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2 Odyssey, Inria/IMT Atlantique, 263 Av. Général Leclerc, Rennes, 35042, Bretagne, France.
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This article presents a multiscale, non-linear and directional statistical characterization of images
based on the estimation of the skewness, flatness, entropy and distance from Gaussianity of the
spatial increments. These increments are characterized by their magnitude and direction; they allow
us to characterize the multiscale properties directionally and to explore anisotropy. To describe the
evolution of the probability density function of the increments with their magnitude and direction,
we use the skewness to probe the symmetry, the entropy to measure the complexity, and both
the flatness and distance from Gaussianity to describe the shape. These four quantities allow us
to explore the anisotropy of the linear correlations and non-linear dependencies of the field across
scales. First, we validate the methodology on two-dimensional synthetic scale-invariant fields with
different multiscale properties and anisotropic characteristics. Then, we apply it on two synthetic
turbulent velocity fields: a perfectly isotropic and homogeneous one, and a channel flow where
boundaries induce inhomogeneity and anisotropy. Our characterization unambiguously detects the
anisotropy in the second case, where our quantities report scaling properties that depend on the
direction of analysis. Furthermore, we show in both cases that turbulent velocity fluctuations are
always isotropic, when the mean velocity profile is adequately removed.

I. INTRODUCTION

Nowadays image processing is a fundamental step in the quantitative study of a large number of domains such as:
remote sensing [1, 2], medicine [3, 4], physics [5, 6] or ecology [7]. Very commonly, experimentally acquired signals
or numerical simulation results are viewed as composed of a mean behavior over which are superimposed fluctuations
considered as a stationary or homogeneous stochastic field. For complex systems, this stochastic field generally results
from non-linear dynamics and exhibits multiscale behavior [8–11]. Moreover, for multidimensional signals, for example
images, volumes or matrices of any dimensionality, the mean behavior as well as the fluctuations can be anisotropic,
i.e. their behavior may depend on the direction of analysis. So, the characterization of images or multi-dimensional
signals needs methodologies able to deal with multiscale, non-linear and anisotropic properties. In this work we study
images and we focus on their fluctuations considered as a 2D stochastic field.

Current multiscale statistical analyses of 2D fields are mainly based on second order statistics such as 2D Fourier
transform and 2D auto-correlation [1, 5, 12–14]. They are able to provide direction-dependent descriptions of linear
dependencies across scales. For example, a direction-dependent roughness characterization of Gaussian fields has been
proposed in [15–17]. However for non-Gaussian fields, all methods cited above are blind to non-linear dependencies.
Consequently, other image processing techniques such as multifractal analysis, high-order statistical moments or
cumulants were also developed in the last decades [2, 5, 18–20]. These methods ground on multiscale decompositions
to provide non-linear characterizations of images across scales [4, 21, 22].

Signal and image processing methods based on Information theory [23] were also developed during the last years [24–
26]. Information theory quantities used on multiscale decompositions were also studied in [27–29]. Notably [30, 31]
provide a framework to characterize non-linear dependencies of stationary and non-stationary 1D-processes and [32, 33]
show the potentialities of this framework to study turbulent flows. Experimental signals of turbulent flows were also
studied with information theory [34]. More recently, these methods have been used to study self-similar 2D-fields [35]
and 3D turbulent data from direct numerical simulations [36].

In this article we propose to generalize, for the description of 2D fields, the multiscale information theory framework
developed in [33] for 1D processes. Our analysis characterizes high order statistics across scales while being direction-
dependent. First, we illustrate its use and behavior on isotropic and anisotropic scale-invariant synthetic fields [37–39].
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We use, on the one hand two Gaussian fields: fractional Brownian motion (fBM) and anisotropic fractional Brownian
motion (a-fBm), and on the other hand, two non-Gaussian ones: multifractal random walk (MRW) and anisotropic
multifractal random walk (a-MRW). Our analyses recover the scale-invariant parameters of the fields as well as the
anisotropy in the case of the a-fBm and the a-MRW.

Then, to show a real case application of our methodology, we turn to fluid turbulence, where the main theory was
issued for homogeneous and isotropic flows but all real life applications are notoriously anisotropic. We characterize
two turbulent flows: a forced isotropic and homogeneous flow and a channel flow which is anisotropic due to the effect
of the walls of the channel. These flows are described by 3D velocity fields, (ux, uy, uz), and so comparing the results
on the different components of velocity can illustrate a second kind of anisotropy [40]. In both flows, the proposed
approach is able to describe the scale-invariance of turbulence along each direction of analysis. Moreover in the channel
flow, we observe an anisotropy in the energy distribution while the energy cascade and intermittency seems to remain
isotropic. Indeed the anisotropy in the energy distribution is introduced by the mean velocity profile, whose shape
depends on the configuration of the flow. With a proper substraction of the mean velocity profile requiring high-
order multiscale decomposition [41, 42] we show that even in the channel flow configuration, the turbulent velocity
fluctuations remain isotropic.

This work is structured as follows. Section II introduces the multiscale non-linear statistical framework: we present
four quantities for the characterization of 2D fields as well as their corresponding estimators. Section III presents our
tests on isotropic and anisotropic scale-invariant synthetic fields and how their anisotropic multiscale properties are
recovered. Section IV describes our results on synthetic turbulent flows, while section V discusses how to eliminate
the effect of the mean flow and recover the universal isotropy of the turbulent fluctuations.

II. MULTISCALE CHARACTERIZATION OF ANISOTROPIC FIELDS

To assess the anisotropy of a two-dimensional field, especially in regards to its scale invariance properties, we estimate
various higher-order statistical quantities of its increments. The first step is therefore a multiscale decomposition using
spatial increments, presented in section II A, while the second step is the computation, after the decomposition, of
four higher-order statistical quantities detailed in section II B. The combination of the two steps leads to a multi-scale
characterization of anisotropy, defined in II C. The methodology used to obtain robust estimations is described in
section II D.

A. Anisotropic multiscale decomposition

Given a two-dimensional field I(x, y) ∈ R, where both x and y are defined in R and represent the coordinates of I,
we propose a multiscale decomposition of I(x, y) based on increments. Thus we define a two-dimensional scale (lx, ly)
and compute the increments [43, 44] over this scale as:

δlx,lyI = I(x+ lx, y + ly)− I(x, y) (1)

This procedure is represented in Figure 1. A change from cartesian to polar coordinates (lx, ly) → (r, θ) allows an
analysis across the scale magnitude r and its direction θ defined from (lx, ly) = (r cos (θ) , r sin (θ)).

B. Statistical description

To characterize the probability density function (PDF) of a generic two dimensional random variable U(x, y), we
choose to focus on one side on the first two high-order statistical centered moments: the skewness which characterizes
the asymmetry of the PDF and the kurtosis which characterizes the relative weight of its tails. On the other side, we
choose two measures from information theory: the Shannon entropy which quantifies the total amount of information
in U [23], and the Kullback-Leibler distance from Gaussianity, which quantifies how the PDF of U deviates from a
Gaussian PDF [33].



3

  

lx

ly

I(x,y)

I(x+lx,y+ly)

FIG. 1. Increments of images: Two-dimensional field I(x, y) and its shifted version I(x+ lx, y+ ly) are depicted using grey
levels, while the corresponding increment δlx,lyI, which is the difference of the two, is depicted in color.

Noting σ2
U the variance of the random variable U and p its PDF, we define:

S(U) =
1

σ3
U

∫

R
(u− E[u])3p(u)du (2)

F (U) =
1

σ4
U

∫

R
(u− E[u])4p(u)du (3)

H(U) =

∫

R
p(u) log(p(u))du (4)

D(U) =

∫

R
p(u) log

(
p(u)

pG(u)

)
du (5)

where pG is the Gaussian PDF with the variance σ2
U and a zero mean. None of these four quantities depends on E[u].

The entropy H(U) characterizes the complexity of U ; it depends on its PDF and hence on all statistical moments
except the first order one. Generally, the main contribution to the entropy comes from the variance σ2

U while higher
order moments are expected to have only a slight influence. In the case of a Gaussian variable UG its entropy is
defined uniquely by its variance σ2

UG
:

H(UG) =
1

2
log(2πeσ2

UG) . (6)

From eq.(6) we define HG(U), the entropy under Gaussian hypothesis of U , as the entropy of the Gaussian field
with the same variance σ2

U as U :

HG(U) =
1

2
log(2πeσ2

U ) . (7)

Hence, the distance from Gaussianity of U can be expressed as the difference between its entropy under Gaussian
hypothesis and its genuine entropy:
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D(U) = HG(U)−H(U) ≥ 0 . (8)

The maximum entropy principle states that for a given variance the Gaussian PDF maximizes the entropy [45, 46],
hence the inequality in eq.(8).

The distance from Gaussianity (5) or (8) provides an insight on the signal different from the entropy (4), since
it focuses on moments of higher order and does not depend on the variance anymore. It can be used to describe
the deformation of the PDF, just like the flatness does, but incorporating information from all other higher order
moments [33].

C. Multiscale characterization of anisotropy

We then define for the field I the skewness, flatness, entropy and distance from Gaussianity at the scale (lx, ly) by
applying definitions (2), (3), (4) and (5) to the increment fields U = δlx,lyI defined in (1). We note these 4 quantities
Slx,ly (I), Flx,ly (I), Hlx,ly (I) and Dlx,ly (I) respectively. We then note Sr,θ(I), Fr,θ(I), Hr,θ(I) and Dr,θ(I) the same
quantities as functions of polar coordinates.

By varying the two-dimensional scale (lx, ly), or equivalently (r, θ), one is able to characterize the PDF of I across
scale magnitudes and directions. Then Slx,ly (I) and Flx,ly (I) describe how the asymmetry and tails of the PDF are
evolving with the scale, while Hlx,ly (I) and Dlx,ly (I) characterize respectively the evolution of information and the
deformation of the PDF across scale magnitudes and directions.

D. Numerical implementation

In the following, we analyze images of typical size 8192 × 8192 pixels, unless noted otherwise. Images are here
considered as individual realizations of stochastic fields superimposed or not over a mean behavior. Moreover, we
consider that the fields are homogeneous, and so their statistical properties do not depend on the studied region.
Estimation of the statistical moments are performed in Python 3.9 with non-biased estimators provided by SciPy
library 1.7.3. Shannon entropy estimations are performed with our own implementation of Kozachenko and Leonenko
k-nearest neighbors (k-nn) algorithm [47], which was shown to have a reduced bias compared to other Shannon entropy
estimators [47, 48]. The distance from Gaussianity is computed with the Kozachenko and Leonenko k-nn estimator
for the first term H(δlx,lyI) in eq.(8) and the SciPy unbiased estimator of the variance with eq.(6) for the second term
HG(δlx,lyI) in eq.(8).

The only adjustable parameter in the k-nn algorithms is the number k of neighbors, and we set it to k = 5 for all
estimations reported in this article [31]. The bias and variance of the corresponding estimators depend on k and the
number Neff of effective points over which the statistics are computed. In this article, we choose Neff = 212 points,
which was proven satisfying by a detailed study [31] for stationary long-range and short-range dependence processes
with Gaussian and non-Gaussian statistics. For the values of k and Neff chosen, the bias is negligible (< 0.005).

We also follow a Theiler prescription [49]: for a given scale (lx, ly) or (r, θ), the Neff points must be sampled in the
image in such a way that these points should all be distant one from another by at least rTheiler ≡ r. This prescription
ensures that statistical dependencies on scales smaller than r are not taken into account. Unfortunately, when the
scale magnitude r is large, the number of available points in a finite image may be smaller than the required Neff.
In that case, we alter the original prescription and require that points must be distant one from another by at least
rTheiler=50 pixels. At this scale, spurious dependencies have already decreased and are fairly small. This trade-off
allows us to explore scales lx and ly up to 640 pixels, while having enough points in the image to analyse 5 realizations.
Each one of these realizations contains Neff points randomly sampled from the full domain of study, so they provide a
global description. Despite the small impact of spurious correlations on the skewness and flatness, we use for the sake
of simplicity this adapted Theiler prescription in the estimation of all the statistical quantities: S, F , H and D. This
procedure allows us to sample the whole image, perform estimations on multiple realizations and reduce computation
time.
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III. SYNTHETIC ANISOTROPIC SCALE-INVARIANT STOCHASTIC FIELDS

A. Scale invariance

A field is scale-invariant if the statistical moment of any order q of its increments behaves as power law of the
increment’s size, i.e. in the case of one dimensional field I(x) with increments δlI:

E (|δlI|q) ∼
l→0

kql
ζ(q) (9)

with kq constants that depend on the order of the statistical moment and ζ(q) the scaling function which is concave.
We distinguish two main families of scale-invariant fields: monofractal and multifractal ones.
Monofractal fields are characterized by a linear scaling function ζ(q) = qH. The slope H, which characterizes the

roughness of the field, is called the Hurst exponent.
Multifractal fields have a non-linear scaling function that can be approximated by ζ(q) = qH − c2

2 q
2, where H

characterizes the most common roughness and c2 > 0 is the intermittency coefficient characterizing how wide-ranging
are the existing singularities. The nonlinearity of ζ(q) implies that the shape of the PDF of the increments evolves
across scales and so the field is no more jointly Gaussian.

On the one hand for monofractal fields, the entropy of the increments behaves as the logarithm of the scales
Hl(I) ∼ H log(l) and the flatness, skewness and Kullback-Leibler distance across scales are constants. Consequently,
the shape of the PDF of the increments does not evolve across scales. On the other hand for multifractal fields, the
entropy of the increments still behaves mainly as Hl(I) ∼ H log(l) but the flatness is no more constant and decreases
as a power law Fl(I) ∼

l→0
l−4c2 . Thus, the Kullback-Leibler distance also decreases and goes to 0 at large scale.

Finally, in the case of two dimensional fields I(x, y) the moments of the increments depend on both the size r and
direction θ of the increments:

E (|δr,θI|q) ∼
r→0

kθ,qr
ζθ(q) (10)

The process is considered anisotropic scale-invariant if its scaling function ζθ(q) obtained from the statistics of
the directional increments δr,θI depends on the angle θ.

B. Anisotropic scale-invariant random fields generation

Homogeneous, isotropic and self-similar d-dimensional fields can be modelled with the following stochastic d-
dimensional integral [11, 50]:

IH,c2,η(z) =

∫

Rd
PH,η(z− z′)Mc2,η(z′)W (z′)dz′ (11)

where z = (z1, z2, · · · , zd) and z′ denote d-dimensional position vectors, W (z′) is a Gaussian white noise, 0 < H < 1
the Hurst exponent and c2 the intermittency coefficient.

The first term, PH,η(z) = 1

||z||d/2−Hη

, is a kernel providing a power spectrum with a power law behavior of exponent

2H. The norm ||z||η =
√
||z||2 + η2 in the denominator is a regularized L2-norm that ensures the convergence of

the integral when 0 < H < 0.5, with η > 0 being the regularization scale and ||.|| the L2-norm. The second term,
Mc2,η(z′) is a multiplicative chaos [11, 51] defined as:

Mc2,η(z′) = e−
√
c2Xη(z′)−c2E{X2

η(z′)} (12)

where Xη(z′) is a log-correlated Gaussian noise with autocovariance function:

E{Xη(z)Xη(z′)} ∼
||z−z′||η→0

− log(||z− z′||η) (13)

When the intermittency coefficient c2 = 0 in (11) the stochastic process IH,c2=0,η is a fractional Brownian motion
of parameter H. This process is a Gaussian non stationary process with stationary increments and is characterized by
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a linear scaling function ζ(q) = qH. When c2 > 0, the process is no more Gaussian and its scaling function behaves
as ζ(q) = q(H+ c2/2)− c2q2/2. For one dimensional processes this definition corresponds to the Multifractal Random
Walk first proposed in [52].

Anisotropy is added as in [37, 38] by defining a transformation matrix E satisfying Tr(E) = d and replacing the
L2-norm by a positive function f satisfying the homogeneity relationship f(aEz) = af(z) on Rd. Then, the kernel of
(11) reads:

PH,E,η(z) =
1

(f(z) + η)
d
2−H

(14)

In this study, we set d = 2, we note the vector of position z = (x, y) and use the diagonal matrix E =

(
α0 0
0 2− α0

)

with the pseudonorm

f(z) =
(
|x|2/α0 + |y|2/(2−α0)

)1/2

, (15)

where 0 < α0 < 2 is the anisotropy coefficient.
When using the anisotropic kernel (14) in (11) and the pseudonorm f in (13), the process is scale invariant along

the direction (lx, ly) = (lα, l2−α)) with the scaling characterized by

E
((
δlα,l2−αIH,E,c2,η

)q) ∼
l→0

lζα(q) (16)

where ζα(q) = (q(H+c2/2)−c2q2/2) max
(
α
α0
, 2−α

2−α0

)
and α defines a direction of analysis. If α0 = 1, E is the identity

matrix, f is the L2-norm and we recover the isotropic case. In the particular case of c2 = 0 we recover the Operator
Scaling Gaussian Random Field (OSGRF) studied in detail in [39, 53].

The fields generated following the above definition depend on three parameters: the Hurst exponent H, the multi-
fractal coefficient c2 and the anisotropy coefficient α0. In the following, we name the family of processes with c2 = 0
fractional Brownian motions and the family of processes with c2 6= 0 multifractal random walks.

C. Validation of multiscale characterization of anisotropy

We first examine and compare two isotropic and two anisotropic scale invariant fields with H = 1/3. All fields are
of size N = 81922. The isotropic fields are a fractional Brownian motion and a Multifractal Random Walk; the fBm
is monofractal (c2 = 0) and the MRW has a multifractal parameter c2 = 0.04. The anisotropic fields are built as
described in the previous section to be anisotropic versions of these two fields: an anisotropic fBm and an anisotropic
MRW, both with the anisotropy coefficient α = 0.8 and with the same c2 as their isotropic counterpart. The four
fields are presented in Figure 2.

x

y

a. fBm

x

b. a-fBm

x

c. MRW

x

d. a-MRW

−5

0

5

FIG. 2. Synthetic scale-invariant stochastic fields. Four examples of two-dimensional fields of size N = 81922 with the
same Hurst exponent H = 1

3
. a) isotropic fBm, b) anisotropic fBm (both with c2 = 0), c) isotropic MRW with c2 = 0.04 and

c) anisotropic MRW with c2 = 0.04. The anisotropy coefficient of a-fBm and a-MRW is α0 = 0.8.

Figure 3 shows how Slx,ly , log(Flx,ly/3), Hlx,ly and Dlx,ly evolve with the scale in cartesian coordinates for
the four studied fields. To better examine and quantify the isotropy properties of the fields, we use polar co-
ordinates and represent in Figure 4 Sr,θ, log(Fr,θ/3), Hr,θ, and Dr,θ as functions of log(r) for eight directions
θ ∈ {−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}. Errorbars indicate the standard deviation across realizations.
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FIG. 3. 2D characterization of synthetic scale-invariant fields. Skewness, flatness, entropy and distance from Gaus-
sianity across scales (Slx,ly , log(Flx,ly/3), Hlx,ly and Dlx,ly ), of a fBm, a-fBm, MRW and a-MRW, all with H = 1/3 and size

N = 81922. The anisotropy coefficient of both anisotropic fields is α0 = 0.8 and the multifractal parameter of both MRWs is
c2 = 0.04.

The skewness of all these fields fluctuates around zero, which indicates that the PDFs of their increments remain
symmetrical for all scales. We also recover that the skewness is an odd function of the increment: S−lx,−ly = −Slx,ly ,
or Sr,θ+π = −Sr,θ. For the fBm however, although increments are theoretically Gaussian and hence Slx,ly = 0 at all
scales, we observe that the skewness increases for larger scales; this is due to finite-size effects which, curiously, only
impact marginally the other statistics. The skewness of a-fBm, MRW and a-MRW is less impacted by these effects.

The entropy H evolves from small values at small scales to large values at large scales, which indicates an increase
of the complexity when increasing the scale. In Figure 4 c), we see that this increase is linear in log(r) for all the
fields. In the case of a-fBm and a-MRW, Figures 3 b) and d) show that iso-entropy lines are thin vertical ellipses
instead of circles as for the fBm and MRW: the entropy exhibits a very strong anisotropic behavior with a very fast
increase from small to large scales along the lx direction and a much slower increase in the ly direction. From Figure 4
c), we find that for the isotropic fBM and MRW the entropy increases with a slope close to H independant of the
direction θ, as expected, while for the anisotropic fields the slope strongly depends on the direction of analysis.

Both the flatness log(F/3) and the distance from Gaussianity D illustrate the monofractal nature of the fBms
and the multifractal nature of MRWs. For the fBm and a-fBm, we see in Figures 3 b) and d) that these two
quantities vanishes everywhere; this is confirmed in Figure 4: log(Fr,θ/3) and Dr,θ are zero for all scales magnitude
r, as expected for a process with Gaussian statistics. On the contrary, for both the MRW and a-MRW, the flatness
log(Fr,θ/3) and the distance from Gaussianity Dr,θ decrease linearly when log(r) increases: this indicates that the
statistics of the increments of both MRWs are non-Gaussian at smaller scales, and become closer to those of a Gaussian
at larger scales. Moreover, we are able to distinguish between the MRW and a-MRW: for the MRW on one hand,
log(Fr,θ/3) ∼ −4c2 log(r) ∀ θ and so the Flatness provides a measure of c2. For the a-MRW on the other hand, the
slope of log(Fr,θ/3) in log(r) depends on θ and can be smaller or larger than −4c2 depending on the direction of
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d
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π

−3π/4
−π/2
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FIG. 4. 1D θ-transects characterization of synthetic scale-invariant fields. Skewness, flatness, entropy and distance
from Gaussianity across scales (Sr,θ, log(Fr,θ/3), Hr,θ and Dr,θ), of a fBm, a-fBm, MRW and a-MRW, all with H = 1/3 and
size N = 81922. The MRWs have c2 = 0.04 and the anisotropic fields have α0 = 0.8. Red dotted lines in c) illustrate a slope
of H while red dotted lines in b) illustrate a −4c2 slope. For each synthetic process eight different directions are studied :
θ ∈ {−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}.

analysis θ. The anisotropy of the a-MRW is thus quantifiable using the entropy, the flatness or the distance from
Gaussianity.

IV. APPLICATION TO SYNTHETIC VELOCITY FIELDS IN FLUID TURBULENCE

Fluid turbulence is a 3-dimensional multiscale process where the energy cascades from larger scales down to smaller
scales [54]. The existence of this energy cascade implies a negative skewness for the velocity increments along the
longitudinal direction of the flow [43, 44]. Moreover, turbulence exhibits intermittency: the probability distributions
of the increments deform from Gaussian at large scales to non-Gaussian at small scales [55, 56]. Characterizing
intermittency thus requires the examination of high order statistics [44, 57].

Within the classical framework of fully developed turbulence, the velocity field and its increments are statistically
homogeneous and isotropic: all velocity components have identical statistics, and these do not depend on the direction
but only on the magnitude of the scale. In a realistic configuration however, the velocity field is expected to be
anisotropic; this is for example the case when the flow is restricted in a finite domain with a specific shape, or a
finite domain with no-slip conditions at some of its boundaries. Nevertheless, if the Reynolds number is large enough,
fluctuations of the velocity field are expected to be isotropic in the bulk. Indeed, it has been shown that they are
always well described within this classical framework [44].

We study here two 2D transects of three dimensional turbulent velocity fields obtained by direct numerical simu-
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FIG. 5. 2D transect of velocity fields from 3D forced isotropic turbulence. Two-dimensional transect from Johns
Hopkins University Direct Numerical Simulation (http://turbulence.pha.jhu.edu). The (x, y) coordinates span the whole spatial
domain [0, 2π]× [0, 2π]; and z = 0.7853 is fixed. a) ux, b) uy, c) uz and d) |~u|.

lation (DNS). For each transect, we analyze four images: one for each component ux, uy and uz of the original 3-d
velocity field, and one for its modulus |u|. This allows us to study not only the isotropy of each image, by tracking
the dependences on the direction of analysis θ, but also the isotropy of the velocity vector field by comparing our
measurements from one image to another, i.e., depending on the velocity component.

The first transect is from a DNS of forced isotropic turbulence on a periodic cubic grid [0; 2π]3 with 81923 points [6].
The Reynolds number is Re = 1256.8, so the flow can be considered as exhibiting fully developed turbulence; the
integral scale is L = 1.2438 and the Kolmogorov scale is η = 5.89× 10−3 in simulation units. The transect we chose
is defined by z = 0.7853, see Figure 5. Images are 8192×8192 pixels, with the pixel width being 7× 10−4 simulation
units.
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FIG. 6. 2D transect of velocity fields from 3D anisotropic turbulence. Two-dimensional transect of the 3-d velocity
field from JHU Channel turbulent flow Direct Numerical Simulation (http://turbulence.pha.jhu.edu). The (x, y) coordinates
span the full spatial region ([0, 8π], [−1, 1]) and z = 3π

2
fixed. a) ux, b) uy, c) uz and d) |~u|. The horizontal black dashed lines

indicate the values y ∈ {−0.85, 0.85}.

The second transect is from a DNS of a turbulent channel flow with periodic boundary conditions in the x and z
directions, and no-slip conditions at the top and bottom walls (y direction) [58]. This flow is strongly non-isotropic
and inhomogeneous and so it is a good case study for our method. The friction-velocity Reynolds number of the
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flow is Rτ = 5200, and we consider it a fully developed turbulent flow. The domain of the simulation is (x, y, z) ∈
[0, 8π[×[−1,+1]× [0,+3π[. We study the 2D transect at z = 3π

2 ; which gives us images of size 10240× 1536 pixels in
the x and y directions; here a pixel corresponds to π/1280 along x and non-regular sampling along y, see Figure 6.
The anisotropy of the velocity field is two-fold. First, there is no mean flow in the y and z directions while there
is a mean velocity along the x direction. Second, the mean velocity profile Ex (ux) (y) is inhomogenous due to the
existence of boundary layers around y = ±1. As illustrated in Figure 7 a), where the streamwise component of the
velocity is depicted, the flow has an approximate parabolic mean velocity profile far from the boundaries. In this
work, we restrict our analysis to the bulk domain y ∈ [−0.85, 0.85], in order to discard the strongest gradients close
to the walls.
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FIG. 7. Anisotropic turbulent velocity profiles. Mean profile of a) velocity component ux, b) increment δlx,lyux, c) second
order increment δlx,ly (δlx,lyux) as functions of y. These profiles have been obtained by averaging over x for a fixed y. Increments
are defined on scale lx = 0 and ly = 0.104. The black vertical dashed lines indicate the central region y ∈ [−0.85, 0.85] used in
the analysis, away from boundary layers.

A. Forced isotropic turbulence

Figure 8 shows how our four quantities Slx,ly , log(Flx,ly/3), Hlx,ly and Dlx,ly vary with the scales (lx, ly), when
applied to the four images corresponding to the three components and the modulus of the velocity field. Figure 9
presents a different view using polar coordinates, as a function of log(r) for eight equally spaced directions θ ∈
{−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}.

The skewness Sr,θ evolves differently depending on the velocity component and the direction of analysis. Using the
directions x and y of the initial velocity field transect, we are able to probe the longitudinal increments of the velocity
components ux and uy respectively: these correspond to the angles θ = 0 and π for the image of ux, and the angles
θ = ±π/2 for the image of uy. For these specific directions, the 4/5th law of Kolmogorov [44] predicts an almost
constant skewness in the inertial domain. Indeed, we find for ux and uy that the skewness in the inertial domain is
almost constant and maximum for the angles corresponding to the longitudinal direction, while it seems to increase
in the dissipative domain. We are not able to probe the integral domain here, and cannot confirm that the skewness
would then vanish. We moreover recover that the skewness is an odd function of the increment Sr,θ = −Sr,θ+π, see
Figure 8. In particular we observe this symmetry by looking at the longitudinal increments: for the component ux the
skewness along the angles θ = 0 and θ = π, which probe respectively increments (lx, 0) and (−lx, 0), just changes sign.
For the component uy, we also have that Sr,−π/2 = −Sr,+π/2 for all r, using then the longitudinal direction along y.
On the other hand, for ux and uy along transverse directions as well as for uz and |u|, the skewness oscillates around
zero. These results illustrate that the skewness of each velocity component obeys the Kolmogorov theory along its
longitudinal direction and shows no skewness in transverse ones. In the case of |~u| the skewness is close to zero with a
small increase at large scales maybe due to an asymmetrical compensation in the modulus. Moreover statistical effects
can appear here because we only study a transect z = 0.7853 of the full simulation cube, which severely restricts the
spatial domain of analysis.

The entropy Hr,θ of the velocity components and modulus increases with the scale: the amount of information
needed to characterize larger scales is greater than for smaller ones and the complexity of the velocity PDFs increases
with the scale. As seen in Figure 9 c), this increase is linear in log(r) with a slope 1 in the dissipative domain and
a slope 1/3 in the inertial range, as expected. The anisotropy of the entropy can be seen in Figure 8 c): for the
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FIG. 8. 2D characterization of velocity fields of forced isotropic turbulence. Skewness, flatness, entropy and
distance from Gaussianity across scales (Slx,ly , log(Flx,ly/3), Hlx,ly and Dlx,ly ), of the velocity fields ux, uy, uz and |~u|.

components ux and uy, iso-entropy lines are ellipses, while they are almost circles for uz and |~u|. This is corroborated
by looking at the dependence on the angle θ in Figure 9 c): for ux and uy, Hr,θ depends slightly on the angle while
its slope as a function of log(r) does not. For uz and |~u|, no clear dependence on θ is observed. We conclude that the
entropy is almost isotropic for all components and modulus of the velocity field.

The flatness Fr,θ, as well as the distance Dr,θ from Gaussianity, decrease as the scale r increases and both vanish at
large scales, for all velocity components and modulus, see Figures 8 b) and d) and Figures 9 b) and d). This indicates
an evolution of the PDF of the increments of the velocity components and modulus from non-Gaussian at small scales
to Gaussian at large scales, which characterizes the intermittency of the turbulent velocity field. Furthermore, we
quantify that the deformation of PDF, as measured by log(Fr,θ/3) and Dr,θ, is stronger in the dissipative domain
and weaker once in the inertial domain [59]. Quantitatively, log(Fr,θ/3) decreases linearly with log(r) in the inertial
domain with a slope −4c2 with c2 = 0.025 [60]. While some slight dependence on the angle θ can exist in the
dissipative and integral domains, we conclude that both Fr,θ and Dr,θ(S) have an isotropic behavior in the inertial
domain.

Because on the weak dependence of our results for a given velocity component on the direction θ, and the weak
variation from one component to another, which can be attributed to the choice of the transect and should average to
zero when considering an ensemble of transects, we conclude that the velocity vector field from this DNS is isotropic.
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FIG. 9. 1D θ-transects characterization of velocity fields of forced isotropic turbulence. a) Skewness, b) flatness,
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indicate the standard deviation of the estimations over realizations. Red dotted lines in the entropy across scales illustrate the
expected slope of 1 in the dissipative domain and 1/3 in the inertial one. Red dotted lines in the flatness plot illustrate the
−4× 0.025 slope. For each velocity component 8 different directions are studied : θ ∈ {−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}.

B. Turbulent channel flow

Figure 10 illustrates the evolution of Slx,ly , log(Flx,ly/3), Hlx,ly and Dlx,ly of ux, uy, uz and |~u| along different
directions and across scales. The skewness presents the same symmetries as before and also oscillates around zero.
For ux and |~u| strange horizontal lines appear along the x axis which can be due to remaining effects of the walls. As
before the entropy across scales increases when the scale increases indicating an increase of complexity with the scale
of analysis. The entropy of ux and |~u| shows circular patterns at small scales which clearly become stretched ellipses
at large scale. This illustrates the anisotropy of the flow. On the other hand for uy and uz the entropy remains
isotropic. Finally, both log(Flx,ly/3) and Dlx,ly show similar patterns with high values at small scales that goes to 0
at large scales, showing that the flow statistics then become Gaussian. The evolution of log(Flx,ly/3) and Dlx,ly seems
isotropic for all the studied fields.

Figure 11 illustrates the evolution across scales log(r) of Sr,θ (a), log(Fr,θ/3) (b), Hr,θ (c) and Dr,θ (d), and for
ux, uy, uz and |~u| along eight directions θ ∈ {−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}. This figure supports the
observations done for Figure 10. The skewness shows small variations around zero with slightly larger values at small
scales as expected from theory. The flatness and the distance from Gaussianity across scales goes from Gaussian
values at large scales to non-Gaussian ones at small scales. This evolution is the same independently of the direction
of analysis and the studied field. So, intermittency seems to be isotropic in the studied domain. Moreover, it illustrates
the behavior of Fr,θ/3 in r−4×0.025 in the inertial domain. The entropy Hr,θ of uy and uz is isotropic and presents a
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FIG. 10. 2D characterization of velocity fields of anisotropic turbulence. Skewness, flatness, entropy and distance
from Gaussianity across scales (Slx,ly , log(Flx,ly/3), Hlx,ly and Dlx,ly ), of the velocity fields of the channel turbulent flow ux,
uy, uz and |~u|.

slope of 1 in the dissipative domain and 1/3 in the inertial one independently of the direction θ of analysis. On the
contrary, the entropy of ux and |~u| are clearly anisotropic. Whereas in the dissipative domain the entropy behaves
linearly with a slope of 1 independently of θ, in the inertial domain the directions parallel to the walls θ = {0, π} still
present a slope of 1/3 while the others exhibit a stepper behavior with a slope of 1/2 in the directions perpendicular
to the walls. These deviations from the Kolmogorov theory of homogeneous and isotropic turbulence [33] along the
θ = ±π/2 directions are explained by the presence of the walls, which break the translational symmetry along the y
direction and introduce anisotropy.

V. DISCUSSION ON THE ISOTROPY OF TURBULENT FLUCTUATIONS

The anisotropic behavior of the entropy across scales of ux from the channel flow results from the existence of a
non-linear mean velocity profile of ux along the y direction, presented in Figure 7 a). As a consequence, the mean
profile of the increments of ux along y still presents a linear trend, see Figure 7 b), which leads to the anisotropy of the
entropy. However, no trend is observed in the mean profile of the second order increments, defined as δlx,ly (δlx,lyux),
as can be seen Figure 7 c).

Figure 12 a) shows the results obtained when analysing the second order increments and Figure 12 b) those obtained
when considering the velocity field without its mean profile, ũ(x, y) = ux(x, y)− Ex(ux), see Figure 7 a).

Both analysis lead to the same results as those obtained on the increments of the channel flow turbulent velocity,
see Figure 11. The only difference comes from the behavior of the entropy of δlx,ly (δlx,lyux) and ũ(x, y) which is
now independent of θ and matches the Kolmogorov theory of fully developed turbulence: a slope close to 1 in the
dissipative domain and 1/3 in the inertial one. In particular, along the directions perpendicular to the walls, θ = ±π2 ,
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FIG. 11. 1D θ-transects characterization of velocity fields of anisotropic turbulence. Skewness, flatness, entropy
and distance from Gaussianity across scales (Sr,θ, Fr,θ, Hr,θ and Dr,θ) of ux, uy, uz and |~u|. Errorbars indicate the standard
deviation of the estimations over realizations. Red dotted lines in the entropy across scales illustrate the expected slope of 1 in
the dissipative domain and 1/3 in the inertial one. Black dotted line in the entropy across scales has a slope of 0.5. Red dotted
line in the flatness plot illustrate the −4 × 0.025 slope. For each velocity component eight different directions are studied :
θ ∈ {−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}. A strong dependence in θ is observed in the behavior of Hr,θ for ux and |~u|,
figures 1,c) and 4,c).

we recover a slope 1/3 instead of the slope 1/2 obtained in Figure 11 (1,c). Comparing the results obtained with
δlx,ly (δlx,lyux) and ũ(x, y), the slope of 1 in the dissipative domain is better recovered by the second order increments.
Indeed, taking second order increments removes not only linear trends but also parabolic trends in the mean velocity
profile, see Figures 7 b and c). This de-trending is local, contrary to the removal of the mean profile.

So we conclude that for the channel flow configuration, the turbulent velocity fluctuations defined as ũ(x, y) are
isotropic. More generically, turbulent velocity fluctuations, once the mean velocity profile has being correctly sub-
tracted, appear as isotropic independently of the anisotropic configuration of the flow, which only impacts the velocity
profile. Increasing the order of the increments used in the multiscale decomposition allows us to appropriately remove
this velocity profile and recover an isotropic behavior.
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VI. CONCLUSIONS

In this paper, we presented a methodology for a multiscale nonlinear and directional characterization of images
based on the estimation of high-order statistical moments and information theory quantities of the increments of
the images. For a given image I, the entropy across scales Hr,θ(I) characterizes the amount of information of the
increments of the process, Dr,θ(I) characterizes how the increment distributions are far from a Gaussian one, while
the skewness Sr,θ(I) and flatness Fr,θ(I) describe respectively the asymmetry and tail prominence of the PDF of
the increments of the image. We proposed a partial Theiler correction combined with random sampling methodology
which, among other benefits, considerably reduces calculation time which is one of the main limitations of information
theory based methods.

In order to validate our approach, we first studied 2-dimensional scale-invariant stochastic synthetic fields: fBm,
a-fBm, MRW and a-MRW. We showed that our methodology correctly characterizes the monofractal behavior of
both fBms and the multifractal behavior of both MRWs, allowing us to recover the scale invariant parameter H and
the intermittency parameter c2. We recovered the isotropic behavior of fBm and MRW and are able to probe the
anisotropy of a-fBm and a-MRW. In particular, Fr,θ and Dr,θ are able to track the anisotropy of the intermittency
parameter of the a-MRW.

A complete study of homogeneous and isotropic turbulent velocity fields allows to recover the energy distribution
and cascade [43] as well as intermittency [55]. The entropy across scales characterizes the complexity of the field in
the different domains of scales, while the flatness and distance from Gaussianity illustrate the multifractal nature of
turbulence. Moreover, Slx,ly is different from zero along the longitudinal direction, as predicted by the 4/5 law of
Kolmogorov, while it remains close to zero in all the other directions. Thus for homogeneous and isotropic turbulence
Hr,θ, Dr,θ and Fr,θ are independent of the direction of analysis, while Sr,θ presents a privileged direction depending
on the velocity component.

Importantly and interestingly, we tested our methodology on an inhomogeneous and anisotropic velocity field, and
showed that it is able to characterize the anisotropy on several levels. On the one hand, the evolution of the entropy
Hr,θ depends on the velocity component and the direction of analysis, and shows steeper slopes in the inertial domain
for ux and |~u| along the anisotropic direction of the flow, induced by the walls of the channel in the case studied here.
On the other hand, intermittency characterized by Dr,θ and Fr,θ is independent of the direction of analysis and the
velocity component. Finally, the estimation of Sr,θ is too noisy to reveal any expected anisotropy.

Our methodology shows that turbulent velocity fluctuations can be considered isotropic, even in a strongly
anisotropic and inhomogeneous setup. We show that the anisotropy of our quantities is indeed due to the inho-
mogeneity of the velocity field: subtracting the possibly non-linear mean velocity profile allows us to recover all
results expected from Kolmogorov’s fully developed turbulence theory. Additionaly, we show that using higher order
increments provides another efficient way to discard locally the global trends.

Here we focused on two-dimensional fields or images, and provided a set of definitions that should prove useful in
a large number of domains where images are produced daily in large quantities. However, the methodology can be
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straightforwardly generalized to fields of higher dimension by considering all required components in the definition of
the increments.
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