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Conformally invariant fields out of Brownian loop soups

Antoine Jego∗ Titus Lupu† Wei Qian‡

October 5, 2023

Abstract

Consider a Brownian loop soup LθD with subcritical intensity θ ∈ (0, 1/2] in some 2D bounded
simply connected domain D. We define and study the properties of a conformally invariant field hθ
naturally associated to LθD. Informally, this field is a signed version of the local time of LθD to the
power 1− θ. When θ = 1/2, hθ is a Gaussian free field (GFF) in D.

Our construction of hθ relies on the multiplicative chaosMγ associated with LθD, as introduced
in [ABJL23]. Assigning independent symmetric signs to each cluster, we restrictMγ to positive
clusters. We prove that, when θ = 1/2, the resulting measureM+

γ corresponds to the exponential
of γ times a GFF. At this intensity, the GFF can be recovered by differentiating at γ = 0 the
measureM+

γ . When θ < 1/2, we show thatM+
γ has a nondegenerate fractional derivative at γ = 0

defining a random generalised function hθ.
We establish a result which is analogous to the recent work [ALS23] in the GFF case (θ = 1/2),

but for hθ with θ ∈ (0, 1/2]. Relying on the companion article [JLQ23], we prove that each
cluster of LθD possesses a nondegenerate Minkowski content in some non-explicit gauge function
r 7→ r2| log r|1−θ+o(1). We then prove that hθ agrees a.s. with the sum of the Minkowski content of
each cluster multiplied by its sign.

We further extend the couplings between CLE4, SLE4 and the GFF [SS13, MS] to hθ for
θ ∈ (0, 1/2]. We show that the (non-nested) CLEκ loops form level lines for hθ and that there
exists a constant height gap c(θ) > 0 between the values of the field on either side of the CLE
loops. However, unless θ = 1/2, hθ is not equal to the CLE nesting field. We finally study the Wick
powers of hθ and the expansion ofMγ andM+

γ in power series of γ.
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Figure 1.1: Relation (1) [SW12] states that the outer boundaries of the outermost clusters in a loop
soup are CLE. Relation (2) [LJ10, LJ11] states that the renormalised h2/2 is equal to the occupation
time field of the loop soup. Relation (3) [MS] states that CLE4 form the level loops of the GFF. In this
paper, we construct a field hθ out of a loop soup with intensity θ ∈ (0, 1/2), and conjecture that the
occupation time field of the loop soup is equal to a constant times the renormalised |hθ|1/(1−θ). We
prove that SLEκ/CLEκ appear as level lines of hθ.

1 Introduction
The two-dimensional Brownian loop soup, introduced by Lawler andWerner [LW04], is a fundamental
object with numerous connections to other important conformally invariant/covariant models.
Brownian loops in the form of bubbles first appeared in [LSW03a], where Lawler, Schramm and
Werner constructed chordal conformal restriction measures by attaching Brownian loops to an SLE
path. A Brownian loop soup is a random collection of infinitely many Brownian-type loops in a
given domain D of the plane, sampled according to a Poisson point process with intensity θµloop

D . θ
is a positive real parameter and µloop

D is a measure on loops defined by (2.1). The parameter c = 2θ
corresponds to the central charge in conformal field theory. In their seminal work [SW12], Sheffield
and Werner showed the following phase transition:
• Supercritical: when θ > 1/2, there is a.s. only one cluster of loops;
• Critical and subcritical: when θ ≤ 1/2, there are a.s. infinitely many clusters. In this case,

the outermost boundaries of the outermost clusters are distributed according to a (non-nested)
conformal loop ensemble CLEκ where κ = κ(θ) ∈ (8/3, 4] is related to θ by

c = 2θ = (6− κ)(3κ− 8)/(2κ). (1.1)

SLE (by Schramm [Sch00]) and its loop variant CLE (by Sheffield [She09]) were introduced to
describe the scaling limits of discrete models from statistical mechanics, and have now become
fundamental objects in random conformal geometry.

The intensity θ = 1/2 is special for another (related) reason. Indeed, when θ = 1/2, Le Jan
[LJ10, LJ11] identified the occupation field of the loop soup with half of the square of the Gaussian
free field (GFF), on discrete graphs and in dimensions 1, 2, 3 in the continuum. (In the 2D and
3D continuum, both the GFF and the occupation field are not defined pointwise and additive
renormalisations are needed to define rigourously the square of the GFF and the occupation field
of the loop soup.) This result is part of the random walk/Brownian motion representations of
the GFF, also known as isomorphism theorems [Sym65, Sym66, Sym69, BFS82, Dyn84a, Dyn84b,
Wol78, EKM+00, MR06, Szn12].

The critical intensity θ = 1/2 corresponds to κ = 4, which is also the critical parameter for
SLE in terms of self intersection [RS05]. A remarkable relation between SLE4 and the GFF was
established by Schramm and Sheffield in [SS13], where SLE4 appeared as level lines of the GFF.
There, SLE4 was recovered as a local set of the GFF, so that the GFF satisfies a certain spatial
Markov property when we condition on such sets. The value of the GFF is constant on either side
of the level line, with a constant height gap 2λ > 0 between the two sides. Such a coupling was also
extended to CLE4 by Miller and Sheffield [MS] (see also [MSW17, ASW19]), so that conditionally
on the CLE4, the GFF restricted to the domain encircled by each CLE4 loop is an independent
GFF with boundary conditions ±2λ.

The three relations between the critical loop soup, CLE4, and GFF in Figure 1.1 are proved
using three different approaches, but are shown to commute in [QW19], using the metric graph
approximation by [Lup16, Lup18a] as a key input. The metric graph is locally one dimensional, so
that the local times of a loop soup are defined pointwise. It was shown in [Lup16] that the GFF on
the metric graph can be obtained by taking the square root of the occupation field of the critical
loop soup, and then assigning i.i.d. symmetric signs in {±1} to each cluster. In the 2D continuum,
the local times are not defined pointwise, so it is not immediately clear what the square root of the
local time means. Yet, the article [ALS23] gives the precise analogue of this procedure in the 2D
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continuum, and shows that the GFF is equal to the sum of the signed Minkowski contents of the
clusters.

Relying on the connection with the GFF, one is able to deduce many properties about the
loop soup at θ = 1/2. For example, the excursions induced by the Brownian loops that touch the
boundary of a cluster were shown to have a surprisingly simple distribution, forming a Poisson point
process [QW19, QW18]. In [ALS20a], the Minkowski gauge function of the clusters was shown
to be r 7→ | log r|1/2r2. For θ ∈ (0, 1/2), without the powerful relation to the GFF, much less is
known, and the picture is expected to be overall more complicated. This paper, together with the
companion article [JLQ23], aims to fill this gap. The main question addressed in the current paper
is:

What is the natural field associated to the Brownian loop soup when θ ∈ (0, 1/2)?
More precisely, we would like to have a field hθ that is related to the occupation field of a loop soup
in a similar way that the GFF is related to the critical loop soup. It was shown in [LJ11, LJMR15]
that the occupation field of the loop soup is a permanental field, an object introduced by Vere-Jones
[VJ97] long before the Brownian loop soup (also see [MR13]). The field hθ that we are after would
be a more fundamental object behind these permanental fields.

A natural idea is to proceed as in the critical case [Lup16], i.e., to take the square root of the
occupation field of a loop soup, and then assign i.i.d. signs to each cluster. Although one can always
do this on the metric graph, the resulting field is not guaranteed to have any nice property nor to
converge to a nondegenerate limit in the continuum. As it turns out, surprisingly, the relevant field
will not correspond to a signed version of the square root of the local time of the loop soup, as for
θ = 1/2, but instead to a signed version of the local time to the power 1− θ.

Our construction of the field hθ is done directly in the continuum, relying on two key inputs.
The first one is the computation of the crossing exponent and related estimates obtained in the
companion paper [JLQ23]. The second key input is the construction in [ABJL23] of a multiplicative
chaos associated to the Brownian loop soup with any intensity θ > 0. Gaussian multiplicative
chaos (GMC), initially introduced by Kahane [Kah85] in the eighties and extensively studied in the
past decade [RV10, DS11, RV11, Sha16, Ber17], is a theory that defines and studies properties of
random measures informally defined as the exponential of a real parameter γ ∈ R times a Gaussian
logarithmically-correlated field. The two-dimensional GFF is an archetypal example of such a field
and its GMC measure is sometimes called Liouville measure. GMC appears to be a universal
feature of log-correlated fields going beyond the Gaussian setting: [Jun20] studies fields defined
as random Fourier series with i.i.d. coefficients and [Jeg20, Jeg21] makes sense of the exponential
of the square root of the local time of planar Brownian motion. The article [ABJL23] provides
a third example of a non-Gaussian multiplicative chaos and defines what can be thought of as
the exponential of γ times the square root of twice the local time of the Brownian loop soup, for
any intensity θ. In view of Le Jan’s isomorphism, it is natural to expect, and has been proven in
[ABJL23], that when θ = 1/2 the resulting measure agrees with an unsigned version of Liouville
measure: eγ|GFF|dx = eγGFFdx+ e−γGFFdx, i.e. a sum of two correlated Liouville measures.

Construction of hθ ((2*) in Figure 1.1) Concretely, we assign i.i.d. symmetric signs to each
cluster in the loop soup, and then consider the multiplicative chaosMγ of the loop soup restricted
to positive clusters. We prove that, when θ = 1/2, the resulting measureM+

γ agrees with eγGFFdx.
The GFF can therefore be recovered from the loop soup, together with the independent spins, by
differentiatingM+

γ at γ = 0. This idea is used for instance in [ALS20a]. When θ < 1/2, we show
that the same procedure yields a nondegenerate conformally invariant field hθ, with the surprising
and important difference that one has to take a fractional derivative ofM+

γ at γ = 0. This fractional
power is equal to 2(1− θ) which is twice the crossing exponent computed in [JLQ23].

We provide a second and equivalent approach to hθ. We show that each cluster has a nondegen-
erate Minkowski content in some non-explicit gauge function r 7→ r2| log r|1−θ+o(1) and we show
that hθ is equal to the sum of the signed Minkowski contents of all the clusters for all θ ∈ (0, 1/2),
similarly to the case θ = 1/2 [ALS23].

We emphasise that, when θ 6= 1/2, hθ is not log-correlated (its correlations blow-up as a power
of log, see Theorem 1.3) nor is supposed to be Gaussian. A conjectural expansion of M+

γ for
θ ∈ (0, 1/2) near γ = 0 in terms of hθ and the local times is given in (9.24). This conjecture is
closely related to Conjecture 1.14 below.

Level lines and height gap ((3*) in Figure 1.1) In addition, we establish a coupling between
hθ and CLEκ, where κ and θ are related by (1.1). For each θ ∈ (0, 1/2], there is a height gap
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c(θ) > 0 between the values of hθ on both sides of the level lines. We show that our field (with
0 boundary conditions) can also be constructed by first sampling a CLEκ, and then sampling an
independent hθ with wired boundary conditions in each domain encircled by a CLEκ loop. Although
the field hθ with wired boundary condition has constant value ±c(θ) on the boundary, we emphasise
that, when θ < 1/2 and unlike the GFF, this field is not equal to ±c(θ) plus hθ with zero boundary
conditions. In particular, our field is not equal to the CLE nesting field constructed by [MWW15].
By definition, the CLE nesting field should also admit CLE as its level lines, but it has no apparent
relation to the loop soup occupation field to our knowledge (except when θ = 1/2, where the field
is the GFF).

The fact that CLEκ or SLEκ are level lines of hθ is not at all clear form our definition. To
prove the level line coupling, we need to prove additional properties about the Brownian excursions
induced by the loops that touch the boundary of a cluster, and crucially rely on the conformal
restriction property of such excursions deduced in [Qia19].

This level line coupling can also be made to work in the chordal case, where an SLEκ curve
can be coupled with a field hθ with mixed wired/zero boundary conditions. This generalises the
SLE4/GFF coupling. Note that a coupling between SLEκ (for all κ > 0) and GFF was established
in [Dub09] and in the celebrated imaginary geometry series [MS16a, MS16b, MS16c, MS17], which
was another natural generalisation of the SLE4/GFF coupling. In the imaginary geometry coupling,
when κ 6= 4, the value of the GFF on both sides of the SLEκ curve are not constant, but is equal to
a constant plus a winding term, which depends on the choice of the starting point and does not
have pointwise value on the curve. In comparison, the value of hθ is constant along the curves, as
in the SLE4/GFF coupling.

In a nutshell, we construct for any θ ∈ (0, 1/2] a coupling between a field hθ, a Brownian loop
soup and a CLEκ such that:
• (Figure 1.1, (1)) The CLE loops are the outermost boundaries of the outermost clusters of the

loop soup.
• (Figure 1.1, (2*)) hθ is a signed version of the local time of the loop soup to the power 1− θ.

The precise relation is more complicated as described above.
• (Figure 1.1, (3*)) The CLE loops form level lines of hθ with a constant height gap on either

sides of the loops.
When θ = 1/2, this coupling possesses an additional feature: the centred occupation field of the
loop soup is half the Wick square of the GFF and the CLE loops are some two-valued sets of the
GFF. In particular both the occupation field and the CLE are measurable w.r.t. the GFF. To
keep the paper of a reasonable size, we do not attempt to prove such a measurability feature when
θ ∈ (0, 1/2).

1.1 A conformally invariant field out of the Brownian loop soup
Let D ⊂ C be a bounded simply connected domain and θ ∈ (0, 1/2]. Consider a Brownian loop soup
LθD in D with intensity θ. Let us denote by C the collection of all clusters C of LθD. Conditionally
on C, let (σC)C∈C be i.i.d. signs taking values in {±1} with equal probability 1/2. If a point x ∈ D
belongs to some cluster C, we will write σx for the sign σC of that cluster.

Let γ ∈ (0, 2) and letMγ be the multiplicative chaos of the Brownian loop soup LθD constructed
in [ABJL23], normalised so that E [Mγ(dx)] = 2dx; see Section 2.2 for details. Let M+

γ (dx) =
1{σx=+1}Mγ(dx) be the multiplicative chaos of LθD restricted to positive clusters. Note that this
definition is meaningful since everyMγ–typical point is visited by a loop (actually by infinitely
many loops, see [ABJL23, Theorem 1.8]). Let hγ be the field obtained fromM+

γ by

(hγ , f) := 1
Zγ

∫
D

f(x)(M+
γ (dx)− dx), (1.2)

for any bounded measurable function f : C → R. Here Zγ is a normalising constant defined in
(1.3) below in terms of some crossing probability. With some abuse of notation, we will often write
(hγ , f) =

∫
hγ(x)f(x)dx. Note that hγ is defined as a random generalised function on the whole

complex plane, vanishing outside of D.
To define the normalising constants we will use in this article, we first introduce the following

notations:
Notation 1.1. For any family L of loops and any sets A,B ⊂ D, we will denote by {A L↔ B} the
event that there is a cluster of loops in L that intersects both A and B. If x and y are points, we
will simply write {x L↔ A} and {x L↔ y} instead of {{x} L↔ A} and {{x} L↔ {y}}.
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We will then use two normalising constants Zr and Zγ defined by

Zr := P
(
e−1∂D

LθD←→ rD
)
, r > 0, and Zγ := P

(
e−1∂D

LθD∪Ξ0,D
a←→ 0

)
, γ ∈ (0, 2), (1.3)

where Ξ0,D
a is an a-thick loop (a = γ2/2) at the origin defined in Section 2.1 that is independent

from LθD.

Theorem 1.2 (Construction of hθ). Let θ ∈ (0, 1/2]. For any bounded measurable function
f : C → R, (hγ , f) converges in L2 as γ → 0. Moreover, for any ε > 0, hγ converges in L2 as
γ → 0 in the Sobolev space H−ε(C) (4.7) to some random field hθ ∈ H−ε(C).

Furthermore, the normalising constant Zγ satisfies Zγ = γ2(1−θ)+o(1).

Theorem 1.3 (Properties of hθ). Let θ ∈ (0, 1/2].
1. Covariance: There exists a measurable function Cθ : D ×D → [0,∞] such that for all test

functions f ,
E
[
(hθ, f)2] =

∫
D×D

f(x)Cθ(x, y)f(y)dxdy. (1.4)

The blow-up of Cθ on the diagonal is given by

Cθ(x, y) = | log |x− y||2(1−θ)+o(1)

as x− y → 0, while staying at a positive distance from ∂D.
2. Conformal invariance: Let ψ : D → D̃ be a conformal map between two bounded simply

connected domains and let hθ,D and h
θ,D̃

denote the fields from Theorem 1.2 in the domains
D and D̃. Then1 hθ,D ◦ ψ−1 and h

θ,D̃
have the same law.

3. Symmetry: Let h−θ denote the field obtained in a similar way as hθ with negative clusters
instead of positive ones. Then h−θ = −hθ a.s. In particular, hθ

(d)= −hθ.
4. Nondegeneracy: Let f : D → R be a smooth test function, non identically zero. Then the law

of (hθ, f) is nonatomic. In particular, (hθ, f) 6= 0 a.s.

As already mentioned, when θ = 1/2, Mγ agrees with the hyperbolic cosine : eγh : dx
+ : e−γh : dx of the GFF h with Dirichlet boundary condition. Here h is normalised so that
E [h(x)h(y)] ∼ − log |x − y| as x − y → 0 and : e±γh : dx are GMC measures normalised so that
E
[
: e±γh : dx

]
= dx. See [ABJL23, Theorem 1.5]. Because the isomorphism relating the local time

to the GFF is much stronger in the discrete, the proof of this result was obtained by first proving a
discrete approximation ofMγ . In Theorem 8.3, we show a stronger version of this convergence by
showing that the discrete approximation holds cluster by cluster, for any θ ∈ (0, 1/2]. It implies that,
when θ = 1/2, the measureM+

γ (dx) = 1{σx=+1}Mγ(dx) agrees with : eγh : dx. As a corollary,

Theorem 1.4. When θ = 1/2, hθ has the law of a multiple of the GFF in D. More precisely, there
is a deterministic constant c1/2 ∈ (0,∞) and a coupling between a critical loop soup L1/2

D together
with i.i.d. spins (σC)C∈C and a Gaussian free field h in D such that almost surely,

• M+
γ =: eγh : dx andMγ = 2 : cosh(γh) : dx for all γ ∈ (0, 2);

• h1/2 = c1/2h and : L := 1
2 : h2 :.

The appearance of the constant c1/2 comes from the fact that we do not renormaliseM+
γ (dx)−dx

by γ, but by a normalising constant Zγ that behaves asymptotically like a multiple of γ (see [JLQ23,
Lemma 2.6] for a similar result where the a-thick loop is replaced by a small disc).
Remark 1.5. As a consequence of Theorem 1.4, the covariance Cθ is a constant multiple of the
Green function when θ = 1/2. When θ < 1/2, we do not know any close formula for Cθ. We
intend to investigate this question in the future. However, note that the conformal invariance of
Cθ implies that there is some measurable function F : [0,∞)→ [0,∞) such that for all x, y ∈ D,
Cθ(x, y) = F (GD(x, y)). This simply comes from the fact that GD(x, y) characterises the conformal
type of a disc with two punctures.

1Recall that by definition (hθ,D ◦ ψ−1, f̃) = (hθ,D, f̃ ◦ ψ−1) for any test function f̃ .
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1.2 Level lines and the height gap of hθ

The outermost boundaries of the outermost clusters form natural interfaces coupled with hθ. In
Theorem 1.7 below, we show that, for general intensities θ ∈ (0, 1/2], the (non-nested) CLEκ loops
are level lines of hθ, where κ and θ are related by (1.1), and that there is a constant height gap
c(θ) > 0.

The field hθ given by Theorem 1.2 is a field with 0 boundary conditions. In order to state
Theorem 1.7, we need to define a field hwired

θ out of a loop soup with wired boundary conditions,
which will turn out to have constant value ±c(θ) on the boundary. Let x0 ∈ D and let C be
the outermost cluster surrounding x0. Let O be the simply connected domain delimited by the
outermost boundary of C and let σ∂O be the sign associated to C. We recall the following fact
from [QW19, Theorem 1]. The law of the loop soup inside O, conditionally given O, is that of
the union of two conditionally independent collections of loops. The loops that do not touch the
boundary of O are simply distributed according to an unconditioned loop soup LθO in O. The loops
that touch the boundary form a random collection Eθ∂O of excursions. The law of Eθ∂O is explicit
only when θ = 1/2. However, for general intensities θ ≤ 1/2, Eθ∂O is conformally invariant in the
following strong sense: if Eθ∂O is conformally mapped to the unit disc, then the resulting collection
of excursions Eθ∂D is independent of O and invariant in law under Möbius transformations.

Let hwired
θ be the random field in D obtained by restricting hθ to test functions compactly

supported in O and then by conformally mapping O onto D. More precisely, let ψ : O → D be a
conformal map. For any smooth test function f : D → R with compact support in D, we define
(hwired
θ , f) = (hθ, f ◦ ψ). By [QW19, Theorem 1], the law of hwired

θ does not depend on the choice
of the conformal map ψ and hwired

θ is independent of O.
In Theorem 1.7 below, we will consider smooth test functions fε : D→ [0,∞), ε ∈ (0, 1), whose

supports concentrate on the circle ∂D as ε→ 0. We will make the following assumptions:

Assumption 1.6. For all ε ∈ (0, 1), fε is compactly supported in {x ∈ D : d(x, ∂D) < ε} and∫
D fε = 1. Moreover,

sup
ε

∫
D×D

(Cθ,D(x, y) + max(1,− log |x− y|)) fε(x)fε(y)dxdy <∞, (1.5)

and lim
δ→0

lim sup
ε→0

∫
D×D

1{|x−y|<δ} (Cθ,D(x, y) + max(1,− log |x− y|)) fε(x)fε(y)dxdy = 0 (1.6)

where Cθ,D denotes the covariance of the field hθ in the domain D with zero boundary condition; see
(1.4).

If u : [0,∞)→ [0,∞) is a smooth function with u(0) = 0, u(r) = 0 for r ≥ 1 and
∫

(0,∞) u = 1,
then fε : x ∈ D 7→ 1

2πε|x|u( 1−|x|
ε ), ε ∈ (0, 1), satisfies the desired properties.

Theorem 1.7. For θ ∈ (0, 1/2], there exists a constant c(θ) > 0 depending only on θ such that:
• (Constant expectation) For all test function f compactly supported in D,

E
[
(hwired
θ , f)|σ∂D

]
= σ∂Dc(θ)

∫
D
f, a.s. (1.7)

• (Constant boundary conditions) Let (fε)ε be a sequence of test functions satisfying Assump-
tion 1.6. Then

(hwired
θ , fε)− σ∂Dc(θ)

L2

−−−→
ε→0

0. (1.8)

• (Spatial Markov property) We can construct hθ in the domain D as follows. We first sample
a CLEκ = {`, ` ∈ CLE} and i.i.d. signs {σ`, ` ∈ CLE}. Let hwired

θ,` , ` ∈ CLE, be independent
fields in D with wired boundary conditions and sign σ` on ∂D. For ` ∈ CLE, let ψ` be a
conformal map from D onto the domain encircled by `. Then

∑
` h

wired
θ,` ◦ ψ−1

` has the law of
the field hθ in D with zero boundary condition.

The height gap c(θ) is expressed as the limit of the ratio of the probabilities of some crossing event;
see (7.2).

We will prove in Section 9.4 that a stronger version of the “constant expectation” property
holds in dimension one, i.e., the 1D analogue of this field is a martingale. In Section 9.4, we define
hθ in 1D to be a square Bessel process taken to the power ν = 1− θ and multiplied by an i.i.d. sign
for each of its excursion away from 0. In Lemma 9.9, we show that this one-dimensional process is
a martingale if and only if ν = 1− θ, which again singles out the special role of the exponent 1− θ.
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We believe that, if θ < 1/2, the “spatial Markov” decomposition for hθ only holds along some
special interfaces, including the boundaries of the clusters. This makes our field more complicated
to analyse than the GFF. For example, we believe that we cannot couple a nested CLEκ as the
level lines of hθ, unless θ = 1/2. As already mentioned, for θ < 1/2, our fields hθ are different
from the nesting fields built in [MWW15]. Indeed, for the nesting fields, the correlation blows up
logarithmically on the diagonal [MWW15, Theorem 1.3], and in our case it blows up as log to the
power 2(1− θ) + o(1).

By [SW12], one can define an exploration process of a CLE which stops in the middle of a loop.
One can conformally map ϕ : H → H the unexplored region H onto the upper half plane H in such
a way that the explored portion of this CLE loop is sent to R− and the rest of the boundary is sent
to R+. The portion of the CLE loop that remains unexplored is a chordal SLEκ curve η from 0 to
infinity. Suppose that this CLE is the outer boundaries of the clusters in a loop soup LθH. For any
smooth test function f : H→ R with compact support in H, we define (hmixed

θ , f) = (hθ, f ◦ ϕ−1).
By [Qia19], the law of hmixed

θ does not depend on the choice of the conformal map ϕ and hmixed
θ is

independent of H. Moreover, the loop soup satisfies spatial Markov property as one continues to
explore along η. This implies a coupling between hmixed

θ and η, stated in the following.
Theorem 1.8. Let hmixed

θ be a field in H with wired boundary conditions on R− and zero on R+.
There is a curve η coupled with hmixed

θ , such that η is a chordal SLEκ from 0 to ∞. For each
t > 0, let gt be a conformal map from H \ η([0, t]) onto H that sends η(t) to 0 and ∞ to ∞. Then
conditionally on η([0, t]), hmixed

θ ◦ g−1
t is distributed as hmixed

θ and is independent from η([0, t]).
This is a generalisation of the SLE4/GFF coupling. We can also immediately deduce from

Theorem 1.7 that hmixed
θ has boundary value c(θ) (resp. 0) on the left (resp. right) side of η.

Combining (1.7) from Theorem 1.7 and Theorem 1.8, we see that for all x ∈ H, E
[
hmixed
θ (x)

]
is

equal to c(θ) times the probability that a chordal SLEκ from 0 to ∞ goes to the right of x. It turns
out that this probability is explicit, given by Schramm’s formula [Sch01].

1.3 hθ as a sum of Minkowski contents
We now give another description of hθ, somewhat more geometric. We will show that the field hθ is
a limit of random signed Radon measures supported on the topological closures of clusters of LθD,
and give an expression for these measures. This establishes the analogue of the result in the critical
case [ALS20a, ALS23], where h1/2 is the GFF.

We start by defining a nondegenerate measure supported on the closure of a given cluster of LθD.
Given a closed (fractal) set A ⊂ C, it is a classical problem (that can be highly non-trivial) to define
a nondegenerate measure supported on A. One possibility is to try to renormalise the Lebesgue
measure of the r-neighbourhood of A and take the limit as r → 0+. More precisely, one seeks
an appropriate gauge function φ : (0,∞)→ (0,∞) such that the measure r−2φ(r)1{dist(x,A)<r}dx
converges weakly as r → 0+ to a nondegenerate limit. If such a function can be found, the resulting
measure is then called the Minkowski content of A in the gauge φ.

It is a well known fact that the Minkowski content of a single planar Brownian trajectory is well
defined and nondegenerate in the gauge r 7→ r2| log r|. In this case, it coincides with the occupation
measure of the path. Because the non-renormalised local time of a given cluster of LθD (i.e. the sum
of the local times of all the trajectories of a given cluster) is infinite, the Brownian gauge function
r 7→ r2| log r| is not appropriate for the clusters of LθD. And indeed, [ALS20a] showed that, when
θ = 1/2, the Minkowski content of a given cluster of LθD is well-defined and nondegenerate in the
gauge r 7→ r2| log r|1/2. In Theorem 1.9 below, we resolve the analogous problem when θ ∈ (0, 1/2)
by showing that the Minkowski content of a given cluster of LθD is well-defined and nondegenerate
in some non-explicit gauge function r 7→ r2/Zr that behaves like r2| log r|1−θ+o(1) as r → 0.

We order the clusters of LθD as follows. Let (xk)k≥1 be a dense sequence in D. We will denote
by Ck the outermost cluster of LθD surrounding xk, among the clusters different from C1, . . . , Ck−1.
By construction, the clusters (Ck)k≥1 are two by two distinct. It is also easy to see that a.s. this is
an enumeration of the clusters of LθD. For k ≥ 1, let µk,r and µk,γ be the random Radon measures
defined by

µk,r(B) = 1
Zr

∫
B

1{dist(x,Ck)<r} dx, µk,γ(B) = 1
Zγ

∫
B

1{dist(x,Ck)<1}(1− dist(x, Ck)γ
2/2) dx,

for all Borel set B ⊂ D. Recall that the normalising constants Zr and Zγ are defined in (1.3).
Theorem 1.9 (Minkowksi contents of clusters). Let θ ∈ (0, 1/2]. For all k ≥ 1, µk,r and µk,γ
converge in probability w.r.t. the topology of weak convergence as r → 0 and γ → 0 to the same
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random Radon measure µk. Moreover, µk is a.s. a non-negative finite measure supported on Ck
and µk(Ck) > 0 a.s.

Recall that we denote by σCk the spin associated to the k-th cluster Ck. The field hθ is then
obtained by:

Theorem 1.10 (Construction of hθ from the Minkowski contents). Let θ ∈ (0, 1/2]. For all ε > 0
and all bounded measurable function f : C→ R, the following convergences hold a.s. and in L2:

k∑
j=1

σCjµj −−−−→
k→∞

hθ and
k∑
j=1

σCj (µj , f) −−−−→
k→∞

(hθ, f)

in the spaces H−ε(C) and R respectively.

In other words, the “restriction of |hθ|” to Ck is a well-defined Radon measure that agrees with
µk. Note however that this does not at all mean that the field hθ is a signed measure. Most likely,
the associated total variation measure

∑k
j=1 µj diverges, as k → +∞, in every open subset of D;

so the compensations induced by the signs are necessary for the convergence. This phenomenon is
known to occur when θ = 1/2.

1.4 Connecting two points with a cluster
We now want to elaborate on the intimate relation between the field hθ and the connectivity
properties of the loop soup. We are first going to define the law Px↔y of the loop soup conditioned
on the event that two given points x and y belong to the closure of the same cluster. Because this
event has a vanishing probability, we will define this law via a limiting procedure; see Theorem
1.11. Theorem 1.12 then provides a Doob-transform approach to the definition of Px↔y: Px↔y can
be informally obtained by reweighting the law of LθD by hθ(x)hθ(y)/Cθ(x, y).

Let x, y ∈ D be two distinct points. For all r > 0, let Px↔y,r be the law of a loop soup LθD
conditioned on the event {D(x, r) L

θ
D←→ D(y, r)} that a cluster of LθD connects the two discs D(x, r)

and D(y, r).

Theorem 1.11. Let x, y ∈ D be two distinct points. Then Px↔y,r converges weakly as r → 0 to
some probability measure Px↔y, with respect to the topology induced by dL (2.4).

We can now state the aforementioned relation between the field hθ and the connectivity properties
of the loop soup:

Theorem 1.12. Let F : D×D×L→ R be a bounded measurable function such that for all L ∈ L,
F (·, ·,L) is smooth. Then

E
[∫

D

F (x, y,LθD)hθ(x)hθ(y)dxdy
]

=
∫
D×D

Cθ(x, y)Ex↔y [F (x, y,L)] dxdy.

There are many instances in statistical mechanics where such a relationship between the two-
point function of a field and connection probabilities holds. The Edwards–Sokal coupling between
the Potts model and the random cluster model is a famous example [FK72, ES88]. These relations
can be very powerful tools to study one model via the knowledge of the other. As already alluded
to, the clusters of the loop soup are well understood at criticality (θ = 1/2) thanks to the GFF. On
the other hand, the current paper, together with [JLQ23], studies directly the clusters (θ ≤ 1/2)
and then infers properties on hθ.
Remark 1.13. When θ = 1/2, the law Px↔y can be described precisely as follows. Consider the
metric graph GFF ϕ̃ on some graph and let x and y be two distinct points. The BFS-Dynkin
isomorphism [BFS82, Dyn84a, Dyn84b] tells us that for any test function F ,

E
[
ϕ̃(x)ϕ̃(y)F (ϕ̃2/2)

]
= G(x, y)E

[
F (ϕ̃2/2 + `℘)

]
(1.9)

where ℘ is an independent Brownian excursion from x to y and `℘ is its local time. Note
that by independence of the signs on different clusters, the left hand side can be rewritten as
E
[
ϕ̃(x)ϕ̃(y)F (ϕ̃2/2)1{x↔y}

]
. In the scaling limit, the identity (1.9) suggests that the law of the

cluster joining x to y under Px↔y can be obtained as follows. Sample a critical Brownian loop soup
L1/2
D and an independent Brownian excursion ℘ from x to y, then consider the cluster joining x to

y in the collection of paths L1/2
D ∪ {℘}.
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Viewing the path ℘ as an SLE2 curve decorated by Brownian loops coming from a loop soup
with intensity θ = 1 [LSW03a], we can see the above description as a notion of duality between
the loop soup with intensity 1/2 and the loop soup with intensity 1/2 + 1 = 3/2. See also Lemma
9.10. As we will see in Section 9, some notion of duality between the intensities θ and 2− θ might
hold more generally for all θ ∈ (0, 1/2]. We will see that this is reminiscent to the duality between
Bessel processes of dimensions d and 4− d.

1.5 Conjectural construction of hθ from a discrete loop soup
Let DN ⊂ 1

NZ2 ∩D be a subset of the square lattice with mesh size 1
N which approximates the

continuous domain D. See (2.6) for a precise definition. Fix θ ∈ (0, 1/2] and let LθDN be a random
walk loop soup in the metric graph D̃N and CN = {C}C∈CN be the collection of clusters C of LθDN .
Conditionally on CN , let σC , C ∈ CN , be i.i.d. spins taking values in {±1} with equal probability.
For all x ∈ D̃N , let `x be the total local time accumulated by all loops at x, see (2.7). For orientation,
we recall that for all x, `x is distributed according to Gamma(θ,GDN (x, x)) where GDN (x, x) is
the discrete Green function which behaves, with our normalisation, like GDN (x, x) ∼ 1

2π logN as
N →∞. We can now define what we conjecture being the analogue of hθ in the discrete:

hθ,N (x) := Γ(θ)
21−θΓ(2− θ)σCx{2π`x}

1−θ, (1.10)

where Cx denotes the cluster containing x. Importantly, there is no renormalisation in the definition
of hθ,N .

Conjecture 1.14. Let θ ∈ (0, 1/2]. There exists cconj = cconj(θ) > 0 such that for all bounded
smooth test function f ,

1
N2

∑
x∈DN

f(x)hθ,N (x) (d)−−−−→
N→∞

cconj(hθ, f). (1.11)

In Section 9, we considerably elaborate on this conjecture and address the question of defining
the renormalised powers of hθ. The powers of hθ that reduce to integer powers : Lnx : of the
local time : Lx : have already been defined in [LJ11, LJMR17]. In order to define the remaining
powers (the “odd” powers of hθ), we give a specific approximation scheme from the discrete and we
conjecture that it possesses a nondegenerate scaling limit (Conjecture 9.11). This is based on a
connection with the one-dimensional Brownian loop soup (first revealed in [JLQ23]) and reveals a
surprising notion of duality between the intensities θ and θ∗ = 2− θ. If this conjecture held true,
we would obtain the following expansion forM+

γ around γ = 0:

M+
γ (dx) =

(∑
k≥0

γ2k

2k
Γ(θ)

k!Γ(k + θ) (2π)k : Lkx : +cconjγ
2(1−θ) γ

2k

2k
Γ(θ∗)

k!Γ(k + θ∗) (2π)k : hθ(x)Lkx :
)

dx.

See Section 9.5 for the definition of the different terms appearing in the above display. We plan to
prove these conjectures in a future work.

1.6 Relation to other conformally invariant and covariant fields
Let us review some other conformally invariant and covariant fields that appeared in the mathe-
matical literature.

For θ = 1/2, our field hθ is the continuum GFF (up to a multiplicative constant). We believe
that for θ < 1/2, the fields hθ are neither Gaussian nor Markovian (physicists would say non-local
fields).

The GFF is in particular a CLE4 nesting field (Miller-Sheffield coupling). In [MWW15], the
authors constructed other conformally invariant fields using the nested CLEκ for κ ∈ (8/3, 4].
However, as already mentioned, for θ < 1/2, our fields hθ are different from the nesting fields built
in [MWW15]. In the case θ = 1/2, the clusters of the corresponding Brownian loop soup can be
described through the nested labelled CLE4; see [ALS23, Remark 17]. However, for θ < 1/2, we
believe that the clusters of the Brownian loop soup cannot be described through the nested CLEκ,
since there is too much independence in the latter.

For θ = 1/4, the outer boundaries of the Brownian loop soup clusters are the CLE3 loops, which
are also the scaling limits of interfaces in the critical 2D Ising model [KS16]. But this coincidence
is just for the outer boundaries. The full scaling limit of Ising spin clusters is different from the
Brownian loop soup clusters. The dimension of the former is 187/96 (dimension of the CLE3 gasket
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[MSW14]), and the dimension of the latter is 2. We further believe that our field is none of the
Ising local fields studied in the Conformal Field Theory (CFT), and in particular not the continuum
Ising spin field constructed in [CGN15, CGN16], since the two-point correlations of these fields
from the Ising CFT blow up on the diagonal as a power (and not a power of the log), and these
fields are conformally covariant but not invariant (under conformal mappings, the modulus of the
derivative to some power appears). Still, it is an open question whether hθ for θ = 1/4 is related to
the Ising model in some other way, perhaps through a non-local transformation.

We would like to mention that other conformally covariant (but not invariant) fields have been
constructed using the Brownian loop soup. First, there are the so-called winding fields, obtained by
renormalising eiβW (z), where W (z) is the sum of the indices of the Brownian loops around the point
z ∈ D, and β is a parameter in [0, π] [CGK16, vdBCL18, LJ19]. The correlations of the winding
fields blow up as a power on the diagonal. Informally speaking, the winding fields have constant
values on the dual clusters of the Brownian loop soup, that is to say on the connected components
of the domain minus the Brownian loops, all these connected components being CLEκ gaskets in
the scaling limit. So this is different from our setting, since the fields hθ are in a sense constant
on the clusters of the Brownian loop soup, not on their planar duals. It has been observed that
for θ = 1/2 and β = π (so that eiβW (z) ∈ {−1, 1}), the corresponding winding field is exactly the
Kramers-Wannier dual (a planar duality inherited from the duality in FK random clusters) of the
2D GFF [vdBCL18, Theorem 2.1]. Another family of fields constructed from the Brownian loop
soups are the so called layering fields, which are a variant of winding fields, where one considers
only the outer boundaries of Brownian loops, which are SLE8/3 loops. The latter construction does
not capture the structure of the clusters of Brownian loops, since one keeps only little information
on those loops. However, these layering fields are known to satisfy a lot of exact solvability and
have been related to the CFT [CGK16, CGPRR21, CFGK20, CFGK22a, CFGK22b].

1.7 Organisation of the paper
The paper is organised as follows:

• Section 2: we recall some definitions and results that we will need from the literature. We will
also state and prove preliminary lemmas that we will be useful in the rest of the paper.

• Section 3: we prove the convergence of the ratio of two hitting probabilities by clusters; see
Theorem 3.1. To do so, we will develop in Theorem 3.3 a general coupling result between two
trajectories of the same Markov chain with distinct starting points.

• Section 4: we prove Theorems 1.2, 1.11 and 1.12 about the construction of hθ, the conditioned
probability measure Px↔y and the link between the two.

• Section 5: we prove Theorems 1.9 and 1.10 concerning the definition of the Minkowski contents
of the clusters and their relations to the field hθ.

• Section 6: we obtain estimates on the loops that touch the outer boundary of a given cluster;
see in particular Propositions 6.4, 6.5 and 6.16.

• Section 7: we prove the properties of hθ stated in Theorem 1.3. We also prove that CLE/SLE
are level lines of hθ as stated in Theorems 1.7 and 1.8.

• Section 8: Relying on a discrete approximation, we prove the identification of hθ with the GFF
when θ = 1/2 (Theorem 1.4). See in particular Theorem 8.3.

• Section 9: we prove an expansion of the unsigned measureMγ in powers of γ; see Theorem 9.2.
We then investigate the Wick powers of hθ and state a precise conjecture about a renormalisation
procedure that would define them (Conjecture 9.11). We further show that these Wick powers
would allow one to expand the signed measureM+

γ ; see Theorem 9.12 and (9.24). Finally, we
study the analogue of the field hθ in dimension 1; see Section 9.4.

Most sections of the current paper contain an introduction that describes more thoroughly its
content.
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2 Preliminaries
2.1 Measures on paths and definition of the Brownian loop soup
• Brownian motion: in this paper, we will always consider Brownian motions with infinitesimal

generator ∆ rather than the standard Brownian motion, which has generator 1
2∆ (this is to have

more tractable constants in isomorphism relations).
• pD(t, z, w), t > 0, z, w ∈ D: transition probability of Brownian motion killed upon leaving the

domain D. If
pC(t, z, w) = 1

4πt exp
(
− |w − z|

2

4πt

)
, t > 0, z, w ∈ D,

denotes the transition probabilities of Brownian motion in the full plane, and if πD(t, z, w) denotes
the probability that a Brownian bridge of duration t remains in the domain D throughout, then
pD(t, z, w) = pC(t, z, w)πD(t, z, w).

• Green function GD(z, w) =
∫∞

0 pD(t, z, w)dt, z, w ∈ D. In our normalisation, GD(z, w) ∼
− 1

2π log(|w − z|) as |w − z| → 0.
• Gaussian free field ϕ: random generalised function such that ((ϕ, f))f∈S(C) is a centred Gaussian

process with covariance given by E [(ϕ, f)(ϕ, g)] =
∫
D×D f(z)GD(z, w)f(w)dzdw. See [WP21,

BP21] for introductions to the GFF. We will denote by h =
√

2πϕ the GFF in D normalised so
that E [hzhw] ∼ − log |z − w| as z − w → 0.

• Pz,wD,t, t > 0, z, w ∈ D: probability measure on Brownian bridges from z to w of duration t,
conditioned on staying in D.

• µloop
D : loop measure in D:

µloop
D (d℘) =

∫
D

∫ +∞

0
Pz,zD,t(d℘)pD(t, z, z)dt

t
dz. (2.1)

• LθD, θ > 0: Brownian loop soup in D with intensity θ. Random collection of loops distributed
according to a Poisson point process with intensity θµloop

D .
• µz,wD , z, w ∈ D: measure on continuous paths from z to w in D:

µz,wD (d℘) =
∫ +∞

0
Pz,wD,t(d℘)pD(t, z, w)dt. (2.2)

• Ξx,Da , x ∈ D, a > 0: random loop which is the concatenation at x of all the excursions in a
Poisson point process with intensity aµx,xD . If there is no ambiguity, we will simply write Ξxa.
Depending on our needs, we will view clusters of loops as random collections of loops or as

random compact subsets of D. We now define the metrics we will use in these two situations. In
the latter case, we will denote by (K, dK) the collection of all compact subsets of D, endowed with
the Hausdorff metric:

dK(A,B) = max
(

sup
x∈A

d(x,B), sup
x∈B

d(x,A)
)
, A,B ∈ K. (2.3)

We now specify the distance we will use between collections of loops.

Distance between collections of loops It is easier to consider the loops in the loop soup
as rooted loops (we can sample a root uniformly at random w.r.t. the time parametrization of
each loop). Let P be the set of all parametrized continuous planar curves γ defined on a finite
time-interval [0, tγ ]. We endow P with the metric

dP(γ, γ′) = |tγ − tγ′ |+ sup |γ(·/tγ)− γ′(·/tγ′)|.
Let L be the collection of locally finite families L of loops in P. We define the following metric on
L:

dL(L,L′) ≤ ε ⇐⇒ ∃f : Lε → L′ injective such that ∀γ ∈ Lε, dP(γ, f(γ)) ≤ ε (2.4)
and similarly when we exchange L and L′,

where Lε is the collection of loops in L with a diameter larger than ε.

11



Random walk loop soup For a portion DN of the square lattice 1
NZ2, we will also need

to consider the random walk loop soup LθDN in DN with intensity θ, introduced by [LTF07]. Its
definition is analogous to the definition of LθD with discrete versions of the heat kernel and Brownian
bridges. See [ABJL23, Section 2.2] for details.

2.2 Multiplicative chaos of the Brownian loop soup
In this section, we will recall the definition and some properties of the multiplicative chaos measure
Mγ of the Brownian loop soup LθD in a given bounded simply connected domain D ⊂ C. We
will recall the construction from the discrete setting since it is the easiest one to explain and
since it will be the approximation we will use in Section 8. Let us mention however that there
is a construction directly in the continuum which is based on Brownian multiplicative chaos
measures [BBK94, AHS20, Jeg20, Jeg22, Jeg21]. We follow [ABJL23]. Let us stress already that
our normalisation ofMγ is given by E [Mγ(dz)] = 2dz which is different from the one in [ABJL23]:
if we denote by M̂γ the measure constructed in [ABJL23, Theorem 1.1], we will have

Mγ(dz) = a1−θ21+θΓ(θ) CR(z,D)−γ
2/2M̂γ(dz). (2.5)

Let N ≥ 1 be a large integer and let DN ⊂ 1
NZ2 be a discrete approximation of D. Specifically,

assuming without loss of generality that D contains the origin, let

DN :=
{
z ∈ D ∩ 1

N
Z2 : there exists a path in 1

NZ2 from z to the origin
whose distance to the boundary of D is at least 1

N

}
. (2.6)

Let LθDN be a random walk loop soup with intensity θ. For any vertex x ∈ DN and any loop
℘ = (℘(t))0≤t≤T (℘) ∈ LθDN , we denote by `x(℘) the local time of ℘ at x and `x the local time of the
loop soup at x:

`x(℘) := N2
∫ T (℘)

0
1{℘(t)=z}dt and `x :=

∑
℘∈Lθ

DN

`x(℘). (2.7)

In our normalisation, E [`x] ∼ θ
2π logN as N →∞, for any x in the bulk of DN . We then define

the set of a-thick points by

TN (a) :=
{
x ∈ DN : `x ≥

1
2πa(logN)2

}
. (2.8)

The parameter a can be thought of as a thickness parameter. It is related to the GMC parameter γ
by

a = γ2

2 , γ =
√

2a. (2.9)

We finally define the discrete approximationMN
a ofMa as the uniform measure on the set of thick

points: for all Borel set A ⊂ C,

MN
a (A) := 1

c∗(a)
(logN)1−θ

N2−a

∑
x∈TN (a)

CR(x,D)−a1{x∈A}. (2.10)

where the constant c∗(a) is given by c∗(a) = (2
√

2)aeaγEM

2a1−θΓ(θ) with γEM being the Euler–Mascheroni
constant.

Theorem 2.1 ([ABJL23, Theorem 1.12]). Let θ > 0 and a ∈ (0, 2). The following convergence
holds in distribution

(LθDN ,M
N
a )→ (LθD,Ma) as N →∞,

relatively to the topology induced by dL for LθDN and the weak topology on C forMN
a .

With some abuse of notation, we will write Ma or Mγ depending on whether we view the
measure as a function of a or γ. In this paper a and γ will always be related by (2.9).
Remark 2.2. Let us mention that the previous results can easily be generalised to finitely connected
domains. In that case, one would need to change in (2.10) log CR(z,D) by the harmonic extension
of log |z − ·| from ∂D to D. Indeed, this is the function that appears in the asymptotic behaviour
of the Green function on the diagonal (see e.g. (1.4) in [BP21]).
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Some properties In the following lemma we recall some first and second moments computations
related toMa. Let a, a′ ∈ (0, 1) be two thickness parameters lying in the L2-regime. Let {a1, a2, . . . }
and {a′1, a′2, . . . } be two independent random partitions of [0, a] and [0, a′], respectively, distributed
according to a Poisson–Dirichlet distribution with parameter θ. Conditionally on these partitions,
let Ξxai ,Ξ

y
a′
i
, i ≥ 1, be independent loops whose distributions are described in Section 2.1. We also

recall the definition of the modified Bessel function of the first kind

Iθ−1(u) =
∑
n≥0

1
n!Γ(θ + n)

(u
2

)2n+θ−1
, θ > 0, u > 0. (2.11)

Lemma 2.3. For a ∈ (0, 2) and F : D×L→ R a bounded measurable admissible function, we have

E
[∫

D

F (x,LθD)Ma(dx)
]

= 2
∫
D

E
[
F (x,LθD ∪ {Ξxai}i≥1)

]
dx (2.12)

where the two collections of loops LθD and {Ξxai}i≥1 are independent. Let a, a′ ∈ (0, 1). We have

E [Ma(dx)Ma′(dy)] = 4
(

2π
√
aa′GD(x, y)

)1−θ
Γ(θ)Iθ−1

(
4π
√
aa′GD(x, y)

)
dxdy. (2.13)

Moreover, if F : D ×D × L→ R is a bounded measurable admissible function, then

E
[
F (x, y,LθD)Ma(dx)Ma′(dy)1{@℘∈LθD visiting both x and y}

]
(2.14)

= 4E
[
F (x, y,LθD ∪ {Ξxai}i≥1 ∪ {Ξya′

i
}i≥1)

]
dxdy

where the three collections of loops LθD, {Ξxai}i≥1 and {Ξya′
i
}i≥1 are independent.

Proof. Recall that our normalisation ofMa is different than in [ABJL23] (see (2.5)). (2.12) is the
content of [ABJL23, Theorem 1.8] and (2.13) can be found in [ABJL23, Remark 1.3]. It remains to
prove (2.14). We are going to see that it is a quick consequence of (2.12). Indeed, the left hand
side of (2.14) is equal to

2E
[
F (x, y,LθD ∪ {Ξxai}i≥1)ML

θ
D∪{Ξ

x
ai
}i≥1

a′ (dy)1{@℘∈LθD∪{Ξxai}i≥1 visiting both x and y}

]
dx

where LθD and {Ξxai}i≥1 are independent. In the above display, we denoted byML
θ
D∪{Ξ

x
ai
}i≥1

a′ the
multiplicative chaos generated by the loops in LθD∪{Ξxai}i≥1. For more details see [ABJL23, Section
1.3]. Here, we notice that on the event that none of the loops in {Ξxai}i≥1 visits y, none of these
loops can contribute to the thickness at y:

M
LθD∪{Ξ

x
ai
}i≥1

a′ (dy)1{@℘∈{Ξxai}i≥1 visiting y} =Ma′(dy)1{@℘∈{Ξxai}i≥1 visiting y} a.s.

Hence, the left hand side of (2.14) is equal to

2E
[
F (x, y,LθD ∪ {Ξxai}i≥1)Ma′(dy)1{@℘∈LθD∪{Ξxai}i≥1 visiting both x and y}

]
dx

= 4E
[
F (x, y,LθD ∪ {Ξxai}i≥1 ∪ {Ξya′

i
}i≥1)1{@℘∈Lθ

D
∪{Ξxai}i≥1∪{Ξy

a′
i

}i≥1 visiting both x and y}

]
dx dy

where in the last equality we applied once again [ABJL23, Theorem 1.8]. Finally, we notice that
for Lebesgue-typical points x and y, almost surely none of the loops in LθD ∪ {Ξxai}i≥1 ∪ {Ξya′

i
}i≥1

visits both x and y. This concludes the proof.

2.3 Crossing exponent in the Brownian loop soup
We now recall the main result of [JLQ23] concerning the decay rate of the probability of some
crossing event in the loop soup. This decay rate is particularly important to us since it drives
the blow-up of the correlations of hθ (Theorem 1.3). The decay of the normalising constant Zγ in
Theorem 1.2 is also obtained from the asymptotic behaviour of these crossing probabilities.
Theorem 2.4 ([JLQ23, Theorem 1.2]). Let θ ∈ (0, 1/2]. The probability that a cluster in a
Brownian loop soup LθD intersects both the microscopic circle r∂D and the macroscopic circle e−1∂D
decays like

P
(
r∂D

LθD←→ e−1∂D
)

= | log r|−1+θ+o(1) as r → 0.
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We will also need the following estimates from [JLQ23]. As opposed to Theorem 2.4, the next
results concern some crossing events by loops rather than clusters (they are in particular much
easier to establish). In the first lemma below and in the rest of the paper, we will say that a loop
℘ ∈ LθD surrounds the disc rD if ℘ does not intersect rD but disconnects it from ∂D.
Lemma 2.5 ([JLQ23, Lemma 2.5]). There exists c = c(θ) > 0 such that for all r ∈ (0, 1/10),

P
(
∃℘ ∈ LθD surrounding rD

)
≥ 1− rc. (2.15)

Lemma 2.6 ([JLQ23, (2.3) in Lemma 2.2]). Let 0 < r1 < r2 < 1. We have

µloop
D ({℘ crossing r2D \ r1D}) =

(
1 +O(1)r1

r2

)
log log(1/r1)

log(r2/r1) .

In particular, for all r0 ∈ (0, e−1) and s ≥ 1,

P
(
∃℘ ∈ LθD : r0

℘←→ rs0

)
= (1 +O(s−1))θs−1.

We finally recall the FKG inequality which is an import tool that we will use frequently in the
paper. A function f : L→ R is said to be increasing if for all L,L′ ∈ L with L ⊂ L′, f(L) ≤ f(L′).
Lemma 2.7 (FKG inequality [Jan84, Lemma 2.1]). For all increasing bounded measurable functions
f, g : L→ R,

E
[
f(LθD)g(LθD)

]
≥ E

[
f(LθD)

]
E
[
g(LθD)

]
.

In most places we will apply this result to indicator functions of increasing events.

2.4 Some properties of Ξz
a

We start by recalling a restriction property for the a-thick loop Ξza defined in Section 2.1.
Lemma 2.8. Let z ∈ D and let D′ ⊂ D be a simply connected domain containing z. Then

E
[
F (Ξz,Da )1{Ξz,Da ⊂D′}

]
= CR(z,D′)a

CR(z,D)a E
[
F (Ξz,D

′

a )
]
. (2.16)

Proof. This follows quickly from the restriction property of the measures µz,wD . A proof of this
result can be found in [ABJL23]; see equation (5.2) therein.

As a direct consequence,
Lemma 2.9. Let x ∈ D and a > 0. For any r < d(x, ∂D),

P (‖Ξxa − x‖∞ ∈ dr) = ara−1

CR(x,D)a dr.

Proof. By Lemma 2.8, the probability that ‖Ξxa − x‖∞ < r is equal to CR(x,D∩D(x,r))a
CR(x,D)a . When

r < d(x, ∂D), this is simply equal to ra

CR(x,D)a . The lemma then follows after differentiating with
respect to r.

We will also need the following two-point estimate:
Lemma 2.10. Let x, y ∈ D with |x− y| > e−1/a and let k ≥ 0.

P
(
‖Ξxa − y‖∞

2
|x− y|

∈ [e−k−1, e−k]
)
≤ Ca (log |x− y|)2

k (k + | log |x− y||) . (2.17)

Proof. We will only explain where this bound comes from without providing all the details. By
Lemma 2.9, the probability that Ξxa reaches the circle ∂D(x, |x− y|/2) is given by 1−

(
|x−y|

2 CR(x,D)

)a
.

Using the assumption that |x− y| > e−1/a, we can bound this probability by Ca| log |x− y||. Con-
ditioned on the event that Ξxa has reached ∂D(x, |x− y|/2), the probability that 2

|x−y| ‖Ξxa − y‖∞ ∈
[e−k−1, e−k] can be compared with the probability for a simple random walk on Z starting at 0
to reach k before reaching − log |x − y| (hit the small ball before exiting the domain) and then
to come back to 0 without hitting k + 1 (do not hit ∂D(y, |x − y|e−k+1/2) before going back to
∂D(y, |x− y|/2)). The probabilities of these events are respectively equal to

| log |x− y||
k + | log |x− y|| and 1

k
.

Putting things together, we obtain that (2.17).
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We finish this section by combining Theorem 2.4 and Lemma 2.9 to show that, as stated in
Theorem 1.2, the normalising constant Zγ (1.3) behaves like γ2(1−θ)+o(1). Importantly, a slight
modification of the proof below shows that for any z ∈ D and compact set K ⊂ D \ {z},

P
(
K
LθD∪Ξza←→ z

)
= (1 + o(1))P

(
K
LθD←→ D(z, ‖Ξza − z‖∞)

)
, (2.18)

i.e. we can replace the thick loop at z by a disc centred at z with random radius ‖Ξza − z‖∞.

Proof of Theorem 1.2 – asymptotic behaviour of Zγ . We are going to show that Zγ = γ2(1−θ)+o(1)

as γ → 0. We start with the upper bound. If the origin is connected to the circle e−1∂D by a
cluster of Ξ0,D

a ∪ LθD, there must be a cluster of LθD which intersects both r∂D and e−1∂D where
r =

∥∥Ξ0,D
a

∥∥
∞. By independence of Ξ0,D

a and LθD this gives

Zγ ≤ P
(∥∥Ξ0,D

a

∥∥
∞ ≥ e

−1)+
∫ e−1

0
P
(∥∥Ξ0,D

a

∥∥
∞ ∈ dr

)
P
(
r∂D

LθD←→ e−1∂D
)
.

Let ε > 0. By Theorem 2.4, there exists Cε > 0 such that the last probability in the above display
is at most Cε| log r|−1+θ+ε for all r ∈ (0, e−1). Together with Lemma 2.9, we obtain that

Zγ ≤ 1− e−a +
∫ e−1

0
ara−1Cε| log r|−1+θ+εdr ∼ CεΓ(θ + ε)a1−θ−ε

as a→ 0. Since a = γ2/2, this proves the desired upper bound: Zγ ≤ γ2(1−θ)+o(1).

We now turn to the lower bound. The event {0 L
θ
D∪Ξ0,D

a←→ e−1∂D} occurs as soon as 1) Ξ0,D
a reaches

e−1/a∂D, 2) a cluster of LθD intersects the circles e−2/a∂D and e−1∂D and 3) there is a loop in LθD
surrounding e−2/aD while staying in e−1/aD. By independence of Ξ0,D

a and LθD and by FKG, the
probability of the intersection of these three events is at least the product of each probability. By
Lemma 2.9, the probability of the first event is 1− e−1. By Theorem 2.4, the probability of the
second event is a1−θ+o(1). By Lemma 2.5, the probability of the last event is 1 + o(1). Overall, we
conclude that Zγ ≥ a1−θ+o(1) = γ2(1−θ)+o(1).

2.5 Preliminary estimate
We finish this preliminary section with a lemma that we state here for ease of future reference.

Lemma 2.11. For γ > 0, let

Rγ := sup{r > 0 : r∂D L
θ
D∪Ξ0,D

a←→ 0}. (2.19)

Then for all η > 0, there exists C = C(η) > 0 such that for all γ > 0 and r ∈ (0, 1),

1
Zγ

P (Rγ ≥ r) ≤ C|1 + log r|1−θ+η. (2.20)

Moreover,
lim sup
γ→0

1
Zγ

P (Rγ ≥ r)→ 0 as r → 1. (2.21)

Proof. By definition, Zγ = P
(
Rγ ≥ e−1). See (1.3). Hence, P (Rγ ≥ r) /Zγ ≤ 1 if r ≥ e−1 which

concludes the proof of (2.20) in this case. We now consider the case r ∈ (0, e−1). This time,

1
Zγ

P (Rγ ≥ r) = P
(
Rγ ≥ e−1|Rγ ≥ r

)−1
.

Let E1 := {e−1∂D
LθD←→ r/2∂D} and E2 be the event that there is a loop in LθD surrounding r/2D

while staying in rD. Conditionally on {Rγ ≥ r}, {Rγ ≥ e−1} ⊃ E1 ∩ E2. By FKG inequality, we
deduce that

1
Zγ

P (Rγ ≥ r) ≤ P (E1)−1 P (E2)−1
.

By Lemma 2.5, P (E2) ≥ c and, by Theorem 2.4, for all η > 0, there exists c > 0 such that
P (E1) ≥ c| log r|−1+θ−η. This concludes the proof of (2.20).
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We now prove (2.21). Let r ∈ (e−1, 1). FKG inequality cannot be used directly to bound
P (Rγ ≥ r) /Zγ = P

(
Rγ ≥ r|Rγ ≥ e−1) (it goes in the wrong direction). Let E be the event that

Ξ0,D
a ⊂ e−1D. By Lemma 2.9, P (Ec) ≤ Cγ2. Hence

lim sup
γ→0

1
Zγ

P (Ec, Rγ ≥ r) = 0.

We now work on the event E. Let r′ ∈ (e−1, r) be an intermediate radius. We decompose the loops
of LθD into two independent sets L1 and L2 of loops: the ones that are contained in D \ e−1D and
the ones that touch e−1D respectively. Notice that the event {Rγ ≥ e−1} is measurable w.r.t. L2.
If none of the loops in L2 reaches r′∂D, then there must be a cluster of L1 that intersects both
r′∂D and r∂D in order to have Rγ ≥ r. That is,

1
Zγ

P (E,Rγ ≥ r) ≤ P
(
r∂D L1←→ r′∂D|Rγ ≥ e−1

)
+ P

(
E,∃℘ ∈ L2 : r′∂D ℘←→ e−1∂D|Rγ ≥ e−1

)
.

Since L1 is independent of {Rγ ≥ e−1}, the first probability on the right hand side is equal to
P
(
r∂D L1←→ r′∂D

)
. r′ being fixed, this event can occur only if a macroscopic CLE loop (the

outermost boundary of a cluster) in the domain D \ e−1D reaches the circle r∂D. This probability
vanishes as r → 1 (this follows from [SW12, Corollaries 4.3 and 6.6] where the exponent of the
probability that a macroscopic CLE loop gets close to a fixed boundary point is computed). We
have shown that for all r′ ∈ (e−1, 1),

lim sup
r→1

lim sup
γ→0

1
Zγ

P (Rγ ≥ r) ≤ lim sup
γ→0

P
(
∃℘ ∈ L2 : r′∂D ℘←→ e−1∂D|Rγ ≥ e−1

)
. (2.22)

Since the left hand side is independent of r′, it is enough to show that the right hand side vanishes
as r′ → 1 to conclude the proof of (2.21). Let R := inf{x > 0 : ∃℘ ∈ L2 : r′∂D ℘←→ x∂D}. The
probability on the right hand side of (2.22) is equal to

1
Zγ

∫ e−1

0
P
(
R ∈ dx,Rγ ≥ e−1) ≤ 1

Zγ

∫ e−1

0
P (R ∈ dx)P (Rγ ≥ x)

using the independence of the loops that touch xD and the ones that do not. By (2.20) (applied to
η = θ/2), P (Rγ ≥ x) /Zγ ≤ C| log x|1−θ/2. Injecting this estimate in the above integral and then
integrating by parts shows that the right hand side of (2.22) is at most

P
(
R ≤ e−1)+ (1− θ/2)

∫ e−1

0

P (R ≤ x)
x| log x|θ/2 dx.

By Lemma 2.6, P (R ≤ x) ≤ C| log r′|/| log x|, x ∈ (0, e−1]. The integral
∫ e−1

0 x−1| log x|−1−θ/2dx
being finite, the right hand side of (2.22) is thus at most C| log r′| which vanishes as r′ → 1. This
concludes the proof of (2.21).

3 Convergence of renormalised crossing probabilities and
coupling of clusters
The main goal of this section is to prove the following result. This will be a key result for the rest
of the article.

Theorem 3.1. Let θ ∈ (0, 1/2] and D be a bounded simply connected domain. Let x ∈ D and K
and K̂ be two connected compact subsets of D \ {x}. The following limits exist and are identical

lim
r→0

P
(
K
LθD←→ D(x, r)

)/
P
(
K̂
LθD←→ D(x, r)

)
= lim
a→0

P
(
K
LθD∪Ξx,Da←→ x

)/
P
(
K̂
LθD∪Ξx,Da←→ x

)
. (3.1)

The proof of this result is based on the construction of a coupling between two processes of
conditioned clusters. Let us describe this result now.

For t ≥ 0, let Ct be the open cylinder Ct = (t,+∞)× S1, Ct the corresponding closed cylinder,
and ∂Ct the circle ∂Ct = {t}×S1 ⊂ Ct. The cylinder C0 is conformally equivalent to D \ {0} through
the map (t, ω) 7→ e−tω. Since the 2D Brownian loop soups are conformally invariant in law (up
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K0

t1 t2

Figure 3.1: Schematic representation of the sequence (K0(t))t∈N. The filled grey region is the initial
set K0. The clusters of Lθ∩(0,t1] (resp. Lθ∩(0,t2] \ L

θ
∩(0,t1]) are depicted in red (resp. blue). Q0(t1)∩ Ct1

and Q0(t2) ∩ Ct2 correspond to the dotted red and blue regions respectively. Q0(t2) is not measurable
w.r.t. Q0(t1) and the loops in Lθ∩(0,t2] \ L

θ
∩(0,t1] since it also depends on the other clusters of Lθ∩(0,t1]

(bottom red cluster in this picture).

to time change), and {0} is polar for Brownian motion, working on C0 and working on D (and
therefore on any simply connected domain D) will be equivalent.

Let θ ∈ (0, 1/2] and consider a Brownian loop soup with intensity θ in C0 that we denote by Lθ0.
For t > 0, let Lθ∩(0,t] be the subset of Lθ0 consisting of all the loops that intersect (0, t]× S1. Let
K0 ⊂ C0 be a connected compact subset of C0. For all integer t ≥ 1, let Q0(t) be the union of all
clusters of Lθ∩(0,t] that intersect K0. Let K0(t) := ((Q0(t)∩ Ct)− t)∪ ∂C0 (for A ⊂ C0, A− t stands
for the longitudinal translation of A by t, to the left) and T † := inf{t ∈ N : K0(t) = ∂C0}. The
event {T † > t} corresponds to the event that there is a cluster intersecting both K0 and {t} × S1.
Let K̂0 be another initial connected compact subset of C0 and define analogously (K̂0(t))t∈N and
T̂ †. We would like to stress that (K0(t))t∈N is not a Markov process; see Figure 3.1. For this reason,
we will need to consider a larger filtration than the natural filtration associated to (K0(t))t∈N; this
filtration is introduced in (3.10) and will be denoted by (Ft)t∈N.

Our coupling result reads as follows:

Theorem 3.2. For every initial conditions K0 and K̂0 not identical to ∂C0, and every T ≥ 1 large
enough, we can couple on the same probability space the two stochastic processes (K0(t))t=0,...,T
under P(·|T † > T ) and (K̂0(t))t=0,...,T under P(·|T̂ † > T ) such that there exists a stopping time T T
w.r.t. the filtration (Ft)t∈N such that the following holds:

1. Coalescence: On the event {T T < T}, K0(t) = K̂0(t) for all t ∈ {T T , . . . , T};
2. In finite time: Moreover limn→∞ supT≥n P

(
T T ≥ n

)
= 0.

This result will be crucial in the proof of the convergence of the ratio P(T † > T )/P(T̂ † > T )
as T →∞ (see Theorem 3.1). Indeed, thanks to the above coupling, as soon as the two processes
(K0(t))t∈[0,T ] and (K̂0(t))t∈[0,T ] have coalesced, surviving up to time T will have the same cost.
The cost will be different only before the coalescence time that we know being finite almost surely.
Making this argument rigorous requires some extra work (especially on the event that the coalescence
time is large), but most of the difficulty lies in Theorem 3.2 above. See Section 3.5 for details.

To prove Theorem 3.2, we will develop a general abstract result that produces a coupling between
two trajectories of the same Markov chain with distinct starting points. In this coupling the two
trajectories coalesce in finite time. See Section 3.2 and Theorem 3.3.

As already mentioned, (K0(t))t≥1 is not Markovian. In Section 3.3, we introduce an enlarged
process of clusters (actually a collection of clusters) that is Markovian. In Section 3.4, we show
that we can apply Theorem 3.3 to the framework described in Section 3.3, concluding the proof of
Theorem 3.2.

We will start in the next section by recalling some facts about the coupling of two random
variables.

3.1 Total variation and optimal coupling
Let (E , d) be a Polish space, that is to say a separable and complete metric space, endowed with its
Borel sigma-algebra B(E) generated by the open subsets. Given two probability measures µ1 and
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µ2 on (E ,B(E)), the total variation distance dTV(µ1, µ2) is given by

dTV(µ1, µ2) = 2 sup{|µ2(A)− µ1(A)| : A ∈ B(E)} ≤ 2.

This is also the total mass of total variation measure corresponding to the signed measure µ2 − µ1.
According to Lebesgue’s decomposition theorem, there are measures ν, ν1, ν2, two by two mutually
singular, and non-negative measurable functions f1, f2, such that µ1 = f1ν + ν1 and µ2 = f2ν + ν2.
One can also impose that f1 and f2 are 0 ν1 + ν2 almost everywhere, and this is the convention we
will use. Then

dTV(µ1, µ2) =
∫
E

|f2− f1|dν + ν1(E) + ν2(E) and 1− 1
2dTV(µ1, µ2) =

∫
E

f1 ∧ f2 dν =: q. (3.2)

We are interested in the couplings (X1, X2), where the marginal distribution of Xi is µi, i = 1, 2,
so as to maximize P(X1 = X2). This maximal probability is actually given by q defined in (3.2)
above. An optimal coupling can be constructed as follows. Let Y , Yi, i = 1, 2, be three independent
r.v.s taking values in E distributed respectively according to

1
q
f1 ∧ f2 dν and 1

1− q
(
(fi − f1 ∧ f2)dν + dνi

)
, i = 1, 2.

Moreover, let Z be a Bernouilli r.v. independent from (Y, Y1, Y2), with P(Z = 1) = q. On the event
{Z = 1}, we set X1 = X2 = Y . On the event {Z = 0}, we set X1 = Y1 and X2 = Y2. It is easy to
check that each Xi, i = 1, 2, has for distribution µi. Note that in this construction,

P(X2 = X1|X1) = (f2(X1)/f1(X1)) ∧ 1.

Moreover, conditionally on the value of X1 and the event {X2 6= X1}, the conditional distribution
of X2 is that of Y2.

3.2 Coupling Markov processes conditioned to survive
Let (E , d) be a Polish space, endowed with its Borel sigma-algebra B(E) generated by the open
subsets. Let (Pn)n≥1 be a time-homogeneous Markov semi-group on E . That is to say, for every
n ≥ 1 and x ∈ E , Pn(x, dy) is a probability measure on E and the Chapman–Kolmogorov equation
holds: for every x ∈ E and n1, n2 ≥ 1,∫

y∈E
Pn1(x, dy)Pn2(y, dz) = Pn1+n2(x, dz).

For x ∈ E , let (ξx(n))n≥0 denote a Markov chain starting from x, with transition semi-group
(Pn)n≥1.

Let † be a measurable subset of E , with † 6= E . We will denote E∗ = E \ †. For x ∈ E , let

T x† = inf{n ≥ 0 : ξx(n) ∈ †}

be the first hitting time of †. We assume that for every x ∈ E∗ and T ∈ N \ {0}, P(T x† > T ) > 0.
We will denote by (ξx,T (n))n≥0 the trajectory (ξx(n))n≥0 conditioned on the event {T x† > T}. Let
PTn (x, dy) denote the law of ξx,T (n). We have a time-inhomogeneous Markov property: for every
x ∈ E∗, n1, n2 ≥ 1 and T ≥ n1 + n2,

PTn1+n2
(x, dz) =

∫
y∈E∗

PTn1
(x, dy)PT−n1

n2
(y, dz).

Given x, y ∈ E∗, and T ∈ N\{0}, we will denote by (ξx,y,T (n))0≤n≤T the process (ξx,T (n))0≤n≤T
conditioned on ξx,T (T ) = y (Markovian bridge conditioned on not hitting †). This conditional
distribution is defined for PTT (x, dy) almost every y. For this, we refer to the existence of regular
conditional distributions on Polish spaces [KS10, Section 5.3.C, Theorem 3.19]. Further, for every
T ′ ≥ T , conditionally on ξx,T ′(T ) = y, the two processes (ξx,T ′(n))0≤n≤T and (ξx,T ′(T + n))n≥0
are independent, and distributed respectively as (ξx,y,T (n))0≤n≤T and (ξy,T ′−T (n))n≥0.

We are interested in coupling the conditioned processes (ξx,T (n))0≤n≤T and (ξy,T (n))0≤n≤T ,
for two distinct starting points x 6= y ∈ E∗, on the same probability space, such that the two
processes coalesce with high probability for T large enough, and with a uniform control in T over
the coalescence time. In our approach, we will need the following data:
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• For every n ∈ N \ {0}, a non-empty measurable subset Fn of E∗. This will be the subset of
favourable configurations (favourable to attempt a coalescence).

• A measurable function T : E∗ 7→ N \ {0}. The value T(x) is a sort of characteristic time that
is roughly proportional to the time that the process ξx,T needs in order to reach a favourable
configuration. We will also use the following notation: T(x, y) := T(x) ∨T(y).

Theorem 3.3. With the notations above, we assume that there are integer constants c2 > c1 ≥ 2,
such that the following holds.

1. Control of coalescence starting from favourable configurations. We have that

inf
n∈N\{0}
x′,y′∈Fn

inf
T≥c2n

(
1− 1

2dTV(PT−n(c1−1)n(x′, dz), PT−n(c1−1)n(y′, dz))
)
> 0. (3.3)

2. Reaching the favourable set Fn. We have that

inf
x∈E∗

inf
n≥T(x)

inf
T≥c2n

P
(
ξx,T (n) ∈ Fn

)
> 0. (3.4)

3. Control on the characteristic time. We have that

lim
u→+∞

sup
x∈E∗

sup
n≥T(x)

sup
T≥c2n

P(T(ξx,T (c1n)) ≥ un) = 0. (3.5)

Then, for every x, y ∈ E∗ and every T ≥ c2T(x, y), one can couple on the same probability space
the stochastic processes (ξx,T (n))0≤n≤T and (ξy,T (n))0≤n≤T , such that there exists a stopping time
T T ∈ {0, 1, . . . , T} with respect to the joint process (ξx,T (n), ξy,T (n))0≤n≤T such that the following
holds.

1. On the event {T T < T}, for every n ∈ {T T , . . . , T}, ξx,T (n) = ξy,T (n) a.s.
2. On the event {T T < T}, conditionally on (T T , (ξx,T (n), ξy,T (n))0≤n≤T T ), the processes

(ξx,T (T T + n))0≤n≤T−T T and (ξy,T (T T + n))0≤n≤T−T T coincide a.s and are distributed as
(ξz,T ′(n))0≤n≤T ′ , with z = ξx,T (T T ) and T ′ = T − T T .

3. We have that
lim

n→+∞
sup
T>n

P(T T > n) = 0. (3.6)

In particular,
lim

n→+∞
sup
T≥n

dTV(PTn (x, dz), PTn (y, dz)) = 0. (3.7)

Proof. Denote by q the infimum (3.3), and p the infimum (3.4). Fix x, y ∈ E∗ and an integer
T ≥ c2T(x, y). Let (ξx,T (n))0≤n≤T be a conditioned Markov trajectory starting from x. We will
construct by induction a sequence of processes (ξy,Ti (n))0≤n≤T,i≥1, two random sequences of points
(xi)i≥1 and (yi)i≥1 in E∗, and a non-increasing sequence of random non-negative integer times
(Ti)i≥1. We will also denote by τi = T(xi, yi), i ≥ 1. We initiate these sequences by setting x1 = x,
y1 = y and T1 = T . If y = x, we set xi = x, yi = y, Ti = T and (ξy,Ti (n))0≤n≤T = (ξx,T (n))0≤n≤T
for every i ≥ 1. If y 6= x, we take (ξy,T1 (n))0≤n≤T distributed as (ξy,T (n))0≤n≤T and independent
from (ξx,T (n))0≤n≤T . We will explain in the next few paragraphs how our inductive definition
works.

If xi 6= yi and c2τi ≤ Ti, we will set Ti+1 = Ti − c1τi. Whenever xi = yi or c2τi > Ti, we will
set xj = xi, yj = yi, Tj = Ti and (ξy,Tj (n))0≤n≤T = (ξy,Ti (n))0≤n≤T for every j ≥ i. We will set

i∗ = inf{i ≥ 1 : xi = yi or c2τi > Ti}.

We will see that i∗ < +∞ a.s.
We now consider the case where y 6= x and we explain our definition of x2, y2, T2 and

(ξy,T2 (n))0≤n≤T . We set T2 = T − c1τ1. Denote by F1 the event {ξx,T (τ1) ∈ Fτ1 and ξy,T1 (τ1) ∈ Fτ1},
and by F c

1 its complementary. We have that P(F1) ≥ p2 > 0. On the event F c
1 , then we set

ξy,T2 (n) = ξy,T1 (n) for every n ∈ {0, 1, . . . , T}. We set x2 = ξx,T (c1τ1) and y2 = ξy,T1 (c1τ1). On the
event F1, we set x2 = ξx,T (c1τ1). Let x′1 = ξx,T (τ1) and y′1 = ξy,T1 (τ1). We consider the Lebesgue
decomposition of the probability measure PT−τ1

(c1−1)τ1
(y′1, dz) with respect to PT−τ1

(c1−1)τ1
(x′1, dz):

PT−τ1
(c1−1)τ1

(y′1, dz) = f1(z)PT−τ1
(c1−1)τ1

(x′1, dz) + ν1(dz),
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where the measure ν1 is singular with respect to PT−τ1
(c1−1)τ1

(x′1, dz). Let Z1 be a Bernoulli random
variable, conditionally independent from (ξx,T (n), ξy1,T (t))0≤n≤T given (x′1, y′1, x2), with

P(Z1 = 1|x′1, y′1, x2) = f1(x2) ∧ 1.

Let V1 be a random variable on E∗, conditionally independent from (Z1, (ξx,T (n), ξy1,T (n))0≤n≤T )
given (x′1, y′1, x2), with the conditional distribution given (x′1, y′1, x2) equal to

1
1− q1

(
(f1(z)− f1(z) ∧ 1)PT−τ1

(c1−1)τ1
(x′1, dz) + ν1(dz)

)
,

where 1− q1 is the normalization constant. On the event F1 ∩ {Z1 = 1}, we further set y2 = x2.
On the event F1 ∩ {Z1 = 0}, we set y2 = V1. In this way,

P
(
y2 = x2

∣∣(ξx,T (n), ξy,T1 (n))0≤n≤τ1 , F1
)

= 1− 1
2dTV(PT−τ1

(c1−1)τ1
(x′1, dz), PT−τ1

(c1−1)τ1
(y′1, dz)) = q1 ≥ q > 0,

and the conditional distribution of y2 given (ξx,T (n), ξy,T1 (n))0≤n≤τ1 on the event F1 is PT−τ1
(c1−1)τ1

(y′1, dz);
see Section 3.1. In this way, the distribution of ((ξy,T1 (n))0≤n≤τ1 , y2) conditionally on the event F1
coincides with the conditional distribution of ((ξy,T1 (n))0≤n≤τ1 , ξ

y,T
1 (c1τ1)) given the same event.

Consider a conditioned Markov process (ξy2,T−c1τ1(n))0≤n≤T−c1τ1 conditionally independent from
((ξx,T (n), ξy,T1 (n))0≤n≤T , Z1, V1) given y2. Consider also a Markovian bridge conditioned on not
hitting †, (ξy′1,y2,(c1−1)τ1(n))0≤n≤(c1−1)τ1 , with the bridge being conditionally independent from

((ξx,T (t), ξy,T1 (n))0≤n≤T , Z1, V1, (ξy2,T−c1τ1(n))0≤n≤T−c1τ1)

given (y′1, y2). On the event F1 ∩ {Z1 = 1}, we define (ξy,T2 (n))0≤n≤T as follows:

ξy,T2 (n) =

 ξy,T1 (n) for n ∈ {0, . . . , τ1},
ξy
′
1,y2,(c1−1)τ1(n− τ1) for n ∈ {τ1 + 1, . . . , c1τ1 − 1},

ξx,T (n) for n ∈ {c1τ1, . . . , T}.

On the event F1 ∩ {Z1 = 0}, we define (ξy,T2 (n))0≤n≤T as follows:

ξy,T2 (n) =

 ξy,T1 (n) for n ∈ {0, . . . , τ1},
ξy
′
1,y2,(c1−1)τ1(n− τ1) for n ∈ {τ1 + 1, . . . , c1τ1 − 1},

ξy2,T−c1τ1(n− c1τ1) for n ∈ {c1τ1, . . . , T}.

The process (ξy,T2 (n))0≤n≤T has been constructed in such a way that it has the same distribution
as (ξy,T1 (n))0≤n≤T . But now (ξy,T2 (n))0≤n≤T is correlated to (ξx,T (n))0≤n≤T . What we have gained
is that the two process (ξx,T (n))0≤n≤T and (ξy,T2 (n))0≤n≤T have a positive probability to coalesce.
More precisely,

P(∀n ∈ {c1τ1, . . . , T}, ξy,T2 (n) = ξx,T (n)) = P(F1 ∩ {Z1 = 1}) ≥ p2q > 0.

Consider now the r.v. τ2 = T(x2, y2). The condition (3.5) provides a control on the tail of τ2/τ1:
for all u > 0, P(τ2 ≥ uτ1) is at most

P(T(x2) ≥ uτ1) + P(T(y2) ≥ uτ1) = P(T(ξx,T (c1τ1)) ≥ uτ1) + P(T(ξy,T2 (c1τ1)) ≥ uτ1)
≤ 2 sup

z∈E∗
sup

n≥T(z)
sup

T ′≥c2n
P(T(ξz,T

′
(c1n)) ≥ un).

Let
ψ : u ∈ [0,∞) 7→ 1 ∧ 2 sup

z∈E∗
sup

n≥T(z)
sup

T ′≥c2n
P(T(ξz,T

′
(c1n)) ≥ un).

The function ψ is non-increasing, but not necessarily left-continuous. We will denote by ψ(u−) the
limit to the left of ψ(u). Let U2 be a r.v. in [0 +∞) with distribution characterised by

P(U2 ≥ u) = ψ(u−). (3.8)
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The condition (3.5) ensures that U2 < +∞. The r.v. τ2 is stochastically dominated by U2τ1. Note
however that conditionally on y2 6= x2, the r.v. τ2 is not necessarily stochastically dominated by
U2τ1.

On the event {x2 = y2}, we have i∗ = 2, and for every i ≥ 3, xi = x2 = yi = y2, Ti = T2, and
(ξy,Ti (n))0≤n≤T = (ξy,T2 (n))0≤n≤T . On the event {x2 6= y2}, conditionally on

((ξx,T (n), ξy,T2 (n))0≤n≤T−T2 , (ξ
y,T
1 (n))0≤n≤T ),

the processes (ξx,T (T − T2 + n))0≤n≤T2 and (ξy,T2 (T − T2 + n))0≤n≤T2 are independent, distributed
as (ξx2,T2(n))0≤n≤T2 and (ξy2,T2(n))0≤n≤T2 respectively. Thus, we can iterate by applying the
previous construction to (ξx,T (T − T2 + n), ξy,T2 (T − T2 + n))0≤n≤T2 .

By iterating the construction further, we get the sequences (xi)i≥1, (yi)i≥1, (Ti)i≥1 and
(ξy,Ti (n))0≤n≤T,i≥1 satisfying the following properties:

• For every i ≥ 1, the process (ξy,Ti (n))0≤n≤T is distributed as the conditioned Markov process
(ξy,T (n))0≤n≤T .

• For every i ≥ 1, xi = ξx,T (T − Ti) and yi = ξy,Ti (T − Ti).
• For every i ≥ 2, a.s. for every n ∈ {0, . . . , T − Ti−1}, ξy,Ti (n) = ξy,Ti−1(n).
• For every i ≥ 1, on the event {xi = yi}, we have that a.s. for every n ∈ {T − Ti, . . . , T},

ξy,Ti (n) = ξx,T (n), and for every j ≥ i, Tj = Ti, xj = yj = xi = yi, and (ξy,Tj (n))0≤n≤T =
(ξy,Ti (n))0≤n≤T .

• For every i ≥ 1, on the event {c2τi > Ti} (where τi = T(xi, yi)), we have for every j ≥ i,
Tj = Ti, xj = xi, yj = yi, and (ξy,Tj (n))0≤n≤T = (ξy,Ti (n))0≤n≤T .

• For every i ≥ 1, on the event {xi = yi and c2τi−1 ≤ Ti−1}, conditionally on
((ξx,T (n), ξy,Ti (n))0≤n≤T−Ti , (ξ

y,T
j (n))0≤n≤T,1≤j≤i−1), the process (ξx,T (T − Ti + n))0≤n≤Ti

is distributed as the conditioned Markov processes (ξxi,Ti(n))0≤n≤Ti .
• For every i ≥ 2, on the event {xi 6= yi and c2τi−1 ≤ Ti−1}, conditionally on

((ξx,T (n), ξy,Ti (n))0≤n≤T−Ti , (ξ
y,T
j (n))0≤n≤T,1≤j≤i−1), the processes (ξx,T (T − Ti + n))0≤n≤Ti

and (ξy,Ti (T−Ti+n))0≤n≤Ti are independent, distributed as the conditioned Markov processes
(ξxi,Ti(n))0≤n≤Ti and (ξyi,Ti(n))0≤n≤Ti respectively.

• For every i ≥ 1, on the event {xi 6= yi and c2τi ≤ Ti} (i.e. {i∗ > i}), Ti+1 = Ti − c1τi.
• For every i ≥ 1,

P
(
xi+1 = yi+1

∣∣i∗ > i, (ξx,T (n), ξy,Ti (n))0≤n≤T−Ti , (ξ
y,T
j (n))0≤n≤T,1≤j≤i−1

)
≥ p2q.

From the above properties one can derive the following. First of all, for every i ≥ 2,

P(i∗ > i) ≤ (1− p2q)i−1,

and in particular, i∗ < +∞ a.s. Further, for every i ≥ 2, the r.v. T − Ti is stochastically dominated
by

c1(1 + U2 + U2U3 + · · ·+ U2U3 . . . Ui−1)τ1,

where the r.v.s Uj , j ≥ 3, are i.i.d. copies of the r.v. U2 (3.8). We will denote

Ûi = 1 + U2 + U2U3 + · · ·+ U2U3 . . . Ui,

with Û1 = 1, so that T − Ti is stochastically dominated by c1Ûi−1τ1. Note that this stochastic
domination is uniform in T ≥ c2τ1.

Then, for every i ≥ 2,

P(i∗ > i, yi 6= xi) ≤ P(i∗ > i) ≤ (1− p2q)i−1

and

P(i∗ ≤ i, yi 6= xi) ≤ P(c2τi > Ti) = P(T − Ti + c2τi > T ) ≤ P((c1Ûi−1 + c2(Ûi − Ûi−1))τ1 > T ).

In this way,
P(yi 6= xi) ≤ (1− p2q)i−1 + P((c1Ûi−1 + c2(Ûi − Ûi−1))τ1 > T ).
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Let I(T ) be a deterministic integer-valued function such that limT→+∞ I(T ) = +∞ and

lim
T→+∞

P((c1ÛI(T )−1 + c2(ÛI(T ) − ÛI(T )−1))τ1 > T ) = 0,

so that
lim

T→+∞
P(yI(T ) = xI(T )) = 1.

On the event {yI(T ) = xI(T )} we necessarily have i∗ ≤ I(T ), and we will set T T = T − Ti∗ . On the
event {yI(T ) 6= xI(T )}, we will set T T = T . Then we take the coupling (ξx,T (n), ξy,TI(T )(n))0≤n≤T .
Since I(T ) is deterministic, the process (ξy,TI(T )(n))0≤n≤T is distributed as the conditioned Markov
process (ξy,T (n))0≤n≤T . Moreover, on the event {T T < T}, the processes ξx,T (n) and ξy,TI(T )(n)
coincide on {T T , . . . , T}, as desired. Finally, to bound the tail of the distribution T T , we use the
following.

P(T T > n) ≤ 1{T>n}(P(T T = T ) + P(i∗ > i) + P(T − Ti > n))
≤ 1{T>n}(P(yI(T ) 6= xI(T )) + (1− p2q)i−1 + P(c1Ûi−1τ1 > n)),

where i is arbitrary. By taking i = I(n), we get (3.6).
For (3.7), we use that dTV(PTn (x, dz), PTn (y, dz)) ≤ 2(1− P(T T < T, T T ≤ n)). This concludes

the proof.

3.3 Markov chain of clusters in a Brownian loop soup
We now describe precisely the Markov chain we will consider in our Brownian loop soup setting. We
start by introducing the relevant spaces. Recall that we denote by C0 the open cylinder (0,∞)× S1.

The space (Q,dQ). Denote

Q = {K compact subset of C0 : ∂C0 ⊂ K,K connected}.

We endow Q with the Hausdorff distance dQ on compact subsets of C0. The metric space (Q,dQ)
is Polish, i.e. separable and complete. Indeed, the space of compact subsets of C0 endowed with dQ
is Polish (see e.g. [Mol05], Theorems C.2 and C.8), and Q is a closed subset of this space, thus also
Polish. Note that in the definition of Q it is important to take K connected and not connected by
arcs, otherwise we do not get a complete space. Let us also explain why we want our compacts to
contain ∂C0. Essentially, the behaviour of compacts on ∂C0 will not be important, and we will not
distinguish between two compacts that differ only on ∂C0. So imposing the compacts to contain
∂C0 is a way to choose a representative in each equivalence class.

Given K ∈ Q, we will denote

ρ(K) = max{t ≥ 0 : ∃ω ∈ S1, (t, ω) ∈ K} = dQ(K, ∂C0). (3.9)

Given t ∈ R and K a compact subset of R× S1, we will denote

K − t = {(s, ω) ∈ R× S1 : (s+ t, ω) ∈ K}.

The space (E ,dE). In what follows we will consider sequences (infinite countable families) of
compacts in Q. Actually we will consider the family of compacts up to permutation, except the
first one in the family, which will be marked. Let P0(N) denote the permutations σ of N such that
σ(0) = 0. Given (Ki)i≥0 ∈ QN, we will identify this sequence with all the (Kσ(i))i≥0 for σ ∈ P0(N),
and we will denote by ∼ the corresponding equivalence relation. We will denote by QN/ ∼ the
quotient space. By an abuse of notation, we will still denote by (Ki)i≥0 and element of QN/ ∼. Let
be

E = {(Ki)i≥0 ∈ QN/ ∼ : lim
i→+∞

ρ(Ki) = 0}.

Note that the condition limi→+∞ ρ(Ki) = 0 is invariant under the permutations σ ∈ P0(N). We
endow E with the following distance:

dE((Ki)i≥0, (K ′i)i≥0) = dQ(K0,K
′
0) + inf

σ∈P0(N)
sup
i≥1

dQ(Ki,K
′
i).

Lemma 3.4. The metric space (E ,dE) is Polish, i.e. separable and complete.
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Proof. The fact that (E ,dE) is Polish is a consequence of (Q,dQ) being Polish, and does not rely
on the specific nature of (Q, dQ). Let Q# be a countable dense subset of Q. Let E# be the subset
of E made of families where each element is in Q#, and only finitely many elements are different
from ∂C0. Then E# is countable and dense in E for dE . To see that (E ,dE) is complete, order the
elements of (Ki)i≥1, for some element (Ki)i≥0 ∈ E , in a non-increasing order of ρ(Ki), and use the
fact that (Q,dQ) is complete.

From now on we will fix a value θ ∈ (0, 1/2] and consider a Brownian loop soup Lθ0 of intensity
parameter θ in the open cylinder C0. For t > 0, we set

Ct = (t,+∞)× S1, Ct = [t,+∞)× S1,

Lθ∩(0,t] = {℘ ∈ Lθ0 : Range(℘) ∩ (0, t]× S1 6= ∅}, Lθt = {℘ ∈ Lθ0 : Range(℘) ⊂ Ct}.

The collections of loops Lθ∩(0,t] and Lθt are independent and Lθ∩(0,t]∪L
θ
t = Lθ0. Moreover, Lθt has the

same distribution as Lθ0 up to a translation by t along the cylinder. The filtration we will consider
is then defined by

Ft = σ{L∩(0,t]}, t ≥ 1. (3.10)

A Markov chain of clusters Given (Ki)i≥0 ∈ E , we will denote by (Ki)i≥0 ∪ Lθ∩(0,t] (by
abuse of notation) the family formed by the compacts (Ki)i≥0 and the loops in Lθ∩(0,t], where the
Brownian loops are identified to their range and considered as compact subsets of C0. Let ∼t be
the following equivalence relation on the elements of (Ki)i≥0 ∪ Lθ∩(0,t].

• Given ℘, ℘′ ∈ Lθ∩(0,t], whenever Range(℘) ∩ Range(℘′) 6= ∅, we have ℘ ∼t ℘′.

• Given ℘ ∈ Lθ∩(0,t] and i ≥ 0, whenever ℘ ∩Ki 6= ∅, we have Range(℘) ∼t Ki.
• Given i, j ≥ 1, whenever (Ki ∩Kj) \ ∂C0 6= ∅, we have Ki ∼t Kj . We would like to emphasize

that Ki ∩Kj always contains ∂C0, but our condition is that this intersection is strictly larger
than ∂C0.

• Further, we define ∼t to be the minimal equivalence relation satisfying the above three conditions.
That is to say, we identify into the same equivalence class the finite chains of objects where each
couple of consecutive elements satisfy one of the above three rules.

In essence, the equivalence relation ∼t corresponds to clusters of (Ki \∂C0)i≥0∪Lθ∩(0,t]. Note that a
set Ki \∂C0 is not necessarily connected, however, by definition, we put all its connected components
into the same cluster. Given an equivalence class A of ∼t, we will consider the associated cluster C
seen as a connected compact subset of C0:

C =
⋃
℘∈A

Range(℘) ∪
⋃
Ki∈A

Ki.

Let Ct denote the family of such clusters induced by ∼t, where each cluster is seen as a compact
connected subset of C0. We will denote by C0,t ∈ Ct the marked cluster containing K0. Next, we
will denote by (Ki(t))i≥0 the following family of compacts:(

((C ∩ Ct)− t) ∪ ∂C0
)
C∈Ct,C∩Ct 6=∅

.

That is to say, among the compacts of Ct, we take those that intersect Ct, consider only the
parts inside Ct, translate them by −t to make them adjacent to ∂C0, and add the circle ∂C0 for
the normalization. Also, K0(t) will be the compact obtained from the marked cluster C0,t (the
one containing K0). We see the family (Ki(t))i≥0 as an element of E . By convention, we set
(Ki(0))i≥0 = (Ki)i≥0.

Now, we consider t to be an integer n and take the process (Ki(n))i≥0,n∈N. We see the latter as a
stochastic process in E , parametrized by discrete time n. This process is actually time-homogeneous
Markov with respect to the filtration (Fn)n∈N (3.10). This is because for each n ≥ 1, the loop soup
Lθn is independent from Lθ∩(0,n], and Lθn has the same law as Lθ0 up to a longitudinal translation by
n.
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3.4 Coupling conditioned clusters in a Brownian loop soup
We consider the state space E and the Markov chain of Brownian loop soup clusters introduced in
Section 3.3. Let † be the subset

† = {(Ki)i≥0 ∈ E : K0 = ∂C0}.

Note that the subset † is absorbing, i.e. is preserved by the Markov chain. The subset † corresponds
to the extinction of the marked cluster K0. Let E∗ = E \ †. We will denote by T† the first hitting
time of †. Given an initial condition (Ki(0))i≥0 ∈ E∗, for every T ∈ N\{0}, P({T† > T ) > 0. Indeed,
it is enough to have a single Brownian loop in Lθ0 that connects K0(0) to CT . Given T ∈ N \ {0},
we will denote by (KT

i (n))i≥0,0≤n≤T the Markov chain of clusters conditioned on {T† > T}.
In this section we will prove Theorem 3.2 (actually a stronger version; see Theorem 3.3) by

showing that the conditioned Markov chain (KT
i (n))i≥0,0≤n≤T satisfies the assumptions of Theorem

3.3. For this we will need characteristic times T and favourable configurations Fn ⊂ E∗ for n ≥ 1.
We set

T((Ki)i≥0) = sup
i≥0
dρ(Ki)e ∈ N,

where d e is the integer ceiling. Let c1 ∈ N, c1 ≥ 5. We will tune the value of c1 later; see (3.14).
We also set c2 = c1 + 1 and

Fn =
{

(Ki)i≥0 ∈ E∗ : ρ(K0) ≥ 2n and ∀i ≥ 0, ρ(Ki) ≤ (c1 − 2)n
}
, n ≥ 1.

Lemma 3.5. There is p0 ∈ (0, 1] such that for every n ∈ N \ {0}, for every T ∈ N with T ≥ n, and
for every initial condition (KT

i (0))i≥0 ∈ E∗,

P(ρ(KT
0 (n)) ≥ 2n) ≥ p0.

Proof. Let E1,n be the event

E1,n =
{
∃℘ ∈ Lθ0, ∂Cn/2

℘←→ ∂C3n
}
.

Let E2,n be the event that there is a loop in Lθ0, contained in the cylinder (n/2, n)× S1, and that
surrounds this cylinder, i.e. is non-contractible in the topological sense. Then

P(ρ(KT
0 (n)) ≥ 2n) ≥ P(E1,n ∩ E2,n, T† > T )/P(T† > T ).

The three events E1,n, E2,n and {T† > T} are increasing for the Poisson point process Lθ0. By the
FKG inequality for Poisson point processes,

P(ρ(KT
0 (n)) ≥ 2n) ≥ P(E1,n ∩ E2,n) ≥ P(E1,n)P(E2,n).

By Lemma 2.6, P(E1,n) ≥ p1 for some p1 ∈ (0, 1). Moreover, P(E2,n) ≥ 1− pθn2 for some p2 ∈ (0, 1)
(Lemma 2.5). Thus we get a uniform lower bound for P(ρ(KT

0 (n)) ≥ 2n).

By Lemma 2.6, the probability that a single loop crosses [1, t]× S1 decays like t−1 as t→∞. In
the next lemma, we show that if one conditions on the event that a cluster makes a large crossing,
then this probability decays like t−θ+o(1). This will in particular ensure that loops stay small
(although larger) after this conditioning.

Lemma 3.6. For every ε ∈ (0, θ), there is a constant Cε > 0, such that for every initial condition
(Ki(0))i≥0 ∈ E∗ for the Markov chain, for every T ∈ N \ {0}, for every t1 ≥ 1 and every t2 ≥ 2t1,

P
(
∃℘ ∈ Lθ0, ∂Ct1

℘←→ ∂Ct2
∣∣T† > T

)
≤ Cε

( t1
t2

)θ−ε
. (3.11)

Proof. Let ε > 0 be as in the statement. Let τt1 (resp. τt1) be the left most (resp. right most)
level reached by the loops that cross [t1, t2]× S1:

τ := inf{u ∈ (0, 1) : ∃℘ ∈ Lθ0 : ∂Cut1
℘←→ ∂Ct2}, τ̄ := sup{v > t2/t1 : ∃℘ ∈ Lθ0 : ∂Ct1

℘←→ Cvt1}.

The levels τt1 and τt1 can be reached either by the same loop or by two distinct loops. In both
cases, one can use Lemma 2.6 to show that there exists C > 0 such that for all u ∈ (0, 1) and
v ≥ t2/t1,

P (τ ≤ u, τ ≥ v) ≤ C(u/v). (3.12)
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With these notations, the left hand side of (3.11) is equal to∫ 1

0

∫ ∞
t2/t1

P (τ ∈ du, τ̄ ∈ dv) P (T† > T |τ = u, τ = v)
P (T† > T ) . (3.13)

If vt1 < T , the above ratio on the right hand side is at most

P
(
T† > ut1, Cvt1

Lθ0←→ CT

)
/P (T† > T ) .

If vt1 ≥ T , this ratio can be bounded by

P (T† > ut1) /P (T† > T ) .

In both cases and by FKG inequality, the ratio in (3.13) is bounded from above by the inverse
of the product of the probabilities of three events: 1) that there is a cluster joining ∂Cut1/2 to
∂C2vt1 , 2) there is a non contractible loop in [ut1/2, ut1]× S1, 3) there is a non contractible loop
in [vt1, 2vt1] × S1. By Lemma 2.5 and Theorem 2.4, the ratio in (3.13) is therefore bounded by
Cε(v/u)1−θ+ε. Plugging this estimate in (3.13) and performing two integrations by part, we obtain
that the left hand side of (3.11) is bounded by

CP
(
τ ≤ 1, τ ≥ t2

t1

)(
t2
t1

)1−θ+ε
+ C

∫ 1

0
P
(
τ ≤ u, τ ≥ t2

t1

)(
t2
t1

)1−θ+ε 1
u2−θ+ε du

+C
∫ ∞
t2/t1

P (τ ≤ 1, τ ≥ v) v−θ+ε

u1−θ+ε dv + C

∫ 1

0

∫ ∞
t2/t1

P (τ ≤ u, τ ≥ v) v−θ+ε

u2−θ+ε dudv.

(3.12) then concludes the proof.

Given n ∈ N \ {0}, an integer time T ≥ c2n, and an initial condition (KT
i (0))i≥0 ∈ E∗ for the

conditioned Markov chain, with T((KT
i (0))i≥0) ≤ n, we have that

P
(
(KT

i (n))i≥0 ∈ Fn
)
≥ P

(
ρ(KT

0 (n)) ≥ 2n
)
− P

(
∃℘ ∈ Lθ0, ∂Cn

℘←→ ∂C(c1−1)n
∣∣T† > T

)
≥ p0 − Cε(c1 − 1)−(θ−ε),

where p0 is given by Lemma 3.5, ε ∈ (0, θ) and Cε is given by Lemma 3.6. We chose ε = θ/2, and
we take an integer c1 ≥ 5 such that

p0 − Cθ/2(c1 − 1)− θ2 > 0. (3.14)

With this choice of c1 we are sure that Condition 2 of Theorem 3.3 is satisfied. Let us also check
that Condition 3 of Theorem 3.3 is satisfied. Indeed,

P
(
T((KT

i (c1n))i≥0) ≥ un
)
≤ P

(
∃℘ ∈ Lθ0, ∂Cc1n

℘←→ ∂C(c1+u)n
∣∣T† > T

)
≤ Cε

( c1
c1 + u

)θ−ε
,

where ε ∈ (0, θ) and Cε is given by Lemma 3.6. It remains to check Condition 1 of Theorem 3.3.
For t2 > t1 > 0, we will denote

Lθ∩[t1,t2] = {℘ ∈ Lθ0 : Range(℘) ∩ [t1, t2]× S1 6= ∅}.

Lemma 3.7. There is p̂0 ∈ (0, 1] such that for every n ∈ N \ {0}, and for every T ≥ c2n,

P
(
∂Cn

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
∣∣∣∂C(c1−1)n

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
)
≥ p̂0.

Proof. This is similar to Lemma 3.5. Let E1,n be the event

E1,n = {∃℘ ∈ Lθ0, ∂Cn
℘←→ ∂Cc1n}.

Let E2,n be the event that there is a loop in Lθ0, contained in the cylinder ((c1 − 1)n, c1n)× S1 that
surrounds the cylinder. Then

E1,n ∩ E2,n ∩
{
∂C(c1−1)n

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
}
⊂
{
∂Cn

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
}
.
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n 2n (c1 − 2)n (c1 − 1)n T − n

K̂0(0)

K0(0)

c1n

Figure 3.2: Schematic representation of the events considered in the proof of Lemma 3.8. Only
the marked compact K0(0) and K̂0(0) of the initial conditions (Ki(0))i≥0 and (K̂i(0))i≥0 have been
depicted (light and dark grey respectively). The existence of the blue cluster corresponds to the event
E1,n,T whereas the existence of the two red loops corresponds to the events E2,n,T and E3,n,T .

The three events E1,n, E2,n and
{
∂C(c1−1)n

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
}
are increasing for the Poisson

point process Lθ0, so one can apply the FKG inequality. Therefore,

P
(
∂Cn

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
∣∣∂C(c1−1)n

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
)
≥ P(E1,n ∩ E2,n) ≥ P(E1,n)P(E2,n).

By Lemma 2.6, P(E1,n) ≥ 1 − p̂θ1 for some p̂1 ∈ (0, 1). Moreover, P(E1,n) ≥ 1 − p̂θn2 for some
p̂2 ∈ (0, 1). This gives the desired lower bound uniform in n and T .

In the sequel, given a random variable X and an event A, we will denote by Law(X|A) the law
of X conditioned on the event A.

Lemma 3.8. There is q ∈ (0, 1] such that for every n ∈ N \ {0}, for every T ≥ c2n and and for
every two initial conditions (Ki(0))i≥0 and (K̂i(0))i≥0 in Fn, we have

1− 1
2dTV(Ln,T , L̂n,T ) ≥ q,

where

Ln,T = Law
(
(Ki((c1 − 1)n))i≥0

∣∣T† > T − n
)
, L̂n,T = Law

(
(K̂i((c1 − 1)n))i≥0

∣∣T† > T − n
)
,

and where (Ki(m))i≥0,m≥0, resp. (K̂i(m))i≥0,m≥0 are the Markov chains of clusters starting from
the corresponding initial conditions.

Proof. Consider the following events for the loop soup Lθ∩(0,T−n]. Let E1,n,T be the event

E1,n,T =
{
∂Cn

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
}
.

Let E2,n be the event that there is a loop of Lθ∩(0,T−n] contained in the cylinder (n, 2n)× S1 that
surrounds the cylinder. Let E3,n be the event that there is a loop of Lθ∩(0,T−n] contained in the
cylinder ((c1 − 2)n, (c1 − 1)n) × S1 that surrounds the cylinder. See Figure 3.2. Note that the
events E1,n,T , E2,n and E3,n are independent since they involve disjoint types of loops.

Now we consider the Markov chains (Ki(m))i≥0,m≥0 and (K̂i(m))i≥0,m≥0 on the same probability
space, obtained from the same Brownian loop soup Lθ0. Note that in this coupling, neither of the
two Markov processes is conditioned on T† > T − n. Not yet.

Since (Ki(0))i≥0 ∈ Fn and (K̂i(0))i≥0 ∈ Fn, we have

E1,n,T ∩ E2,n ⊂ {T†((Ki)i≥0) > T − n} and E1,n,T ∩ E2,n ⊂ {T†((K̂i)i≥0) > T − n};
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see Figure 3.2. Further, on the event E1,n,T ∩E2,n ∩E3,n, we have (Ki((c1 − 1)n))i≥0 = (K̂i((c1 −
1)n))i≥0 a.s. Indeed, if two Brownian loops ℘ and ℘′ intersecting ∂C(c1−1)n are connected by a finite
chain that uses (Ki(0))i≥0 and (K̂i(0))i≥0, then this chain has to intersect the non-contractible
loops in ((c1− 2)n, (c1− 1)n)× S1, that exist on the event E3,n, and thus the connection between ℘
and ℘′ can also be done without using (Ki(0))i≥0 or (K̂i(0))i≥0, by using just the Brownian loop;
see Figure 3.2.

Thus, we get some overlap in total variation between the non-conditioned laws Law
(
(Ki((c1 −

1)n))i≥0
)
and Law

(
(K̂i((c1 − 1)n))i≥0

)
. Moreover, this overlap happens on the event

{T†((Ki)i≥0) > T − n} ∩ {T†((K̂i)i≥0) > T − n}.

Therefore, we get a non-trivial overlap for the conditioned laws too:

1− 1
2dTV(Ln,T , L̂n,T ) ≥ P(E1,n,T ∩ E2,n ∩ E3,n)

P(T†((Ki)i≥0) > T − n) ∨ P(T†((K̂i)i≥0) > T − n)
.

Further,
{T†((Ki)i≥0) > T − n} ∪ {T†((K̂i)i≥0) > T − n} ⊂ E4,n,T ,

where E4,n,T is the event

E4,n,T =
{
∂C(c1−1)n

Lθ∩[(c1−1)n,T−n]←→ ∂CT−n
}
.

Thus,
P(T†((Ki)i≥0) > T − n) ∨ P(T†((K̂i)i≥0) > T − n) ≤ P(E4,n,T ).

Thus,

1− 1
2dTV(Ln,T , L̂n,T ) ≥ P(E1,n,T ∩ E2,n ∩ E3,n)

P(E4,n,T ) ≥ P(E1,n,T )
P(E4,n,T )P(E2,n)P(E3,n).

By Lemma 3.7,
P(E1,n,T )
P(E4,n,T ) ≥ p̂0 > 0,

where the lower bound is uniform in n and T . Further, P(E2,n) = P(E3,n) = 1 − p̂θn2 , for some
p̂2 ∈ (0, 1). This concludes the proof of the lemma.

Lemma 3.8 is exactly Condition 1 of Theorem 3.3. So it applies to our Markov chains of clusters
in a Brownian loop soup and concludes the proof of Theorem 3.2.

3.5 Convergence of the ratio of survival probabilities
We finish this section by proving Theorem 3.1. We first state and prove a corollary of Theorem 3.2.
We use the same notations as the ones introduced above Theorem 3.2.

Corollary 3.9. For every initial conditions K0 and K̂0 not identical to ∂C0, P(T † > T )/P(T̂ † > T )
converges as T →∞.

Remark 3.10. By FKG inequality, it is clear that the ratio P(T † > T )/P(T̂ † > T ) remains uniformly
bounded away from zero and from infinity. Indeed, recalling the notation ρ(K0) (3.9), let E be
the event that there is a loop intersecting K̂0 that disconnects ∂Cρ(K0) and ∂Cρ(K0)+1. Since
E ∩ {T † > T} ⊂ {T̂ † > T}, by FKG inequality we get that

P(T † > T )/P(T̂ † > T ) ≤ 1/P (E) .

The lower bound is similar. On the other hand, showing that this ratio actually converges is much
more involved and relies on the coupling results we developed.

Proof. Let T � t� 1 be large integers and let Et,T be the event that under the coupling of Theorem
3.2, the coalescence time T T is smaller than t. By Theorem 3.2, P (Et,T )→ 1 as T →∞ followed by
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t→∞. In this proof, we will denote by (Fs)s≥0 the filtration Fs = σ(K0(u), K̂0(u), u ∈ {0, . . . , s}),
s ≥ 0. We have

P(T † > T |T † > t) = E
[
P (T † > T |T † > t,Ft)1Et,T

]
+ E

[
P(T † > T |T † > t,Ft)1Ec

t,T

]
= E

[
P(T̂ † > T |T̂ † > t,Ft)1Et,T

]
+ E

[
P(T † > T |T † > t,Ft)1Ec

t,T

]
= P(T̂ † > T |T̂ † > t) + E

[(
P(T † > T |T † > t,Ft)− P(T̂ † > T |T̂ † > t,Ft)

)
1Ec

t,T

]
.

The rest of the proof is dedicated to showing that the second right hand side term is much smaller
than the first one. Let p, q > 1 be such that 1/p+ 1/q = 1. By Hölder’s inequality and the above
inequality,

∣∣∣P(T † > T |T † > t)− P(T̂ † > T |T̂ † > t)
∣∣∣ is bounded by

P
(
Ect,T

)1/p E [P (T † > T |T † > t,Ft
)q + P(T̂ † > T |T̂ † > t,Ft)q

]1/q
. (3.15)

Let us denote by τ := sup{s > 0 : ∃℘ ∈ Lθ∩(0,t] : Range(℘) ∩ {s} × S1 6= ∅}. Conditionally on
τ,Ft, T † > t, in order to have T † > T , there must be a cluster of loops included in (t,∞)× S1 that

crosses [τ, T ]× S1. By scaling, this probability is equal to P
(
τ − t L

θ
0←→ T − t|τ

)
. We obtain that

E
[
P
(
T † > T |T † > t,Ft

)q] = P (τ > T ) +
∫ T

t

P (τ ∈ ds)P
(
s− t L

θ
0←→ T − t

)q
. (3.16)

Let E1, E2 and E3 be the following events:
• E1: there is a cluster of Lθ0 crossing [t− 1, s− t+ 1]× S1;
• E2: there is a non contractible loop inside [t− 1, t]× S1;
• E3: there is a non contractible loop inside [s− t, s− t+ 1]× S1.

We have E1 ∩ E2 ∩ E3 ∩ {T † > t} ∩ {s − t L
θ
0←→ T − t} ⊂ {T † > T − t}. The five events on the

left hand side are increasing events. By FKG inequality we deduce that the product of the five
individual probabilities is at most P

(
T † > T − t

)
. By Lemma 2.5, P (E2) = P (E3) ≥ c and by

Theorem 2.4, P (E1) ≥ cε(s/t)−1+θ−ε. This leads to

P
(
s− t L

θ
0←→ T − t

)
≤ C(s/t)1−θ+εP

(
T † > T − t

)
/P
(
T † > t

)
.

Plugging this estimate back in (3.16) and integrating by parts (differentiating sq(1−θ+ε) and
integrating P (τ ∈ ds)) gives the following upper bound for the left hand side of (3.16):

C(1/t)q(1−θ+ε)P
(
T † > T − t

)q
/P
(
T † > t

)q ∫ T

t

P (τ ≥ s) sq(1−θ+ε)−1ds.

By Lemma 2.6, P (τ ≥ s) ≤ Ct/s. With the change of variable s = xt, we have obtained that

E
[
P
(
T † > T |T † > t,Ft

)q] ≤ CP (T † > T − t
)q
/P
(
T † > t

)q ∫ ∞
1

xq(1−θ+ε)−2dx.

We choose 1 < q < 1/(1 − θ + ε) to make sure that the integral above converges. We have
overall obtained that P

(
T † > t

)q E [P (T † > T |T † > t,Ft
)q] ≤ CP

(
T † > T − t

)q. Since P(T̂ † >
t)/P

(
T † > t

)
∈ [1/C,C], we also obtain that

P
(
T † > t

)q E [P(T̂ † > T |T̂ † > t,Ft
)q]
≤ CP

(
T † > T − t

)q
.

Multiplying (3.15) by P
(
T † > t

)
/P(T̂ † > T ), we deduce that∣∣∣∣∣P

(
T † > T

)
P(T̂ † > T )

−
P
(
T † > t

)
P(T̂ † > t)

∣∣∣∣∣ ≤ CP (Ect,T )1/p P
(
T † > T − t

)
P(T̂ † > T )

.

Using FKG inequality and the fact that the probability of crossing [T − t, T ] × S1 tends to 1
as T → ∞ (t fixed), it can be checked that lim supT→∞ P

(
T † > T − t

)
/P(T̂ † > T ) is bounded
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uniformly in t; see Remark 3.10 for a very similar statement. By then sending t→∞, we obtain
that

lim sup
t→∞

lim sup
T→∞

∣∣∣∣∣P
(
T † > T

)
P(T̂ † > T )

−
P
(
T † > t

)
P(T̂ † > t)

∣∣∣∣∣ = 0.

This shows that P
(
T † > T

)
/P(T̂ † > T ) converges as T →∞.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. The proof of the convergence of the first ratio in (3.1) follows quickly from
Corollary 3.9 and from conformal invariance of the loop soup. Indeed, let f : D → D be a conformal
map with f(x) = 0. By conformal invariance of the loop soup, the first ratio in (3.1) is equal to

P
(
f(K) LθD←→ f(D(x, r))

)/
P
(
f(K̂) LθD←→ f(D(x, r))

)
.

There exists a constant C > 1 such that if r is small enough C−1rD ⊂ f(D(x, r)) ⊂ CrD. Because
the probability of connecting K to C−1rD is asymptotically equivalent to that of connecting K to
CrD, we deduce that the first ratio in (3.1) is equal to

(1 + o(1))P
(
f(K) LθD←→ rD

)/
P
(
f(K̂) LθD←→ rD

)
.

By Corollary 3.9, the above ratio converges as r → 0 (r = e−T in the notations of Corollary 3.9).
We now move to the proof of the convergence of the second ratio in (3.1) and the identification of

the limit. Let us denote by ` the limit of the first ratio in (3.1). Let δ > 0 and let ε ∈ (0, d(z, ∂D))
be small enough so that for all r ∈ (0, ε),

P
(
K
LθD←→ D(z, r)

)/
P
(
K̂
LθD←→ D(z, r)

)
≤ (1 + δ)`.

As in (2.18), we can replace Ξza by a disc centred at z with random radius ‖Ξza − z‖∞:

P
(
K
LθD∪Ξza←→ z

)
= (1 + o(1))P

(
K
LθD←→ D(z, ‖Ξza − z‖∞)

)
.

By Lemma 2.9, the probability that ‖Ξza − z‖∞ > ε is at most Ca = Cγ2 which is much smaller
than the probability we are looking at (it behaves like γ2(1−θ)+o(1), see Theorem 1.2). By Lemma
2.9, we get that

P
(
K
LθD∪Ξza←→ z

)
= (1 + o(1))

∫ ε

0
dr ara−1

CR(z,D)aP
(
K
LθD←→ D(z, r)

)
≤ (1 + o(1))(1 + δ)`

∫ ε

0
dr ara−1

CR(z,D)aP
(
K̂
LθD←→ D(z, r)

)
≤ (1 + o(1))(1 + δ)`P

(
K̂
LθD∪Ξza←→ z

)
where in the last inequality we simply reversed the above procedure. This proves that

lim sup
a→0

P
(
K
LθD∪Ξza←→ z

)/
P
(
K̂
LθD∪Ξza←→ z

)
≤ `.

The lower bound is proved similarly. This concludes the proof.

4 Construction of hθ: proof of Theorems 1.2, 1.11 and 1.12
We start by stating the intermediate results needed in order to prove Theorems 1.2, 1.11 and 1.12,
and then use them to prove these theorems. The rest of the section then consists of the proofs of
these intermediate results.

We start with a lemma that shows that computing the second moment of hγ boils down to
computing the crossing probabilities between x and y in a soup whose loops come from 1) an
unconditioned Brownian loop soup LθD, 2) a thick loop Ξxa at x and 3) a thick loop Ξya at y.
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Lemma 4.1. Let ε > 0 and F : D×D×L→ R be a bounded measurable admissible function such
that for all x, y ∈ D, F (x, y, ·) does not depend on loops with diameter smaller than ε. For all
γ, γ′ ∈ (0,

√
2),

E
[∫

D×D
F (x, y,LθD)hγ(x)hγ′(y)dxdy

]
= C(γ, γ′, ε) γ

2γ′
2

ZγZγ′
(4.1)

+ 1
ZγZγ′

∫
D×D

E
[
F (x, y,LθD ∪ {Ξxai}i≥1 ∪ {Ξya′

i
}i≥1)1

{
x
LθD∪{Ξ

x
ai
}i≥1∪{Ξy

a′
i

}i≥1

←→ y
}]

dxdy

where the three collections of loops LθD, {Ξxai}i≥1 and {Ξya′
i
}i≥1 are independent and distributed as

in Lemma 2.3. The constant C(γ, γ′, ε) is bounded uniformly w.r.t. γ, γ′ in compact subsets of
[0,
√

2) by a quantity which may depend on ε.

The next two results are then dedicated to estimating the crossing probability appearing in
Lemma 4.1. The first result has a very similar flavour as [JLQ23, Proposition 4.1]. On the other
hand, the second result is novel and crucially relies on Theorem 3.1.

Lemma 4.2. For any η > 0, there exists C > 0 such that for all γ ∈ (0, 1] and x, y ∈ D,

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y

)
≤ C| log |x− y||2(1−θ)+η. (4.2)

Proposition 4.3. For any distinct points x, y ∈ D, the limit

Cθ(x, y) := lim
γ→0

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y

)
(4.3)

exists and
Cθ(x, y) ≤ lim inf

γ1,γ2→0

1
Zγ1Zγ2

P
(
x
LθD∪Ξxa1∪Ξya2←→ y

)
. (4.4)

Moreover,

Cθ(x, y) =
(

log 1
|x− y|

)2(1−θ)+o(1)
as x− y → 0. (4.5)

More generally, let ε > 0 and F : L→ R be a bounded measurable function that does not depend on
loops with diameter smaller than ε > 0. Then the following two limits exist and are identical

lim
r→0

1
Z2
r

E
[
F (LθD)1

{
D(x, r) L

θ
D←→ D(y, r)

}]
= lim
a→0

1
Z2
γ

E
[
F (LθD)1

{
x
LθD∪Ξxa∪Ξya←→ y

}]
. (4.6)

Notation 4.4. If we want to keep track of the domain D, we will denote by Cθ,D(x, y) the limit of
(4.3).

We can now show Theorems 1.2, 1.11 and 1.12.

Proof of Theorem 1.11. It follows directly from (4.6). Indeed, let x, y ∈ D be two distinct points.
By a density-type argument, to prove Theorem 1.11, it is enough to show that for any ε > 0
and any bounded measurable function F : L→ R which does not depend on loops with diameter
smaller than ε, Ex↔y,r

[
F (LθD)

]
converges as r → 0. This is a mere restatement of the convergence

(4.6).

Proof of Theorem 1.2. Let f : D → R be a bounded measurable function. By decomposing f into
its positive and negative parts, we can assume without loss of generality that f is nonnegative. We
want to show that ((hγ , f), γ ∈ (0,

√
2) is Cauchy in L2, i.e. that E

[
|(hγ1 , f)− (hγ2 , f)|2

]
→ 0 as

γ1, γ2 → 0. By Lemma 4.1, this second moment is equal to

o(1) +
∫
D×D

f(x)f(y)
(
P
(
x
LθD∪Ξxa1∪Ξya1←→ y

)
Z2
γ1

+
P
(
x
LθD∪Ξxa2∪Ξya2←→ y

)
Z2
γ2

− 2
P
(
x
LθD∪Ξxa1∪Ξya2←→ y

)
Zγ1Zγ2

)
.

Proposition 4.3 together with dominated convergence theorem and Lemma 4.2 (and Fatou’s lemma for
the crossed term involving both a1 and a2) then shows that lim supγ1,γ2→0 E

[
|(hγ1 , f)− (hγ2 , f)|2

]
≤

0. This concludes the L2 convergence of (hγ , f).
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We now explain how one can lift this convergence to a convergence in the Sobolev space H−ε(C),
where ε ∈ (0, 1) is arbitrary small. Recall that H−ε(C) is the set of tempered distribution f such
that

‖f‖2H−ε(C) :=
∫
C

(1 + |ξ|2)−ε|f̂(ξ)|2dξ <∞. (4.7)

Let γ1, γ2 ∈ (0,
√

2). Denoting Cγ1,γ2(x, y) = E [(hγ1(x)− hγ2(x))(hγ1(y)− hγ2(y))], we have

E ‖hγ1 − hγ2‖
2
H−ε(C) =

∫
R2

E
∣∣∣ĥγ1(ξ)− ĥγ2(ξ)

∣∣∣2
(1 + |ξ|2)ε

dξ ≤
∫
R2

E
∣∣∣ĥγ1(ξ)− ĥγ2(ξ)

∣∣∣2
|ξ|2ε

dξ (4.8)

=
∫
D×D

dxdy Cγ1,γ2(x, y)
∫

dξ e
2πiξ·(x−y)

|ξ|2ε
= Cε

∫
D×D

dxdy Cγ1,γ2(x, y)
|x− y|2−2ε

where we used the fact that the Fourier transform of | · |−2ε is Cε| · |−2+2ε for some constant
Cε depending on ε. We can then conclude as before using Proposition 4.3 that hγ is Cauchy in
L2(H−ε(C),P).

Finally, the proof that the normalising constant Zγ (1.3) satisfies Zγ = γ2(1−θ)+o(1) as γ → 0
can be found in Section 2.4.

Proof of Theorem 1.12. By a simple density-type argument, it is enough to check the identity
statement in Theorem 1.12 for a function F : L→ R depending only on loops with diameter larger
than a given threshold. For such functions, it then follows from Lemma 4.1, Theorem 1.11 and
(4.6).

4.1 Proof of Lemma 4.1
Proof of Lemma 4.1. By definition of hγ , the left hand side of (4.1) is equal to

1
ZγZγ′

∫
D×D

E
[
F (x, y,LθD)(M+

a (dx)M+
a′(dy)−M+

a (dx)dy − dxM+
a′(dy) + dxdy)

]
.

By (2.12),
E
[
F (x, y,LθD)M+

a (dx)
]

= E
[
F (x, y,LθD ∪ {Ξxai}i≥1)

]
dx

where the loops {Ξxai}i≥1 are as defined above Lemma 2.3. A similar result holds at y. To handle
the term E

[
F (x, y,LθD)(M+

a (dx)M+
a′(dy)

]
, we first control the contribution of soups containing

at least one loop which visits both x and y. By triangle inequality and then by (2.13) and (2.14)
applied to F ≡ 1, we have∣∣∣E [F (x, y,LθD)M+

a (dx)M+
a′(dy)1{∃℘∈LθD:x,y∈℘}

]∣∣∣ ≤ ‖F‖∞ E
[
Ma(dx)Ma′(dy)1{∃℘∈LθD:x,y∈℘}

]
= 4 ‖F‖∞

((
2π
√
aa′GD(x, y)

)1−θ
Γ(θ)Iθ−1

(
4π
√
aa′GD(x, y)

)
− 1
)

dxdy = O(γ2γ′
2). (4.9)

On the other hand, by the Girsanov-type transform (2.14), the contribution with no such loop is
equal to

E
[
F (x, y,LθD)M+

a (dx)M+
a (dy)1{@℘∈LθD:x,y∈℘}

]
= 4E

[
F (x, y,LθD ∪ {Ξxai}i≥1 ∪ {Ξya′

i
}i≥1)1{C+(LθD ∪ {Ξxai}i≥1 ∪ {Ξya′

i
}i≥1)}

]
dxdy.

We then notice that, conditionally on LθD ∪ {Ξxai}i≥1 ∪ {Ξya′
i
}i≥1, the probability that both x and y

belong to positive clusters of LθD ∪ {Ξxai}i≥1 ∪ {Ξya′
i
}i≥1 is equal to

1
4

(
1− 1

{
x
LθD∪{Ξ

x
ai
}i≥1∪{Ξy

a′
i

}i≥1

←→ y
})

+ 1
21
{
x
LθD∪{Ξ

x
ai
}i≥1∪{Ξy

a′
i

}i≥1

←→ y
}

=1
4 + 1

41
{
x
LθD∪{Ξ

x
ai
}i≥1∪{Ξy

a′
i

}i≥1

←→ y
}
.
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Putting everything together, we have obtained that the left hand side of (4.1) is equal to

1
ZγZγ′

∫
D×D

E

F (x, y,LθD ∪ {Ξxai}i≥1 ∪ {Ξya′
i
}i≥1)1

{
x
LθD∪{Ξ

x
ai
}i≥1∪{Ξy

a′
i

}i≥1

←→ y
}dxdy

+O(1) γ
2γ′

2

ZγZγ′
+ 1
ZγZγ′

∫
D×D

E[F (x, y,LθD ∪ {Ξxai}i≥1 ∪ {Ξya′
i
}i≥1)− F (x, y,LθD ∪ {Ξxai}i≥1)

− F (x, y,LθD ∪ {Ξ
y
a′
i
}i≥1) + F (x, y,LθD)]dxdy.

To bound the last integral above, we need to recall that F does not depend on loops with diameter
smaller than a given threshold ε. Hence, if ∧i≥1Ξxai (concatenation of Ξxai , i ≥ 1) or ∧i≥1Ξya′

i
has

diameter smaller than ε, then

F (x, y,LθD∪{Ξxai}i≥1∪{Ξya′
i
}i≥1)−F (x, y,LθD∪{Ξxai}i≥1)−F (x, y,LθD∪{Ξ

y
a′
i
}i≥1)+F (x, y,LθD) = 0.

The probability that both ∧i≥1Ξxai and ∧i≥1Ξya′
i
have diameter at least ε is of order γ2γ′

2 (Lemma
2.9) concluding the proof.

4.2 Proof of Lemma 4.2 and Proposition 4.3
We start by proving Lemma 4.2.

Proof of Lemma 4.2. Let η > 0 be small and x, y ∈ D. If |x− y| ≤ e−a−1+η , we simply bound the
probability in (4.2) by 1. Using that Zγ = γ2(1−θ)+o(1) = a1−θ+o(1), we obtain that the left hand
side of (4.2) is at most

a−2(1−θ)+o(1) ≤ C| log |x− y||2(1−θ)/(1−2η).

We therefore only need to consider the case where x and y are not too close to each other, i.e.
|x − y| ≥ e−a

−1+η . For z ∈ {x, y}, we will denote by Dz = D(z, |x − y|/2). By Lemma 2.9, the
minimal disc centred at x containing Ξxa has typically a radius of order e−O(1)/a. It is therefore
very unlikely that Ξxa exits Dx. We are first going to show that this is still the case conditionally
on the existence of a cluster joining x and y:

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,∃z ∈ {x, y} : Ξza 6⊂ Dz

)
→ 0 as γ → 0 (4.10)

and also that the left hand side can be bounded by C| log |x− y||
2(1−θ)
1−2η , uniformly in γ. Thanks to

a union bound, we can focus on the event that Ξxa 6⊂ Dx. With some abuse of notation, we will
view Ξxa both as the collection of excursions in a Poisson point process with intensity aµx,xD and as
the loop formed by the concatenation of all these excursions. Let E1

x (resp. E2
x) be the event that

there is a unique excursion (resp. at least two distinct excursions) of Ξxa that exits Dx. By Lemma
2.9, µx,xD ({℘ 6⊂ Dx}) = log 2 CR(x,D)

|x−y| . So

P
(
E2
x

)
≤ E

[ ∑
℘ 6=℘′∈Ξxa

1{℘ 6⊂Dx,℘′ 6⊂Dx}
]

= a2µz,zD ({℘ 6⊂ Dx})2 ≤ Ca2| log |x− y||2.

In that case, we simply bound

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,E2

x

)
≤ a−2(1−θ)+o(1)P

(
E2
x

)
≤ Ca2θ+o(1)| log |x− y||2 ≤ C| log |x− y||

2(1−θ)
1−2η .

The probability of the event E1
x is at most Ca| log |x− y||. On that event, let Rx be the minimal

distance between y and the unique excursion of Ξxa that exists Dx. Let also Ry be the maximal
r > 0 such that there exists a cluster of loops of LθD ∪Ξya that connects y to ∂D(y, r). On the event
Ex1 , in order to have a cluster joining x and y, we need to have Rx ≤ Ry. Since Ry and Rx are
independent, we get that

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,E1

x

)
≤

P
(
E1
x

)
Z2
γ

P
(
Rx ≤ Ry|E1

x

)
(4.11)

≤ Ca| log |x− y||
Z2
γ

∫ |x−y|
0

P (Ry ∈ dr)P
(
Rx ≤ r|E1

x

)
.
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For all r ∈ (0, |x−y|), the probability that Rx is smaller than r can be compared with the probability
that a Brownian path starting on the circle ∂Dx hits D(y, r) before exiting the domain D. Hence
for all r ∈ (0, |x− y|),

P
(
Rx ≤ |x− y|

∣∣∣E1
x

)
≤ C | log |x− y||

| log r| .

Injecting this estimate in (4.11) and then integrating by parts leads to

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,E1

x

)
≤ Ca| log |x− y||2

Z2
γ

∫ |x−y|
0

P (Ry ≥ r)
r| log r|2 dr.

Now, by Lemma 2.11 (and conformal invariance to get back to the unit disc),

1
Zγ

P (Ry ≥ r) ≤ C| log r|1−θ+η, r ∈ (0, |x− y|).

We thus have

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,E1

x

)
≤ Ca| log |x− y||2

Zγ

∫ |x−y|
0

dr
r| log r|1+θ−η ≤ Ca

θ+o(1)| log |x− y||2−θ+η.

In the last inequality we used that a/Zγ = aθ+o(1). This concludes the proof of (4.10). This also
shows that the left hand side of (4.10) is bounded by C| log |x− y||

2(1−θ)
1−2η because |x− y| ≥ e−a−1+η .

We can now work on the event that Ξza ⊂ Dz for z = x, y. Let LθD,x,y be the subset of LθD
consisting of the loops that are not included in Dx ∪Dy. Let

rz = inf{r > 0 : ∃℘ ∈ LθD,x,y : ℘ ∩D(z, r) 6= ∅}, z = x, y.

By the restriction property of Ξxa (see Lemma 2.8),

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,∀z = x, y,Ξza ⊂ Dz

)
≤ 1
Z2
γ

P
(
∀z = x, y, z

LθDz∪Ξza←→ ∂D(z, rz),Ξza ⊂ Dz

)
= 1
Z2
γ

CR(x,Dx)a CR(y,Dy)a
CR(x,D)a CR(y,D)a P

(
∀z = x, y, z

LθDz∪Ξz,Dza←→ ∂D(z, rz)
)
.

In what follows, we will simply bound the ratio of conformal radii by 1 (which is also a good
approximation since a→ 0). By scale invariance of LθDz and Ξz,Dza and by Lemma 2.11,

1
Zγ

P
(
z
LθDz∪Ξz,Dza←→ ∂D(z, rz)

∣∣∣rz) ≤ C (1 + log |x− y|2rz

)1−θ+η
, z = x, y.

Hence,

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,∀z = x, y,Ξza ⊂ Dz

)
≤ CE

[ ∏
z=x,y

(
log |x− y|2rz

)1−θ+η
]
.

In [JLQ23], we show that the above quantity is upper bounded by C| log |x− y||2(1−θ)+2η (see (4.16)
in Remark 4.5 therein) concluding the proof of Lemma 4.2.

We can now prove Proposition 4.3.

Proof of Proposition 4.3. Let x and y be two distinct points in D. Compare to the upper bound,
the two points x and y are fixed and we wish to take the limit as γ1, γ2 → 0. It is therefore
important for the proof to keep in mind that x and y are at macroscopic distance to each other and
that we can assume γ1 and γ2 to be as small as desired. We start by proving (4.3). We will explain
at the end of the proof what needs to be changed in order to get (4.4) and (4.6).

Let η > 0 be small and let Dx = D(x, η|x − y|/2) and Dy = D(y, η|x − y|/2). By taking
η > 0 small enough, we can ensure that Dx and Dy are subsets of D. We will denote LθD,x,y =
LθD \ (LθDx ∪ L

θ
Dy

) the collection of loops which are not included in Dx or Dy. We now introduce
the following events:

• E1: there is a loop in LθD,x,y that disconnects Dx from Dy;
• E2: for z = x, y, Ξza ⊂ Dz.
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We first claim that we can work on E1 ∩ E2. Indeed, by Lemma 2.5 P (Ec1)→ 0 as η → 0 and, by
FKG inequality,

lim sup
γ→0

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,Ec1

)
→ 0 as η → 0.

Moreover, in the proof of the upper bound, we showed that

lim
γ→0

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,Ec2

)
= 0.

See (4.10). We can therefore work on the event E1 ∩ E2. On the event E1, there is at most one
cluster Cx,y of loops in LθD,x,y that intersects both Dx and Dy (we set Cx,y = ∅ if there is no such
cluster). By the restriction property (2.16) of Ξza, we have

P
(
x
LθD∪Ξxa∪Ξya←→ y,E1 ∩ E2

)
= CR(x,Dx)a CR(y,Dy)a

CR(x,D)a CR(y,D)a E

[
1E1

∏
z=x,y

P
(
z
LθDz∪Ξz,Dza←→ Cx,y

∣∣∣Cx,y)] .
The ratio of conformal radii converges to 1. Moreover, for z = x or y, we can rewrite

1
Zγ

P
(
z
LθDz∪Ξz,Dza←→ Cx,y|Cx,y

)
= P

(
z
LθDz∪Ξz,Dza←→ Cx,y|Cx,y

)/
P
(
z
LθDz∪Ξz,Dza←→ ∂D(z, e−1η|x− y|/2)

)
and we can replace Cx,y by the closure of (Cx,y ∩ Dz) ∪ ∂Dz which is a.s. a connected compact
subset of Dz \ {z}. We are now in the setting of Theorem 3.1 which shows that the above ratio
converges as a→ 0, a.s. with respect to Cx,y. The upper bound (4.2) provides the bound necessary
to apply dominated convergence in order to exchange the expectation w.r.t. Cx,y and the limit. We
have proved that

lim
γ→0

1
Z2
γ

P
(
x
LθD∪Ξxa∪Ξya←→ y,E1 ∩ E2

)
(4.12)

exists and that 1
Z2
γ
P
(
x
LθD∪Ξxa∪Ξya←→ y

)
converges as γ → 0 towards the nondecreasing limit of (4.12)

as η → 0. This shows (4.3).
The proof of (4.4) concerning the mixed case (a1, a2) follows along the same lines. The main

difference comes from the fact that we only need a lower bound, so we can add for free the extra
events E1 and E2. The proof of (4.6) is obtained similarly. Indeed, because the function F does
not depend on loops that have diameter smaller than a given threshold ε, F does not depend on
loops included in Dx and Dy provided η is small enough. We then repeat the above procedure and
use Theorem 3.1.

Finally, the upper bound of (4.5) follows from Lemma 4.2. The lower bound is much easier to
prove and follows from Theorem 2.4 and FKG inequality. We omit the details.

5 hθ as a sum of Minkowski measures: proof of Theorems
1.9 and 1.10
This section is devoted to the proofs of Theorems 1.9 and 1.10. We start by proving Theorem 1.9.
Recall the notations introduced above Theorem 1.9.

Proof of Theorem 1.9. Let k ≥ 1. Let B ⊂ D be some Borel set. It is enough to show that
(µk,r(B))r>0 and (µk,γ(B))γ>0 are Cauchy in L2 and that µk,r(B)− µk,γ(B) converges to 0 in L2

as γ, r → 0. We already have all the ingredients to prove this. Indeed,

lim sup
r,r′→0

E
[
(µk,r(B)− µk,r′(B))2] = lim sup

r,r′→0

1
ZrZr′

∫
B×B

(
P (Ck ∩D(x, r) 6= ∅, Ck ∩D(y, r) 6= ∅)

+ P (Ck ∩D(x, r′) 6= ∅, Ck ∩D(y, r′) 6= ∅)− 2P (Ck ∩D(x, r) 6= ∅, Ck ∩D(y, r′) 6= ∅)
)

dxdy.

The analogue of Lemma 4.2 with small discs instead of thick loops (and Fatou’s lemma to deal
with the mixed term r-r′) provides the necessary domination to exchange limit and integral. To
show that the integrand converges pointwise to zero, we then use the same approach as in the proof
of Proposition 4.3. Eventually, the proof of Theorem 1.9 boils down to Theorem 3.1. We omit the
details.
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The above line of argument also shows that the second moment of µk(D) is positive. In particular,
the probability that µk(D) > 0 is positive. We are going to show that this probability is actually
equal to 1. Without loss of generality assume that D = [0, 1]2. Let ℘ be some fixed macroscopic
loop of LθD, e.g. the loop with the largest diameter. Let n ≥ 1 be a large integer and divide D into
disjoint squares Qi, i = 1, . . . , 4n, of side length 2−n. For each i = 1, . . . , 4n, let Li be the set of
loops included in Qi. Conditionally on {diam(℘) >

√
22−n}, the collections Li, i = 1, . . . , 4n, are

independent from ℘ and independent loop soups in Di. For i = 1, . . . , 4n, let Q′i be the square with
side length 2−n−1 with the same centre as Qi and let Ei be the event that there is a cluster Ci of Li
with non-zero Minkowski content and such that Ci disconnects Q′i from ∂Qi. By scale invariance,
p = P(Ei) is positive and independent of n and i. Let I = {i = 1, . . . , 4n : ℘ ∩Q′i 6= ∅}. On the
event Ei ∩ {i ∈ I}, the cluster of ℘ contains Ci. Hence, the probability that the Minkowski content
of the cluster of ℘ vanishes is at most

P
(
diam(℘) ≤

√
22−n

)
+ E

[
(1− p)#I] −−−−→

n→∞
0.

This concludes the proof.

The main item that remains to be checked is that, as stated in Theorem 1.10, µk corresponds
to the restriction of |hθ| to Ck. The rest of this section is dedicated to showing this.

As usually, we will denote by Ck the topological closure of Ck, seen as a compact subset of D.
We will denote

Dk = D \
⋃

1≤j≤k
Cj .

Then Dk is an open subset of D that has infinitely many connected components, among which
finitely many (at most k) are multiply connected and the rest are simply connected, the total
number of holes being k. We will denote by

LθD,k = {℘ ∈ LθD : ℘ ⊂ Dk}.

We will denote by σk the sign σCk of the cluster Ck. We will denote by Fk the σ-algebra generated
by the loops contained in C1, . . . , Ck (including their time parametrization) and the signs σ1, . . . , σk.

Lemma 5.1. Fix k ≥ 1. Let Oi, i ≥ 0 be the connected components of Dk. Conditionally on Fk,
we have:

• The collections of loops {℘ ∈ LθD : ℘ ⊂ Oi}, i ≥ 0, are independent;
• For all i ≥ 0 such that Oi is simply connected, {℘ ∈ LθD : ℘ ⊂ Oi} has the law of a Brownian

loop soup in Oi with intensity θ;
• For all i ≥ 0 such that Oi is not simply connected, {℘ ∈ LθD : ℘ ⊂ Oi} has the law of a

Brownian loop soup in Oi with intensity θ conditioned on not having clusters surrounding an
inner hole of Oi.

Proof. This result is folklore and has a very similar flavour as Lemma 8.5 and follows from the
same proof. We refer to Section 8 for more details.

In particular, the collection of loops LθD,k is a Brownian loop soup in Dk conditioned on an event
that has a positive probability. So for γ ∈ (0, 2), one can define a multiplicative chaos measure
associated to LθD,k. The fact that Dk is not simply connected is non essential: see Remark 2.2. The
multiplicative chaos measure associated to LθD,k is nothing else than

1{x∈Dk}e
γ2π(GD(x,x)−GDk (x,x))Mγ(dx),

where GD is the Dirichlet Green’s function on D and GDk is the Dirichlet Green’s function on
Dk. Note that GD(x, x) − GDk(x, x) < +∞. We get a density and not just a restriction to Dk

because our convention E[Mγ(dx)] = 2dx makes the normalization for the multiplicative chaos
domain-dependent: how we normalize around a point x depends also on the global shape of the
domain and not just the Brownian loops we see around x. With the normalisation used in [ABJL23],
we would not get this extra density: see (2.5) for the relation between these two normalisations.
One can further consider the measureM+

γ 1Dk and the field

hθ,k = lim
γ→0+

1
Zγ

1{x∈Dk}(eγ
2π(GD(x,x)−GDk (x,x))M+

γ (dx)− dx),
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which is a well defined random element of H−ε(C) for ε > 0 (simply by working in the domain Dk).
Further, one can consider the conditional expectation E[hθ|Fk]. Since E[‖hθ‖2H−ε(C)] < +∞ for

ε > 0, the conditional expectation E[hθ|Fk] is a well defined random element of H−ε(C), with

‖E[hθ|Fk]‖2H−ε(C) ≤ E[‖hθ‖2H−ε(C)|Fk] < +∞ a.s.

See [HvNVW16, Section 2.6] for a reference on conditional expectation of random variables in a
Banach space. We define ν1 = σ1E[hθ|F1], and for k ≥ 2,

νk = σk(E[hθ|Fk]− E[hθ|Fk−1]), so that E[hθ|Fk] =
k∑
j=1

σjνj .

Lemma 5.2. The following holds.
1. For every k ≥ 1, conditionally on Fk, hθ,k has the same law as −hθ,k, and in particular

E[hθ,k|Fk] = 0.
2. A.s., for every k ≥ 1 and every f ∈ C∞c (C), such that Supp(f) ∩ (D \Dk) = ∅, (hθ, f) =

(hθ,k, f).
3. For every k ≥ 1, hθ = E[hθ|Fk] + hθ,k a.s.
4. For every ε > 0, as k → +∞, ‖hθ − E[hθ|Fk]‖H−ε(C) → 0 a.s. and in L2.
5. For every k ≥ 2, hθ,k−1 = σkνk + hθ,k a.s. and

νk = σkE[hθ,k−1|Fk] a.s.

6. ν1 and σ1 are independent, and for every k ≥ 2, νk and σk are independent conditionally on
Fk−1.

7. A.s., for every k ≥ 1 and every f ∈ C∞c (C) such that Supp(f) ∩ Ck = ∅, (νk, f) = 0, that is
to say νk is supported on Ck.

Proof. 1. The proof is the same as for hθ (see Section 7.1).
2. Note that we also deal with test functions that are not compactly supported in D. Let k ≥ 1

and n ≥ 1. Let Ck,n be the open subset of C formed by points x ∈ C such that d(x,D \Dk) > 1/n.
By construction, for every f ∈ C∞c (Ck,n),

(hθ, f) = lim
γ→0+

1
Zγ

∫
Dk

f(x)(M+
γ (dx)− dx),

where the convergence holds in L2 for a given Sobolev norm H−ε(C) (and thus for all test functions
simultaneously). Further, since GD(x, x)−GDk(x, x) is bounded on Ck,n, the convergence and the
limit do no change if we replaceM+

γ by

eγ
2π(GD(x,x)−GDk (x,x))M+

γ (dx).

3. By 1., we only need to show that hθ − hθ,k is measurable w.r.t. Fk. Actually will see that
hθ − hθ,k is measurable w.r.t. the σ-algebra Fk augmented by the negligible events (i.e. with
probability 0), which also implies the desired result.

Consider the sets Ck,n defined above. Let Fk,n be the σ-algebra generated by Fk as well as by
the loops of LθD,k that are in the clusters at distance at most 1/n from D \Dk, and the signs of
these clusters. By definition, Fk ⊂ Fk,n and Fk,n+1 ⊂ Fk,n. Denote

Fk,∞ =
⋂
n≥1
Fk,n.

We have Fk ⊂ Fk,∞.
For k ≥ 1 and n ≥ 1, let χk,n be a cutoff function such that χk,n ∈ C∞(C), χk,n takes values in

[0, 1], χk,n equals 0 on Ck,n and 1 on C \ Ck,n+1. We also want χk,n to be, as a random variable,
measurable w.r.t. Dk. We omit the detailed construction of such a cutoff function, which is
standard. Fix k ≥ 1 and n ≥ 1. For m ≥ 1 we have hθ = hθχk,m + hθ(1 − χk,m), and by 2.,
hθ(1− χk,m) = hθ,k(1− χk,m). Moreover, for m ≥ n, hθχk,m is measurable w.r.t. Fk,n. Further,
for ε > 0,

lim
m→+∞

E[‖hθ,kχk,m‖2H−ε(C)|Fk] = 0 a.s.

36



by a computation similar to (4.8). Therefore,

lim
m→+∞

E[‖(hθ − hθ,k)− hθχk,m‖2H−ε(C)|Fk] = 0 a.s.

So in particular, hθ − hθ,k is the limit in probability of hθχk,m as m→ +∞. Therefore, hθ − hθ,k
is measurable w.r.t. Fk,n. By letting n→ +∞, we get that hθ − hθ,k is measurable w.r.t. Fk,∞.

To conclude, it is enough to check that the σ-algebra Fk,∞ is the same as Fk up to negligible
events. This is what is sketched below, by omitting some details.
• Step 1: Let F ′k,n be the σ-algebra generated by Fk as well as by the loops of LθD,k that are in

the clusters at distance at most 1/n from D \Dk. Contrary to Fk,n, F ′k,n does not contain any
information on the sign of clusters of LθD,k. Denote

F ′k,∞ =
⋂
n≥1
F ′k,n.

By construction, Fk ⊂ F ′k,∞ ⊂ Fk,∞. We further claim that Fk,∞ is the same as F ′k,∞ up to
negligible events. Indeed, the signs of clusters are sampled independently of the loops in LθD,k
and are i.i.d. Moreover, as n increases, Fk,n contains information about less clusters and their
signs, and in particular, Fk,∞ contains information only on the tail of the sequence of signs. So
essentially this follows from the 0− 1 law of the tails of sequences of independent r.v.s.

• Step 2: Let F ′′k,n be the σ-algebra generated by Fk as well as by the loops of LθD,k that are at
distance at most 1/n from D \Dk. So contrary to F ′k,n, we look only at individual loops and do
not consider how they are grouped into clusters. By construction, F ′′k,n ⊂ F ′k,n. Denote

F ′′k,∞ =
⋂
n≥1
F ′′k,n.

We claim that F ′k,∞ is the same as F ′′k,∞ up to negligible events. For m > n ≥ 1, let Ak,m,n
be the event that all the clusters of LθD,k that are at distance at most 1/m from D \Dk, are
actually made of loops that stay in the 1/n-neighborhood of D \Dk. Then Ak,m,n ∈ F ′′k,n and
for every A ∈ F ′k,m, we have A ∩Ak,m,n ∈ F ′′k,n. Moreover,

lim
m→+∞

P(Ac
k,m,n) = 0.

Thus, F ′k,∞ is contained in F ′′k,n augmented by the negligible events, whatever the value of n.
• Step 3: We have that Fk ⊂ F ′′k,∞. We claim that F ′′k,∞ is the same as Fk up to negligible

events. If the conditional distribution of LθD,k given Fk were exactly Poisson, this would have
been immediate by 0− 1 law. However, by Lemma 5.1, this conditional distribution is Poisson
conditioned on an event with positive probability, so the 0− 1 law still holds.

4. This is simply due to the fact that the σ-algebra
∨
k≥1 Fk generated by the union of the Fk

is the total σ-algebra generated by the loop soup LθD and the signs clusters.
5. Since

E[hθ|Fk−1] + hθ,k−1 = E[hθ|Fk−1] + σkνk + hθ,k = hθ,

we get that σkνk = hθ,k−1 − hθ,k. Since σkνk is Fk-measurable and E[hθ,k|Fk] = 0, we conclude by
taking the conditional expectation w.r.t. Fk.

6. Since −hθ has the same law as hθ, we have that

ν11{σ1=−1} = −E[hθ|F1]1{σ1=−1} = E[−hθ|F1]1{σ1=−1}
(d)= E[hθ|F1]1{σ1=1} = ν11{σ1=1},

which gives the independence between ν1 and σ1. For k ≥ 2, we use the same reasoning, by relying
on points 5. and 1.

7. From 3. and 2. follows that a.s. for every f ∈ C∞c (C \ C1), (E[hθ|F1], f) = 0. So this
concludes in the case k = 1. Now take k ≥ 2. By 5., for every f ∈ C∞c (C),

σk(νk, f) = (hθ,k−1 − hθ,k, f).

Then, similarly to 2., we get that (hθ,k−1, f) = (hθ,k, f) for every f ∈ C∞c (C \ Ck).

By convention, we set D0 = D. Let D∗k be the open subset of Dk obtained as the union of the
non-simply connected components of Dk, which are finitely many.
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Lemma 5.3. The measure
1
Zγ

(1{x∈D∗k}dx− E[1x∈D∗
k
eγ

2π(GD(x,x)−GDk−1 (x,x))M+
γ (dx))|Fk]) (5.1)

is a.s. a positive finite measure that converges a.s. to 0 for the weak topology of measures on D∗k as
γ → 0.

Proof. We start by proving that (5.1) is a positive measure. Let LθD∗
k
be the collection of Brownian

loops, distributed conditionally on Dk, as the Brownian loop soup in D∗k with intensity θ (that
is without any topological conditioning). Let MD∗

k
,γ denote the multiplicative chaos of LθD∗

k
,

normalized by E[MD∗
k
,γ |Dk] = 1{x∈D∗k}2dx. Let Ek be the event that no cluster of loops in LθD∗

k

surrounds an inner hole of D∗k, which is an event with positive probability. Then

E[1x∈D∗
k
eγ

2π(GD(x,x)−GDk−1 (x,x))M+
γ (dx))|Fk] = 1

2E
[
eγ

2π(GDk (x,x)−GDk−1 (x,x))MD∗
k
,γ(dx)

∣∣∣D∗k, Ek].
Note that the Dirichlet Green’s function on D∗k is the restriction of GDk to D∗k ×D∗k. The event Ek
is a decreasing event. Therefore, by FKG inequality for Poisson point processes, a.s.

E[1x∈D∗
k
eγ

2π(GD(x,x)−GDk−1 (x,x))M+
γ (dx))|Fk]

≤ 1
2E
[
eγ

2π(GDk (x,x)−GDk−1 (x,x))MD∗
k
,γ(dx)

∣∣∣D∗k] = 1{x∈D∗k}e
γ2π(GDk (x,x)−GDk−1 (x,x))dx.

Thus, for every γ ∈ (0, 2), (5.1) is a positive finite measure.
The rest of the proof is then dedicated to showing that (5.1) goes to zero as γ → 0. Define

f(x) = e2π(GDk (x,x)−GDk−1 (x,x)). We can write the total mass of (5.1) as

1
Zγ

∫
D∗
k

(1− eγ
2π(GDk (x,x)−GDk−1 (x,x)))dx− 1

2ZγP(Ek)E
[(

(MD∗
k
,γ , f

γ2/2)− 2
∫
D∗
k

fγ
2/2
)

1Ek
∣∣∣D∗k].
(5.2)

We are going to show separately that each of these two terms vanishes as γ → 0. By Cauchy–Schwarz
and then by (2.13), the absolute value of the second term is at most

1
2ZγP(Ek)1/2E

[(
(MD∗

k
,γ , f

γ2/2)− 2
∫
D∗
k

fγ
2/2
)2∣∣∣D∗k]1/2

= 2
ZγP(Ek)1/2

(∫
D∗
k
×D∗

k

(
(γ2πGD∗

k
(x, y))1−θΓ(θ)Iθ−1(2γ2πGD∗

k
(x, y))− 1

)
f(x)γ

2/2f(y)γ
2/2 dx dy

)1/2

= O(γ2/Zγ).

The last estimate can be obtained by expanding Iθ−1 (see (2.11)). Hence the second term of (5.2)
vanishes as γ → 0.

To conclude the proof, it remains to show that

1
Zγ

∫
D∗
k

(1− eγ
2π(GDk (x,x)−GDk−1 (x,x)))dx→ 0 as γ → 0. (5.3)

For fixed x ∈ D∗k, the density 1 − eγ
2π(GDk (x,x)−GDk−1 (x,x))) is of order γ2. Since Zγ � γ2, the

density converges to 0, actually uniformly on compact subsets of D∗k. However, this is not enough
for our purpose and we need to control what happens near the boundary ∂D∗k.

The boundary ∂D∗k has exactly k + 1 connected components, one of them being ∂D, and the k
others being the outer boundaries of C1, . . . , Ck. ∂D and C1, . . . , Ck−1 lie outside both Dk−1 and Dk.
Thus GDk−1(x, x)−GDk(x, x) stays bounded in a neighborhood of ∂D ∪ C1 ∪ · · · ∪ Ck−1. Therefore,
the uniform convergence of the density to 0 is also true on compact neighborhoods of these k
boundary components of ∂D∗k. On the other hand, Ck is contained in Dk−1 and lies outside of Dk.
We will therefore have to treat this case separately.

Let us denote by ∂oCk the outer boundary of Ck. Near ∂oCk, GDk−1(x, x)−GDk(x, x) explodes
to +∞. But there is a constant c(Dk−1) ∈ (0, 1), depending on Dk−1, such that for every x ∈ D∗k,

e2π(GDk (x,x)−GDk−1 (x,x)) ≥ c(Dk−1) d(x, ∂D∗k)
d(x, ∂Dk−1) .
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This is in a way a generalization of Koebe quarter theorem to domains with holes; see [ALS20a,
Lemma 5.13]. Fix ε0 ∈ (0, d(∂oCk, ∂D∗k \ ∂oCk)). Then for every x ∈ D∗k such that d(x, ∂oCk) <
1 ∧ (ε0/2), we have

1
Zγ

(1− eγ
2π(GDk (x,x)−GDk−1 (x,x))) ≤ 1

Zγ

(
1− c(Dk−1)γ

2/2 d(x, ∂D∗k)γ2/2

d(x, ∂Dk−1)γ2/2

)
≤ 1
Zγ

(
1−c(Dk−1)γ

2/2 d(x, ∂oCk)γ2/2

diam(D)γ2/2

)
= 1
Zγ

(1−d(x, ∂oCk)γ
2/2)+ 1

Zγ

(
1− c(Dk−1)γ2/2

diam(D)γ2/2

)
d(x, ∂oCk)γ

2/2

Since
lim
γ→0

1
Zγ

(
1− c(Dk−1)γ2/2

diam(D)γ2/2

)
= 0,

we only need to consider the term (1− d(x, ∂oCk)γ2/2)/Zγ . Further,

1
Zγ

∫
d(x,∂oCk)<1

(1− d(x, ∂oCk)γ
2/2) dx = γ2

2Zγ

∫ 1

0
dr rγ

2/2−1
∫
d(x,∂oCk)<r

dx (5.4)

Since ∂oCk is an SLEκ(θ) type curve, it is of dimension 1 + κ(θ)/8 ≤ 3/2 < 2 [Bef08]. In particular,
for β ∈ (0, 1/2), there is a.s. a (random) constant c(β) > 0 such that for every r ∈ (0, 1),∫

d(x,∂oCk)<r
dx ≤ c(β)rβ .

Thus, (5.4) is bounded by

c(β) γ
2

2Zγ

∫ 1

0
rγ

2/2+β−1 dr,

which tends to 0 as γ to 0. This concludes.

We now have all the ingredients to prove Theorem 1.10.

Proof of Theorem 1.10. The only thing that remains to be proved is that the random generalised
function νk agrees a.s. with the measure µk from Theorem 1.9. Let f ∈ C∞c (C). It is enough to
show that

(νk, f) = lim
γ→0

1
Zγ

∫
d(x,Ck)<1

f(x)(1− d(x, Ck)γ
2/2) dx, (5.5)

in probability. We have that
(νk, f) = σkE[(hθ,k−1, f)|Fk],

where by convention, hθ,0 = hθ. Since νk and σk are independent conditionally on Fk, we get that

(νk, f) = −E[(hθ,k−1, f)|Fk, {σk = −1}] (5.6)

Since
(hθ,k−1, f) = lim

γ→0

1
Zγ

∫
Dk−1

f(x)(eγ
2π(GD(x,x)−GDk−1 (x,x))M+

γ (dx)− dx),

where the convergence is a.s. in L2 conditionally on Fk−1 (that is to say limγ→0 E[(·)2|Fk−1] = 0
a.s.). Therefore, in (5.6) one can interchange the conditional expectation and the limit in γ and get

(νk, f) = lim
γ→0

1
Zγ

(∫
Dk−1

f(x) dx−E
[ ∫

Dk−1

f(x)eγ
2π(GD(x,x)−GDk−1 (x,x))M+

γ (dx)
∣∣∣Fk, {σk = −1}

])
,

where the convergence is a.s. in L2 conditionally on Fk−1. By Theorem 2.4, Ck has a.s. zero Lebesgue
measure (the expectation of the Lebesgue measure of its r-neighbourhood vanishes as r → 0). So∫
Dk−1

f(x) dx =
∫
Dk

f(x) dx a.s. Moreover, since on the event {σk = −1}, 1{Dk−1}M+
γ = 1{Dk}M+

γ ,
and since σk is independent from 1{Dk}M+

γ conditionally on Fk, we get that

(νk, f) = lim
γ→0

1
Zγ

(∫
Dk

f(x) dx− E
[ ∫

Dk

f(x)eγ
2π(GD(x,x)−GDk−1 (x,x))M+

γ (dx)
∣∣∣Fk]).
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Now we partition Dk = D0
k ∪D∗k, where D0

k is the union of the simply connected components of
Dk (there are infinitely many of them) and D∗k is the union of the multiply connected components
of Dk (there are finitely many of them). Then Lemma 5.3 ensures that

(νk, f) = lim
γ→0

1
Zγ

(∫
D0
k

f(x) dx− E
[ ∫

D0
k

f(x)eγ
2π(GD(x,x)−GDk−1 (x,x))M+

γ (dx)
∣∣∣Fk]).

Since conditionally on Fk, the loops in D0
k form a Poisson point process without conditioning, we

get that

E
[ ∫

D0
k

f(x)eγ
2π(GD(x,x)−GDk−1 (x,x))M+

γ (dx)
∣∣∣Fk] =

∫
D0
k

f(x)eγ
2π(GDk (x,x)−GDk−1 (x,x)) dx.

The function GDk−1(x, x)−GDk(x, x) is bounded for x away from Ck and explodes when x approaches
∂Ck. Further, [ALS20a, Lemma 5.13] provides a comparison with the Euclidean distance: there is a
constant c(Dk−1) ∈ (0, 1) depending on Dk−1 such that for every x ∈ D0

k,

c(Dk−1) d(x, ∂D0
k)

d(x, ∂Dk−1) ≤ e
2π(GDk (x,x)−GDk−1 (x,x)) ≤ 4 d(x, ∂D0

k)
d(x, ∂Dk−1) .

Then using these bounds, similarly to the proof of (5.3), we get that

(νk, f) = lim
γ→0

1
Zγ

∫
x∈D0

k

d(x,Ck)<1

f(x)(1− d(x, Ck)γ
2/2) dx.

Since the dimension of the outer boundary of Ck is strictly smaller than 2, we get that (see the
proof of (5.3))

(νk, f) = lim
γ→0

1
Zγ

∫
d(x,Ck)<1

f(x)(1− d(x, Ck)γ
2/2) dx,

which concludes.

6 Excursions from the boundary of a cluster
In this section, we will obtain estimates about the excursions induced by the Brownian loops that
touch the outer boundary of a loop soup cluster.

Let L be a loop soup with intensity θ ∈ (0, 1/2] in the unit disk D, and let C0 be the outermost
cluster in L that encircles the origin. Let O be the domain encircled by the outermost boundary of
C0. We will denote by LO the subset of L consisting in loops included in O. The set of loops in LO
that touch ∂O induce a collection E(LO) of excursions in O with endpoints in ∂O. If one maps O
onto H by some conformal map f , then we say that f(LO) is a loop soup in H with wired boundary
conditions. It was shown in [QW19] that the law of f(LO) is conformally invariant, and does not
depend on the choice of f . Moreover, the following properties were proved in [QW19, QW18].

Theorem 6.1 ([QW19, QW18]). The law of f(LO) is independent from ∂O and the distribution
of L outside of O. Inside f(LO) (a loop soup in H at intensity θ ∈ (0, 1/2] with wired boundary
conditions), the set of loops that touch R are independent from the set of loops that stay in H. The
latter set is distributed as a loop soup in H (with free boundary conditions). Let E be the collection
of excursions induced by the loops in f(LO) that touch R. Then at θ = 1/2, E is distributed as a
Poisson point process of excursions of intensity 1/4.

As one knows precisely the law of E for θ = 1/2, much less is known for the subcritical intensities
θ ∈ (0, 1/2). However, [Qia19] proved that the excursions attached to the boundary of a cluster
satisfy a conformal restriction property that we describe now (we give some background on conformal
restriction measures in Section 6.1). One can explore the outer boundaries of the outermost clusters
in L progressively, instead of discovering an entire cluster at once, using the CLE exploration
[SW12]. This exploration process allows one to define a loop soup wired on a portion of its boundary
(see [Qia19] for a precise definition). Such a configuration was shown to be conformally invariant
(with two marked points on the boundary). As a consequence, it is sufficient to consider a loop
soup in the upper half plane H which is wired on R− and free on R+.

Theorem 6.2 ([Qia19]). Let LR− be a loop soup in H with intensity θ ∈ (0, 1/2] which is wired on
R− and free on R+. The set of loops in LR− that touch R− are independent from the set of loops
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that stay in H. The latter set is distributed as a loop soup in H (with free boundary conditions).
Let ER− be the collection of excursions induced by the loops in LR− that touch R. Then the filling
of ER− (namely the complement in C of the unbounded connected component of C \K, where K
is the closure of the union of all the excursions in ER−) satisfies one-sided restriction in H with
exponent α(θ) := (6− κ)/(2κ), where κ ∈ (8/3, 4] is related to θ via (1.1).

Throughout this section, we use the following notations:
Notation 6.3. For any interval I ⊂ R, denote by LI a loop soup in H wired on I and free elsewhere.
We will use EI to denote the boundary-touching excursions induced by LI .

For z ∈ H, let fz(u) = (u− z)/(u− z̄) be the conformal map from H onto D that sends z to 0.
For all r ∈ (0, 1), let U(z, r) := f−1

z (D(0, r)).
Our main result on the boundary excursions in a cluster with any intensity θ ∈ (0, 1/2] is

encapsulated in Proposition 6.4 below. This proposition will be crucial to define and study the field
hθ with wired boundary condition.
Proposition 6.4. Let LR be a loop soup in H with intensity θ ∈ (0, 1/2] with wired boundary
conditions. Let ER be the Brownian excursions in H attached on R, induced by LR. For all η > 0,
there exists C > 0, such that the following holds. For all z ∈ H and r ∈ (0, 1− η), we have

P[ER ∩ U(z, r) 6= ∅] ≤ C| log r|−1. (6.1)

For all z1, z2 ∈ H and r1, r2 ∈ (0, 1− η), we have

P[ER ∩ U(z1, r1) 6= ∅, ER ∩ U(z2, r2) 6= ∅] ≤ C(1 +GH(z1, z2))| log r1|−1| log r2|−1. (6.2)

In the special case of θ = 1/2, Proposition 6.4 can be obtained directly using the Poisson point
process description of ER. We would like to emphasise that, contrary to the restriction property
stated in Theorem 6.2, Proposition 6.4 is not concerned with the outer boundary of ER and requires
a deeper understanding of these excursions. Our approach to prove Proposition 6.4 is to extract
information from the restriction property (Theorem 6.2), and transform this property about the
outer boundary of ER to a property about the endpoints of the excursions in ER. More concretely,
we deduce the following identities which are of independent interest.
Proposition 6.5. For each excursion e, let a(e) and b(e) be the left and right endpoints of e. For
all r > 0, we have

E

 ∑
e∈ER−

(b(e)− a(e))2r2

(r − b(e))2(r − a(e))2

 = α(θ)

where α(θ) is the restriction exponent from Theorem 6.2.

A similar but more complicated “second-moment” result is also stated in Proposition 6.16. Note
that Propositions 6.5 and 6.16 are exact identities, not only bounds. Nevertheless, a complete
description of the laws of ER− and ER remains an open question.
Remark 6.6. In Section 6.3, we prove Propositions 6.5 and 6.16 using only two properties of the
set ER− : it satisfies conformal restriction (Theroem 6.2) and is a locally finite point process of
Brownian excursions (Lemma 6.15). Therefore, Propositions 6.5 and 6.16 also hold for any locally
finite point process E of Brownian excursions in H with endpoints on R−, such that the filling of E
satisfies one-sided conformal restriction. Then in Sections 6.4 and 6.5, we prove Proposition 6.4
using the additional property that we can obtain ER by exploring the outer boundary of ER− in a
Markovian way.

6.1 Properties and estimates about restriction measures
We will recall some properties of chordal restriction measures introduced in [LSW03b], and deduce
some estimates which will be useful later.

Fix a simply connected domain D which is not the whole plane. Fix two points a, b ∈ ∂D. Let
Ω be the collection of all simply connected compact sets K ⊂ D, such that K ∩ ∂D = {a, b}. Let Q
be the collection of all compact sets A ⊂ D such that D \A is simply connected and a, b 6∈ A. For
all A ∈ Q, let fA be a conformal map from D \A onto D that leaves a, b fixed. A probability law
on K ∈ Ω is said to satisfy chordal conformal restriction if

1. The law of K is invariant under conformal maps from D to itself that fixes a, b.
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2. For any A ∈ Q, conditionally on K ∩A = ∅, fA(K) is distributed as K.
It was shown in [LSW03b] that the family of chordal restriction measures is characterized by one
parameter α ≥ 5/8. A chordal restriction measure in D with parameter α satisfies

P(K ∩A = ∅) = (f ′A(a)f ′A(b))α. (6.3)

The simplest example of chordal restriction measure is provided by:
Proposition 6.7 ([LSW03b], Proposition 4.1). Let D be a simply connected domain different
from C. Let a, b ∈ ∂D be two distinct boundary points. Then the law of the filling of a Brownian
excursion from a to b is the chordal restriction measure in D from a to b with exponent α = 1.

In the following, we obtain an estimate about a chordal restriction measure in H.
Lemma 6.8. Let a, b, r ∈ R be three distinct boundary points. Let K be a chordal restriction
measure in H between a and b with exponent α. We have

P[K ∩D(r, ε) 6= ∅] = α
(a− b)2

(r − a)2(r − b)2 ε
2 +O(1)ε3,

where the O(1) term is uniformly bounded for all ε ≤ 1 by some function of a, b, r. In particular, if
K is a Brownian excursion in H between a and b, then P[K ∩D(r, ε) 6= ∅] is given by the above
formula with α = 1.

Proof. Let ε0 = ε0(a, b, r) > 0 be small enough so that D(r, ε0) does not contain a or b. Since the
result is clear if ε ∈ [ε0, 1), we can assume that ε < ε0. We define the following conformal map fr,ε
from H \D(r, ε) onto H, and compute its derivative

fr,ε(z) = z + ε2

z − r
, f ′r,ε(z) = 1− ε2

(z − r)2 . (6.4)

If we rescale fr,ε by (b− a)(fr,ε(b)− fr,ε(a))−1 and then do a proper translation, then we obtain a
conformal map from H \D(r, ε) onto H that fixes a and b. By (6.3), we have

P[K ∩D(r, ε) = ∅] =
(
f ′r,ε(a)f ′r,ε(b)

(b− a)2

(fr,ε(b)− fr,ε(a))2

)α
=
(

1− (a− b)2

(r − a)2(r − b)2 ε
2 +O(1)ε3

)α
,

where the O(1) term is bounded by some constant C(a, b, r) for all ε ≤ ε0. Since P[K ∩D(r, ε) 6=
∅] = 1 − P[B ∩D(1, ε) = ∅], the lemma follows. The statement concerning Brownian excursion
follows from Proposition 6.7.

Next, we need to obtain the following two-point estimate for chordal restriction measures.
Lemma 6.9. Let a, b, r1, r2 ∈ R be four distinct points. Let K be a chordal restriction measure in
H between a and b with exponent α. Then

P[K ∩D(r1, ε) 6= ∅,K ∩D(r2, ε) 6= ∅] = α(α− 1)(a− b)4ε4

(r1 − a)2(r2 − a)2(r1 − b)2(r2 − b)2

+ α(a− b)2ε4

(r1 − b)2(r2 − a)2(r2 − r1)2 + α(a− b)2ε4

(r1 − a)2(r2 − b)2(r2 − r1)2 +O(1)ε5,

(6.5)

where the O(1) term is uniformly bounded for all ε ≤ 1 by some function of a, b, r1, r2.
There can be several ways to deduce Lemma 6.9. One can apply (6.3) to the conformal maps that

map out either one or both of the balls D(r1, ε) and D(r2, ε). However, a direct computation seems
long and complicated. We opt for a proof of Lemma 6.9 that relates to the trichordal restriction
measures introduced in [Qia18], which are measures on random sets in a simply connecte domain
D with three marked points a, b, c ∈ ∂D. Let Ω3 be the collection of all simply connected compact
set K ⊂ D, such that K ∩ ∂D = {a, b, c}. Let Q3 be the collection of all compact sets A ⊂ D such
that D \A is simply connected and a, b, c 6∈ A. For all A ∈ Q3, let f̃A be the unique conformal map
from D \A onto D that leaves a, b, c fixed. A probability law on K ∈ Ω is said to satisfy trichordal
conformal restriction if for any A ∈ Q3, conditionally on K ∩A = ∅, f̃A(K) is distributed as K. It
was shown in [Qia18] that the family of trichordal restriction measures is characterized by three
parameter α, β, γ. A trichordal restriction measure in D with parameters α, β, γ is characterized by

P(K ∩A = ∅) = f̃ ′A(a)αf̃ ′A(b)β f̃ ′A(c)γ . (6.6)

The connection to trichordal restriction measures comes from the following lemma.
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Lemma 6.10. Let a, b, c ∈ R be three distinct points. Suppose that K is a chordal restriction
measure in H with marked points a, b and exponent α, then the law of K conditionally on K ∩
D(c, ε) 6= ∅ converges as ε→ 0 to that of a trichordal restriction measure in H with marked points
a, b, c and exponents α, α, 2. Moreover, if a < b < c < r and A = D(r, δ), then there exist ε0, δ0 > 0
and a constant C(a, b, c, r) such that for all ε ≤ ε0, δ ≤ δ0,∣∣∣P[K ∩A = ∅ | K ∩D(c, ε) 6= ∅]− f̃ ′A(a)αf̃ ′A(b)αf̃ ′A(c)2

∣∣∣ ≤ C(a, b, c, r)εδ2. (6.7)

Proof. Here D = H. For A ∈ Q3, we have

P[K ∩A = ∅ | K ∩D(c, ε) 6= ∅] = P[K ∩D(c, ε) 6= ∅ | K ∩A = ∅] P[K ∩A = ∅]
P[K ∩D(c, ε) 6= ∅]

= P[K ∩ f̃A(D(c, ε)) 6= ∅] P[K ∩A = ∅]
P[K ∩D(c, ε) 6= ∅] = P[K ∩ f̃A(D(c, ε)) 6= ∅]

P[K ∩D(c, ε) 6= ∅] f̃ ′A(a)αf̃ ′A(b)α.
(6.8)

Since f̃A is analytic in a neighbourhood of c, there exist ε0 > 0 and C = f̃ ′′A(c), such that for all
ε ≤ ε0,

B
(
c, f̃ ′A(c)ε− Cε2) ⊂ f̃A(D(c, ε)) ⊂ B

(
c, f̃ ′A(c)ε+ Cε2).

By Lemma 6.8, we can deduce

P[K ∩ f̃A(D(c, ε)) 6= ∅]
P[K ∩D(c, ε) 6= ∅] = f̃ ′A(c)2 +O(1)ε, (6.9)

where O(1) is uniformly bounded for ε ≤ ε0 by a function of a, b, c, A. A trichordal restriction
measure K̃ in H with marked points a, b, c and exponents α, α, 2 is characterized by the formula
P[K̃ ∩A = ∅] = f ′A(a)αf ′A(b)αf ′A(c)2 for all A ∈ Q3. Plugging (6.9) back into (6.8) proves the weak
convergence of the law of K conditionally on K ∩D(c, ε) 6= ∅. Now, suppose A = D(r, δ), then
C = C(a, b, c, r)δ2 for all δ ≤ (r − c)/2 := δ0. One can compute using Lemma 6.8 that the O(1)
term in (6.9) is bounded by 2C(a, b, c, r)δ2 for all ε ≤ ε0 and δ ≤ δ0.

Lemma 6.11. Let K be a trichordal restriction measure in H with marked points x1, x2, x3 ∈ R
and respective exponents α1, α2, α3. Let A ∈ Q3 and f : H \A→ H be any conformal map. Then

P[K ∩A = ∅] =
3∏
i=1

[
f ′(xi)f ′(xi+1) (xi − xi+1)2

(f(xi)− f(xi+1))2

]αi+αi+1−αi+2
2

, (6.10)

where we let x4 = x1, α4 = α1, α5 = α2.

Proof. Let fA be the unique conformal map from H \A onto H that fixes x1, x2, x3. By (6.6), we
have

P[K ∩A = ∅] = f ′A(x1)α1f ′A(x2)α2f ′A(x3)α3 =
3∏
i=1

(f ′A(xi)f ′A(xi+1))
αi+αi+1−αi+2

2 .

Let ϕ : H→ H be the unique conformal map that maps f(xi) to xi, i = 1, 2, 3, so that fA = ϕ ◦ f .
With explicit computations, we obtain that for i = 1, 2, 3,

ϕ′(f(xi)) = (xi − xi+1)(xi − xi+2)(f(xi+1)− f(xi+2))
(xi+1 − xi+2)(f(xi)− f(xi+1)(f(xi)− f(xi+2)) .

We thus get that, for i = 1, 2, 3,

f ′A(xi)f ′A(xi+1) = f ′(xi)f ′(xi+1)ϕ′(f(xi))ϕ′(f(xi+1)) = f ′(xi)f ′(xi+1) (xi − xi+1)2

(f(xi)− f(xi+1))2 .

This completes the proof.

We can now return to the proof of Lemma 6.9.
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Proof of Lemma 6.9. As in the proof of Lemma 6.8, we can assume that ε1 and ε2 are small enough
so thatD(r1, ε1)∪D(r2, ε2) does not contain a or b. Note that P[K∩D(r1, ε1) 6= ∅,K∩D(r2, ε2) 6= ∅]
is equal to

P[K ∩D(r1, ε1) 6= ∅]P[K ∩D(r2, ε2) 6= ∅ | K ∩D(r1, ε1) 6= ∅]. (6.11)

By Lemma 6.8, we have

P[K ∩D(r1, ε1) 6= ∅] = α
(a− b)2

(r1 − a)2(r1 − b)2 ε
2
1 +O(1)ε3

1. (6.12)

By Lemma 6.10, we know that the law of K conditioned on K ∩D(r1, ε1) 6= ∅ converges as ε1 → 0
to the law of a trichordal restriction measure K̃ in H with marked points a, b, r1 and respective
exponents α, α, 2. More quantitatively, there exist ε0, δ0 ≥ 0, such that

P[K ∩D(r2, ε2) 6= ∅ | K ∩D(r1, ε1) 6= ∅] = P[K̃ ∩D(r2, ε2) 6= ∅] +O(1)ε1ε
2
2, (6.13)

whereO(1) is bounded by C(a, b, r1, r2) for all for all ε1 ≤ ε0 and ε2 ≤ δ0. Let fr2,ε : H\D(r2, ε)→ H
be the map defined in (6.4). By (6.4), we have

f ′r2,ε(a)f ′r2,ε(b)
(a− b)2

(fr2,ε(a)− fr2,ε(b))2 = 1− (a− b)2

(r2 − a)2(r2 − b)2 ε
2 +O(1)ε4,

f ′r2,ε(a)f ′r2,ε(r1) (a− r1)2

(fr2,ε(a)− fr2,ε(r1))2 = 1− (a− r1)2

(r2 − a)2(r2 − r1)2 ε
2 +O(1)ε4,

f ′r2,ε(r1)f ′r2,ε(b)
(r1 − b)2

(fr2,ε(r1)− fr2,ε(b))2 = 1− (r1 − b)2

(r2 − r1)2(r2 − b)2 ε
2 +O(1)ε4.

Plugging them into Lemma 6.11, we can compute P[K̃ ∩D(r2, ε2) = ∅], and then deduce that

P[K̃ ∩D(r2, ε2) 6= ∅] = (α− 1)(a− b)2

(r2 − a)2(r2 − b)2 ε
2
2 + (a− r1)2

(r2 − a)2(r2 − r1)2 ε
2
2 + (r1 − b)2

(r2 − r1)2(r2 − b)2 ε
2
2 +O(1)ε4

2.

(6.14)

Combining (6.11), (6.12), (6.13), (6.14) and letting ε1 = ε2 proves (6.5) where the O(1) term
therein is uniformly bounded for ε ≤ min(ε0, δ0). It is clear that the O(1) term is also bounded for
ε ∈ [min(ε0, δ0), 1]. This completes the proof of the lemma.

We immediately get the following estimate on Brownian excursions.

Corollary 6.12. Let a, b, r1, r2 ∈ R be four distinct points. Let K be a Brownian excursion in H
between a and b. Then

P[K ∩D(r1, ε) 6= ∅,K ∩D(r2, ε) 6= ∅]

= (a− b)2

(r1 − a)2(r2 − b)2(r1 − r2)2 ε
4 + (a− b)2

(r2 − a)2(r1 − b)2(r1 − r2)2 ε
4 +O(1)ε5,

where the O(1) term is uniformly bounded for all ε ≤ 1 by some function of a, b, r1, r2.

Proof. The formula follows from (6.5) applied to α = 1. In the case of a Brownian motion, one
can alternatively compute P[K ∩D(r1, ε) 6= ∅,K ∩D(r2, ε) 6= ∅] using the heat kernel. The latter
computation will show that P[K ∩D(r1, ε) 6= ∅,K ∩D(r2, ε) 6= ∅] is analytic in ε near 0. Therefore
the o(ε4) term in (6.5) is in fact O(ε5).

6.2 Estimates about Brownian excursions
In this subsection, we aim to obtain estimates about the probability that a Brownian excursion
gets close to one interior point (Lemma 6.13) and two interior points (Lemma 6.14). We derive
these standard estimates for ease of reference. First recall some definitions from [Law05, Section 5].
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Green’s function and Poisson kernel For any domain D, let GD be the Green’s function
in D as defined in Section 2.1. In our normalisation,

∀x, y ∈ D, GD(x, y) = 1
2π log |1− xȳ|

|x− y|
and ∀x, y ∈ H, GH(x, y) = 1

2π log |x− ȳ|
|x− y|

. (6.15)

Suppose that ∂D is smooth. Then for x ∈ D and z ∈ ∂D, the Poisson kernel is given by
HD(x, z) = limε→0 ε

−1G(x, z + εnz), where nz is the inward unit normal vector of ∂D at z. We
have

∀x ∈ D,∀z ∈ ∂D, HD(x, z) = 1
2π

1− |x|2
|x− z|2

and ∀x ∈ H,∀z ∈ ∂H, HH(x, z) = Im(x)
π|x− z|2

. (6.16)

For z, w ∈ ∂D, let the boundary Poisson kernel be HD(z, w) = limε→0 ε
−1HD(z + εnz, w). Under

this normalisation, we have

∀z, w ∈ ∂D, HD(z, w) = 1
π|z − w|2

and ∀z, w ∈ ∂H, HH(z, w) = 1
π(z − w)2 . (6.17)

Finally recall the definitions introduced in Notation 6.3 of the conformal map fz : H → D
mapping z to 0 and U(z, r) = f−1

z (D(0, r)).
Lemma 6.13 (Getting close to one interior point). For all η ∈ (0, 1), there exists C = C(η) > 0
such that the following holds. Let a, b ∈ R be two distinct boundary points and let B be a Brownian
excursion in H between a and b. For all r ∈ (0, 1− η) and z = x+ yi ∈ H,

P[B ∩ U(z, r) 6= ∅] ≤ C (a− b)2y2

|a− z|2|b− z|2
|log r|−1

. (6.18)

Proof. Consider the conformal map fz : H → D that sends z to 0. Let β0 ∈ [0, 2π) be the angle
between fz(a) and fz(b). By conformal invariance, the left hand side of (6.18) is equal to the
probability p(β0, r) that a Brownian excursion in D between 1 and eiβ0 visits D(0, r). Let µ be the
infinite measure on excursions B in D started from 1, defined by µ =

∫ 2π
0 HD(1, eiβ)µ#

D (1, eiβ)dβ.
Let T be the total time length of B. We have

p(β, r)HD(1, eiβ)dβ = µ(B ∩D(0, r) 6= ∅, argBT ∈ (β, β + dβ))
= P (argBT ∈ (β, β + dβ) | B ∩D(0, r) 6= ∅)µ(B ∩D(0, r) 6= ∅).

Moreover,

µ(B ∩D(0, r) 6= ∅) = lim
ε→0

1
ε
P1−ε

(
τD(0,r) < τ∂D

)
= | log r|−1,

where the probability above stands for the probability that a Brownian motion starting at 1− ε
hits D(0, r) before ∂D. For fixed η ∈ (0, 1) and r ∈ (0, η), for an excursion B started from 1 and
conditioned to hit D(0, r), there exists a constant C(η) > 0, such that

P (argBT ∈ (β, β + dβ) | B ∩D(0, r) 6= ∅) ≤ C(η)dβ.

Therefore

p(β, r) ≤ C(η)HD(1, eiβ)−1| log r|−1 for all r ≤ 1− η.

Finally, by (6.17),

HD(1, eiβ0) = 1
π|fz(a)− fz(b)|2

= |a− z|
2|b− z|2

4πy2(a− b)2 .

This concludes the proof.

Lemma 6.14 (Getting close to two interior points). For all η ∈ (0, 1), there exist ν = ν(η) > 0
and C = C(η) > 0 such that the following holds. Let a, b ∈ R be two distinct boundary points and
let B be a Brownian excursion in H between a and b. For all zj = xj + yji ∈ H, j = 1, 2, and
r1, r2 ∈ (0, 1− η) such that rjIm(zj) ≤ ν|z1 − z2|, j = 1, 2, we have

P[B ∩ U(z1, r1) 6= ∅, B ∩ U(z2, r2) 6= ∅]

≤ C
(

(a− b)2y1y2

|a− z1|2|b− z2|2
+ (a− b)2y1y2

|a− z2|2|b− z1|2

)
(1 +GH(z1, z2)) |log r1|−1 |log r2|−1

.
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The condition that rjIm(zj) ≤ ν|z1 − z2|, j = 1, 2 ensures that U(z1, r1) and U(z2, r2) do not
intersect and are at distance of order |z1 − z2| to each other.

Proof. We start by recording two facts for ease of future reference:
1. For all w ∈ ∂D and r ∈ (0, 1),∫

∂D(0,r)
HD\D(0,r)(w, z)dz = | log r|−1. (6.19)

Indeed, the left hand side is equal to

lim
ε→0

1
ε

∫
∂D(0,r)

HD\D(0,r)(w + εnw, z)dz = lim
ε→0

1
ε
Pw+εnw

(
τD(0,r) < τ∂D

)
= lim
ε→0

log(1− ε)
ε log r = 1

| log r| ,

where the probability appearing in the above display stands for the probability that a Brownian
motion starting from w + εnw hits D(0, r) before hitting ∂D.

2. There exists C0 > 0 such that for all z3 ∈ ∂U(z1, r1) and z4 ∈ ∂U(z2, r2),

GH(z3, z4) ≤ C0(1 +GH(z1, z2)). (6.20)

This follows from the fact that there exists ν = ν(η) > 0 such that for all z2j ∈ U(zj , rj),
|z2j − zj | ≤ (10ν)−1rjIm(zj), j = 1, 2. The assumption that rjIm(zj) ≤ ν|z1 − z2|, j = 1, 2, then
ensures that the points of U(z1, r1) stay much closer to z1 than to any other point of U(z2, r2). A
direct computation using (6.15) then concludes the proof of (6.20).

Having collected these two initial facts, we can now proceed with the proof of Lemma 6.14. The
event B ∩ U(z1, r1) 6= ∅, B ∩ U(z2, r2) 6= ∅ is the disjoint union of the two events E1 and E2:

• Let E1 be the event that B first visits U(z1, r1) before U(z2, r2).
• Let E2 be the event that B first visits U(z2, r2) before U(z1, r1).

On E1, we can decompose B into an excursion from a to z3 ∈ ∂U(z1, r1) in H\(U(z1, r1)∪U(z2, r2)),
an excursion from z3 to z4 ∈ ∂U(z2, r2) in H and an excursion from z4 to b in H \ U(z2, r2). This
results in the following identity

HH(a, b)P[E1] =
∫
∂U(z1,r1)

dz3

∫
∂U(z2,r2)

dz4HH\(U(z1,r1)∪U(z2,r2))(a, z3)GH(z3, z4)HH\U(z2,r2)(b, z4).

(6.21)

Increasing the domain can only increase the pointwise values of the Poisson kernel. We can thus
bound HH\(U(z1,r1)∪U(z2,r2))(a, z3) ≤ HH\U(z1,r1)(a, z3) for all z3 ∈ ∂U(z1, r1). Using further (6.20),
we deduce that

HH(a, b)P[E1] ≤ C0(1 +GH(z1, z2))
∫
∂U(z1,r1)

dz3HH\U(z1,r1)(a, z3)×
∫
∂U(z2,r2)

dz4HH\U(z2,r2)(b, z4).

With a change of variable and conformal covariance of the boundary Poisson kernel, this is further
equal to

C0(1 +GH(z1, z2))f ′z1
(a)f ′z2

(b)
∫
∂D(0,r1)

HD\D(0,r1)(fz1(a), w3)dw3

∫
∂D(0,r2)

HD\D(0,r2)(fz2(b), w4)dw4.

By (6.19), the product of the last two integrals equals | log r1|−1| log r2|−1. Finally, using that (see
(6.17))

HH(a, b) = 1
π(a− b)2 , f ′z1

(a) = 2y1

|a− z1|2
, f ′z2

(b) = 2y2

|b− z2|2
,

we obtain that

P[E1] ≤ π−1C1(1 +GH(z1, z2)) (a− b)2y1y2

|a− z1|2|b− z2|2
|log r1|−1 |log r2|−1

.

To bound P[E2] simply exchange the roles of z1 and z2. This concludes the proof.
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6.3 Boundary excursions in a loop soup with mixed boundary conditions
In this subsection, we aim to prove Propositions 6.5 and 6.16 which provide quantitative controls
on the number of excursions in ER− . Proposition 6.5 can be understood as a first moment estimate,
and Propositions 6.16 can be understood as a second moment estimate.

The proofs of Propositions 6.5 and 6.16 rely essentially on the restriction property of E (Theo-
rem 6.2) and the independence of the excursions conditionally on their endpoints (Lemma 6.15).
Lemma 6.15 is a variation of [QW18, Lemma 9] which states that ER is a locally finite point process
of Brownian excursions. Changing ER to ER− only modifies the setup of the proof, not the essential
arguments, so we omit the proof of Lemma 6.15.
Lemma 6.15. The collection ER− is a locally finite point process of Brownian excursions in H.

The “point process of Brownian excursions” property means that, conditionally on the endpoints
of the excursions, ER− is distributed as the collection of independent Brownian excursions between
the given endpoints. Throughout, for each excursion e, we assign an i.i.d. orientation with probability
1/2. Let a(e) and b(e) be respectively the starting and ending endpoints of an excursion e. The
“locally finite” property means that for each δ > 0, the collection of excursions e ∈ ER− with
|a(e)− b(e)| ≥ δ is a.s. finite.

Let us first prove Proposition 6.5.

Proof of Proposition 6.5. We write E for ER− for simplicity. We define for each e ∈ E and r > 0,

pr(e) := (b(e)− a(e))2

(r − b(e))2(r − a(e))2 .

By Lemma 6.15 and Lemma 6.8, we know that

P [e ∩D(r, ε) 6= ∅ | a(e), b(e)] = pr(e)ε2 +O(1)ε4, (6.22)

where the O(1) term depends on a(e), b(e) and r, but is uniformly bounded for ε ≤ 1. Note that for
all a(e) < b(e) < 0 and r > 0, we have pr(e) ≤ r−2. For each M > 0, let EM denote the collection
of the M excursions in E with the largest pr(e). Then E = ∪M>0EM . Let us first show that

P
[
EM ∩D(r, ε) 6= ∅ | {(a(e), b(e))}e∈EM

]
=
∑
e∈EM

pr(e)ε2 +O(1)ε4, (6.23)

where the O(1) term depends on r,M and the random set {(a(e), b(e))}e∈EM , but is uniformly
bounded for ε ≤ 1. The ≤ direction in (6.23) directly follows from Lemma 6.15 and (6.22). To
prove the ≥ direction, note that by the inclusion-exclusion principle, the left-hand side of (6.23) is
at least ∑

e∈EM
P[e ∩D(r, ε) 6= ∅]−

∑
e1 6=e2∈EM

P[e1 ∩D(r, ε) 6= ∅, e2 ∩D(r, ε) 6= ∅]

=
∑
e∈EM

pr(e)ε2 −
∑

e1 6=e2∈EM
pr(e1)pr(e2)ε4 +O(1)ε4 =

∑
e∈EM

pr(e)ε2 +O(1)ε4.

In the last equality, we have used the bound
∑
e1 6=e2∈EM pr(e1)pr(e2) ≤ M2r−4. This com-

pletes the proof of (6.23). Note that the O(1) term in (6.23) has finite expectation, since
P
[
EM ∩D(r, ε) 6= ∅

]
∈ [0, 1]. Taking expectations on both sides of (6.23), we get

P
[
EM ∩D(r, ε) 6= ∅

]
= E

[ ∑
e∈EM

pr(e)
]
ε2 +O(1)ε4, (6.24)

where the O(1) term depends on M and r, but is uniformly bounded for ε ≤ 1.
On the other hand, by Theorem 6.2, we know that E is distributed as a restriction measure of

exponent α(θ). Applying Lemma 6.8 to a =∞ and b = 0, we get

P [E ∩D(r, ε) 6= ∅] = α(θ)ε2/r2 +O(1)ε4. (6.25)

Since P
[
EM ∩D(r, ε) 6= ∅

]
≤ P [E ∩D(r, ε) 6= ∅], together with (6.24), we deduce that

E
[ ∑
e∈EM

pr(e)
]
≤ α(θ)/r2.
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Letting M →∞, by monotone convergence, we have

E
[∑
e∈E

pr(e)
]
≤ α(θ)/r2. (6.26)

Let M →∞ in both sides of (6.24). The left-hand side of (6.24) tends to P [E ∩D(r, ε) 6= ∅] which
is less than 1. In the right-hand side of (6.24), the coefficient in front of ε2 is increasing as M →∞,
and tends to the same expected sum over E instead of EM , which is less than α(θ)/r2 by (6.26).
Therefore, the O(1) term in (6.24) should also be bounded as M →∞. This implies

P [E ∩D(r, ε) 6= ∅] = E
[∑
e∈E

pr(e)
]
ε2 +O(1)ε4,

where the O(1) term depends only on r. Comparing with (6.25) yields the lemma.

Let us now deduce a “second moment” estimate.
Proposition 6.16. For all 0 < r1 < r2, we have

E

 ∑
e∈ER−

(b(e)− a(e))2

(r1 − b(e))2(r2 − a(e))2(r1 − r2)2

+ E

 ∑
e∈ER−

(b(e)− a(e))2

(r1 − a(e))2(r2 − b(e))2(r1 − r2)2


+ E

 ∑
e1 6=e2∈ER−

(b(e1)− a(e1))2

(r1 − b(e1))2(r1 − a(e1))2
(b(e2)− a(e2))2

(r2 − b(e2))2(r2 − a(e2))2

 (6.27)

= α(θ)
r2
1(r2 − r1)2 + α(θ)

r2
2(r2 − r1)2 + α(θ)(α(θ)− 1)

r2
1r

2
2

.

Remark 6.17. When θ = 1/2, the endpoints of ER− are distributed according to a Poisson point
process with intensity 1/4 (see Theorem 6.1 for ER instead of ER−). At this value of θ, the restriction
exponent α(θ) equals 1/4 and thus also corresponds to the intensity of the point process. With
a simple Poisson point process computation, one can deduce from Proposition 6.5 that the third
expectation on the left hand side of (6.27) is equal to the third term on the right hand side. There
is a priori no reason to believe that this still holds for other values of θ. However, we will only
need to upper bound the terms on the left hand side of (6.27).

Proof. We write E for ER− for simplicity. By Theorem 6.2 and Lemma 6.9 applied to a =∞ and
b = 0, we have

P [E ∩D(r1, ε) 6= ∅, E ∩D(r2, ε) 6= ∅] = α(θ)(α(θ)− 1)ε4

r2
1r

2
2

+ α(θ)ε4

r2
1(r2 − r1)2 + α(θ)ε4

r2
2(r2 − r1)2 +O(1)ε5.

(6.28)

The event {E ∩D(r1, ε) 6= ∅, E ∩D(r2, ε) 6= ∅} is equal to the union of the two following events:
• Let E1 be the event that D(r1, ε) and D(r2, ε) are visited by a same excursion in E .
• Let E2 be the event that D(r1, ε) and D(r2, ε) are visited by two different excursions in E .

We first evaluate P[E1]. Let

sr1,r2(e) := (b(e)− a(e))2

(r1 − b(e))2(r2 − a(e))2(r1 − r2)2 + (b(e)− a(e))2

(r1 − a(e))2(r2 − b(e))2(r1 − r2)2 .

By Lemma 6.15 and Corollary 6.12, we have

P[e ∩D(r1, ε) 6= ∅, e ∩D(r2, ε) 6= ∅] = sr1,r2(e)ε4 +O(1)ε5,

where the O(1) term depends on a(e), b(e) and r1, r2, but is uniformly bounded for ε ≤ 1. Note
that for all a(e) < b(e) < 0 and r1, r2 > 0, we have pr(e) ≤ (r1 − r2)−2(r−2

1 + r−2
2 ).

For each M > 0, let EM be the set of the M excursions in E with the largest sr1,r2(e). Then
E = ∪M>0EM . Let EM1 and EM2 be defined respectively as E1 and E2 where we replace E by EM
in their definitions. By Lemma 6.15, Corollary 6.12, and a use of the inclusion-exclusion principle
as in the proof of 6.5, we can deduce

P
[
EM1 | {(a(e), b(e))

]
=
∑
e∈EM

sr1,r2(e)ε4 +O(1)ε5,
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where the O(1) term depends on r1, r2 and the random set {(a(e), b(e))}e∈EM , but is uniformly
bounded for ε ≤ 1. Moreover, this O(1) term has finite expectation, since P[EM1 ] ∈ [0, 1]. A similar
reasoning as in the proof of Proposition 6.5 will allow us to take the expectations on both sides of
the previous equality and then let M →∞. We will get that

P[E1] = E

[∑
e∈E

sr1,r2(e)
]
ε4 +O(1)ε5.

Let us now evaluate P[E2]. By Lemmas 6.15 and 6.8, we have

P
[
EM2 | {(a(e), b(e))

]
=

∑
e1 6=e2∈E

(b(e1)− a(e1))2ε2

(r1 − b(e1))2(r1 − a(e1))2
(b(e2)− a(e2))2ε2

(r2 − b(e2))2(r2 − a(e2))2 +O(ε5).

The same reasoning will again allow us to conclude that P[E2] is equal to the line (6.27) times ε4

plus O(1)ε5.
Finally, one can see that P[E1 ∩E2] is of smaller order than ε4, because on E1 ∩E2, there needs

to be one excursion e1 ∈ E that visits both D(r1, ε) and D(r2, ε) and a different excursion e2 ∈ E
that visits D(r1, ε) or D(r2, ε). This implies that

P [E ∩D(r1, ε) 6= ∅, E ∩D(r2, ε) 6= ∅] = P[E1] + P[E2] + o(ε4).

Combining with (6.28) and the previous evaluations of P[E1] and P[E2], we obtain the lemma.

6.4 Boundary excursions in a loop soup with wired boundary conditions
In this section, we will use the results from Section 6.3 to obtain quantitative controls on excursions
in ER, i.e., from a loop soup in H which is wired on the entire boundary. The main step is to prove
Lemma 6.18 below. After that, we will deduce Lemmas 6.19 and 6.20 as consequences.
Lemma 6.18. We have

S1 := E

 ∑
e∈ER,a(e),b(e)∈[0,1]

(a(e)− b(e))2

 <∞. (6.29)

S2 := E

 ∑
e1,e2∈ER; a(e1),b(e1),a(e2),b(e2)∈[0,1]

(b(e1)− a(e1))2(b(e2)− a(e2))2

 <∞. (6.30)

Proof. We use E to denote ER for simplicity. We apply the conformal map z ∈ H 7→ 1/(1− z) ∈ H
that maps R− to [0, 1] to Proposition 6.5 (with r = 1), and get

E

 ∑
e∈E[0,1]

(a(e)− b(e))2

 = α(θ).

By scaling invariance and translation invariance, for all R > 0, we have

E

 ∑
e∈E[−R,R]

(a(e)− b(e))2

 = 4R2α(θ).

Therefore

E

 ∑
e∈E[−R,R],a(e),b(e)∈[0,1]

(a(e)− b(e))2

 ≤ 4R2α(θ).

In a loop soup L[−R,R] in H wired on [−R,R] and free elsewhere, let η be the curve from −R to R
which is the outer boundary of the cluster glued at [−R,R]. Then η is distributed as a SLEκ from
−R to R. Let gt be the conformal map from H \ η([0, t]) onto H that fixes 0, 1,∞. Let E be the
event that η ∩D(0, 10) = ∅. We can take R big enough so that P(E) ≥ 1/2. Let us first prove that
on the event E,∑

e∈E[−R,R],a(e),b(e)∈[0,1]

(gt(a(e))− gt(b(e)))2 ≤ C
∑

e∈E[−R,R],a(e),b(e)∈[0,1]

(a(e)− b(e))2. (6.31)
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There is an infinite measure µ on Brownian excursions in H between a point x ∈ R and ∞, so that
the endpoint x is distributed according to the Lebesgue measure [LSW03b]. For a given gt, there
is a constant C (which depends only on gt) such that for all −R < a < b < R, gt(b) − gt(a) is
equal to C times the µ-measure of excursions in H between ∞ and an endpoint in [a, b] which do
not intersect η([0, t]). On the event E, an excursion in H \ η([0, t]) from ∞ to [a, b] can further be
decomposed as the concatenation of an excursion ξ1 between z0 ∈ ∂D(0, 10) in H \ η([0, t]) and an
excursion ξ2 between z0 and a point in [a, b] in D(0, 10). The distribution of z0 depends on η([0, t]),
and we denote it by P0. However, given z0, the distribution of ξ2 is independent from η([0, t]). For
all 0 ≤ a < b ≤ 1, the ratio

gt(b)− gt(a)
gt(1)− gt(0) = E0

[∫ b
a
HD(0,10)(z0, x)dx∫ 1

0 HD(0,10)(z0, x)dx

]
. (6.32)

Since ∂D(0, 10) has positive distance from [0, 1], there exist C1 > c1 > 0 such that for all
z0 ∈ ∂D(0, 10) and x ∈ [0, 1], we have c1 ≤ HD(0,10)(z0, x) ≤ C1. Therefore (6.32) is at most
(C1/c1)(b− a). This implies that gt(b)− gt(a) ≤ C(b− a) for all 0 ≤ a < b ≤ 1 where C is some
universal constant, hence (6.31) follows.

As t→∞, gt converges to the conformal map g∞ from the bounded connected component of
H \ η([0,∞]) onto H that sends 0, 1, R to 0, 1,∞. The left-hand side of (6.31) is at least∑

e∈E[−R,R],a(e),b(e)∈[0,1],e∩η=∅

(gt(a(e))− gt(b(e)))2,

which converges a.s. to ∑
e∈E,a(e),b(e)∈[0,1]

(a(e)− b(e))2, (6.33)

where E is the set of excursions induced from g∞(L[−R,R]), a loop soup in H with wired boundary
conditions. By Theorem 6.1, the law of (6.33) is independent from η, hence remains unchanged if
we condition on E. Taking the conditional expectation on E of both sides of (6.31), letting t→∞,
and using the dominated convergence where the dominator is given by the right-hand side of (6.31),
we get

E

 ∑
e∈E,a(e),b(e)∈[0,1]

(a(e)− b(e))2

 ≤ CE
 ∑
e∈E[−R,R],a(e),b(e)∈[0,1]

(a(e)− b(e))2 | E

 (6.34)

≤ CE

 ∑
e∈E[−R,R],a(e),b(e)∈[0,1]

(a(e)− b(e))2

P(E)−1 ≤ 8CR2α(θ). (6.35)

This completes the proof of (6.29).
The proof of (6.30) follows a similar line. From Proposition 6.16, we can deduce that for

0 < r1 < r2 < 1,

E

 ∑
e1 6=e2∈ER−

(b(e1)− a(e1))2

(1− b(e1))2(1− a(e1))2
(b(e2)− a(e2))2

(1− b(e2))2(1− a(e2))2

 (6.36)

≤ E

 ∑
e1 6=e2∈ER−

(b(e1)− a(e1))2

(r1 − b(e1))2(r1 − a(e1))2
(b(e2)− a(e2))2

(r2 − b(e2))2(r2 − a(e2))2

 <∞.
Under the conformal map f(z) = 1/(1− z), f(ER−) is distributed as E[0,1], and (6.36) becomes

E

 ∑
e1 6=e2∈E[0,1]

(b(e1)− a(e1))2(b(e2)− a(e2))2

 <∞.
Following the same strategy as before, we deduce that

E

 ∑
e1 6=e2∈E∞; a(e1),b(e1),a(e2),b(e2)∈[0,1]

(b(e1)− a(e1))2(b(e2)− a(e2))2

 <∞.
To deal with the case e1 = e2, we simply bound (b(e)− a(e))4 ≤ (b(e)− a(e))2 and rely on (6.29).
This completes the proof of (6.30).
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Lemma 6.19. For all ε ∈ [0, 1], let

X(ε) :=
∑

e∈ER; a(e)∈[0,ε);b(e)∈[0,1]

(b(e)− a(e))2.

Then there exists a universal constant C > 0 such that E [X(ε)] ≤ Cε and E
[
X(ε)2] ≤ Cε.

Proof. Without loss of generality, assume that ε = 1/N for some integer N ≥ 1. Note that [0, 1) is
the disjoint union of the sets In for 0 ≤ n ≤ N − 1, where In := [n/N, (n+ 1)/N). Let

Xn(ε) :=
∑

e∈ER; a(e)∈In; b(e)∈[n/N,n/N+1]

(b(e)− a(e))2.

By translation invariance, Xn(ε) has the same distribution as X(ε). Hence

E

 ∑
e∈ER; a(e),b(e)∈[0,2]

(b(e)− a(e))2

 ≥ N−1∑
n=0

E [Xn(ε)] ≥ NE[X(ε)].

By (6.29), this implies that E[X(ε)] ≤ CN−1 = Cε. The upper bound on E[X(ε)2] is obtained
similarly using (6.30) and

E


 ∑
e∈ER; a(e),b(e)∈[0,2]

(b(e)− a(e))2

2
 ≥ E

(N−1∑
n=0

Xn(ε)
)2 ≥ N−1∑

n=0
E[Xn(ε)2] ≥ NE[X(ε)2].

Lemma 6.20. For all intervals I1, I2 ⊂ R with respective lengths r1 and r2, there is a universal
constant C > 0, such that

E

 ∑
e∈ER, a(e)∈I1,b(e)∈I2

(b(e)− a(e))2

 ≤ Cr1r2.

Proof. By decomposing I1 = (I1 \ I2) ∪ (I1 ∩ I2), it is enough to treat two cases: I1 ⊂ I2 and
I1 ∩ I2 = ∅.

Case 1. I1 ⊂ I2. We can decompose I2 into the union of two subintervals sharing an endpoint
with I1. We can therefore assume that I2 shares an endpoint with I1. By scaling and translation,
this case reduces to Lemma 6.19.

Case 2. I1 ∩ I2 = ∅. By scaling and translation, it is enough to consider the case where
I1 = [0, x] and I2 = [y, 1], where 0 < x ≤ y < 1. If I1 or I2 has length at least 1/4, then the result
is a direct consequence of Lemma 6.19. We can thus suppose that both I1 and I2 have length less
than 1/4. We apply the conformal map f : z ∈ H 7→ (1−x)z

(1−2x)z+x ∈ H that fixes 0 and 1 and sends x
to 1/2. Then

E

 ∑
a(e)∈[0,x],b(e)∈[y,1]

(b(e)− a(e))2

 = E

 ∑
a(e)∈[0,f(x)],b(e)∈[f(y),1]

(f−1(b(e))− f−1(a(e)))2

 .
(6.37)

Note that

y − x+ 2x(1− y) ≥ y − x ≥ 1/2 and 1− f(y) = x(1− y)
y − x+ 2x(1− y) ≤ 2x(1− y) ≤ 1/8.

This implies that for all a ∈ [0, x] and b ∈ [y, 1], we have f(b)−f(a) ≥ 3/8 ≥ 3/8(b−a). Conversely,
for all a ∈ [0, f(x)] and b ∈ [f(y), 1], we have f−1(b)− f−1(a) ≤ 8/3(b− a). Therefore (6.37) is at
most

64
9 E

 ∑
a(e)∈[0,f(x)],b(e)∈[f(y),1]

(b(e)− a(e))2

 ≤ 64
9 E

 ∑
a(e)∈[0,1],b(e)∈[f(y),1]

(b(e)− a(e))2


which is bounded by C(1− f(y)) ≤ 2Cx(1− y) by Lemma 6.19. This concludes Case 2 and the
proof of Lemma 6.20.
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6.5 Proof of Proposition 6.4
We have now gathered all the ingredients to prove Proposition 6.4. In this section, we will only
deal with ER, so will write E for ER. Let us first prove the one-point estimate (6.1).

Proof of (6.1). By conformal invariance, it is enough to prove (6.1) for z = i. Fix η > 0. By
Lemma 6.13, there exists C > 0, such that for all r ∈ (0, 1− η),

P[E ∩ U(i, r) 6= ∅] ≤ CE
[∑
e∈E

(a(e)− b(e))2

|a(e)− i|2|b(e)− i|2

]
| log r|−1. (6.38)

Let I−1 = [−1, 1] and for each n ≥ 0, let In := [−2n+1,−2n) ∪ (2n, 2n+1] so that R =
⋃
n≥−1 In.

Note that for all n,m ≥ −1, if a(e) ∈ In and b(e) ∈ Im, then |a(e) − i| ≥ 2n and |b(e) − i| ≥ 2m.
We can thus bound the expectation in (6.38) by

∑
n,m≥−1

2−2n−2mE

 ∑
e∈E,a(e)∈In,b(e)∈Im

(a(e)− b(e))2

 .
By Lemma 6.20, the expectation above is bounded by C2n+m. This shows that the expectation in
(6.38) is bounded by some constant concluding the proof.

Let us now prove the two-point estimate (6.2).

Proof of (6.2). Suppose z1 = x1 + iy1 and z2 = x2 + iy2. Let ν = ν(η) be as in Lemma 6.14. Let
us first assume that the condition riyi ≤ ν|z1 − z2|, i = 1, 2, from Lemma 6.14 is violated. For
instance, assume that r1y1 > ν|z1 − z2|. In that case, we simply bound

P[E ∩ U(z1, r1) 6= ∅, ER ∩ U(z2, r2) 6= ∅] ≤ P[ER ∩ U(z2, r2) 6= ∅] ≤ C| log r2|−1

by (6.1). Since r1y1 > ν|z1 − z2|, we further have

| log r2|−1 ≤ C log y1

|z1 − z2|
| log r1|−1| log r2|−1 ≤ CGH(z1, z2)| log r1|−1| log r2|−1.

This concludes the proof of (6.2) in this case.
Let us now assume that z1 and z2 are not too close to each other so that riyi ≤ ν|z1 − z2|,

i = 1, 2. This will allow us to apply Lemma 6.14. The event E ∩ U(z1, r1) 6= ∅, E ∩ U(z2, r2) 6= ∅ is
the union of the following two events:

• Let E1 be the event that U(z1, r1) and U(z2, r2) are both visited by a same excursion in E .
• Let E2 be the event that U(z1, r1) and U(z2, r2) are visited by two different excursions in E .

We are going to show that

P[E1] ≤ C(1 +GH(z1, z2))| log r1|−1| log r2|−1 and P[E2] ≤ C| log r1|−1| log r2|−1

which will conclude the proof of (6.2).
Contribution of E1. By Lemma 6.14, P[E1] is at most

CE

[∑
e∈E

(
(a(e)− b(e))2y1y2

|a(e)− z1|2|b(e)− z2|2
+ (a(e)− b(e))2y1y2

|a(e)− z2|2|b(e)− z1|2

)]
(1 +GH(z1, z2))| log r1|−1| log r2|−1.

By symmetry, it is enough to prove that there exists a universal constant C > 0 such that

E

[∑
e∈E

(a(e)− b(e))2y1y2

|a(e)− z1|2|b(e)− z2|2

]
≤ C. (6.39)

For j = 1, 2 and n ≥ 0, let

Ij,−1 := [xj − yj , xj + yj ] and Ij,n := [xj − yj2n+1, xj − yj2n)∪ (xj + yj2n, xj + yj2n+1]. (6.40)

As in the proof of (6.1), we can bound the left hand side of (6.39) by

y1y2
∑

n,m≥−1
(y12n)−2(y22n)−2E

 ∑
e∈E;a(e)∈I1,n,b(e)∈I2,m

(a(e)− b(e))2

 ≤ C ∑
n,m≥−1

2−n−m
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using Lemma 6.20 in the last inequality.
Contribution of E2. By Lemma 6.13, P[E2] is upper bounded by a constant times

E

[∑
e1∈E

∑
e2∈E

(b(e1)− a(e1))2y2
1

|z1 − b(e1)|2|z1 − a(e1)|2
(b(e2)− a(e2))2y2

2
|z2 − b(e2)|2|z2 − a(e2)|2

]
| log r1|−1| log r2|−1. (6.41)

Let Ij,n, j = 1, 2, n ≥ −1, be as in (6.40). We can bound the above expectation by

y−2
1 y−2

2

∑
n1,m1≥−1
n2,m2≥−1

2−2(n1−m1−n2−m2)E

 ∑
e1∈E;a(e1)∈I1,n1 ,b(e1)∈I1,m1
e2∈E2;a(e2)∈I2,n2 ,b(e2)∈I2,m2

(b(e1)− a(e1))2(b(e2)− a(e2))2

 .
By Cauchy-Schwarz, the expectation inside the sum is at most

√
X1X2 where

Xj := E


 ∑
e∈E;a(e)∈Ij,nj ,b(e)∈Ij,mj

(b(e)− a(e))2

2
 , j = 1, 2.

It is enough to show that Xj ≤ Cy4
j 23nj+3mj to conclude the proof. If n = m, then by scaling,

Xj is at most Cy4
j 24njS2, where S2 is defined in (6.30). By symmetry, we can now suppose that

mj > nj . By scaling, we have

Xj ≤ y4
j 24mjE


 ∑
e∈E;a(e)∈[−2nj−mj ,2nj−mj ],b(e)∈[−2,2]

(b(e)− a(e))2

2
 ≤ Cy4

j 24mj2nj−mj

by Lemma 6.19. This shows that Xj ≤ Cy4
j 23mj+nj ≤ Cy4

j 23mj+3nj as desired.

The previous proofs already indicate that the probability of ER intersecting a neighborhood of
z ∈ H is mainly contributed by the excursions in ER which are “close” to z. We formulate this
precisely in the following lemmas, which will be useful in the proof of Proposition 7.3; see Section
7.4.
Lemma 6.21. Fix R > 0. Let E0 be the set of excursions in ER with endpoints in [−R,R]. For all
η > 0 and r ∈ (0, 1− η), we have

P[ER ∩ U(i, r) 6= ∅]− P[E0 ∩ U(i, r) 6= ∅] = o(1)| log r|−1.

where the o(1) term goes to 0 as R→∞, uniformly for all r ∈ (0, 1− η).

Proof. By Lemma 6.13, there exists C > 0, such that for all r ∈ (0, 1− η),

P[ER ∩ U(i, r) 6= ∅, E0 ∩ U(i, r) = ∅] ≤ CE

 ∑
e∈ER\E0

(a(e)− b(e))2

|a(e)− i|2|b(e)− i|2

 | log r|−1. (6.42)

By monotonicity, it suffices to prove the result for R = 2N and N → ∞. Using the intervals
I−1 = [−1, 1] and In = [−2n+1,−2n)∪ (2n2n+1] as in the proof of (6.1) and with the help of Lemma
6.20, the expectation in the right-hand side of (6.42) is upper bounded by

∑
n≥N,m≥−1

2−2(n+m)E

 ∑
a(e)∈Im,b(e)∈In

(a(e)− b(e))2

 ≤ C ∑
n≥N,m≥−1

2−n−m ≤ C ′2−N → 0

as N →∞. This completes the proof.

Lemma 6.22. Fix ε > 0 and ν ∈ (0, 1). Let E1 (resp. E2) be the set of excursions in ER with both
endpoints in [−εν , εν ] (resp. [1−εν , 1+εν ]). Fix η ∈ (0, 1). For all z1 ∈ D(0, ε)∩H, z2 ∈ D(1, ε)∩H
and r1, r2 ∈ (0, 1− η), we have

P[ER ∩ U(z1, r1) 6= ∅, ER ∩ U(z2, r2) 6= ∅]− P[E1 ∩ U(z1, r1) 6= ∅, E2 ∩ U(z2, r2) 6= ∅] (6.43)
= o(1)| log r1|−1| log r2|−1,

where the o(1) term goes to 0 as ε→ 0, uniformly for all r1, r2 ∈ (0, 1− η).

Proof. As we explained in details, the proof of Lemma 6.21 followed from our approach to proving
(6.1). Similarly, the proof of Lemma 6.22 follows from the method we developed in the proof of
(6.2). We omit the details.
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7 Properties of hθ and height gap
In this section, we prove Theorems 1.3, 1.7 and 1.8, starting with Theorem 1.3. Note that the spatial
Markov property in Theorem 1.7, as well as Theorem 1.8, follow directly from the corresponding
spatial Markov property of the loop soup, proved respectively in [QW19] and [Qia19], as we
explained before the statement of these theorems.

7.1 Proof of Theorem 1.3
Proof of Theorem 1.3. Point 1: See Lemma 4.1 and Proposition 4.3.

Point 2: The conformal invariance of the field follows directly from the conformal covariance of
the approximation procedure used to define it, together with the fact that the conformal anomaly
disappears when γ → 0 (derivative of the conformal map to the power γ2/2). See [ABJL23, Theorem
1.1].

Point 3: By definition, hθ + h−θ = limγ→0
1
Zγ

(Mγ − E[Mγ ]). Because the second term in
the expansion ofMγ is γ2 times the occupation measure of LθD (see Theorem 9.2) and because
Zγ ≥ γ2(1−θ)+o(1), this limit equals zero.

Point 4: Let f : D → R be a smooth test function, not identically zero. By Theorem 1.10,

(hθ, f) =
∑
k≥1

σk(µk, f) a.s.

and by Theorem 1.9, there is a.s. an infinite number of k such that (µk, f) 6= 0. Lemma 7.1 below
then concludes the proof.

Lemma 7.1. Let (an)n≥1 be a sequence of non zero real numbers and let (σn)n≥1 be i.i.d. spins
taking values in {±1} with equal probability 1/2. Assume that

∑
n σnan converges almost surely.

Then the distribution of
∑
n σnan is non-atomic.

Proof. Let x ∈ R. We are going to show that
∑
n σnan 6= x a.s. which will conclude the proof. The

conditional probability P (
∑
n σnan = x|σ1, . . . , σk−1) converges a.s. to 1{

∑
n
σnan=x} as k →∞.

But, by flipping the k-th spin and using the fact that ak 6= 0, we see that

P
(∑

n

σnan = x
∣∣{σi}k−1

i=1

)
≤ P

(∑
n 6=k

σnan − σkak 6= x
∣∣{σi}k−1

i=1

)
= P

(∑
n

σnan 6= x
∣∣{σi}k−1

i=1

)
.

Rearranging, this shows that P (
∑
n σnan = x|σ1, . . . , σk−1) ≤ 1/2 a.s. Therefore, 1{

∑
n
σnan=x} is

at most 1/2 a.s., meaning that
∑
n σnan 6= x a.s.

7.2 First moment of hθ with wired boundary conditions
We now move to the proof of (1.7) in Theorem 1.7.

Proof of (1.7) in Theorem 1.7. Let f be a smooth test function compactly included in D. We will
denote byML

θ
D∪E

θ
∂D

γ andML
θ
D

γ the multiplicative chaos associated to LθD ∪ Eθ∂D and LθD respectively.
The definition of the latter has been recalled in Section 2.2. The former is more complicated since it
involves the interaction of LθD and Eθ∂D. This has been extensively studied in [Jeg22] and [ABJL23].
We will only need to use the simple fact that

ML
θ
D∪E

θ
∂D

γ (dz)1{z/∈R(Eθ
∂D)} =ML

θ
D

γ (dz)1{z/∈R(Eθ
∂D)} a.s., (7.1)

where we denoted by R(Eθ∂D) the range of Eθ∂D, i.e. the set of points visited by some trajectory in
Eθ∂D. This property is simply saying that a point not visited by Eθ∂D is thick for LθD ∪ Eθ∂D if and only
if it is thick for LθD.

We have

E
[
(hwired
θ , f)|σ∂D

]
= lim
γ→0

∫
D
f(z) 1

Zγ
E
[
ML

θ
D∪E

θ
∂D

γ (dz)1{z∈C+(LθD∪E
θ
∂D)} − dz

∣∣σ∂D]
where the convergence holds in L2. This follows simply from Cauchy–Schwarz and Theorem 1.2.
Let us consider first the case σ∂D = −1. If z belongs to the range of Eθ∂D, its sign necessarily agrees
with σ∂D. Together with (7.1), this gives

E
[
ML

θ
D∪E

θ
∂D

γ (dz)1{z∈C+(LθD∪E
θ
∂D)}

∣∣σ∂D = −1
]

= E
[
ML

θ
D

γ (dz)1{z∈C+(LθD∪E
θ
∂D)}1{z/∈R(Eθ

∂D)}
∣∣σ∂D = −1

]
.
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By Lemma 2.3, this is further equal to

2P
(
z ∈ C+(LθD ∪ Ξz,Da ∪ Eθ∂D), z /∈ R(Eθ∂D)|σ∂D = −1

)
dz.

Since a Lebesgue-typical point is a.s. not visited by Eθ∂D, the above expression further reduces to(
1− P

(
z
LθD∪Ξz,Da←→ Eθ∂D

))
dz =

(
1− P

(
0 L

θ
D∪Ξ0,D

a←→ Eθ∂D
))

dz.

The last equality is obtained by noticing that the probability is conformally invariant. Altogether,
we have obtained that

E
[
(hwired
θ , f)|σ∂D = −1

]
= −

(
lim
γ→0

1
Zγ

P
(

0 L
θ
D∪Ξ0,D

a←→ Eθ∂D
))∫

D
f(z)dz.

This proves Theorem 1.7 in the case σ∂D = −1 with

c(θ) = lim
γ→0

P
(

0 L
θ
D∪Ξ0,D

a←→ Eθ∂D
)/

Zγ . (7.2)

The convergence of the right hand side of (7.2) follows from the above line of arguments. It could
also be obtained directly from Theorem 3.1 and from the estimate (6.1) in Proposition 6.4 on Eθ∂D.

To obtain the result when σ∂D = +1, we use Theorem 1.3, Point 3. With the notations therein,
and because (hwired

θ )− = −hwired
θ a.s.,

E
[
(hwired
θ , f)|σ∂D = 1

]
= −E

[
((hwired

θ )−, f)| − σ∂D = −1
]
.

From the case of negative sign on ∂D that we have just treated, we know that the expectation on
the right hand side equals −c(θ)

∫
D f(z)dz a.s. This concludes the proof of the case σ∂D = +1.

7.3 Second moment of hθ with wired boundary conditions
The goal of this section is to prove (1.8) in Theorem 1.7. We start with a preliminary result that
relates the second moment of hwired

θ to connectivity probabilities (see Lemma 4.1 for the analogous
result in a domain with zero-boundary condition). As in Notation 4.4 and conditionally given Eθ∂D,
we will denote by Cθ,D\Eθ

∂D
the covariance of hθ built out of a loop soup in the domain D \ Eθ∂D with

zero-boundary condition. Since the loops that are in different connected components of D \ Eθ∂D are
independent of each other, if x and y belong to different connecting component of D \ Eθ∂D, then
Cθ,D\Eθ

∂D
(x, y) = 0.

Lemma 7.2. Let f : D → [0,∞) be a smooth nonnegative function with compact support in D.
Then E

[
(hwired
θ , f)2] is equal to∫

D×D

(
E
[
Cθ,D\Eθ

∂D
(x, y)

]
+ lim
γ→0

1
Z2
γ

P
(
Eθ∂D

LθD←→ Ξx,Da , Eθ∂D
LθD←→ Ξy,Da

))
f(x)f(y)dxdy. (7.3)

Proof. By symmetry,

E
[
(hwired
θ , f)2] = E

[
(hwired
θ , f)2|σ∂D = −1

]
= lim
γ→0

1
Z2
γ

∫
D×D

f(x)f(y)×

× E
[(
ML

θ
D∪E

θ
∂D

γ (dx)1{x∈C+(LθD∪E
θ
∂D)} − dx

)(
ML

θ
D∪E

θ
∂D

γ (dy)1{y∈C+(LθD∪E
θ
∂D)} − dy

)∣∣∣σ∂D = −1
]
.

(7.4)

We expand the product in the expectation on the right hand side as a sum of four terms. In Section
7.2 we already dealt with the crossed terms:

E
[
ML

θ
D∪E

θ
∂D

γ (dz)1{z∈C+(LθD∪E
θ
∂D)}

∣∣∣σ∂D = −1
]

= (1− pγ)dz where pγ := P
(
z
LθD∪Ξz,Da←→ Eθ∂D

)
.

Let us recall that, by conformal invariance, pγ does not depend on z. We now focus on

E
[
ML

θ
D∪E

θ
∂D

γ (dx)ML
θ
D∪E

θ
∂D

γ (dy)1{x,y∈C+(LθD∪E
θ
∂D)}

∣∣∣σ∂D = −1
]
. (7.5)
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As in Section 7.2, because σ∂D = −1, x and y cannot belong to Eθ∂D allowing us to replaceML
θ
D∪E

θ
∂D

γ

byML
θ
D

γ . Moreover, by Lemma 2.3, the contribution of soups LθD with a loop visiting both x and y
vanishes as γ → 0 (this is the same computation as in (4.9)). (7.5) is therefore equal to

E
[
ML

θ
D

γ (dx)ML
θ
D

γ (dy)1{x,y∈C+(LθD∪E
θ
∂D),@℘∈LθD:{x,y}⊂℘}1{x,y/∈R(Eθ

∂D)}
∣∣∣σ∂D = −1

]
+ o(Z2

γ)dxdy.

Now, by Lemma 2.3, this is further equal to

4P
(
x, y ∈ C+(LθD ∪ Ξx,Da ∪ Ξy,Da ∪ Eθ∂D), x, y /∈ R(Eθ∂D)|σ∂D = −1

)
dxdy + o(Z2

γ)dxdy.

Since Lebesgue-typical points are almost surely not visited by Eθ∂D, the event {x, y /∈ R(Eθ∂D)} has
full probability. Then density of the first measure above is then equal to

2P
(

Ξx,Da
LθD←→ Ξy,Da , {Eθ∂D

LθD←→ Ξx,Da ∪ Ξy,Da }c
)

+ P
(
{Ξx,Da

LθD←→ Ξy,Da }c, {Eθ∂D
LθD←→ Ξx,Da ∪ Ξy,Da }c

)
= P

(
Ξx,Da

LθD←→ Ξy,Da , {Eθ∂D
LθD←→ Ξx,Da ∪ Ξy,Da }c

)
+ P

(
{Eθ∂D

LθD←→ Ξx,Da ∪ Ξy,Da }c
)

= P
(

Ξx,Da
LθD←→ Ξy,Da , {Eθ∂D

LθD←→ Ξx,Da ∪ Ξy,Da }c
)

+ 1− 2pγ + P
(
Eθ∂D

LθD←→ Ξx,Da , Eθ∂D
LθD←→ Ξy,Da

)
.

By the restriction properties of LθD and Ξz,Da , z = x, y, one can show that

lim
γ→0

1
Z2
γ

P
(

Ξx,Da
LθD←→ Ξy,Da , {Eθ∂D

LθD←→ Ξx,Da ∪ Ξy,Da }c
)

= E
[
Cθ,D\Eθ

∂D
(x, y)

]
where the expectation is w.r.t. Eθ∂D. The term 1− 2pγ cancels out with the three other terms in the
expansion of the product inside the expectation in (7.4). Putting things together leads to (7.3).

We now state another key intermediate result (Proposition 7.3 below) for the proof of (1.8) that
we will prove in Section 7.4 below. By Theorem 3.1, we can define

u(z) := lim
γ→0

1
Zγ

P
(
Eθ∂D

LθD←→ Ξz,Da
∣∣∣∣ Eθ∂D) , z ∈ D. (7.6)

By conformal invariance, the law of u(z) does not depend on z. The constant c(θ) appearing in
Theorem 1.7 corresponds exactly to the expectation of u(z); see (7.2). Proposition 7.3 below shows
that u(xε) and u(yε) become asymptotically uncorrelated when (xε)ε and (yε)ε are targeting two
distinct fixed boundary points.
Proposition 7.3. Let x, y ∈ ∂D be two distinct boundary points. Let (xε)ε and (yε)ε be two
sequences of points in D such that for all ε > 0, |x− xε| < ε and |y − yε| < ε. Then

max(E [u(xε)u(yε)]− c(θ)2, 0)→ 0 as ε→ 0.

Moreover, for all δ > 0 fixed, the convergence is uniform in x, y, (xε)ε, (yε)ε, provided that |x−y| ≥ δ.

The proof of Proposition 7.3 is written in Section 7.4. When θ = 1/2, one can use that E∂D is a
Poisson point process of Brownian excursions to prove Proposition 7.3 fairly painlessly. No such
description is available for general intensities θ ≤ 1/2 and we will rely on estimates and techniques
developed in Section 6. We can now prove:

Proof of (1.8) in Theorem 1.7. Let (fε)0<ε<1 be a sequence of functions satisfying Assumption 1.6.
By (1.7), for any ε > 0, E

[
(hwired
θ , fε)|σ∂D

]
= σ∂Dc(θ) a.s. To show that (hwired

θ , fε)− σ∂Dc(θ)→ 0
in L2, it is therefore enough to show that

lim sup
ε→0

E
[
(hwired
θ , fε)2] ≤ c(θ)2.

By Lemma 7.2, lim supε→0 E
[
(hwired
θ , fε)2] is at most

lim sup
ε→0

∫
D×D

lim
γ→0

1
Z2
γ

P
(
Eθ∂D

LθD←→ Ξx,Da , Eθ∂D
LθD←→ Ξy,Da

)
fε(x)fε(y)dxdy (7.7)

plus
lim sup
ε→0

∫
D×D

E
[
Cθ,D\Eθ

∂D
(x, y)

]
fε(x)fε(y)dxdy. (7.8)
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Let us first show that (7.8) vanishes. To this end, notice that Cθ,D\Eθ
∂D

(x, y) vanishes as soon as
x and y belong to different connected components of D \ Eθ∂D and notice also that Cθ,D(x, y) is
nondecreasing with the domain D (this follows from the expression (4.3)). We can thus bound
E
[
Cθ,D\Eθ

∂D
(x, y)

]
by Cθ,D(x, y) times the probability pxy that x and y belong to the same connected

component of D \ EθD. Let δ > 0. If |x− y| < δ, we simply bound pxy ≤ 1. Otherwise, pxy vanishes
uniformly in x, y with d(x, ∂D),d(y, ∂D)→ 0 and |x− y| ≥ δ. (7.8) is therefore at most

lim sup
ε→0

∫
D×D

1{|x−y|<δ}Cθ,D(x, y)fε(x)fε(y)dxdy + lim sup
ε→0

o(1)
∫
D×D

1{|x−y|≥δ}Cθ,D(x, y)fε(x)fε(y)dxdy

where o(1) may depend on δ and vanishes as ε→ 0, δ > 0 fixed. By (1.5), the second integral above
is bounded uniformly in ε, so the second term vanishes. We can now let δ → 0 and observe that
the first term goes to 0 by (1.6). This shows that (7.8) vanishes.

The rest of the proof consists in showing that (7.7) is at most c(θ)2. Let ε > 0, γ > 0, x, y ∈ D.
Let us first show that

1
Z2
γ

P
(
Eθ∂D

LθD←→ Ξx,Da , Eθ∂D
LθD←→ Ξy,Da

)
≤ C max(1,− log |x− y|). (7.9)

Let
Rz := sup{R > 0 : ∂D(z,R) LθD←→ Ξz,Da }, z ∈ {x, y}. (7.10)

We have

P
(
Eθ∂D

LθD←→ Ξx,Da , Eθ∂D
LθD←→ Ξy,Da

)
≤
∫

(0,2)2
P (Rz ∈ drz, z = x, y)P

(
Eθ∂D ∩D(z, rz), z = x, y

)
.

(7.11)
By Proposition 6.2,

P
(
Eθ∂D ∩D(z, rz), z = x, y

)
≤ C max(1,− log |x− y|)

max(1, log(d(x, ∂D)/rx)) max(1, log(d(y, ∂D)/ry)) .

Plugging this in (7.11) and integrating by parts with respect to both rx and ry leads to the following
upper bound for the left hand side of (7.11):

C max(1,− log |x− y|)
∫ e−1d(y,∂D)

0
dry

∫ e−1d(x,∂D)

0
drx

P (Rz ≥ rz, z = x, y)
rxry(log d(x, ∂D)/rx)2(log(d(y, ∂D)/ry))2 .

The fact that we integrate over the intervals (0, e−1d(z, ∂D)), z = x, y, stems from the fact that the
derivative of rz 7→ 1/max(1, log(d(z, ∂D)/rz) vanishes outside of this interval. A slight variant of
the argument of the proof of Lemma 4.2 shows that for η arbitrary small (for our purposes, η = θ/2
would do), there exists C = C(η) > 0 such that

P (Rz ≥ rz, z = x, y) ≤ CZ2
γ

∏
z=x,y

(
log d(z, ∂D)

rz

)1−θ+η
, rz ∈ (0, e−1d(z, ∂D)), z = x, y.

(7.12)
We omit these details. Putting things together and noticing that∫ e−1d(z,∂D)

0

drz
rz(log d(z, ∂D)/rz)1−θ+η ≤ C, if η < θ, z = x, y,

proves (7.9).
We now continue the proof that (7.7) is at most c(θ)2. By (7.9) and (1.6), the contribution to

(7.8) of points x, y with |x− y| < δ vanishes as δ → 0. More precisely, (7.8) is at most

lim sup
δ→0

lim sup
ε→0

∫
D×D

1{|x−y|≥δ} lim
γ→0

1
Z2
γ

P
(
Eθ∂D

LθD←→ Ξx,Da , Eθ∂D
LθD←→ Ξy,Da

)
fε(x)fε(y)dxdy.

Let δ > 0 be fixed. Recalling that
∫
D fε = 1 for all ε, in order to conclude that (7.8) is at most

c(θ)2, it is enough to show that

max
(

lim
γ→0

1
Z2
γ

P
(
Eθ∂D

LθD←→ Ξx,Da , Eθ∂D
LθD←→ Ξy,Da

)
− c(θ)2, 0

)
(7.13)
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converges uniformly to 0 as d(x, ∂D),d(y, ∂D) → 0 while |x − y| stays at least δ. By extracting
subsequences if necessary, we can moreover assume that x and y converge to distinct boundary
points. So, let x0, y0 ∈ ∂D be two distinct boundary points and let (xε)ε and (yε)ε be two sequences
of points in D that converge to x0 and y0 respectively. We first notice that the loops in LθD that
will contribute to the probability in (7.13) are localised near xε and yε. More precisely, consider
A > 0 large and denote by LθD,z = {℘ ∈ LθD : ℘ ⊂ D(z,Ad(z, ∂D))}, for z ∈ D. Then

P
(
Eθ∂D

LθD←→ Ξxε,Da , Eθ∂D
LθD←→ Ξyε,Da

)
= (1 + o(1))P

(
Eθ∂D

LθD,xε←→ Ξxε,Da , Eθ∂D
LθD,yε←→ Ξyε,Da

)
(7.14)

where o(1) → 0 as A → ∞, uniformly in γ and ε > 0. This follows from the same type of
considerations as in the proof of (7.9), and eventually boils down to the fact that the random
variables Rz, z ∈ {x, y}, defined in (7.10), are of order d(z, ∂D). See in particular (7.12). But now,
for A > 0 large but fixed, if ε is small enough the discs D(xε, Ad(xε, ∂D)) and D(yε, Ad(yε, ∂D))
are disjoint implying that LθD,xε and LθD,yε are independent. Hence the probability on the right
hand side of (7.14) is equal to

E
[
P
(
Eθ∂D

LθD,xε←→ Ξxε,Da

∣∣∣∣ Eθ∂D)P
(
Eθ∂D

LθD,yε←→ Ξyε,Da

∣∣∣∣ Eθ∂D)] .
As in (7.14) and by sending A→∞, we can replace LθD,xε and LθD,yε by LθD (alternatively, adding
more loops can only increase the probability of connection). This shows that

lim sup
ε→0

lim
γ→0

1
Z2
γ

P
(
Eθ∂D

LθD←→ Ξxε,Da , Eθ∂D
LθD←→ Ξyε,Da

)
≤ lim sup

ε→0
lim
γ→0

1
Z2
γ

E
[
P
(
Eθ∂D

LθD←→ Ξxε,Da

∣∣∣∣ Eθ∂D)P
(
Eθ∂D

LθD←→ Ξyε,Da

∣∣∣∣ Eθ∂D)] = lim sup
ε→0

E [u(xε)u(yε)]

where u(z), z ∈ D, is defined in (7.6). In the last equality above we applied dominated convergence
theorem (the domination is obtained from the estimate (7.12) on Rz and by Proposition 6.2). By
Proposition 7.3, lim supε→0 E [u(xε)u(yε)] ≤ c(θ)2. This concludes the proof that (7.8) is at most
c(θ)2 which concludes the proof of (1.8).

7.4 Quasi independence of excursions near two distinct points
This section is devoted to the proof of Proposition 7.3.

Proof of Proposition 7.3. By conformal invariance, we may work in the upper half plane H instead
of the unit disc D and assume that our boundary points are 0 and 1. Let ε ∈ (0, 1/4), z1 ∈ H∩D(0, ε),
z2 ∈ H∩D(1, ε). Let E1 (resp. E2) be the set of excursions in ER with both endpoints in [−ε2/3, ε2/3]
(resp. [1− ε2/3, 1 + ε2/3]). For j = 1, 2, define

uj := lim
γ→0

1
Zγ

P(Ej
LθH∪Ξ

zj,H
a←→ zj | Ej). (7.15)

The difference with u(zj) (7.6) is that the intersection can only come from an excursion from Ej ,
instead of the whole set ER of excursions. We are first going to show that

lim sup
ε→0

E [u(z1)u(z2)] ≤ lim sup
ε→0

E [u1u2] . (7.16)

Let Kγ,1 and Kγ,2 be two independent random compacts of H distributed as (the topological closure
of) the cluster of zj in LθH ∪ Ξzj ,Ha , j = 1, 2. We can bound for j = 1, 2,

u(zj) ≤ uj + lim
γ→0

1
Zγ

P(ER \ Ej ∩Kγ,j 6= ∅ | ER).

Multiplying these two inequalities for j = 1, 2 leads to

E [u(z1)u(z2)]− E [u1u2] ≤
∑
i=1,2
j=3−i

E
[

lim
γ→0

1
Z2
γ

P (ER \ Ei ∩Kγ,i 6= ∅, Ej ∩Kγ,j 6= ∅| ER)
]

+ E
[

lim
γ→0

1
Z2
γ

P (∀j = 1, 2, ER \ Ej ∩Kγ,j 6= ∅| ER)
]

≤ 2 lim
γ→0

1
Z2
γ

∑
i=1,2
j=3−i

P (ER \ Ei ∩Kγ,i 6= ∅, ER ∩Kγ,j 6= ∅) .
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In the last inequality we exchanged expectation and limit with the help of Fatou’s lemma (or
alternatively dominated convergence theorem). For j = 1, 2, let fj : D→ H be a conformal map
that sends 0 to zj and let

Cj(r) := fj(r∂D), r ∈ [0, 1], and Rγ,j := sup{r > 0 : Cj(r) ∩Kγ,j 6= ∅}.

The definition of Cj(r) does not depend on the specific choice of fj . Note also that, by conformal
invariance, Rγ,1 and Rγ,2 have the same law as Rγ defined in (2.19). Let η > 0 and let us first
consider the event that Rγ,1 and Rγ,2 are at most 1− η. We have

lim
γ→0

1
Z2
γ

P (ER \ E1 ∩Kγ,1 6= ∅, ER ∩Kγ,2 6= ∅, Rγ,1 ≤ 1− η,Rγ,2 ≤ 1− η) (7.17)

≤ lim
γ→0

1
Z2
γ

∫
(0,1−η)2

P (Rγ,1 ∈ dr1)P (Rγ,2 ∈ dr2)P (ER \ E1 ∩ C1(r1) 6= ∅, ER ∩ C2(r2) 6= ∅) .

For η > 0 fixed, Lemma 6.22 shows that

P (ER \ E1 ∩ C1(r1) 6= ∅, ER ∩ C2(r2) 6= ∅) ≤ oε→0(1)| log r1|−1| log r2|−1

where oε→0(1)→ 0 as ε→ 0, uniformly in r1, r2 ∈ (0, 1− η). Plugging this estimate into (7.17) and
integrating by parts shows that the left hand side of (7.17) is at most

oε→0(1)
Z2
γ

∫
(0,1−η)2

P (R1 ≥ r1)P (R2 ≥ r2)
r1r2| log r1 log r2|2

dr1dr2.

Now, by (2.20) in Lemma 2.11 (applied to η = θ/2), there exists C > 0 such that for all rj ∈ (0, 1−η),
P (Rj ≥ rj) ≤ CZγ | log rj |1−θ/2. This shows that (7.17) vanishes as ε→ 0. On the event that Rγ,1
or Rγ,2 is at least 1− η, we have with a union bound,

lim
γ→0

1
Z2
γ

P (ER \ E1 ∩Kγ,1 6= ∅, ER ∩Kγ,2 6= ∅, Rγ,1 or Rγ,2 ≥ 1− η)

≤ lim
γ→0

1
Z2
γ

∑
i=1,2
j=3−i

P (Rγ,i ≥ 1− η)P (ER ∩Kγ,j 6= ∅) = 2c(θ) lim
γ→0

1
Zγ

P (Rγ ≥ 1− η)

where Rγ is defined in (2.19). The last equality follows from conformal invariance and (7.2). In
particular, the right hand side is independent of ε and goes to zero as η → 0 ((2.21) in Lemma
2.11). This concludes the proof of (7.16).

The proof of Proposition 7.3 will then follow from (recall that u1 and u2 are defined in (7.15)):

Lemma 7.4. lim supε→0 E [u1u2] ≤ c(θ)2.

Proof of Lemma 7.4. Instead of considering directly a loop soup LR which is wired everywhere,
we will obtain LR and ER by exploring a loop soup which is partially wired, and then use the
independence between different parts of the loop soup derived for this partial exploration process
[Qia19, QW19].

Let L0 be a loop soup in H wired on [−ε1/2, ε1/2] and free elsewhere. We will denote by L0 ∩H
the subset of L0 consisting of all the loops that are contained in H. By Theorems 6.1 and 6.2, we
can decompose L0 into several independent parts:

1. The excursions Ê1 attached to [−ε1/2, ε1/2].
2. The CLE coming from the outer boundaries of the outermost clusters in L0 ∩H.
3. For each loop ` in the CLE in the previous item, let O` be the domain encircled by `. Let f`

be a conformal map from H onto O`. For each `, we sample an independent loop soup L`
with wired boundary conditions in H, and put f`(L`) inside O`.

We will denote by F the σ-algebra generated by the items 1 and 2.
To obtain a loop soup LR in H wired on R from L0, one can proceed as follows. Let η be the

outer boundary of the cluster in L0 which is wired on [−ε1/2, ε1/2]. Let O be the domain enclosed
by η and [−ε1/2, ε1/2]. Let g be the conformal map from O onto H that sends −ε2/3, ε2/3, ε1/2 to
−ε2/3, ε2/3,∞. Let LR be the image under g of L0 restricted to O. Then LR is distributed as a
loop soup in H with wired boundary conditions. Let E be the boundary excursions induced by
LR and let E1 (resp. E2) be the set of excursions in E with both endpoints in [−ε2/3, ε2/3] (resp.
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−ε2/3 ε2/3 ε1/2−ε1/2

η

ξ

z1 z2

−ε2/3 ε2/3

z̃2

g

Figure 7.1: Proof of Lemma 7.4. The excursions in Ê0 are in red. The set Ê1 is the union of the red
and blue excursions.

[1−ε2/3, 1+ε2/3]). Let z̃1 := g−1(z1), z̃2 := g−1(z2). Let Ẽ := g−1(E), Ẽ1 := g−1(E1), Ẽ2 := g−1(E2).
See Figure 7.1 for a schematic representation of some of these notations. Let

ũj := lim
γ→0

1
Zγ

P(Ẽj
LθO∪Ξ

z̃j ,O

a←→ z̃j | Ẽj , O), j = 1, 2.

By conformal invariance, (u1, u2) and (ũ1, ũ2) have the same law. Therefore, to prove Lemma 7.4,
it is equivalent to prove that lim supε→0 E[ũ1ũ2] ≤ c(θ)2.

Let ξ be the CLE loop that encircles z̃2. The wired loop soup fξ(Lξ) (see item 3 above) inside
the domain Oξ delimited by ξ is composed of excursions Ẽξ attached to ξ and loops LOξ contained
in Oξ. Define

v2 := lim
γ→0

1
Zγ

P(Ẽξ
LθOξ∪Ξ

z̃2,Oξ
a

←→ z̃2 | Ẽξ, Oξ). (7.18)

By conformal invariance and the independence of Lξ and F , E [v2|F ] = c(θ). We are going to show
that

P(ũ2 ≤ v2)→ 1 as ε→ 0. (7.19)

Let us explain how we will conclude from this. Notice that ũ1 is measurable w.r.t. F . Indeed, Ẽ1,
the domain O and z̃1 are all measurable w.r.t. the excursions Ê1 and the CLE loops. Therefore, we
have on the event E := {ũ2 ≤ v2},

E [ũ1ũ21E ] ≤ E [ũ1v21E ] ≤ E [ũ1v2] = E [ũ1E [v2|F ]] = c(θ)E [ũ1] ≤ c(θ)2

since, by adding more excursions,

E [ũ1] ≤ lim
γ→0

1
Zγ

E[P(Ẽ L
θ
O∪Ξ

z̃j ,O

a←→ z̃j | Ẽ , O)] = c(θ).

On the complementary event Ec (whose probability vanishes as ε→ 0 by (7.19)), we can bound for
all M > 0,

lim sup
ε→0

E [ũ1ũ21Ec ] ≤ lim sup
ε→0

E
[
ũ1ũ21{ũ1ũ2>M}

]
+M lim sup

ε→0
P(Ec) = lim sup

ε→0
E
[
ũ1ũ21{ũ1ũ2>M}

]
.

We will show in Lemma 7.5 below that the quantity on the right hand side vanishes as M →∞.
Altogether, this will prove Lemma 7.4.

It remains to prove (7.19). We proceed in several steps.
• Step 1. The goal of this step is to show that P[g([−ε1/2, ε1/2]) ⊆ [−2ε1/2, 2ε1/2]] = 1 + o(1).

Let ε−1/2O be the domain O rescaled by ε−1/2. Let f be the conformal map from ε−1/2O onto H
that sends −1/2, 1/2, 1 to −1, 1,∞. Then g(z) = h ◦ f(ε−1/2z), where h is a composition of scaling
and translation that sends f(±ε1/6) to ±ε2/3. Note that f is analytic, so for all z ∈ D(0, ε7/12)∩H,

g′(z) = ε−1/2f ′(ε−1/2z) 2ε2/3

f(ε1/6)− f(−ε1/6) = (f ′(0) +O(ε1/12)) 2ε1/6

f ′(0)2ε1/6 +O(ε1/3) = 1 +O(ε1/12).
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Consequently, there exists x0 ∈ [ε2/3, ε1/2] such that

g(ε1/2) = g(ε2/3) + (ε1/2 − ε2/3)g′(x0) = ε1/2 +O(1)ε7/12,

where O(1) is bounded by some random variable A0 whose law only depends on the law of f , which
does not depend on ε. Let F1 be the event that A0 ≤ ε−1/24, so that P(F1) = 1 + o(1). On F1, we
have g(ε1/2) ≤ 2ε1/2. Similarly, we can define F2 with P(F2) = 1 + o(1) so that g(−ε1/2) ≥ −2ε1/2.
On the event F1 ∩ F2, we have g([−ε1/2, ε1/2]) ⊆ [−2ε1/2, 2ε1/2]. This concludes Step 1.
• Step 2. Recall that Ê1 denotes the set of excursions in E0 with both endpoints in [−ε1/2, ε1/2].

The goal of this step is to prove that

P[g(Ê1) ∩D(1, ε7/12) = ∅] = 1 + o(1). (7.20)

Let E4 be the set of excursions in E that have both endpoints in [−2ε1/2, 2ε1/2]. Then g(Ê1) ⊂ E4
on the event that g([−ε1/2, ε1/2]) ⊆ [−2ε1/2, 2ε1/2]. Thanks to Step 1, we deduce that

P[g(Ê1) ∩D(1, ε7/12) 6= ∅] ≤ P[E4 ∩D(1, ε7/12) 6= ∅] + o(1)

By Lemma 6.8, we can further bound

P[E4 ∩D(1, ε7/12) 6= ∅] ≤ E

 ∑
e∈E;a(e),b(e)∈[−2ε1/2,2ε1/2]

(b(e)− a(e))2

(1− a(e))2(1− b(e))2

 ε7/6 + o(1)

≤ CE

 ∑
e∈E;a(e),b(e)∈[−2ε1/2,2ε1/2]

(b(e)− a(e))2

 ε7/6 + o(1).

With the help of Lemma 6.20, we can bound the last expectation above by Cε1/2ε1/2 proving (7.20).
• Step 3. In this step we show that

P[E2 ⊂ D(1, ε7/12)] = 1 + o(1).

We have

P[E2 6⊂ D(1, ε7/12)] ≤ C1E

[∑
e∈E2

(b(e)− a(e))2ε−7/6

]
≤ C2ε

4/3ε−7/6 = Cε1/6,

where the term C1(b(e)− a(e))2ε−7/6 represents the probability that an excursion with endpoints
a(e) and b(e) has diameter at least ε7/12/2, and the last inequality follows from Lemma 6.20.
• Step 4. Conclusion. On the event F := {g(Ê1) ∩D(1, ε7/12) = ∅} ∩ {E2 ⊂ D(1, ε7/12)},

g(Ê1) ∩ E2 = ∅ and the loops in LO that can contribute to ũ2 can only come from LOξ (Ê1 cannot
contribute). Hence, on F ,

ũ2 = lim
γ→0

1
Zγ

P(Ẽ2
LθOξ∪Ξ

z̃2,Oξ
a

←→ z̃2 | Ẽ2, Oξ).

Now, because on the event F , the excursions in Ẽ2 are contained in Ẽξ, changing Ẽ2 into Ẽξ can only
increase the above probability, i.e. ũ2 ≤ v2. Since P[F ] = 1 + o(1) by Steps 2 and 3, this concludes
the proof of (7.19) and the proof of Lemma 7.4.

To finish the proof of Proposition 7.3, we need to deal with the uniform integrability of u1u2:

Lemma 7.5 (Uniform integrability of u1u2). For all p ∈ (0, 1/(1− θ)), lim supε→0 E [up1u
p
2] <∞.

In particular,
lim
M→∞

lim sup
ε→0

E
[
u1u21{u1u2>M}

]
= 0. (7.21)

Proof of Lemma 7.5. Let p ∈ (0, 1/(1− θ)) and let η > 0 be small enough so that p(1− θ + η) < 1.
For j = 1, 2, let fj : H→ D be a conformal map that sends zj to 0 and let Rj := d(0, fj(Ej)). By
conformal invariance and Lemma 2.11,

uj = lim
γ→0

1
Zγ

P(fj(Ej)
LθD∪Ξ0,D

a←→ 0 | Ej) ≤ lim
γ→0

1
Zγ

P(Rj∂D
LθD∪Ξ0,D

a←→ 0 | Rj) ≤ C(1 + | logRj |)1−θ+η.
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Using that for nonnegative random variables X and Y , E [XY ] =
∫

(0,∞)2 P (X ≥ x, Y ≥ y) dxdy,
we deduce that E [up1u

p
2] is at most

CE
[ ∏
j=1,2

(1 + | logRj |)p(1−θ+η)
]
≤ C

∫
(0,∞)2

P
(

(1 + | logRj |)p(1−θ+η) ≥ tj , j = 1, 2
)

dt1dt2.

By (6.2) in Proposition 6.4, the probability in the integral is equal to

P
(
∀j = 1, 2, Rj ≤ exp

(
1− t

1
p(1−θ+η)
j

))
≤ C((t1 + 1)(t2 + 1))−

1
p(1−θ+η) .

Since p(1 − θ + η) < 1, this implies that the integral converges which concludes the proof of
the bound on E [up1u

p
2]. (7.21) then follows by Hölder’s inequality and the fact that the interval

(0, 1/(1− θ)) contains real numbers that are strictly larger than 1.

This concludes the proof of Proposition 7.3.

8 Approximation of M+
a from the discrete

The purpose of this section is to show that the field hθ agrees with a multiple of the GFF when
θ = 1/2. See Theorem 1.4. To do so, we will show in Theorem 8.3 a stronger version of the
convergence of the discrete approximationMa,N (2.10) toMa: we will show that this convergence
even holds when one restricts the measures to individual clusters. This result of independent interest
holds for any subcritical intensity θ ∈ (0, 1/2].

Notation 8.1. For all x ∈ D and k ≥ 1, we will denote by C(x, k) the k-th outermost cluster
surrounding x. (k = 1 corresponds to the outermost cluster)

Recall that we denote by C the collection of all clusters C of LθD. Let LθDN be a random walk
loop soup approximating LθD as in Section 2.2. We will use analogous notations CN , CN (x, k), etc.
in the discrete. In this section we will view clusters (or rather their closures) as elements of (K, dK)
(2.3), i.e. as random compact subsets of D. We recall that discrete clusters converge to continuous
clusters:

Theorem 8.2 ([Lup18a], Section 4.3 in [ALS20b]). Let n ≥ 1, xi ∈ D, ki ≥ 1, i = 1, . . . , n. The
following convergence

({CN (xi, ki)}ni=1,LθDN ) −−−−→
N→∞

({C(xi, ki)}ni=1,LθD)

holds in distribution relatively to the topologies induced by dK and dL respectively.

LetMa,N be the discrete approximation (2.10) ofMa. The main result of this section is:

Theorem 8.3. Let θ ≤ 1/2 and a ∈ (0, 2). For all n ≥ 1, xi ∈ D, ki ≥ 1, i = 1 . . . n, the following
convergence(

{MN
a 1CN (xi,ki)}

n
i=1, {CN (xi, ki)}ni=1,LθDN

)
−−−−→
N→∞

(
{Ma1C(xi,ki)}

n
i=1, {C(xi, ki)}ni=1,LθD

)
holds in distribution relatively to the weak topologies of measures and the topologies induced by dK
and dL.

As in the continuum, letM+
a,N be the measureMa,N restricted to positive clusters, where we

assign independent spins to each cluster. As a consequence of Theorem 8.3, we will get:

Corollary 8.4. Let θ ∈ (0, 1/2] and a ∈ (0, 2). The following convergence

(LθDN ,M
+
a,N )→ (LθD,M+

a ) as N →∞,

holds in distribution relatively to the topology induced by dL for LθDN and the weak topology on C
forM+

a,N .

The exact same result would still hold if we were considering the loop soup on the cable graph
where the connection with the Gaussian free field is the strongest [Lup16]. This allows us to prove
Theorem 1.4:
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Proof of Theorem 1.4, assuming Corollary 8.4. Once Corollary 8.4 is established, the proof of
Theorem 1.4 follows along the same lines as the proof of [ABJL23, Theorem 1.5]. The main
difference is that we need to use Lupu’s version [Lup16] of Le Jan’s isomorphism which recovers
the signs of the discrete GFF: on the cable graph, (σx

√
2`x)x has the same law as the cable graph

GFF [Lup16]. In particular, this identifiesM+
a,N with the uniform measure on the set of a-thick

points of the cable graph GFF which is known to converge to the exponential of the continous GFF
[BL19]. Together with Corollary 8.4 (or rather, the cable graph analogue), this allows us to prove
Theorem 1.4. We refer to the proof of [ABJL23, Theorem 1.5] for more details.

The rest of Section 8 is dedicated to the proof of Theorem 8.3 and Corollary 8.4. We will first
state and prove some preliminary lemmas before returning to the proof of the main results of this
section.

8.1 Preliminary lemmas
Let us denote by

Qp := {x+ [−2−p, 2−p]2, x ∈ 2−pZ2}, p ≥ 1, (8.1)

a collection of dyadic squares of side length 2−p+1. For all x ∈ D and k ≥ 1, we enlarge the cluster
C(x, k) with the help of these dyadic squares and we denote by

C(p)(x, k) :=
⋃

Q∈Qp,Q∩C(x,p)6=∅

Q. (8.2)

Lemma 8.5. Let x ∈ D, k ≥ 1. Let Oi, i ≥ 0, be the connected components of D \ C(x, k) with O0
being the unique component whose boundary include ∂D. Conditionally on C(x, k), we have:

• The collections of loops {℘ ∈ LθD, ℘ ⊂ Oi}, i ≥ 0, are independent;
• For all i ≥ 1, {℘ ∈ LθD, ℘ ⊂ Oi} has the law of a Brownian loop soup in Oi with intensity θ;
• {℘ ∈ LθD, ℘ ⊂ O0} has the law of a Brownian loop soup in O0 with intensity θ conditionally

to have exactly k − 1 clusters surrounding the inner boundary of O0.

Proof. This lemma can be proven by working on the event that the enlargement C(p)(x, k) of
C(x, k) is equal to a specific union Cp of dyadic squares. One then uses that the loops that do not
intersect Cp are independent from C(x, k) (except that C(x, k) is exactly the k-th outermost cluster
surrounding x) and then let p→∞. We omit the details.

Next, we show that theMa-measure of one cluster is well approximated by theMa-measure of
its ε-neighbourhood.

Lemma 8.6. Let n, p ≥ 1, and for i = 1 . . . n, let xi ∈ D, ki ≥ 1 and let Ci,p be a subset of D
which is a union of dyadic squares in Qp. Assume that the sets Ci,p, i = 1 . . . n, are pairwise disjoint
and let Ep be the event that for all i = 1 . . . n, C(p)(xi, ki) = Ci,p. Then

E
[ n∑
i=1
Ma(Ci,p \ C(xi, ki))

∣∣∣C(xi, ki), i = 1 . . . n
]
1Ep ≤ C2−pa1Ep (8.3)

for some deterministic constant C > 0 which only depends on the domain D.

Proof of Lemma 8.6. To ease notations, we will prove this lemma for the n outermost clusters
surrounding a given point x ∈ D. With the notations of the lemma, this corresponds to the
particular case xi = x and ki = i for i = 1 . . . n. The general case follows from the same proof.

For j = 1 . . . n, let Oj be the connected component of D \
⋃n
i=1 C(x, i) whose boundary intersects

both C(x, j − 1) and C(x, j), where by convention we write C(x, 0) = ∂D. Let Oj , j ≥ n + 1,
denote the other connected components of D \

⋃n
i=1 C(x, i). O1, . . . , On are annular-like, whereas

On+1, On+2, . . . are disc-like. Conditionally on C(x, i), i = 1 . . . n, the law of the loops in each of
these connected components is described in Lemma 8.5. For all j ≥ 1, let Opj denote the set of
points of Oj which are at distance at most

√
2 · 2−p+1 to the boundary of Oj . On the event Ep,

n⋃
i=1

Ci,p \ C(x, i) ⊂
⋃
j≥1

Opj ,
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which implies that

E
[ n∑
i=1
Ma(Ci,p \ C(x, i))

∣∣∣C(x, i), i = 1 . . . n
]
1Ep ≤

∑
j≥1

E
[
Ma(Opj )

∣∣∣C(x, i), i = 1 . . . n
]

1Ep .

For all j ≥ n + 1, conditionally on C(x, i), i = 1 . . . n, the law of the loops inside Oj is that of a
Brownian loop soup in Oj . Therefore, by [ABJL23, Theorem 1.1], we have for all j ≥ n+ 1,

E
[
Ma(Opj )

∣∣∣C(x, i), i = 1 . . . n
]
≤ C

∫
Op
j

CR(z,Oj)adz ≤ C2−pa|Oj |

because if a point z is a distant at most
√

2 · 2−p+1 to the boundary of Oj , then CR(z,Oj) is at
most 4

√
2 · 2−p+1 (Koebe quarter theorem). For j = 1 . . . n, the conditional law of the loops in Oj

is that of a loop soup in Oj conditioned to not have any cluster surrounding the inner boundary of
Oj . By FKG inequality, such a loop soup is stochastically dominated by an unconditioned loop
soup in the same domain. So the same reasoning applies, except that the domain Oj is not simply
connected so one has to replace log CR(z,Oj) by the harmonic extension of log |z − ·| from ∂Oj to
Oj (see Remark 2.2). Nevertheless, the same conclusion holds: for all j = 1 . . . n,

E
[
Ma(Opj )

∣∣∣C(x, i), i = 1 . . . n
]
≤ C2−pa|Oj |.

Summing over j leads to

E
[ n∑
i=1
Ma(Ci,p \ C(x, i))

∣∣∣C(x, i), i = 1 . . . n
]
1Ep ≤ C2−pγ

2/2
∑
j≥1
|Oj |1Ep ≤ C|D|2−pa1Ep .

This concludes the proof of Lemma 8.6.

We will also need to ensure that most of theMa-mass comes from the “large” clusters:

Cq := {C(x, k), x ∈ 2−qZ2 ∩D, k ≤ 2q}, CN,q := {CN (x, k), x ∈ 2−qZ2 ∩D, k ≤ 2q}, q ≥ 1.

Lemma 8.7. As q →∞,

E
[
Ma(D \

⋃
C∈Cq

C)
]
→ 0 and lim sup

N→∞
E
[
MN

a (D \
⋃
C∈CN,q

C)
]
→ 0.

Proof of Lemma 8.7. We prove the claim in the discrete setting. The continuous case is similar.
The proof of this lemma is very close in spirit to the the proof of Lemma 8.6. Let q ≥ 1 and let
p ≤ q be much small than q. For a cluster C ∈ CN , we will denote by C(p) its 2−p-enlargement with
dyadic squares as in (8.2). Let EN,q,p be the event that

⋃
C∈CN,q C

(p) covers the whole domain D.
Since the clusters C ∈ CN are dense in D, for any fixed p,

lim
q→∞

lim inf
N→∞

P (EN,q,p)→ 1. (8.4)

On this event, we can write

lim sup
N→∞

E
[
MN

a

(
D \

⋃
C∈CN,q

C)1EN,q,p
]
≤ lim sup

N→∞
E
[
MN

a

( ⋃
C∈CN,q

(
C(p) \ C

))]
and we can use the exact same strategy as in the proof of Lemma 8.6 to show that the right hand
side term is at most C2−pa for some constant C > 0 depending only on the domain D. More
precisely, we use a discrete version of Lemma 8.5 together with the expression given in [ABJL23,
Propostion 10.1] for the first moment ofMN

a that converges to the continuum expression.
On the complementary event, we simply bound

E
[
MN

a (D \
⋃
C∈CN,q

C)1Ec
N,q,p

]
≤ E

[
MN

a (D)1Ec
N,q,p

]
.

The uniform integrability of (MN
a (D))N≥1 (see [ABJL23]), together with (8.4), ensures that the

right hand side term goes to zero as N →∞ and then q →∞. Let us give some details. Let M > 0
be large. We can bound

E
[
MN

a (D)1Ec
N,q,p

]
≤ E

[
MN

a (D)1MN
a (D)>M

]
+MP

(
EcN,q,p

)
.
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By (8.4), we deduce that

lim sup
q→∞

lim sup
N→∞

E
[
MN

a (D)1Ec
N,q,p

]
≤ lim sup

N→∞
E
[
MN

a (D)1MN
a (D)>M

]
.

By the uniform integrability of (MN
a (D))N≥1, the right hand side term goes to zero as M →∞.

The left hand side term being independent of M , it has to vanish as well. Wrapping things up, we
have

lim sup
q→∞

lim sup
N→∞

E
[
MN

a (D \
⋃
C∈CN,q

C)
]
≤ C2−pa.

We obtain the desired result by letting p→∞.

8.2 Proof of Theorem 8.3
Proof of Theorem 8.3. Let n ≥ 1, x1, . . . , xn ∈ D and k1, . . . , kn ≥ 1. First of all, we claim that
the convergence in distribution(

MN
a , {CN (xi, ki)}ni=1,LθDN

)
−−−−→
N→∞

(
Ma, {C(xi, ki)}ni=1,LθD

)
(8.5)

holds. Indeed it was proven in [ABJL23] that(
MN

a ,LθDN
)
−−−−→
N→∞

(
Ma,LθD

)
and in [Lup18b] (see Theorem 8.2) that(

{CN (xi, ki)}ni=1,LθDN
)
−−−−→
N→∞

(
{C(xi, ki)}ni=1,LθD

)
.

The convergence (8.5) then follows from the fact thatMa and {C(xi, ki)}ni=1 are both measurable
with respect to LθD. Now, we want to establish the joint convergence of(

{MN
a 1CN (xi,ki)}

n
i=1, {CN (xi, ki)}ni=1,LθDN

)
, N ≥ 1. (8.6)

The convergence (8.5) together with the trivial bound 1CN (xi,ki) ≤ 1 shows that this sequence is
tight. To conclude the proof, it is enough to identify the law of the subsequential limits. We will do
this in three steps.

Step 1: stochastic domination of the subsequential limits. Let ({Mi}ni=1, {Ci}ni=1,L)
be any subsequential limit of (8.6). In the following and to ease the notations, we will omit
the subsequence and we will assume that the convergence holds as N → ∞. For i = 1 . . . n,
let fi : D → [0,∞) be bounded nonnegative continuous functions, let ϕ : Rn → [0,∞) be a
nondecreasing, bounded, 1-Lipschitz function and let ψ1, ψ2 be two nonnegative continuous bounded
functions. The goal of this first step is to establish the following stochastic domination:

ϕ ((Mi, fi)ni=1)ψ1 ((Ci)ni=1)ψ2 (L) � ϕ
((
Ma1C(xi,ki), fi

)n
i=1

)
ψ1 ((C(xi, ki))ni=1)ψ2

(
LθD
)
. (8.7)

Let p ≥ 1 be large and recall the definition (8.1) of Qp. Let C(p)
N (xi, ki) be the discrete analogue

of the enlarged version C(p)(xi, ki) of C(xi, ki) (8.2). For i = 1, . . . , n, let Ci,p be any subset of D
which can be written as a union of dyadic squares Q ∈ Qp and let EN,p (resp. Ep) be the event that
for all i = 1 . . . n, C(p)

N (xi, ki) = Ci,p (resp. C(p)(xi, ki) = Ci,p). Because we are looking at “large”
clusters, we will be able to restrict ourselves to the event that these clusters are well separated.
For now, this means that we can assume that the sets Ci,p, i = 1 . . . n are pairwise disjoint. As a
consequence of this assumption, we will later have to deal with the probability that the clusters
C(xi, ki), i = 1 . . . n, are at distance at least 10.2−p to each other, but this probability tends to 1 as
p→∞. Because the fi’s are nonnegative, on the event EN,p, we can bound(

MN
a 1CN (xi,ki), fi

)
≤
(
MN

a 1Ci,p , fi
)
, i = 1 . . . n.

By the joint convergence (8.5), we deduce that

lim sup
N→∞

E
[
1EN,pϕ

(
(MN

a 1CN (xi,ki), fi)ni=1
)
ψ1 ((CN (xi, ki))ni=1)ψ2

(
LθDN

)]
(8.8)

≤ E
[
1Epϕ

(
(Ma1Ci,p , fi)ni=1

)
ψ1 ((C(xi, ki))ni=1)ψ2

(
LθD
)]
.
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On the event Ep, we can bound

(Ma1Ci,p , fi) ≤ (Ma1C(xi,ki), fi) + ‖fi‖∞Ma(Ci,p \ C(xi, ki)).

Recalling that ϕ is 1-Lipschitz, this leads to the following upper bound for the right hand side of
(8.8):

E
[
1Epϕ

(
(Ma1C(xi,ki), fi)ni=1

)
ψ1 ((C(xi, ki))ni=1)ψ2

(
LθD
)]

+ ‖ψ1‖∞ ‖ψ2‖∞
n∑
i=1
‖fi‖∞ E

[
1EpMa(Ci,p \ C(xi, ki))

]
.

By Lemma 8.6, the second term is at most C2−paP (Ep). Summing over all pairwise disjoint
Ci,p, i = 1 . . . n, we obtain that

E [ϕ ((Mi, fi)ni=1)ψ1 ((Ci)ni=1)ψ2 (L)] ≤ E
[
ϕ
(
(Ma1C(xi,ki), fi)ni=1

)
ψ1 ((C(xi, ki))ni=1)ψ2

(
LθD
)]

+ C2−pa + ‖ϕ‖∞ ‖ψ1‖∞ ‖ψ2‖∞ P
(

min
i 6=j

d(C(xi, ki), C(xj , kj)) ≤ 10.2−p
)
.

After letting p→∞, this gives

E [ϕ ((Mi, fi)ni=1)ψ1 ((Ci)ni=1)ψ2 (L)] ≤ E
[
ϕ
(
(Ma1C(xi,ki), fi)ni=1

)
ψ1 ((C(xi, ki))ni=1)ψ2

(
LθD
)]
.

Since this is true for any suitable ϕ,ψ1, ψ2, this shows the desired stochastic domination (8.7).

Step 2: the expectations agree. We specify the result of the first step to a single test
function f : D → [0,∞). Recall the notation of Lemma 8.7. As a consequence of Step 1, any
subsequential limit(

(M̃a1C , f)C∈C̃q2\C̃q1
, 0 ≤ q1 < q2

)
of

(
(MN

a 1CN , f)CN∈CN,q2\CN,q1
, 0 ≤ q1 < q2

)
N≥1

is stochastically dominated by its continuum counterpart (in the sense that each finite dimensional
marginals are stochastically dominated). In particular, for all q2 > q1 ≥ 0,

E
[ ∑
C∈C̃q2\C̃q1

(
M̃a1C , f

) ]
≤ E

[ ∑
C∈Cq2\Cq1

(Ma1C , f)
]
. (8.9)

Assume that this inequality is strict for some q2 > q1 ≥ 0 and let ε > 0 be the difference of the
right hand side and the left hand side. Applying (8.9) between 0 and q1 and between q2 and some
large q ≥ q2, we obtain that

E
[ ∑
C∈C̃q

(
M̃a1C , f

) ]
≤ E

[ ∑
C∈Cq

(Ma1C , f)
]
− ε.

By Lemma 8.7, letting q →∞ in the previous inequality yields

lim
N→∞

E
[(
MN

a , f
)]
≤ E [(Ma, f)]− ε.

But we know that E
[(
MN

a , f
)]

converges to E [(Ma, f)]. Therefore, it implies that for all q2 >
q1 ≥ 1, the inequality (8.9) is an equality. Together with the stochastic domination, it proves that(

(M̃a1C , f)C∈C̃q2\C̃q1
, 0 ≤ q1 < q2

) (d)=
(

(Ma1C , f)C∈Cq2\Cq1
, 0 ≤ q1 < q2

)
.

Step 3: conclusion. Putting Steps 1 and 2 together, we see that for any x ∈ D, k ≥ 1 and
f : D → [0,∞),

lim
N→∞

E
[(
MN

a 1CN (x,k), f
)]

= E
[(
Ma1C(x,k), f

)]
.

Together with the stochastic domination (8.7) proven in Step 1, this proves Theorem 8.3.

We conclude this section with:

Proof of Corollary 8.4. This follows directly from Theorem 8.3 and from Lemma 8.7 that shows
that most of the mass is carried by large clusters.
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9 Wick powers and expansion of M+
γ

9.1 Main results
The Wick powers of the GFF h, denoted by : hn :, n ≥ 2, give a precise meaning to hn, n ≥ 2.
Because the GFF is only a generalised function, taking such powers is a priori not a well defined
operation. A non trivial fact is that it is actually possible to make sense of these powers via a
renormalisation procedure. Contrary to the renormalisation of the exponential of the field, the
renormalisation is not multiplicative but additive: one subtracts to h(x)n a polynomial in h(x)
with diverging coefficients and degree strictly smaller than n. See Section 9.2 for more details.

The Wick renormalisation of the powers of the GFF h provides another approach to the
multiplicative chaos of the field. Indeed, by naively expanding the exponential around 0, one could
hope to define the exponential of γ times the GFF h by

:eγh(x)dx : =
∑
n≥0

γn

n! :hn : . (9.1)

It is well known that this procedure works in the L2-phase (see e.g. [LRV17, Section 2.3]) in the
sense that the above sum converges to a random measure that agrees with the exponential of the
field. See Remark 9.3 for why (9.1) does not hold outside of the L2-phase. Note that it is a priori
not obvious that the resulting sum is nonnegative; eventually this boils down to (9.8).

In the Brownian loop soup setting, Le Jan [LJ11] gave a construction of the renormalised powers
:Lnx : of the local time :Lx : for any intensity θ. This is closely related to the (self-)intersection local
time of Brownian motion (see the lecture notes [LG92] and the references therein). In Section 9.3,
we will give the precise relation between the multiplicative chaosMγ of the loop soup and these
intersection local times. When θ = 1/2, this question reduces to the aforementioned GFF setting
and we directly obtain that

Mγ,θ=1/2(dx) = 2
∑
n≥0

2nγ2n

(2n)! (2π)n :Lnx : dx a.s. (9.2)

In Theorem 9.2, we show that such a relation also holds for any intensity θ > 0. However, the
coefficients in the expansion are different and depend on θ:

Mγ(dx) = 2
∑
n≥0

γ2n

2n
Γ(θ)

n!Γ(n+ θ) (2π)n : Lnx : dx a.s. (9.3)

See Theorem 9.2 for a precise statement.

As already alluded to, when θ = 1/2, the Wick powers of the local time reduce to the even
powers of the GFF. To define the odd powers, one has to take into account the sign of the field.
In Sections 9.4 and 9.5 we address the question of defining all the powers of the field hθ for any
intensity θ ∈ (0, 1/2). We showed in [JLQ23] that the 1D and 2D loop soups are intimately related.
We will therefore start in Section 9.4 by building our intuition with the one-dimensional setting.
This case is particularly appealing since for any θ, there is an isomorphism relating the local time
of the loop soup to a squared Bessel process of dimension d = 2θ, see [Lup18b] and Proposition
9.6 below. In dimension 1, the analogue of the field hθ and the local time are both well defined
pointwise, so there is no need of normalising the powers to define them. However, we will show
in Lemmas 9.7 and 9.9 that there is a unique way of normalising the powers so that the resulting
process is a martingale. When these powers are integer powers of the local time, this normalisation
agrees with Le Jan’s two-dimensional normalisation procedure (generalised Laguerre polynomials).

In Section 9.5, we will come back to the 2D setting and state a precise conjecture about a
renormalisation procedure that would define all the Wick powers of hθ; see Conjecture 9.11. This
procedure in particular reveals a surprising notion of duality between the intensities θ and θ∗ = 2−θ.
We then elaborate on this conjecture and show that it would imply the following expansion for the
measureM+

γ : almost surely,

M+
γ (dx) =

(∑
k≥0

γ2k

2k
Γ(θ)

k!Γ(k + θ) (2π)k : Lkx : +cconjγ
2(1−θ) γ

2k

2k
Γ(θ∗)

k!Γ(k + θ∗) (2π)k : hθ(x)Lkx :
)

dx.

See Section 9.5 for the definition of the different terms appearing in the above display.
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9.2 Renormalised powers of the GFF and of the occupation field of the
loop soup
The purpose of this section is to recall the definition of the Wick powers of the GFF and of the local
time of the loop soup. We start by working in the discrete setting where everything is well defined
pointwise. Let DN ⊂ 1

NZ2 be a discrete approximation of D as in (2.6). Let LθDN be a random
walk loop soup in DN and denote by `x the local time at x (see (2.7)). Let ϕN be a discrete GFF
in DN whose covariance is given by the discrete Green function GN .

To renormalise the powers of the GFF, the relevant polynomials are the Hermite polynomials
Hn, n ≥ 0, which are the only monic2 polynomials that are orthogonal w.r.t. the Gaussian measure
e−x

2/2dx and such that the degree of Hn is n for all n ≥ 0. They can be explicitly written as

Hn(X) =
bn/2c∑
i=0

(−1)i n!
i!(n− 2i)!

Xn−2i

2i . (9.4)

The n-th Wick power of the discrete GFF ϕN is then defined by

: ϕN (x)n : = GN (x, x)n/2Hn

(
ϕN (x)/

√
GN (x, x)

)
. (9.5)

Regarding the local time of the loop soup with intensity θ, the relevant polynomials are the
generalised Laguerre polynomials L(θ−1)

n , n ≥ 0, which are the only monic polynomials that are
orthogonal w.r.t. the Gamma(θ)-measure xθ−1e−x1{x>0}dx (which is natural since for any given
point x, `x is Gamma(θ)-distributed) and such that the degree of L(θ−1)

n is n for all n. Their explicit
expression is given by

L(θ−1)
n (X) =

n∑
i=0

(−1)n−i Γ(n+ θ)
(n− i)!Γ(θ + i)

n!
i! X

i. (9.6)

The n-th Wick power of the local time `x is defined by

: `nx : = GN (x, x)nL(θ−1)
n (`x/GN (x, x)).

The following result states that these renormalisations in the discrete possess nondegenerate
scaling limits. We will view ϕN , : ϕnN :, ` and : `n :, n ≥ 1, as random elements of RC0(D) by setting
for all f ∈ C0(D),

(ϕN , f) = 1
N2

∑
x∈DN

ϕN (x)f(x)

and similarly for the other objects. We will endow RC0(D) with the product topology.

Theorem 9.1. For all n ≥ 1, (ϕN , : ϕ2
N :, . . . , : ϕnN :) converges in distribution as N →∞ to some

nondegenerate (ϕ, : ϕ2 :, . . . , : ϕn :) where : ϕ2 :, . . . , : ϕn : are measurable w.r.t. the Gaussian free
field ϕ.

For all n ≥ 1, (: ` :, : `2 :, . . . , : `n :) converges in distribution as N →∞ to some (: L :, : L2 :
, . . . , : Ln :) where : L2 :, . . . , : Ln : are measurable w.r.t. the renormalised occupation field : L :.
Moreover the convergence is joint with the loop soup.

Proof. This is a folklore result. A proof of the joint convergence of (ϕN , : ϕ2
N :) can be found in

[ABJL23, Appendix A]. This proof generalises to any power. It also applies to the local time case
since it relies on the computation of moments that are well understood in the loop soup setting
[LJ11].

9.3 Expansion of Mγ

The main result of this section is the expansion (9.3) of the measureMγ that we now state precisely:

Theorem 9.2 (Expansion of Mγ). Let θ > 0 and γ ∈ (0,
√

2). For any bounded test function
f : D → R,

2
n0∑
n=0

γ2n

2n
Γ(θ)

n!Γ(n+ θ)

∫
(2π)n : Lnx : f(x)dx L2

−−−−→
n0→∞

(Mγ , f) . (9.7)

2Monic means that the leading coefficient equals 1.
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Let us emphasise that, contrary to most of the current article, the above result is not restricted
to the subcritical and critical regimes, but holds for any intensity θ > 0.
Remark 9.3. By (the proof of) Theorem 9.2, for any bounded test function f and complex values of
γ with |γ| <

√
2, the left hand side of (9.7) converges in L2. This gives a direct way of generalising

the definition ofMγ to complex values of γ by defining (Mγ , f) as the limit of the left hand side of
(9.7). As in the Gaussian case, when γ /∈ R, the resulting object should not be a (complex) measure
but only a generalised function. In the Gaussian setting, it is actually possible to define a complex
multiplicative chaos for complex values of γ in the eye-shaped domain

γ ∈ convex hull
(
±2 ∪D(0,

√
2)
)
.

We refer to the introduction of [Lac22] for more background on complex Gaussian multiplicative
chaos. In our non-Gaussian setting, making sense ofMγ for non real values of γ outside of the
L2-regime {|γ| <

√
2} is a much more challenging question that we do not address in this article.

Note that since it should not be possible to defineMγ outside of the (closure of the – to avoid
talking about boundary cases that are not fully understood in the complex case) above eye-shaped
domain, the radius of convergence of the left hand side of (9.3) should be

√
2. In other words, the

fact that Theorem 9.2 does not consider the regime γ ∈ [
√

2, 2) is not a limitation of the proof.
Remark 9.4. Extrapolating the above result to the case of one Brownian trajectory (θ → 0), it is
likely that the Brownian multiplicative chaos measure associated to one trajectory (considered in
[BBK94, AHS20, Jeg20, Jeg22, Jeg21]) can be written as the sum of the n-th self intersection local
time of the path (see the lecture notes [LG92] and the references therein).

We now move on to the proof of Theorem 9.2. In the GFF case, the relation (9.1) eventually
boils down to the identity:

∑
n≥0

γntn/2

n! Hn(u/
√
t) = eγu−γ

2t/2, t, u ∈ R. (9.8)

Essentially, this identity guarantees that (9.1) holds even at the discrete level. In order to extend
(9.2) to general intensities, one has to find a way of summing the Laguerre polynomials in such
a way that the resulting sum is positive and behaves asymptotically like the exponential in (9.8).
This algebraic property is the content of the next lemma (see (9.11) for the discrete version of
(9.3)). This identity does not seem to have been noticed before. Recall the definition (2.11) of the
modified Bessel function of the first kind Iθ−1. Recall also its asymptotic behaviour (see [AS84,
9.7.1]):

Iθ−1(u) ∼ 1√
2πu

eu, as u→∞. (9.9)

Lemma 9.5. For all t, u, γ > 0,

∑
n≥0

(
γ2t

2

)n 1
n!Γ(θ + n)L(θ−1)

n

(
u2

2t

)
= e−γ

2t/2
(
γ2ut

4

) 1−θ
2

Iθ−1 (γu) . (9.10)

Proof. This is a direct computation using the explicit expressions (9.6) and (2.11) of the Laguerre
polynomials and of Iθ−1.

Specifying Lemma 9.5 to u =
√

2× 2π`x and t = 2πGN (x, x), we obtain(γ2

2 2π`x
) 1−θ

2
e−

γ2
2 2πGN (x,x)Iθ−1

(
γ
√

2× 2π`x
)

=
∑
n≥0

γ2n

2n
1

n!Γ(n+ θ) (2π)n : `nx : a.s. (9.11)

This is the discrete version of Theorem 9.2 that we are now ready to prove.

Proof of Theorem 9.2. Let f : D → R be a bounded test function. We start by showing that the
left hand side of (9.7) converges in L2. For n0 ≥ 1, we write

Sn0 :=
n0∑
n=0

γ2n

2n
Γ(θ)

n!Γ(n+ θ)

∫
(2π)n : Lnx : f(x)dx.
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Let n0 < n1 be two integers. By the equation (4.6) in [LJ11] (beware that our normalisation of
: Lnx : is n! times Le Jan’s normalisation), for all n,m ≥ 1 and z, w ∈ D, we have

E [: Lnz :: Lmw :] = 1{n=m}
Γ(θ + n)n!

Γ(θ) GD(z, w)2n. (9.12)

Hence,

E
[
(Sn1 − Sn0)2

]
= 1

Γ(θ)

n1∑
n=n0

γ4n

22n
1

n!Γ(n+ θ)

∫
D×D

(2π)2nGD(z, w)2n dz dw.

We can moreover bound for all n ≥ 0,∫
D×D

(2π)2nGD(z, w)2n dz dw ≤ C
∫ 1

0
r(log r)2ndr = C2−2nn(2n− 1)!

which implies that

E
[
(Sn1 − Sn0)2

]
≤ C

n1∑
n=n0

γ4n

24n
(2n)!

n!Γ(n+ θ) ≤ C
∑
n≥n0

√
n

n!
Γ(n+ θ)

γ4n

22n .

Since γ <
√

2, the above sum is finite and vanishes as n0 →∞. This shows that (Sn0 , n0 ≥ 1) is a
Cauchy sequence in L2 and in particular converges to a limiting random variable S∞. The main
task actually consists in showing that S∞ agrees almost surely with 1

2 (Mγ , f).
We explain this identification now. We want to take the limit of the relation (9.11). We start

by considering the limit of the right hand side of (9.11). An analogous computation as the one we
have just done in the continuum shows that

lim
n0→∞

lim sup
N→∞

E
[( ∑

n≥n0

γ2n

2n
1

n!Γ(n+ θ)
1
N2

∑
z∈DN

f(z)(2π)n : `nz :
)2]

= 0.

This follows from the exact same computation that we just performed since (9.12) also holds in
the discrete with the continuum Green function GD replaced by its discrete version GDN . These
estimates about the tails of the sums in the discrete and in the continuum, in combination with
Theorem 9.1, show that∑

n≥0

γ2n

2n
1

n!Γ(n+ θ)
1
N2

∑
z∈DN

f(z)(2π)n : `nz : (d)−−−−→
N→∞

S∞.

Moreover, this convergence is joint with LθDN → L
θ
D.

We now move to the convergence of the left hand side of (9.11). Recall that a = γ2/2. By
[ABJL23, Theorem 1.12],

(logN)1−θ

N2−a

∑
z∈DN

CR(z,D)−af(z)1{2π`z≥a(logN)2} (9.13)

converges in distribution as N →∞ to c∗ (Mγ , f) where c∗ = (2
√

2)aeaγEM

2a1−θΓ(θ) and γEM is the Euler–
Mascheroni constant. Moreover, the convergence is joint with LθDN → L

θ
D. We now argue that

1
N2

∑
z∈DN

f(z)
(
γ2

2 2π`z
) 1−θ

2

e−
γ2
2 2πGN (z,z)Iθ−1

(
γ
√

2× 2π`z
)

(9.14)

− 1
c∗Γ(θ)

(logN)1−θ

N2−a

∑
z∈DN

CR(z,D)−af(z)1{2π`z≥a(logN)2}

goes to zero in L2 as N →∞ (when γ ∈ [
√

2, 2) this convergence should hold in L1, but we do not
need to consider this case here). This type of arguments is now fairly routine in the multiplicative
chaos literature. Indeed, it amounts to comparing two different types of approximations of the
measure. One approximation is based on the uniform measure on the set of thick points. The other
one basically consists in taking the exponential of the square root of the local time. See for instance
[Jeg20, Theorems 1.1 and 1.2] where a similar result is shown in the context of the local times of
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small circles of a given planar Brownian motion. Let us emphasise that the situation we are dealing
with in this article is simpler than the one in [Jeg20] since we are only interested in the L2-regime.

We are therefore not going to prove that (9.14) goes to zero in L2. Instead, we are going to give
some heuristics. Using the asymptotic behaviour (9.9) of Iθ−1, we see that the first term in (9.14)
is very close to

1√
2πγ21/4

1
N2

∑
z∈DN

f(z)(2π`z)−1/4
(
γ2

2 2π`z
) 1−θ

2

e−
γ2
2 2πGN (z,z)eγ

√
2×2π`z .

By a Cameron-Martin type result, we also see that the shift eγ
√

2×2π`z makes 2π`z/(logN)2 very
much concentrated around the value a. Hence, the power of 2π`z in front of the exponential can be
replaced by the same power of a(logN)2 and the first term of (9.14) is very close to

1
2
√
π
a1/2−θ (logN)1/2−θ

N2

∑
z∈DN

f(z)e−
γ2
2 2πGN (z,z)eγ

√
2×2π`z .

We are now back to the more familiar situation of comparing the uniform measure on the set of
thick points and the exponential of the square root of the local time.

Overall, this shows that

1
N2

∑
z∈DN

f(z)
(
γ2

2 2π`z
) 1−θ

2

e−
γ2
2 2πGN (z,z)Iθ−1

(
γ
√

2× 2π`z
) (d)−−−−→

N→∞

1
Γ(θ) (Mγ , f)

jointly with the convergence LθDN → L
θ
D. Wrapping things up, and recalling that 2S∞ denotes the

L2 limit of the left hand side of (9.7), we have shown that(
(Mγ , f) ,LθD

) (d)=
(
2S∞,LθD

)
.

Because (Mγ , f) and 2S∞ are measurable w.r.t. LθD, they must agree almost surely. This concludes
the proof.

9.4 One-dimensional Brownian loop soup and Wick powers of Bessel
processes
In this section, we study the analogue of the field hθ in the one-dimensional case. This is partly
motivated by the recent connection between the 1D and 2D loop soup discovered in [JLQ23]. As we
will recall in Proposition 9.6 below, the local time of the 1D loop soup is distributed as a (reflected)
squared Bessel process of dimension d = 2θ. When θ = 1/2, obtaining a Brownian motion (1D
analogue of the GFF) from the loop soup then boils down to taking the square root of a (reflected)
1D squared Bessel process and then flipping each excursion independently of each other with equal
probability. What is the analogue of this procedure when θ 6= 1/2? We will see that, surprisingly,
taking the square root is not the right thing to do (although this might be very natural since the
square root of a squared Bessel process is just a Bessel process) and that one has to take the power
1− θ = 1− d/2 instead. This power is exactly the one appearing in the Radon–Nikodym derivative
of the Bessel process and its dual Bessel process of dimension d∗ = 4−d = 2θ∗ where θ∗ = 2−θ; see
(9.17). The purpose of this section is also to hint at the duality between the intensities θ and 2− θ
that might still hold in some sense in dimension two. See Section 9.5 for more details concerning
the 2D case.

9.4.1 Loop soup on R+

Let us start by defining the loop soup on the half line R+. We follow [Lup18b]. For x, y ∈ R+, let
p(t, x, y) and pR+(t, x, y) be the heat kernels on R and R+:

p(t, x, y) = 1√
2πt

e−(y−x)2/(2t), pR+(t, x, y) = p(t, x, y)− p(t, x,−y)

and let Pt,x,yR+ be the law of a Brownian bridge from x to y of duration t in the half line R+. The
Green function and the loop measure are respectively given by

GR+(x, y) =
∫ ∞

0
pR+(t, x, y)dt = 2x ∧ y and µloop

R+ =
∫ ∞

0

pR+(t, x, x)
t

Pt,x,xR+ dt.
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For θ > 0, the loop soup LθR+ in R+ with parameter θ is distributed according to a Poisson Point
Process with intensity θµloop

R+ . Compared to the 2D case, the local time of LθR+ is well defined
pointwise and finite and we will denote it

Lx(LθR+) =
∑

℘∈Lθ
R+

Lx(℘), x ∈ R+.

Proposition 9.6 ([Lup18b], Proposition 4.6). Let θ > 0. (Lx(LθR+))x≥0 has the law of a squared
Bessel process of dimension d = 2θ, reflected at 0 when θ < 1.

Let Pd be the law under which (Rx, x ≥ 0) is a squared Bessel process of dimension d = 2θ,
reflected at 0 when θ < 1. The clusters of LθR+ correspond to the excursions away from 0 of R.
Therefore Proposition 9.6 implies that when θ < 1 there are infinitely many clusters and when
θ ≥ 1 there is only one cluster. Notice that the critical point is different from the two-dimensional
case. However, we show in [JLQ23, Theorem 1.9] that there is a phase transition at θ = 1 in
the percolative behaviour of large loops on the half-infinite cylinder (0,∞) × S1 (by conformal
invariance, this translates to a phase transition in the percolative behaviour of large loops targeting
a given point of some bounded 2D domain). See [JLQ23, Section 1.3] for more details.

9.4.2 Characterisation of Laguerre polynomials in terms of Bessel processes

As already seen, the generalised Laguerre polynomials L(θ−1)
n have been used by Le Jan to renormalise

the powers of the local time of the loop soup in dimension two. In this section, we show that
these polynomials are also special in dimension one in the sense that they are the only polynomials
leading to martingales. See Lemma 9.7 for a precise statement.

For any θ > 0, the Wick powers of the local time Lx(LθR+) are defined by

: Lx(LθR+)n : = (2x)nL(θ−1)
n

(Lx(LθR+)
2x

)
, x ≥ 0, n ≥ 1. (9.15)

In the special case θ = 1/2 this corresponds to the even Wick powers of 1D Brownian motion.

Lemma 9.7. Let θ > 0 and n ≥ 1. The process (: Lx(LθR+)n :)x≥0 is a martingale. Moreover,
L(θ−1)
n is the only monic polynomial such that (9.15) is a martingale.

Let us stress that it is a well known fact that the Wick powers of 1D Brownian motion lead to
martingales. Martingales associated to diffusions are very well studied. However, our goal here is
to highlight the strong link between Laguerre polynomials and Bessel processes.

Proof. Because in this lemma the space R+ is thought of as time, we will change the notations x
and y for the space variables by s and t. We will denote by (Ft)t≥0 the natural filtration of the
Bessel process. Let Xt =

√
Rt be a Bessel process of dimension d = 2θ. Recall that Xt satisfies

the stochastic differential equation dXt = d−1
2Xt dt+ dBt where (Bt)t≥0 is a 1D standard Brownian

motion. A computation using Itô formula leads to the following SDE for : Lt(LθR+)n : (we write Ln
instead of L(θ−1)

n )

d
{

(2t)nL(θ−1)
n

(X2
t

2t

)}
= 2ntn−1XtL′n

(X2
t

2t

)
dBt

+ 2ntn−1
{
nLn

(X2
t

2t

)
+
(
θ − X2

t

2t

)
L′n
(X2

t

2t

)
+ X2

t

2t L′′n
(X2

t

2t

)}
dt.

Because Ln = L(θ−1)
n satisfies nLn(u) + (θ − u)L′n(u) + uL′′n(u) = 0 (see e.g. (22.1.3) and (22.8.6)

in [AS84]), we see that the finite variation part vanishes. In other words, (: Lt(LθR+)n :)t≥0 is a
local martingale. A routine argument concludes that it is a martingale as desired.

The fact that Ln = L(θ−1)
n is the only monic polynomial such that (9.15) is a martingale follows

from the fact that it is the only monic polynomial satisfying nLn(u)+(θ−u)L′n(u)+uL′′n(u) = 0.

9.4.3 Analogue of hθ on R+ and renormalisation of its powers
Assume that θ < 1 (subcritical regime for 1D loop soups). In this section we define the natural
analogue hθ,R+ of hθ on R+ and give a procedure to renormalise its “odd” powers. Let R be a
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2θ-dimensional squared Bessel process. Let E be the set of excursions of R and, conditionally on E ,
let σe, e ∈ E be i.i.d. spins taking values in {±1} with equal probability. Define

hθ,R+(x) := σexR
1−θ
x , x ≥ 0,

where ex is the excursion containing x.
The following result computes the two-point function of the field hθ,R+ and shows that tilting

the probability measure by hθ,R+(x)hθ,R+(y) amounts to changing the dimension of the Bessel
process to its dual d∗ = 4− d on the interval [x, y]. Equivalently, this changes the intensity of the
loop soup to θ∗ = 2− θ on the interval [x, y].
Lemma 9.8. Let θ ∈ (0, 1). For all 0 ≤ x ≤ y, and all bounded measurable function F ,

Ed
[
hθ,R+(x)hθ,R+(y)F ((Rz)z∈[x,y])

]
= Γ(θ∗)

Γ(θ) GR+(x, y)2(1−θ)Ed
∗ [
F ((Rz)z∈[x,y])

]
(9.16)

where d∗ = 4− d = 2θ∗ and θ∗ = 2− θ.

Proof. By independence of the signs on different clusters and then by Markov property, we have

Ed
[
hθ,R+(x)hθ,R+(y)F ((Rz)z∈[x,y])

]
= Ed

[
R1−θ
x R1−θ

y 1{∀z∈[x,y],Rz>0}F ((Rz)z∈[x,y])
]

= Ed
[
R1−θ
x EdRx

[
R1−θ
y−x1{∀z∈[0,y−x],Rz>0}F ((Rz)z∈[0,y−x])

]]
.

As already mentioned, the key observation is that the power 1− θ is exactly the power one needs
to take in order to obtain the dual Bessel process of dimension d∗ = 4− d. More precisely, for any
t > 0 and starting point r > 0, restricted to the event that {∀s ∈ [0, t], Rs > 0}, we have

dPd∗r
dPdr

∣∣
Ft

=
(
Rt
r

)1−d/2
(9.17)

where (Fs)s≥0 is the natural filtration associated to (Rs)s≥0. See [Law18, Proposition 2.2]. This
implies that the left hand side of (9.16) is equal to

Ed
[
R2(1−θ)
x Ed

∗

Rx

[
1{∀z∈[0,y−x],Rz>0}F ((Rz)z∈[0,y−x])

]]
= Ed

[
R2(1−θ)
x Ed

∗

Rx

[
F ((Rz)z∈[0,y−x])

]]
since the dual Bessel process does not reach zero a.s. (d∗ ≥ 2). Under Pd, Rx is Gamma(θ, 2x)-
distributed (θ and 2x are respectively the shape and scale parameters). A computation with Gamma
distributions shows that for any measurable function f : [0,∞)→ R,

Ed
[
R2(1−θ)
x f(Rx)

]
= Ed

[
R2(1−θ)
x

]
Ed
∗

[f(Rx)] = (2x)2(1−θ) Γ(2− θ)
Γ(θ) Ed

∗
[f(Rx)] .

Wrapping things up and by Markov property, we have obtained that the left hand side of (9.16) is
equal to

(2x)2(1−θ) Γ(2− θ)
Γ(θ) Ed

∗
[
Ed
∗

Rx

[
F ((Rz)z∈[0,y−x])

]]
= (2x)2(1−θ) Γ(2− θ)

Γ(θ) Ed
∗ [
F ((Rz)z∈[x,y])

]
.

Lemma 9.8 then follows from the fact that GR+(x, y) = 2x.

When θ ∈ (0, 1), Lemma 9.8 suggests to define the “odd” powers (i.e. powers that are not
integer powers of the local time) of hθ,R+ by

: hθ,R+(x)Lx(LθR+)n : = (2x)nhθ,R+(x)L(θ∗−1)
n

(Lx(LθR+)
2x

)
, x ≥ 0, n ≥ 1. (9.18)

When θ = 1/2, this definition agrees with the definition (9.5) of odd Wick powers of 1D Brownian
motion. This follows from the identity (9.20) between odd Hermite polynomials and the Laguerre
polynomials L(θ∗−1)

n where θ∗ = 3/2. In the following lemma, we show that these renormalised
powers define martingales. In view of Lemma 9.7, we believe that this normalisation has the
potential to work in 2D as well. See Section 9.5 for much more about the two-dimensional case.
Lemma 9.9. Let θ ∈ (0, 1). The processes

(hθ,R+(x))x≥0, (: hθ,R+(x)Lx(LθR+)n :)x≥0, , n ≥ 1,

are martingales.
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Proof. Let n ≥ 0 (the case n = 0 corresponding to hθ,R+). As before, denote by (Ft)t≥0 the natural
filtration associated to R. By independence of the spins on different excursions and then by the
relation (9.17) between Bessel processes with dimensions d = 2θ and d∗ = 4− d = 2θ∗, we obtain
that for any 0 ≤ s < t,

Ed
[
: hθ,R+(t)Lt(LθR+)n :

∣∣∣Fs] = σesE
d

[
R1−θ
t 1{∀u∈[s,t],Ru>0}(2t)nL(θ∗−1)

n

(Lt(LθR+)
2t

)∣∣∣Fs]
= σesR

1−θ
s Ed

∗
[
(2t)nL(θ∗−1)

n

(Lt(LθR+)
2t

)∣∣∣Fs] .
If n = 0, this immediately gives the desired martingale property. If n ≥ 1, we use Lemma 9.7 to
conclude that

E
[
: hθ,R+(t)Lt(LθR+)n :

∣∣∣Fs] = σesR
1−θ
s (2s)nL(θ∗−1)

n

(Ls(LθR+)
2s

)
= :hθ,R+(s)Ls(LθR+)n : .

The last equality follows by definition. This concludes the proof.

9.5 Wick powers involving hθ and expansion of M+
γ

In this section we elaborate on Conjecture 1.14 by giving a much more precise conjecture (Conjecture
9.11 below) that would allow us to define all the Wick powers of hθ. We will then show that this
conjecture would have very strong implications concerning the asymptotic behaviour of the crossing
probabilities studied in [JLQ23] and would also provide the expansion of the signed measureM+

γ ;
see (9.25) and (9.24).

Let us go back to the discrete setting first. Recall the definition (1.10) of hθ,N , the (conjecturally)
analogue of hθ in the discrete. We work on the cable graph so that hθ,N is simply a discrete GFF.
The following lemma shows that the duality between θ and θ∗ = 2 − θ that holds in the one-
dimensional setting (Lemma 9.8) also holds locally in the two-dimensional setting when θ = 1/2;
see also Remark 1.13.
Lemma 9.10. Assume that θ = 1/2 and let F : [0,∞)2 → R be a bounded measurable function.
For all x, y ∈ DN ,

E
[
hθ,N (x)hθ,N (y)F (`x(LθDN ), `y(LθDN ))

]
= GDN (x, y)E

[
F (`x(Lθ

∗

DN ), `y(Lθ
∗

DN ))
]

(9.19)

where θ∗ = 2− θ = 3/2.
The key ingredient in the proof of Lemma 9.10 is that the odd Hermite polynomials are related

to the Laguerre polynomials L(θ∗−1)
n with θ∗ = 3/2. See (9.20) below.

Proof. One could use the BFS-Dynkin isomorphism (1.9) to show this lemma. We will use another
approach here that allows us to highlight some extra features of the Wick powers. By density-type
arguments, it is enough to prove (9.19) when F (s, t) = P (s/GDN (x, x)) × Q(t/GDN (y, y)) is a
product of two polynomials P (·/GDN (x, x)) and Q(·/GDN (y, y)). We can moreover assume that
these polynomials belong to the basis {L(θ∗−1)

n , n ≥ 0}, i.e. that P = L(θ∗−1)
n and Q = L(θ∗−1)

m for
some n,m ≥ 0. The right hand side of (9.19) can then be computed directly thanks to the study of
the renormalised local time of the loop soup with intensity θ∗ (see [LJ11])

E
[
L(θ∗−1)
n

( `x(Lθ∗DN )
GDN (x, x)

)
L(θ∗−1)
m

( `y(Lθ∗DN )
GDN (y, y)

)]
= 1{n=m}

Γ(θ∗ + n)n!
Γ(θ∗)

GDN (x, y)2n

GDN (x, x)GDN (y, y) .

Concerning the left hand side term in (9.19), we use the fact that `x(LθDN ) = hθ,N (x)2/2 and the
following identity between odd Hermite polynomials and Laguerre polynomials [AS84, (22.5.41)]

1
2nG

2n+1
2 H2n+1

(
h√
G

)
= hGnL(θ∗−1)

n

(
h2

2G

)
, n ≥ 0, h ∈ R, G > 0. (9.20)

Combining these two ingredients gives

E
[
hθ,N (x)hθ,N (y)L(θ∗−1)

n

( `x(LθDN )
GDN (x, x)

)
L(θ∗−1)
m

( `y(LθDN )
GDN (y, y)

)]
= 1

2n+mGDN (x, x)1/2GDN (y, y)1/2E
[
H2n+1

( hθ,N (x)
GDN (x, x)1/2

)
H2m+1

( hθ,N (y)
GDN (y, y)1/2

)]
= 1{n=m}

(2n+ 1)!
22n

GDN (x, y)2n+1

GDN (x, x)nGDN (y, y)n
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where the last equality comes from the study of the Wick powers of the GFF (see [LJ11]). Recalling
that θ∗ = 3/2, one can check that Γ(θ∗+n)n!

Γ(θ∗) = (2n+1)!
22n and we obtain that both sides of (9.19) are

equal when F (s, t) = L(θ∗−1)
n (s/GDN (x, x))L(θ∗−1)

m (t/GDN (y, y)). This concludes the proof.

Let θ ∈ (0, 1/2]. Lemmas 9.8, 9.9 and 9.10 suggest to define the Wick renormalisation of
hθ,N (x)`nx by

: hθ,N (x)`nx : = hθ,N (x)G(x, x)nL(θ∗−1)
n (`x/G(x, x)) (9.21)

where θ∗ = 2− θ. The relation (9.20) between odd Hermite polynomials and Laguerre polynomials
L(1/2)
n guarantees that this renormalisation of hθ,N (x)`nx is consistent with the usual renormalisation

when θ = 1/2:

: hθ=1/2,N (x)`nx : = 1
2nG(x, x)

2n+1
2 H2n+1

(
hθ=1/2,N (x)√

G(x, x)

)
.

We make the following conjecture:

Conjecture 9.11. Let θ ∈ (0, 1/2). The Wick powers : hθ,N (x)`nx : defined in (9.21) have
nondegenerate scaling limits. More precisely, for any n0 ≥ 1,(

hθ,N , (: hθ,N`n :)n=1...n0 ,LθDN
) (d)−−−−→
N→∞

(
hconj
θ , (: hconj

θ Ln :)n=1...n0 ,LθD
)

where the right hand side term is defined by this limit. The convergence holds in the space (H−ε)n0×L
for any ε > 0. Moreover, hconj

θ and (: hconj
θ Ln :)n=1...n0 are measurable w.r.t. LθD.

Let us stress that this conjecture is known when θ = 1/2; see Theorem 9.1. This conjecture is
particularly appealing to us since:

Theorem 9.12. Let θ ∈ (0, 1/2] and γ ∈ (0,
√

2). Define

mγ,N (x) =
∑
k≥0

γ2k

2k
Γ(θ)

k!Γ(k + θ) (2π)k : `kx : +γ2(1−θ)
∑
k≥0

γ2k

2k
Γ(θ∗)

k!Γ(k + θ∗) (2π)k : hθ,N (x)`kx : (9.22)

where the Wick powers : hθ,N (x)`kx : are defined in (9.21). For any bounded smooth test function f ,

1
N2

∑
x∈DN

f(x)mγ,N (x) (d)−−−−→
N→∞

(
M+

γ , f
)

(9.23)

jointly with LθDN → L
θ
D.

Let us emphasise that Theorem 9.12 is not conditionally on Conjecture 9.11. This result is
another strong indication that Conjecture 9.11 should hold.

Proof of Theorem 9.12. Let meven
γ,N (x) and modd

γ,N (x) be respectively the first and second term on the
right hand side of (9.22). Recall that, as a consequence of Lemma 9.5, we obtained that (see (9.11))

meven
γ,N (x) = Γ(θ)

(
γ2

2 2π`x
) 1

2−
θ
2

e−
γ2
2 G(x,x)Iθ−1(γ

√
2× 2π`x).

Similarly, Lemma 9.5 applied to θ∗ instead of θ yields

modd
γ,N (x) = γ2(1−θ)hθ,N (x)Γ(θ∗)

(
γ2

2 2π`x
) 1

2−
θ∗
2

e−
γ2
2 G(x,x)Iθ∗−1(γ

√
2× 2π`x)

= 21−θΓ(θ∗)
(
γ2

2

) 1
2−

θ
2

hθ,N (x)(2π`x) 1
2−

θ∗
2 e−

γ2
2 G(x,x)Iθ∗−1(γ

√
2× 2π`x).

Recall the definition (1.10) of hθ,N : hθ,N (x) = cθσx(2π`x)1−θ where cθ = 2θ−1Γ(θ)/Γ(θ∗). We can
rewrite hθ,N (x)(2π`x) 1

2−
θ∗
2 = cθσx(2π`x) 1

2−
θ
2 and we overall find that mγ,N (x) is equal to(

γ2

2 2π`x
) 1

2−
θ
2

e−
γ2
2 G(x,x)

{
Γ(θ)Iθ−1(γ

√
2× 2π`x) + 21−θΓ(θ∗)cθσxIθ∗−1(γ

√
2× 2π`x)

}
.
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The constant cθ has been chosen so that the two constants in front of the modified Bessel functions
match (which is particularly important since they have the same asymptotic behaviour at infinity)
and

mγ,N (x) = Γ(θ)
(
γ2

2 2π`x
) 1

2−
θ
2

e−
γ2
2 G(x,x)

{
Iθ−1(γ

√
2× 2π`x) + σxIθ∗−1(γ

√
2× 2π`x)

}
.

In the special case θ = 1/2, we have

I−1/2(z) =
√

2
πz

cosh(z) and I1/2(z) =
√

2
πz

sinh(z)

and we do recover that

mγ,N (x) = Γ(1/2) 1√
π
e−

γ2
2 G(x,x)eσxγ

√
2×2π`x = e−

γ2
2 G(x,x)eσxγ

√
2×2π`x

which converges to : eγh : as N → ∞. In general (θ ∈ (0, 1/2]), if σx = −1, the leading order
terms of the two Bessel functions will cancel each other. Since the normalisation factor has been
tuned to normalise these leading order terms, the subleading order terms will vanish in the scaling
limit and the measure will concentrate on points with a positive spin. One can therefore use a
similar reasoning as in the proof of Theorem 9.2 and compare mγ,N (x) withMa,N (dx)1{σx=1}. In
Corollary 8.4 we showed that this latter measure converges toM+

γ , so this argument shows that
mγ,N (x) also converges toM+

γ .

Consequences of Conjecture 9.11 Let us now assume that Conjecture 9.11 holds and
discuss the implications it would have. In the course of proving Conjecture 9.11, it is likely that
one would obtain a control on the growth of the correlation of : hθ,N (x)`nx : and : hθ,N (y)`my : of a
similar type as (9.12). This control would ensure that most of the mass of mγ,N is carried by, say,
the first hundred terms in the two sums in (9.22). This would then allow us to take the scaling
limit of these sums (exactly like in the proof of Theorem 9.2) and we would obtain, in conjunction
with Theorem 9.12, that

M+
γ =

∑
k≥0

γ2k

2k
Γ(θ)

k!Γ(k + θ) (2π)k : Lkx : +γ2(1−θ) γ
2k

2k
Γ(θ∗)

k!Γ(k + θ∗) (2π)k : hconj
θ (x)Lkx : . (9.24)

In particular, this shows that the second order term in the expansion ofM+
γ is of order γ2(1−θ)

which would imply that the limit

cconj := lim
γ→0

Zγ
γ2(1−θ) ∈ (0,∞) (9.25)

exists and is nondegenerate. This would also identify hconj
θ with cconjhθ. Finally, with the help of a

Tauberian theorem, it may be the case that the above convergence (9.25) implies the convergence
of the crossing probability

lim
r→0
| log r|1−θP

(
e−1∂D

LθD←→ rD
)
∈ (0,∞). (9.26)

This would be a considerable strengthening of the main result of [JLQ23] (see Theorem 2.4).
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