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Abstract

For many animals, during development, brain cortex folds and forms bumps called gyri and depressions called sulci. The reasons for this folding are still not clear to the scientific community, but some relevant facts are known about the folding itself. First, this folding is not totally random as most sulci are shared among individuals, a large number of them even across species like the central sulcus that is shared between all primates [START_REF] Hopkins | Evolution of the central sulcus morphology in primates[END_REF]. However, there is still a huge variability between individuals, both for small sulci (which can be present or absent), and for the main sulci, whose shape can vary. Second, some patterns in this folding are correlated to behaviors or diseases, both for humans and other animals [START_REF] Mellerio | The power button sign: a newly described central sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia[END_REF][START_REF] Hopkins | Sulcal morphology in cingulate cortex is associated with voluntary oro-facial motor control and gestural communication in chimpanzees (Pan troglodytes)[END_REF]. These two reasons justify studying brain sulcation and its variability.

I have spent my internship in a team at the NeuroSpin institute called GAIA working on this theme. Its goal is to use advanced methods like machine learning to understand and analyze the folding of the brain. With my tutor, I have been working on the automated and unsupervised recognition of sulci patterns, focusing on the cingulate region. This region is in part known for the paracingulate sulcus (which is a parallel sulcus to the main cingulate sulcus) that can be present or not for humans, and whose presence is correlated to hallucinations among people touched by schizophrenia [START_REF] Garrison | Paracingulate sulcus morphology is associated with hallucinations in the human brain[END_REF]. This work aims to design and implement a self-supervised method able to detect so-called sulcal patterns. The presence of a paracingulate sulcus being an example of a sulcal pattern, we use as downstream task its detection to quantify the representation quality of the model. This method is expected to be general enough to be easily adaptable to the detection of sulcal patterns in other brain regions. I continued the work of [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF] who used deep learning models like SimCLR to complete this task. My role was to make the method more reliable and efficient.

During this internship, I showed that the parameters taken for [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF] were far from optimal, even being the worst possible solution among those I tested with my evaluation criteria. I proposed instead a set of parameters that is much more promising for the SimCLR structure we are using. I also made sure to code a pipeline that is reusable easily for any brain region for the model to be tested further.

Résumé

Lors du développement de nombreuses espèces, le cortex cérébral se plie pour former des bosses appelées gyri et des creux appelés sillons. Les causes de ce plissement ne sont pas connues par la communauté scientifique, mais on sait tout de même certaines choses à son propos. Premièrement, ce plissement n'est pas totalement aléatoire car la plupart des sillons sont communs entre les individus. Il y a en a même un grand nombre d'entre eux qui sont communs à plusieurs espèces, comme le sillon central, partagé par tous les primates [START_REF] Hopkins | Evolution of the central sulcus morphology in primates[END_REF]. Cependant, il existe une grande variabilité entre les individus, à la fois pour des petits sillons, qui peuvent être présents ou non, ou pour les sillons principaux dont la forme varie. Deuxièmement, certains motifs de sillons sont corrélés à des comportements ou des maladies, aussi bien chez l'homme que chez d'autres espèces [START_REF] Mellerio | The power button sign: a newly described central sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia[END_REF][START_REF] Hopkins | Sulcal morphology in cingulate cortex is associated with voluntary oro-facial motor control and gestural communication in chimpanzees (Pan troglodytes)[END_REF]. Ces deux raisons justifient l'étude du plissement cérébral et de sa variabilité. NeuroSpin has several state-of-the-art MRI scanners, including scanners producing 11.7 T and 17 T magnetic fields, which are much higher than fields used in MRI for medical diagnosis nowadays (typically 1.5 and 3T). They allow for images having a spatial resolution down to a tenth of a millimeter; the 11.7 T is meant for human research, and the 17 T is for rodent research. NeuroSpin is also known for research related to data analysis: NeuroSpin teams have developed the python library scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF], used worldwide for analysis, but also software more closely related to neuroscience like BrainVISA [START_REF] Cointepas | BrainVISA: Software platform for visualization and analysis of multi-modality brain data[END_REF], a suite of software for data analysis and visualization specialized in brain imaging. I worked in the BAOBAB research unit (Building large instruments for neuroimaging: from population imaging to ultra-high magnetic fields). BAOBAB aims to design and use tools dedicated to neuroimaging, both for high-field imaging and more classic MRI images, to analyze and post-process MRI data. The teams who have developed the BrainVISA tools are part of BAOBAB.

The brain can be studied with many various approaches, from very local to more global methods. The team I am working in, GAIA, has specialized in characterizing the variability of the human cortical folding pattern using supervised and unsupervised learning. In concrete terms, it means studying brain sulci, their development, and the cross-individual variability.

A brain sulcus is a depression that the brain surface does for some species. A sulcus by definition separates two brain surface humps, called gyri. For humans, sulci and gyri start forming before birth; it is still not clear to the scientific community what are the exact causes of the folding, and the debate between its mechanical and genetic origins is not solved yet. Yet, it is known that the folding is not random, and most sulci are shared between all the individuals of a specie, sometimes even across multiple species. For instance, the central sulcus (represented in figure 1), separating the frontal and parietal lobes, is a shared sulcus for all primates. What varies however is the exact shape of the sulcus: just like fingerprints, every individual has exact sulci shapes that differ from their peers, even for twins. This variability is then studied, and a way to do so is to look for sulci patterns. A pattern is a sub-structure of a sulcus (or a group of sulci) that varies among individuals. They differ from anomalies by the fact that they are not necessarily linked to pathology or malformations, but are part of the normal brain variability. There are common patterns, like sulcus interruption or knobs, but also more complex ones. Some examples are provided on figure 1 and2.

It is known that sulci patterns can be correlated to higher chances of brain diseases. For example, [START_REF] Mellerio | The power button sign: a newly described central sulcal pattern on surface rendering MR images of type 2 focal cortical dysplasia[END_REF] have shown that the "power button" pattern, illustrated in figure 2, is highly correlated to type 2 Focal Cortical Dysplasia, a brain malformation due to malfunctions during the brain formation, which is a common cause of epilepsy and seizures [START_REF] Kabat | Focal cortical dysplasia-review[END_REF]. Therefore, it is crucial to study sulci patterns to diagnose patients better. Because the labeling is really time-consuming to do by hand and because it is a tricky task that requires expertise and harmonization among experts, [START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF]: in purple, a pattern with one knob, and in green, a pattern with two knobs. The gray sulci between them are moving averages of individuals having an in-between sulcus shape between pattern 1 and pattern 2.

Figure 2: These images represent the "power button" sulcus (PBS) pattern [START_REF] Borne | Automatic recognition of specific local cortical folding patterns[END_REF]. A 3D reconstruction highlighting the sulci, with the central sulcus in red. B Zoom in of the image A, focusing on the PBS pattern. It is composed of a precentral sulcus segment (in green), inserting between the central sulcus (in red on the left) and an anterior ascending branch (in red on the right). C Power button sign scheme, meant to explain the pattern name. a key in this field would be the automatic detection of patterns, which would help both the research on the subject and diagnosis.

During my internship, I will continue the research work on the cingulate region of Joël Chavas, and Louise Guillon presented at MICCAI Chavas et al., 2022. This work focuses on the paracingulate sulcus, a parallel sulcus above the cingulate sulcus, that can be present or not in a human brain (see figure 3 for a representation of the cingulate region). The presence or not of a paracingulate sulcus is defined either simply by a parallel sulcus above the cingulate, or by such a sulcus but only if it is long enough to join two sulci orthogonal to the cingulate. This variation in the definition can lead to some misunderstandings and errors, especially when using databases from labs using the other definition, but more importantly it is the symptom showing that the pattern is not that obvious in most cases. This implies that some labels of the database we will be using might not have been the same if another expert made them.

Despite this variability, the shape of the paracingulate sulcus has been correlated to oro-facial motor control and gestural communication in chimpanzees [START_REF] Hopkins | Sulcal morphology in cingulate cortex is associated with voluntary oro-facial motor control and gestural communication in chimpanzees (Pan troglodytes)[END_REF], and to hallucinations among human patients suffering from schizophrenia [START_REF] Garrison | Paracingulate sulcus morphology is associated with hallucinations in the human brain[END_REF]. Knowing more about this sulcal region would therefore greatly benefit research and care for patients affected by this pathology, or research on other brain characteristics that could be linked to the region too.

Their actual work involves developing an automatic method to detect and classify patterns in the cingulate region. The main idea is to have a model producing an embedding of each subject's cingulate regions in a small dimension space, and then analyze the produced latent space, by applying clustering methods for instance (example in figure 3). If the model is good enough, each cluster should highlight a different pattern or sulcus variation, even ones that human experts might not know.

This method is expected to be generalized to other sulci regions, so the framework has to be generalizable, and not rely explicitly on features specific to the cingulate region.

My own work consists in continuing the research of [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF] proposing new ideas or frameworks to improve the modeling. More specifically, I work on the SimCLR model, a contrastive self-supervised model used in the MICCAI article, to improve its representation quality. To do so, I started a more systematic exploration of the parameters and structures, using the new model evaluation criteria I developed to compare my own work with the literature.

Methods

Data

Dataset description

For this work, I need enough brain MRI data to train and test machine learning models. These models require many examples to be properly trained, and more data will increase the representation power of the model. I have been using two databases available at NeuroSpin. The first one, HCP for Human Connectome Project, is a database of 1214 full brain MRI scans of young adults, available freely on the Connectome Coordination Facility website [START_REF] Van Essen | The Human Connectome Project: a data acquisition perspective[END_REF]. This data is unlabeled regarding the presence or lack of the paracingulate sulcus, the aspect I want to evaluate the model with. For computation time purposes, and to test later the generalization ability of the model on the second half, only half of this database is used for the training unless specified otherwise.

The second database is called ACC_patterns for Anterior Cingulate Cortex patterns. It is composed of 341 MRI scans collected from three databases: Tissier_2018, with 118 subjects [START_REF] Tissier | Sulcal Polymorphisms of the IFC and ACC Contribute to Inhibitory Control Variability in Children and Adults[END_REF], NIMH, a database used and described in Chakravarty et al., 2014, containing 73 subjects corresponding to Childhood-Onset Schizophrenia patients and 75 subjects corresponding to healthy patients, and finally, APEX, described in Delalande et al., 2019, containing 75 subjects. Unlike in the HCP database, the presence or not of a paracingulate sulcus is here labeled manually. The consistency of this labeling is guaranteed by the fact that they have been made by the same team.

Unless specified otherwise, the HCP database is used for training and validation, and ACC_patterns is used as the test set.

Preprocessing

The following preprocessing pipeline is illustrated in figure 4. It uses BrainVISA and deep_folding tools that were already computed before I started my internship. I only used them a few times to generate crops with different parameters, for instance for different voxel sizes. MRI scans are not fed directly to the neural network but go through preprocessing steps. As I try to train only on a specific brain region, I need to crop the images to keep only the desired one to avoid the model focusing on unrelated parts of the data. I also need a way to highlight the sulci shape, as I want the model to focus on this specific aspect.

NeuroSpin developed BrainVISA and a library called deep_folding, a software suite for preprocessing. It transforms in a few steps MRI scans into 3D arrays of voxels representing sulci in a target region.

The first step is to convert the MRI scans into 3D sulci maps made of voxels, called skeletons. This operation is made with BrainVISA. As all brains don't have the same size and can be displaced in the acquisition space, skeletons are normalized through linear transforms such as rescalings, translations, or rotations, to match a common template.

The second step is to crop the brain region of interest using a region-specific mask. We define the mask using a dataset of manually labeled subjects, for which all main sulci have been identified. For every subject of the labeled database, voxels of the targeted sulci are added to a sulcus-specific mask: one mask for the anterior cingulate sulcus, and one for the paracingulate sulcus. We then intersect the two masks and smooth out the result (through thresholding and dilatation) to obtain the desired mask specific to the anterior cingulate region.

Once the masks are computed, they are applied to the skeletons of the used datasets to keep only the masked brain region. The result of this operation is a 3D array for each subject with the voxel value set to 0 if the voxel doesn't correspond to a sulcus.

The voxels belonging to a sulcus are then labeled with two nomenclatures: topological and fold labels. In the first labeling system, when a voxel belongs to a sulcus, its value corresponds to the topological characteristics of the local part of the sulcus: for example, it takes the value 30 if it corresponds to the bottom of a sulcus, and the value 60 if it belongs to a simple surface. The second labeling system is such that each voxel of a crop is labeled as a part of a "branch", which is separated from the other branches by intersections of junctions. These branches are defined thanks to an algorithm implemented in the BrainVISA toolbox.

Both labelings are represented in figure 5. In this project's situation, the mask (in white) is made from the dilatation of the intersection of two masks: in red the paracingulate mask, and in blue the cingulate mask. are generated from two random transforms t and t ′ chosen from the same pull of possible transforms. These views are passed through the same network, computing the function f , transforming them into 1-dimension vector h i and h j . These vectors are then passed through the same network computing g, called a projection head, and chosen to be a two-layer Multi-Layer Perceptron. The output of this network is the output of the full model the loss is computed on.

The SimCLR Model

For this project, the chosen model has to follow some requirements. First, it needs to be complex enough to capture the complexity of sulci shapes, and be able to summarize it in a more usable form for postprocessing analysis. The most obvious summary is an embedding, which is a vector with a smaller dimension than the original input that still keeps the most relevant information. Many models do so, especially among neural networks. Another crucial requirement is that the model's learning method has to be unsupervised. The reason for this is that most databases are not labeled for the brain sulcal patterns, which means that a supervised learning method would be complicated to train efficiently.

One model that fits these requirements is SimCLR, which is a neural network model first presented in T. [START_REF] Chen | A Simple Framework for Contrastive Learning of Visual Representations[END_REF]. One of the most relevant aspects of SimCLR for this project is that it is trained thanks to a method called contrastive learning, a self-supervised learning method explained below. This method is unsupervised, which means it doesn't require labeled data to train; however, SimCLR can easily be converted to a semi-supervised framework, which means it can profit from labeled data to learn better, without losing its ability to learn from unlabeled data and features. I won't personally implement this variant, but it is studied in the lab on the same problem by my tutor Joël Chavas.

The principle of contrastive learning, shown in figure 6, is pretty simple: take an object, for example an image, and apply random transforms on it. For a traditional 2D image, it can be translations, small distortions, rotations, color changes, cutouts, zooms, etc. Do it twice for each input to get two random augmentations of the same input, then feed them to a neural network. The loss of this neural network has to be designed such that the network learns that the two augmentations are from the same picture, which in concrete terms means putting their representation vector close to each other in the latent space.

To do so, the loss function is such that it is smaller when the outputs of the two views from the same picture are similar to each other and different from the other ones. The implementation of such a loss requires a sub-loss of an element i in regard to another element j, which is defined as follows:

l(i, j) = -log exp(s i,j /τ ) 2N k=1 1 [k̸ =i] exp(s i,k /τ )
with N the number of subjects in each batch, τ the temperature, a hyperparameter of the model, and s i,j the cosine similarity between the output z i of the subject i and the output z j of the subject j, defined such as s i,j = z ⊤ i z j /||z i ||||z j ||. You can notice that this formula follows the requirement which states that the closest i and j outputs are, the smaller the loss is, and the further i and all the k outputs are, the smaller the loss is too.

Knowing that the two views of the k th picture are labeled 2k -1 and 2k, the total loss function is the following:

L = 1 2N N k=1 [l(2k -1, 2k) + l(2k, 2k -1)]
with N = number of subjects and l(i, j) expressed earlier.

As shown in figure 6, the SimCLR model produces embeddings of the input data as the activation of a hidden layer two layers before the output. The idea is that if the model is trained well enough, these embeddings should capture relevant features about the input data, and according to the authors of the method, these embeddings do a better job at representing the data than the output themselves (T. [START_REF] Chen | A Simple Framework for Contrastive Learning of Visual Representations[END_REF].

Augmentation methods

As explained above, SimCLR requires transformations applied to the inputs to work. As the data we are using are not precisely pictures, we will not use the same augmentations methods as in T. Chen et al., 2020, but create topology-specific augmentations. They must work as augmentations, by adding some randomness and being adapted to the geometry of our input.

During the project, we used two different sets of transformations to augment the input data. The first one, called "no_foldlabel" in the rest of this report, produces its two views not the exact same way: the first one removes from the input data a 3D block the size of 40% of the crop at a random place, except for the bottom values. It then applies a random rotation with a maximum angle of 10 degrees. In the second view, all values inside a random 3D block of the same size are kept and all values outside this block except the bottom values are removed. Another random rotation with the same max degree is also applied to the second view.

The reason to keep the bottom of the sulci (topological voxels defined by BrainVISA when creating the skeletons) for all views is that the model was struggling to converge otherwise, and that it forces the model to focus on the general shape of the sulci, and not on local details.

The second augmentation method is called "foldlabel". The principle of the foldlabel augmentation is to remove random branches (except branches associated with sulcus bottoms) from the fold label map (refer to the 2.1 data part) until there are at least 40% of the voxels that have been removed. The foldlabel augmentation method also includes a small random rotation (up to 6 degrees) in the 3D space afterwards.

Once either foldlabel or no_foldlabel is applied, the augmented views are transformed such as every non-zero-voxel is set to 1.

Backbone

The SimCLR model is based on a "backbone" model: the backbone is the part of the neural network that transforms the input into an embedding (it is the part computing the f function in the figure 6). It is completed by the "projection head", which transforms the embedding into the output used to compute the loss of the model. The backbone can have different structures but has to transform a 3D array into a 1-dimension vector with a defined size.

The first and most obvious neural network to be used as a backbone is a Convolutional Neural Network (CNN). A CNN is a neural network that uses convolutional layers; these apply a convolutional product to their input, often images in 2 or 3 dimensions, to extract features from them (O'Shea and Nash, 2015). This type of neural networks is ideally suited for images and is the backbone chosen in T. [START_REF] Chen | A Simple Framework for Contrastive Learning of Visual Representations[END_REF] As the data we are using is technically black-and-white images after the transformations (topological values and fold labels are used only to compute the views; inputs, in the end, are binary), we can use a 3D CNN without any modification.

During the project, two different CNN backbones were used. The first one, called "densenet" in the rest of the report, is presented in [START_REF] Iandola | Densenet: Implementing efficient convnet descriptor pyramids[END_REF] It is a big CNN with many layers, organized by blocks and linked with numerous residual connections. Residual connections, or skip connections, are forward connections between neurons from non-consecutive layers. They allow for very deep neural network models without the convergence problem they usually have. This neural network model has been successfully used by the team on skeletons [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF] and MRI images [START_REF] Dufumier | Benchmarking CNN on 3D Anatomical Brain MRI: Architectures, Data Augmentation and Deep Ensemble Learning[END_REF].

The second CNN backbone, simply called "convnet" for "convolutional network" in the rest of the report, is a much smaller model (a few hundred of thousand weights instead of a few millions), and doesn't have residual connections. Its exact shape and internal organization are inspired by the β -V AE encoder of [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF] The other considered backbone has a totally different structure than the other two, as it is a Pointnet [START_REF] Charles | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF]. A Pointnet is a neural network that, instead of taking as input a binary 3D matrix with a fixed size, takes point clouds as input, i.e. a list of 3D coordinates corresponding to the 'ones' in the original 3D matrix. The main idea behind the way a pointnet works is that the points are passed one by one through the same network, which means that all the weights and biases are the same for each point. Then, some transformations are applied to the features of the points to aggregate them and have a single embedding for a point cloud, instead of one per point. In particular, a max_pooling transform is used because it removes the dependence on the point order: it is crucial as point clouds are unordered sets, and the output shouldn't vary depending on the order of the points.

As its outputs are 1-dimension vectors, Pointnet can be used as a backbone, but it requires some more preprocessing than the CNNs. The most obvious one is the conversion from 3D matrices to point clouds. Optimized python functions already code this conversion, but to use the already coded augmentation methods used for densenet and convnet, I do the conversion on the fly.

A second preprocessing step is required because of the way PyTorch, the deep learning library the lab is using for this project, works: even though the pointnet architecture can be fed inputs with various lengths, i.e. various number of points in a point cloud, PyTorch is not able to manage batches with different sizes for each input. This implies that point clouds need to be made the same size to use batches during the training, so I need to pad the shorter point clouds to make them match the longest.

There are two obvious ways to pad, either adding zeros, or repeating points already present in the point cloud. I did some tests to know which padding method added the most distortion to the output, and I noticed that repeating points didn't change the output at all, at least to the degree of precision I have access to. Knowing that, and comforted by one of the creators of pointnet telling to do the same in a forum online (see https://github.com/charlesq34/pointnet/issues/161), I chose to apply the "repeat padding" to the data.

It might first appear confusing to try a network structure that is that different from the expected structure, but apart from the pure structure exploration, pointnet has some benefits compared to CNNs. The main one in this situation comes from the data content. For the HCP database and after all the MRI images preprocessing, at most 4% of all voxels of a crop are ones, which means that more than 96% of voxels are black. Even though some of the black voxels may bring relevant information, it is likely that most of them don't, for instance, the ones in the corner of the crop, far away from the actual sulcus skeleton. The point cloud structure allows getting rid of the black voxels for the network to focus on the relevant information, and hopefully to avoid being blocked in local minima as often as it happens with the CNN structures.

Evaluation tools

The SimCLR model applied to this problem has already been studied by Joël Chavas and Louise Guillon, alongside the β-VAE [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF]. They have produced some interesting results, especially concerning the structure of the latent spaces produced by these two models. However, they were missing a way to produce a quantitative measure of the network performance. There was also a lot of parameters and structure exploration left to be done.

Early in my internship, I coded a method to solve this issue, and to have an easier way to assess the models' quality.

Classifiers

As shown in T. Chen et al., 2020, a good way to assess the quality of a SimCLR model is to train classifiers on the embeddings it generates. If simple classifiers like linear neural networks or Support Vector Machines (called SVM afterward) produce good classifications, it means that the embeddings convey some information, which is moreover simple enough to be easily decrypted even by simple models.

The drawback of this method is that the selection of good latent spaces is made on already known characteristics; for instance, for an image, it is often the main subject represented on it that is embedded. It means that some model embedding's interesting but unknown features could be penalized by this method.

As a classification task, we have chosen to detect the presence of a paracingulate sulcus next to the cingulate sulcus, which is labeled on the database ACC_patterns.

To avoid unwanted correlation between the SimCLR's and the classifiers' trainings, we have not trained the SimCLR model on the same database as the classifiers: SimCLR is first trained on HCP, and, when this is done, it generates embeddings of ACC_patterns crops. Then, the classifier is trained with 5-fold cross-validation to predict if the subject has a paracingulate sulcus or not thanks to these embeddings. The chosen indicator of the classifier performance is the Area Under the Curve (AUC) of a ROC curve.

Because of a high variance between classifiers having the same parameters and trained on the same latent space, I have decided to train 250 classifiers instead of one for each latent space, in order to mitigate the variability. The indicator for the classifiers' performance, and therefore the estimation of the latent space quality, is the mean AUC of all classifiers.

As classifiers, I have chosen SVMs, as they train faster than even simple neural networks, and because they are easier to incorporate in a framework for cross-validation and to compute their AUC. 

Pipeline description

We now summarize the overall pipeline used for this project, from raw data to exploitable results. This pipeline is represented in a schematic way in figure 8.

First, the data is collected from MRI data banks. It is then processed by BrainVISA software to be transformed into sulci maps, and then into crops, which are processed sulci maps of a targeted region. The outputs of these preprocessing steps are the inputs for the SimCLR model. This BrainVISA process is applied to both HCP and ACC_patterns, which are respectively the training and testing sets. The detail about this preprocessing is detailed in the 2.1 part.

Once this is done, a SimCLR model is trained with HCP crops. Many trainings are performed, and many trained SimCLR with different parameters and structures are produced. The main studied parameters are the backbone type, the augmentation method, and the dimension of the latent space, but there are many more, such as the drop rate or the temperature.

Then, embeddings of the ACC_patterns crops are produced for each trained SimCLR model. These embeddings are the ones used for the evaluation of the SimCLR, through different processes, called downstream tasks.

The first evaluation process is the training of classifiers on the ACC_patterns embeddings. Using the generated embeddings as input data, 250 SVM classifiers are trained with a 5-fold cross-validation to predict the presence or not of a paracingulate sulcus. The predictions are then stored to compute ROC curves and their AUC, which are used as a measure of the embedding quality, and consequently of the quality of the SimCLR representation.

The second process is the co-visualization of latent spaces and crops: as the embeddings are computed, it is possible to plot the distribution of each class and to do some clustering. The most noticeable subjects can then be visualized with the BrainVISA tool Anatomist.

As it is perfectly automatized, the first method of evaluation is the main one used for global analysis, the second one being used for more in-depth analysis only on a few models.

Even though I have worked a few times on crop generation, my contribution has been mainly on the model exploration and improvements, and on the downstream tasks. I have implemented with my tutor 

Results

Parameters comparison

Thanks to the implementation of the classifiers pipeline, I was able to evaluate each SimCLR model performance with a more meaningful indicator than the network's loss alone. As each SimCLR training can be pretty long (between 45 minutes and 2 hours), I have started with a parameter exploration, by looking at a set of criteria to estimate the model quality. I've used of course the classifiers mean AUC, but also information about training that we log and visualize with tensorboard, a visualization tool specialized in deep learning. I have looked in particular at loss curves and cosine similarity histograms between all the embeddings. It is indeed possible that a model is stuck in a trivial minimum where all the embeddings are aligned. Thanks to an early stopping, I can automatically stop such training; moreover, I have coded a method to tag these models in order to avoid taking them into account in my future analysis. During grid search, 13 over 86 models have been tagged this way, 9 of which were densenet models, and 4 convnet models. They had all a 4-dimension latent space, and none of them were pointnets. The exact details about the distribution of models rejected with this method are available as well as the number of models used for the analysis in the table 9.

Thanks to this exploration, I figured out that 3 parameters among all of them have the most significant influence on the classifiers AUC, and I have decided to focus the analysis on them. These are the backbone structure (densenet, convnet or pointnet), the augmentation method (foldlabel or no_foldlabel ) and the latent space dimension (set to either 4 or 30). For more explanation about the backbone structures or the augmentations, please refer to the part about the SimCLR model.

To do the comparison between the different sets of parameters, I created a database pointing at all the models I trained during exploration. With this database, I could regroup the models according to what I estimated to be the 3 most important parameters, and compute their mean performances according to their respective classifiers. For the comparison to be more rigorous, I excluded the models whose other parameters were too far from the baseline: parameters that had an influence too big to be ignored were temperature and drop rate (more details about drop rate in Annex 4), which were set respectively to 0.1 and 0.05. I then trained new models in a grid search manner to have enough of them (at least 5) for each set of (backbone × dimension × augmentation) conditions.

These mean AUC of the models, grouped by main conditions, can be seen in a table in figure 10, and as 1-variable histograms in figure 11. From left to right: the backbone choice, the latent space dimension, and the augmentation method.

To put these results in context, I decided to compare the SimCLR results to a much simpler model, the Principal Component Analysis, or PCA. Indeed, it is technically possible to use PCA as an embedding generator: a 3D image of a crop can be flattened to just be a big 1-dimension vector, and then a PCA can transform it into an embedding vector of the desired size. Then, it is possible to train classifiers, just as if the PCA outputs were SimCLR embeddings.

To have a fair comparison, the PCA is trained on HCP crops, then produces ACC_patterns embeddings that are input data for the classifiers, just like for the SimCLR pipeline. With this framework, the classifiers trained on PCA embeddings have an AUC equal to 0.54 when the output latent space has 4 dimensions, and 0.60 when it has 30 dimensions.

Looking at the results, some facts are pretty clear. First, the condition "no_foldlabel 4", which was the configuration used in [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF], isn't working great for the classification task, often having results even worse than a PCA with 4 output variables. It is also the set of conditions that produces the biggest number of models that are stuck in a trivial minimum (see figure 9).

Second, 30 dimensions for the latent space works globally better than 4, at least for densenet and pointnet, which is consistent with the intuition that more and clearer information can be stored in a higher dimension space. However, this fact is less clear for the convnet backbone, for which the best condition is with a 4-dimension latent space. This is good news because fewer dimensions mean a latent space denser in information and less costly to compute and store.

Third, the augmentation "foldlabel" works generally better than the augmentation "no_foldlabel", even though it is less clear than for the dimension of the latent space.

Finally, the best backbone seems to clearly be the convnet, which can be surprising as it hasn't as much computation power as densenet or a state-of-the-art structure as pointnet. In particular, the best combination of parameters is the convnet foldlabel with a 4-dimension latent space, which even beats all the 30-dimension models.

Concerning the PCA comparison, even though some models have worse performances than PCA, most of them are actually better, especially when the latent space dimension is 30. This means that SimCLR embeddings capture more, and hopefully more complex, information about the sulci crops, which is reassuring.

In particular, the model types I will study after, convnet foldlabel with 4-dimension embeddings and pointnet foldlabel with 30-dimension embeddings, are significantly better than the PCA of their dimension, with p values equal to 2.10 -5 and 2.10 -7 respectively.

To try to understand a bit more the decisions of the SVMs, especially when the AUC is high, I looked at the crops of well and badly classified subjects. To do so, I can use the tool Anatomist, which belongs to the package of software BrainVISA. With Anatomist, it is possible to plot 3D representations of the cropped sulci. I chose the best SVM classifier of the best performing SimCLR model, a convnet foldlabel with 4-dimension embeddings, and I visualized with Anatomist some subjects well classified (true positive and true negative), some poorly classified (false positive and false negative) and fringe cases (well-classified examples but very close to the decision frontier). The Anatomist visualizations are displayed in figure 12.

It is not obvious to non-expert eyes if a crop shows a paracingulate sulcus or not with only the skeletons, which may explain why some models have so much difficulty to classify them. However, by taking a bit more time to look at the crops, it is possible to observe the paracingulate sulci (circled in green on the figure), and it seems that the most obvious cases for humans are the ones the SVM is the most confident about.

Moreover, the mistake in the classification of the bottom-right crop of the figure 12 is understandable. It is likely that, as the model is looking for two parallel sulci, it classified the crop as a positive case, whereas the cingulate is the top sulci, the bottom one being the callosal sulcus. Even though it is a mistake, it seems that the model was able to learn to classify crops with two parallel sulci.

Latent space visualization and clusters

By looking at some ROC curves, displayed in figure 13, it is possible to see that the classifiers trained on pointnet and convnet have much less variable ROC curves than the ones trained on densenet. This tendency is confirmed by the mean standard deviation of the SVM: the table 13.B shows that this standard deviation is smaller on average for pointnet and convnet models. A possible hypothesis is the models built with these backbones tend to generate embeddings that have a more distinct, clearer structure than the densenet does.

To see if it is actually the case, I can visualize the latent spaces of SimCLR with different backbones and compare their visible structures. As they have too many dimensions, we have to use a dimension reduction method to look at them in 2D. The 2D representation displayed in figure 14 is produced by the Uniform Manifold Approximation and Projection algorithm (or UMAP, see McInnes, Healy, and Melville, 2018 for more details).

Only by looking at the figure 14, pointnet models seem to have more structured latent spaces than densenet or convnet models, in the sense that they look less like point clouds obtained by a random distribution. However, even though the latent space of a medium convnet or densenet looks more or less like a random point cloud when looked through UMAP, it seems that for the best of them, the latent space is a bit more irregular. This is not entirely consistent with the hypothesis expressed above, as the visible structure of the latent space is not totally correlated with the consistency of the classifiers' results.

To look deeper into the latent space structure, a solution is to cluster the embeddings, in order to see if each cluster conveys a meaning or a feature that makes sense from a human perspective. To do so, after getting each cluster, I compute the centroid of them and take the closest subject to visualize it. Hopefully, each cluster representative is different enough from the other ones to be distinguished by a human. Also, I can visualize a few other subjects from the same cluster to see if they share features with the cluster representative.

The clustering is computed using the algorithm affinity propagation, used in [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF], and available in the python library scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. This method has been chosen because the number of clusters doesn't have to be chosen arbitrarily, which is a good feature to have as we don't know how many clusters there are. However, thanks to a small loop to reduce the number of clusters from an existing clustering, it is possible to set a maximum to the number of desired clusters. This number has been set to 5, as too many clusters render them less interpretable.

The clusterings for the best performing pointnet and convnet embeddings are displayed in figure 15. It is not obvious from the displayed cingulate crops to understand what are the characteristics of each cluster, nor the potential decision factors to put an embedding on one side of the space instead of another. Looking at other crops randomly picked from each cluster doesn't give more insight into a possible structure in the latent space either.

A possible solution to understand the latent space better would be to use a decoder, i.e. a network trained jointly on the data that transforms the embeddings into the same object type as the input. This allows to look at the reconstruction of points in the latent space that are not constructed from an input. However, this decoder is not implemented yet, so we have to find other analysis methods.

By crossing figure 15 and figure 12, it is possible to see that some clusters seem to have way more paracingulate subjects than others. This feeling is supported by the actual numbers, presented in the histogram in figure 16: the proportion of paracingulate sulcus in clusters is significantly uneven compared to the base one (the p-value computed by the χ 2 distribution is around 1.10 -4 for pointnet and 7.10 -3 ). This means that the computed clusters convey a meaning, at least in regard to the presence or not of the paracingulate sulcus. However, it is not clear if this factor is the reason behind this embedding distribution and clustering, or if it is just correlated with a "true" deciding factor.

Discussion

The results I have produced are promising: I have implemented a method able to evaluate quantitatively the quality of SimCLR embeddings. Even though it won't replace the latent space visualization and analysis, it is a great addition to the analysis toolkit, as it gives a comparison method that is quicker and more objective. Thanks to it, we managed to disqualify the parameters set that was used in Chavas et al., 2022 (densenet with no_foldlabel augmentation and 4-dimension latent space), which was actually the worst in terms of downstream classification.

However, the actual results are still far from perfect: with the best parameter configuration peaking at 0.75 for its AUC, the system is still not operational for a real-life use.

Another criticism to do about this work is about the dedication to look for clusters in the embeddings. It is actually far from obvious that embeddings of this dataset should do clusters for several reasons. First, sulci patterns are more often a continuum than binary, like in the case of the central sulcus (see figure 1). Even for the paracingulate region, the approximation between present and absent can be questioned, as there are both fringe cases and paracingulate sulci that are more or less pronounced.

Second, the organization in clusters is less likely to appear if the patterns are not exclusive, i.e. if a sulcus is composed of a lot a small patterns, each one concerning a specific part or aspect of the sulcus. In this case, methods such as dictionary learning [START_REF] Tariyal | Deep dictionary learning[END_REF] would probably work better than the actual framework.

Future for the project

The research on the topic is not over yet of course, and there are still a lot of possibilities to explore. First, I think it would be useful to try again the β-VAE used in [START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF] now that we have access to the classifier pipeline. We made the choice at the start of the internship to focus only on the SimCLR because it is easier to make it fit a semi-supervised framework, but β-VAE showed some great results, in particular in regard to the explicability of the latent space: because it has a decoder (a network that transforms embeddings into the same objects as the inputs), this structure can construct images from any point in the latent space, even when it doesn't correspond to a real subject.

The second development following this work would be to apply this framework to other brain regions. Doing it perfectly would mean setting the parameters and structure of the SimCLR model, for the performances to be comparable across brain regions. For that, I would recommend choosing the convnet model, with the foldlabel augmentation method, as they are clearly better in terms of raw performances for classification downstream tasks. I wouldn't totally exclude the possibility of pointnet though, as its latent space have more a priori interesting structure, but also because it is the only one that never had been stuck in the trivial minimum.

I would be more cautious about the choice of the latent space dimension. If convnet with foldlabel augmentations is chosen, 4 dimensions for the latent space are better, but this exact composition was not that good when the other parameters like drop rate were changed, and it was likely to be stuck in the trivial minimum too. This situation might occur again as we change the training database, even without changing the parameters; this is why using a higher dimension latent space (with 8 or 16 dimensions) might be safer.

More generally, we can't exclude that we have overfitted on this database or that this best set of parameters is the best for any other brain region. To know more about that, it is necessary to use the pipeline on other brain regions, or at least on other datasets.

The last planned improvement is about the rigor of the grid search we did: for it to be more reliable, we need to have a train-validation set on which the grid search with cross-validation is performed and a test set to check afterward whether the chosen model overfitted or not. This means either gathering new labeled data, or splitting the ACC_patterns set and doing the grid search with one part, keeping the second as the test set.

Conclusion

During this internship, I worked in a very stimulating environment that allowed me to learn more about research and the application of deep learning to neuroscience. Thanks to this internship, I am now more aware of how I feel about working in research, especially about doing a Ph.D.; I know more about how a lab works, both about internal and external aspects. Also, I have learned a lot about brain sulci and machine learning thanks to the amazing research ecosystem at NeuroSpin. I am very pleased I have been working on research that will likely help treat patients affected by brain diseases. Neuroscience is an amazing tool that allows knowing more about the brain, for better or for worse. It is indeed likely that some research in neuroscience is used for unethical purposes, like eugenics or discrimination "backed up" by science. It is therefore crucial for scientists working in neuroscience to be extremely cautious about their wording, the conclusion of their articles, and their overall communication in order not to foster such behaviors. Moreover, just like for any other medical data, they have to carefully respect data protection measures: personal data leaks could cause similar discrimination that have concrete repercussions on patient life, such as higher interest rates on loans or more expensive insurance.
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Figure 1 :

 1 Figure 1: A Visualization of a central sulcus in context (sulcus highlighted in red). This image has been produced by BrainVISA Anatomist. B Illustration of two possible central sulcus patterns[START_REF] Sun | Linking morphological and functional variability in hand movement and silent reading[END_REF]: in purple, a pattern with one knob, and in green, a pattern with two knobs. The gray sulci between them are moving averages of individuals having an in-between sulcus shape between pattern 1 and pattern 2.

Figure 3 :

 3 Figure 3: Both figures are taken from Chavas et al., 2022. A 3D visualization of the right hemisphere cingulate region. We generated with BrainVISA Anatomist both the sulci shapes highlighted in red and the 3D brain models. The paracingulate sulcus is circled in green. B Embeddings of the paracingulate region generated by a SimCLR training, and sent to 2D with a t-SNE method. The represented sulci are the ones whose embeddings are the closest to each cluster centroid.

Figure 4 :

 4 Figure4: Overview of the crop generation process. A bank of labeled brains is used to create masks, that are then applied to other brains to generate the crops. In this project's situation, the mask (in white) is made from the dilatation of the intersection of two masks: in red the paracingulate mask, and in blue the cingulate mask.

Figure 5 :

 5 Figure 5: These two pictures represent a 2D slice of a cingulate crop from the same subject. A Skeleton crop : The light blue pixels are "bottom" pixels, whereas dark blue pixels are simple surfaces, i.e. everything that is not bottom in this case. B Foldlabel crop : each color represents a different branch.

Figure 6 :

 6 Figure6: Schematic description of the learning process of a SimCLR network, taken from T.[START_REF] Chen | A Simple Framework for Contrastive Learning of Visual Representations[END_REF]. From an initial picture x, two views xi and xj are generated from two random transforms t and t ′ chosen from the same pull of possible transforms. These views are passed through the same network, computing the function f , transforming them into 1-dimension vector h i and h j . These vectors are then passed through the same network computing g, called a projection head, and chosen to be a two-layer Multi-Layer Perceptron. The output of this network is the output of the full model the loss is computed on.

Figure 7 :

 7 Figure 7: Illustration of the two used augmentations, foldlabel in the top line and no_foldlabel in the bottom line. On the left of each line is represented the original crop whose views are displayed on the right.

Figure 8 :

 8 Figure 8: Overview of the full pipeline, from raw data (sulci maps) to interpretable results. The parts [highlighted in red] are the ones I have worked on, either by generating new data, improving an already existing process, or creating it. The details about the BrainVISA preprocessing are shown in figure 4 and explained in part 2.1.

Figure 9 :

 9 Figure9: Table displaying the number of models trained during the grid search that were stuck in a trivial minimum (in red), and the number of models used for the analysis (in blue), grouped by the backbone, dimension, and augmentation method. The 'red' models are excluded by default and are not taken into account in the analysis.

Figure 10 :

 10 Figure 10: Table of the SimCLR downstream performances, grouped by parameters of interest. The displayed numbers are the mean classifiers' AUC obtained with a 5-fold cross-validation, averaged over all SimCLR models, plus or minus the standard deviation across all SimCLR models.

Figure 11 :

 11 Figure 11: Histograms of the models' performances for one parameter each time.From left to right: the backbone choice, the latent space dimension, and the augmentation method.

Figure 12 :

 12 Figure 12: Visualization of crops classified by the best SVM of the best model. The top line contains subjects that truly have a paracingulate sulcus (circled in green) and the bottom one subjects that don't. The further right (and the redder the voxels), the most confident the chosen classifier thinks the subject has a paracingulate sulcus, and vice-versa. The well-classified subjects are therefore in the green boxes (bottom-left and top-right).

Figure 13 :

 13 Figure 13: A Display of the ROC curves of the SVM for four different models. I have randomly picked one model for each backbone among those who have a 30dimension latent space and that used the augmentation no_foldlabel for training. I also displayed the ROC curves of the SVM trained on the PCA embeddings with 30 dimensions (right panel). B Table of the SVM AUC dispersion (i.e. the AUC standard deviation for SVM trained on the same model) with a 10 -3 factor, averaged over all the models. The second number of each cell is the standard deviation of this dispersion over all the models.

Figure 14 :

 14 Figure 14: Latent space representation of diverse models, obtained with UMAP (McInnes, Healy, and Melville, 2018). The top line contains the bestperforming models for each backbone, and the bottom is a more standard one (median performance).

Figure 15 :

 15 Figure 15: Visualization of clusters for the best pointnet (top picture) and the best convnet (bottom picture). The centroid of each cluster (the star on the point cloud) is computed, and then the closest subject from each centroid is selected and displayed.

Figure 16 :

 16 Figure 16: Distribution of the subjects having a paracingulate among clusters: on the left for the clusters of the best pointnet (represented on the top of figure 15), and on the right the clusters of the best convnet (represented on the bottom of figure 15). The red horizontal line is the proportion of subjects having a paracingulate on the overall population, and the black vertical bars are the 95% confidence intervals.

  

J'ai réalisé mon stage au sein de l'institut de recherche NeuroSpin, plus précisément dans l'équipe GAIA qui travaille sur ces thématiques. Le but de l'équipe est d'utiliser des méthodes de pointes de machine learning pour comprendre et analyser le plissement du cerveau. J'ai travaillé avec mon tuteur sur la reconnaissance automatique et non supervisée de motifs de sillons, en me concentrant sur la région cingulaire. Cette région est notamment connue pour le sillon paracingulaire, un sillon parallèle au sillon cingulaire qui peut être présent ou non chez l'homme, et dont la présence est reliée à l'apparition d'hallucinations chez les personnes atteintes de schizophrénie[START_REF] Garrison | Paracingulate sulcus morphology is associated with hallucinations in the human brain[END_REF]. Ce travail cherche à designer et implémenter un modèle dit self-supervised capable de détecter des motifs de sillons susmentionnés. La présence d'un sillon paracingulaire est un exemple de motif dont nous nous sommes servi comme downstream task afin de quantifier la qualité des représentations générées par le modèle, mais cette méthode doit être suffisamment générale pour être adaptée à la détection de motifs de sillons dans d'autres régions du cerveau. Lors de ce stage, j'ai continué le travailde Chavas et al., 2022, qui ont utilisé le modèle de deep learning SimCLR pour effectuer cette tâche, mon rôle étant de rendre la méthode plus efficace et robuste.Pendant ce stage, j'ai pu montrer que les paramètres choisis pour[START_REF] Chavas | Unsupervised Representation Learning of Cingulate Cortical Folding Patterns[END_REF] sont loin d'être optimaux, étant même les pires parmi ceux testés d'après mon critère d'évaluation. J'ai proposé à la place un ensemble de paramètres beaucoup plus prometteurs pour la structure de SimCLR actuellement utilisée. J'ai aussi fait en sorte que la pipeline codée soit facilement réutilisable, notamment pour pouvoir la réappliquer à d'autres régions du cerveau.
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Annexes

Dropout

The dropout is a regularization method developped to limit overfitting. The principle is simple: during training and for each batch, some neurons in the network will be randomly deactivated with a probability p called drop rate. This avoids the weights to be too synergistic and make them less likely to fit perfectly to the training data.