20 needs again di�erent arguments.

Proof of Proposition 20. By Proposition 18 we know that for each Ck, there is some k̂ with
Ck ⊆ Ĉk̂. We start by showing that the signs σk, σk′ are independent even when we further

condition on the event that they do not belong to the same cluster of (Ĉk)k≥1, more precisely,

Ek,k′ = {k̂(k) ̸= k̂(k′)}.
This is done through the following claim

Claim 26. We have that
E
[
(σkνk, 1)(σk′νk′ , 1)1Ekk′

]
= 0.

It follows from this claim that the function k → k̂(k) is injective: indeed, for any points
z1, . . . , zn and any nesting levels j1, . . . , jn, we can �rst write.

E

[
(

n∑
k=1

(σkνk, 1))
2

]
=

n∑
k=1

E
[
(νk, 1)

2
]
. (4.2)

Using the claim we can alternatively write the LHS as:

E

[
(

n∑
k=1

(σkνk, 1))
2

]
=

n∑
k=1

E
[
(νk, 1)

2
]
+

∑
k ̸=k′

E
[
(σkνk, 1)(σk′νk′ , 1)1Ec

k,k′

]
.

But on the event Ec
(z,j),(w,h), we have that σw,h = σz,j and thus all the terms in the second

sum are non-negative. But then they have to actually be equal to zero by (4.2). As this
holds for any collection of z1, . . . , zn and any nesting heights, and all clusters can be listed
this way, we obtain that k → k̂(k) is injective.

Proof of Claim 26. For this proof, it is easier to denote clusters using the point they surround
and their level of nesting as follows: for z ∈ D and j ∈ N, we denote Cz,j denote respectively
the j−th outermost cluster that surrounds z. So we now �x z, z′ ∈ D and j, j′ ∈ N and
denote k = k(z, j) and k′ = k(z′, j′) the k and k′ such that Ck = Cz,j and Ck′ = Cz′,j′

respectively.
We �rst prove the result when both the cluster are in the �rst layer, i.e., j = j′ = 1.

Consider the local set γ̂exc(τz ∧ τz′) along a line segment γ from the boundary to z and then

to w, stopped at time τz ∧ τw, when either the cluster of Ĉ around z or w appears. Assume,
WLOG that Ĉz,1. In that case, and on the event Ek,k′ , we have that Cz′,1 ∩ Ĉz,1 = ∅, we call
O′ the connected component of D\γ̂exc(τz ∧ τz′) that contains z

′. Furthermore we have two
options

(1) Cz,1 ⊆ Ĉz,1, in which case we de�ne O = ∅
(2) or Cz,1 ∩ Ĉz,1 = ∅., in which case we de�ne O as the connected component of

D\γ̂exc(τz ∧ τz′) that contains z. Note that O ∩O′ = ∅-
In both cases we claim the following. Take the A closure of the union of the outer-most
boundary of the outer-most clusters in (Ck)k≥1 that are contained in either O or O′. We
have that a.s. A is equal to the union of A−2λ,2λ of Φγ̂exc

(τz ∧ τz′) restricted to O and to O′.
To show this, we use Proposition 18 to see that none of the loops of Ck that make part of

A intersect γ̂exc(τz ∧ τz′). Furthermore, the set A∪ γ̂exc(τz ∧ τz′) is a local set that, restricted
to O ∪O′ is a.s. equal to A−2λ,2λ ∪ γ̂exc(τz ∧ τz′). This is because the outer-most boundary
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of the outermost loop of Ck is equal to A−2λ,2λ. Now, we use that again Proposition 18
and basic properties of local sets to see that for any x ∈ D\A−2λ,2λ ∪ γ̂exc(τz ∧ τz′) is equal
to either ±2λ if x is not surrounded by a cluster in γexc(τz ∧ τz′) and 0 if not. Thus by
(2) Lemma 6, we see that A is a local set of Φγ̂exc(τz∧τz′ ) that inside O′ and O (when it is
not empty) is thin (because its Minkowski dimension is smaller than 2) and its harmonic
function is equal to ±2λ. We conclude using the uniqueness of TVS.
We now notice that A can be obtain in a measurable function with respect to Φγ̂exc(τz∧τz′ ),

and that conditionally on γ̂exc(τz ∧ τz′), Φ
γ̂exc(τz∧τz′ ) is independent of Φγ̂exc(τz∧τz′ ). So now,

if we are on the case (1)

E
[
σkσk′(νk, 1)(νk′ , 1)1Ek,k′

1(1)

]
= E

[
σk(νk, 1)E

[
σk′(νk′ , 1) | γ̂exc(τz ∧ τz′),Φγ̂exc(τz∧τz′ )

]
1Ek,k′

1(1)

]
= 0,

where we use that (1) and Ek,k′ are measurable with respect to γexc(τz ∧ τz′),ΦΦγ̂exc(τz∧τz′ ) ,
thanks to the fact that γexc(τz∧τz′) ⊆ γ̂exc(τz∧τz′), and that the law of (σz′ , νz′) conditionally
on (γ̂exc(τz∧τz′),Φγ̂exc(τz∧τz′ )) is that of the measure of the excursion decomposition of a GFF
in the domain O′.
For the case (2), a similar computation is needed

E
[
σkσk′(νk, 1)(νk′ , 1)1Ek,k′

1(2)

]
= E

[
E
[
σk′(νk′ , 1) | γ̂exc(τz ∧ τz′),Φγ̂exc(τz∧τz′ )

]
E
[
σk(νk, 1) | γ̂exc(τz ∧ τz′),Φγ̂exc(τz∧τz′ )

]
1Ek,k′

1(2)

]
= 0,

where we used that conditionally on (γ̂exc(τz ∧ τz′),Φγ̂exc(τz∧τz′ )) the law of (σz′ , νz′ , σz, νz)
is that of two independent excursion decompositions of one GFF in O′ and another in O,
respectively.
For next levels we discover γ̂exc(τ2), which is the stopping time where both outermost

clusters appear, and then iterate inside the connected components of complement of γ̂exc(τ2)
containing either z or w similarly. □

□

Proof of Proposition 21. We start by showing that

Ck = Ĉk̂(k) (4.3)

almost surely. By Proposition 18, we have that Ck ⊆ Ĉk̂(k). Further by Lemma 25, we know

that Ck̂(k) \Ck only intersects the connected component O of D \Ck that contains ∂D on its
boundary.
Like in the proof of Claim 26, all clusters can be listed from outermost to innermost around

a dyadic points zk. Thus it su�ces to prove (4.3) for outermost clusters and this in turn
follows from showing the following claim: for any curve γ along the dyadics starting from
∂D to some zk, we have that the complements O, Ô of A = γexc(1) and Â = γ̂exc(1), which

share boundary with D, agree almost surely. Both A, Â are local sets, and by Lemma 6 (2),

Â \ A is also a local set of ϕγexc(1) restricted to O. On the other hand as Ck ⊆ Ck̂(k), we

know that Â \ A ⊆ A−2λ,2λ(D) and thus it has Minkowski dimension strictly less than 2
14



[ASW17]. Hence, it is a thin local set of ϕO with zero boundary values, and thus by Lemma
9 of [ASW17] it is empty.

It remains to show that the function k → k̂ is surjective. This follows from a very similar
argument, after noticing that any cluster Ĉk∗ that is not equal to some Ck is contained in
the closed union of outer boundaries of Ck in some �nite iteration step of the construction
of the excursion decomposition (Ck, νk, sk)k≥1. But these outer boundaries are given by
independent copies of A−2λ,2λ. Thus we can repeat the argument above to obtain that such
clusters of positive diameter do not exist. To see that there are no clusters whose support
is just a point, we recall that almost surely the 2D GFF does not put any mass on single
points.

□

The uniqueness part now follows.

Proof of uniqueness in Theorem 1. Take (σk, νk, Ck) and (σ̂k, ν̂k, Ĉk) two decompositions, where
the �rst one is the one constructed in the previous section. From Proposition 18 we know
that for every k there is k̂(k) such that Ck = Ĉk̂(k) and by Proposition 20 this assignment is

injective. In particular, for any curve γ and for any time t a.s., we have that γexc(t) = γ̂exc(t).
But now notice that by the Markov decomposition, we can conclude that almost surely for
any curve γ along the dyadics and any rational time in H−1−ε(D)

ϕγexc(t) = ϕ̂γexc(t).

But the local set process γ(t)exc is right-continuous, and for any decreasing sets Dn with⋂
Dn = D, ΦDn is also continuous. We conclude that in fact for all times t ∈ [0, 1], it holds

that

ϕγexc(t) = ϕ̂γexc(t)

and in particular it holds at the appearance of any cluster of diameter at least ε. This
concludes that in fact for all k ≥ 1, we have νk = ν̂k̂(k) and the theorem follows.

□

5. Convergence from the metric graph

In this section, we prove the convergence of the excursion decomposition of the metric
graph GFF to that of the continuum GFF. We will work in the same set-up as in Section
4.1 of [ALS20b], except that the domain D will always be simply connected.

For all n ≥ 1, let ϕ̃n be a metric GFF in a bounded graph Dn ⊆ (2−nZ)2. We de�ne

(C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k )k≥1 as the sequence of sign clusters of ϕ̃n, the respective signs and sign ex-

cursions, ordered by decreasing size of cluster diameter. Here, by a sign excursion we mean

the absolute value of the restriction of the GFF to the cluster C̃
(n)
k , i.e.

ν̃
(n)
k (dx) = σ̃

(n)
k ϕ̃n(x)1x∈C̃(n)

k
dx.

We now take a sequence of (metric) graphs D̃n ⊆ (2−nZ)2 converging to a bounded
and simply connected domain D ⊆ C in the sense that their complement converge in the
Hausdor� topology (as in Section 4.1 of [ALS20b]).
The main result of this section is the following.
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Theorem 27 (Convergence of the excursion decomposition). Let ϕ̃n be a sequence of zero

boundary metric graph GFFs on D̃n that are coupled with a GFF Φ such that a.s. ϕ̃n → Φ

in H−ε. We have that for every k > 0, C̃
(n)
k → Ck, ν̃

(n)
k → νk and σ̃

(n)
k → σ as n → ∞,

where the convergence is in probability and in the Hausdor� topology for the �rst, and in the
weak topology of measures for the �rst and second components respectively.

In large lines, one could say that the theorem follows by patching together di�erent con-
vergence results for each element, all of which are already present in the literature. This
patching, however, does require a bit of care. Notice that we will not use the uniqueness
claim of the theorem to identify the limit, as one has to take care of the summing of excursion
measures; rather we will identify excursion clusters, signs and measures one by one.

We start from a lemma that ensures the tightness of the sequences of measures (ν̃
(n)
k )n≥0

and allows us to see that nu spurious extra mass is produced in the limit by in�nitesimal
excursion clusters.

Lemma 28. Let (C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k ) be an excursion decomposition of the metric graph GFF ϕ̃n

and let J be any (deterministic) index set. Then for any q ∈ N

E
[
(ϕ̃n, f)

2q
]
≥

∑
k∈J

E
[
(ν̃

(n)
k , f)2q

]
+ E

[
(1

D̃n\∪k∈J C̃
(n)
k
ϕ̃n, f)

2q
]
. (5.1)

and

E
[
(ϕ̃n, f)

2
]
=

∑
k∈J

E
[
(ν̃

(n)
k , f)2

]
+ E

[
(1

D̃n\∪k∈J C̃
(n)
k
ϕ̃n, f)

2
]

(5.2)

Proof. For the inequality (5.1), it su�ces to prove it for any �nite index set and any q ≥ 1,
then the case of in�nite index sets follows by dominated convergence. We decompose

ϕ̃n =
∑
k∈J

σ̃
(n)
k ν̃

(n)
k + 1

D̃n\∪k∈J C̃
(n)
k
ϕ̃n.

Then, we write E[(ϕ̃n, f)
2q] as the sum of three types of terms, the �rst being∑
k∈J

E[(ν̃(n)
k , f)2q] + E[(1

D̃n\∪k∈J C̃
(n)
k
ϕ̃n, f)

2q],

the second type of terms are a binomial coe�cients times

E[(σ̃(n)
k ν̃

(n)
k , f)p(1

D̃n\∪k∈J C̃
(n)
k
ϕ̃n, f)

2q−p]

and the last type of terms are constant times

E[(σ̃(n)
k ν̃

(n)
k , f)p(σ̃

(n)
j ν̃

(n)
j , f)2q−p],

with k ̸= j.
Now, when p is even, we can lower bound the second and third types of terms by 0.

However, we claim that when p is odd, they are equally zero by sign symmetry. Indeed,

conditionally on (C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k )k∈J , the �eld 1

D̃n\∪k∈J C̃
(n)
k
ϕ̃n has the same distribution as its

additive inverse. Thus for p odd∑
k∈J

E[(σ̃(n)
k ν̃

(n)
k , f)p(1

D̃n\∪k∈J C̃
(n)
k
ϕ̃n, f)

2q−p] = 0.
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But also all the signs σ̃
(n)
k are i.i.d. Rademacher random variables, thus also for all j ̸= k ∈ J

E[(σ̃(n)
k ν̃

(n)
k , f)p(σ̃

(n)
j ν̃

(n)
j , f)2q−p] = 0

and we conclude the �rst part. The second part for �nite index sets follows from the com-
putation above, as in the case q = 1, there are no cross-terms with even exponents; for
the in�nite sums, we can use dominated convergence, guaranteed by say the case q = 2 in
(5.1). □

Proof of Theorem 27. We start by noting that thanks to the uniqueness of the excursion
decomposition and Lemma 4.10 of [ALS20b], we only need to prove convergence in law of

(ϕ̃n, (C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k )k) as n → ∞.

Now, ϕ̃n are tight by assumption; for any k, C̃
(n)
k are tight as random closed sets in a com-

pact domain, σ̃
(n)
k are tight as±1 valued random variables and �nally ν̃

(n)
k are tight by the �rst

equality in Lemma 28. Thus, using Tychono� theorem, we see that (ϕ̃n, (C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k )k)

is tight, and thus we can �nd a subsequence of it (we denote it the same way) and use
Skorokhod's representation theorem to obtain the almost sure convergence

(ϕ̃n, (C̃
(n)
k , σ̃

(n)
k , ν̃

(n)
k )k) → (Φ̂, (Ĉk, σ̂k, ν̂k)k).

We just need to identify (Φ̂, (Ĉk, σ̂k, ν̂k)k) as the elements of the excursion decomposition.

First, it is clear that (σ̂k)k are i.i.d. Radamacher random variables and Φ̂ is a GFF in D.

First, note that if we only study the outer most clusters C̊
(n)
k := Ĉ

(n)
k(k) (i.e. those that

are not surrounded by any other cluster), then the outer boundaries of those outermost
clusters converge to the loops of CLE4 in the sense that the outer boundaries of the m
largest outermost discrete clusters converge to outer boundaries m largest continuum ones,
and moreover the closed union of all outermost cluster boundaries converges to CLE4 - these
statements follow from the work in [Lup18]. More precisely, the main statement of that paper
does not directly apply these claims - it does not exclude long thin �lament-like clusters with
limits in the interior of CLE casket; however with further work it can be deduced with the
same methods; see e.g. Lemma 4.13 in [ALS20b] for a context, where similar care is needed,
or proof of Lemma 6 of [QW19].
Now, notice that once we manage to identify the outermost clusters, their signs and

measures, then we can recursively continue. Indeed, as the closure of the union of outermost

clusters C̊
(n)
k is a local set for all n, we conclude that in the limit, conditionally on the closure

of the union of all outermost clusters C̊k, the law of Φ̂ restricted to D \ (∪kC̊k) is that of

a zero boundary GFF in D \ (∪kC̊k). Thus we see that once we can deal with outermost
excursions, the convergence will also hold for excursions that are surrounded by �nitely many
excursions. As for any ε > 0 the number of excursions of diameter bigger than ε is almost
surely �nite, we have reduced the proposition to proving convergence for outermost clusters.
This is the content of the following claim.

Claim 29. Fix any loop ℓ of A−2λ,2λ and consider the sequence of clusters C̊
(n)
k whose outer

boundaries converge to ℓ. Then C̊
(n)
k converges to the union of ℓ with the FPS A±2λ of the

GFF ΦA−2λ,2λ restricted to O, the interior of ℓ. Furthermore, ν̊
(n)
k converges to the measure

νA±2λ
associated to this FPS.

Finally,
17



Proof of Claim 29. First, we note that the union of all outermost clusters C̊
(n)
k is a local set

of ϕ̃n, thus its limit C̊k is a local set of Φ̂. Further, when restricted to the interior O of the
outermost boundary ℓ of the cluster C̊k, this limit is a local set that satis�es the properties
of an FPS of level ±2λ (for the GFF ΦA−2λ,2λ restricted to O). Thus it is equal to this set

by the uniqueness of FPS, Theorem 9. In particular, this means that C̊k, the limit of C̊
(n)
k ,

is equal to some outermost cluster Ck(k).
To identify the limiting excursion measures, we will follow a strategy similar to what was

used in Section 4 to deduce the equality of excursion clusters and excursion measures by a
no extra mass argument. Additional convergence issues are taken care by Lemma 28. Let
us �esh it out here.
First, as no other subsequential limit of an outermost cluster C̊k can intersect O, we

conclude from the Markov decomposition w.r.t. the FPS A±2λ in O that

ν̊k := lim
n→+∞

ν
(n)
k ≥ νk(k) (5.3)

in terms of positive measures.
Further, one needs to show that there is no extra mass on the subsequential limiting

clusters, that is possibly compensated by some in�nitesimal excursions in the limit.
To see this, recall that the closure of the union of outermost clusters C̊k forms a local set.

Also, from the argument above we see that this local set is equal to the local set obtained by
taking CLE4 and �rst passage sets of height ±2λ inside each of the cluster, i.e. it is equal
to the closed union of outermost clusters C̊k. Let us denote this set by A.
By Lemma 28, we can write the sum over outermost excursion clusters C̊k,

E
[
(Φ, 1)2)

]
=

∑
k

E
[
(νk(k), 1)

2
]
+ E

[
(ΦA, 1)2

]
.

On the other hand, using the second point of Lemma 28, we see that for any k, it holds that

E
[
(̊ν

(n)
k , 1)2

]
→ E

[
(̊νk, 1)

2
]

and moreover, also E
[
(ϕ̃A(n)

n , 1)2
]
→ E

[
(ΦA, 1)2

]
, where A(n) denotes the local set given by

the closed union of C̊
(n)
k . Thus we also have

E
[
(Φ, 1)2)

]
=

∑
k

E
[
(̊νk, 1)

2
]
+ E

[
(ΦA, 1)2

]
.

But now recall that ν̊k ≥ νk(k), from where we see that in fact we have to have a one to
one correspondence between clusters with positive measure, and the equality has to hold in
(5.3).

□

□
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