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A DENSE SUBSET OF Mn(R) CONTAINING DIAGONALIZABLE MATRICES

FLAVIEN MABILATa

Abstract. In this note, we consider matrices similar to X-form matrices, which are the matrices for

which only the diagonal and the anti-diagonal elements can be different from zero. First, we give a char-

acterization of these matrices using the minimal polynomial. Then, we prove that the set of matrices
similar toX-form matrices over R and C are dense and we give a characterization of the interior of this set.
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“La mémoire est aussi menteuse que l’imagination, et bien
plus dangereuse avec ses petits airs studieux.”

Françoise Sagan, Derrière l’épaule

1. Introduction

In this note, all fields considered are commutative. Let K be an arbitrary commutative field. The
set of all square matrices of size n over K is denoted Mn(K), 0n is the zero matrix of Mn(K). If
A ∈ Mn(K) we denote πA(X) the minimal polynomial of A (with the convention πA monic polynomial)
and χA(X) = det(XIn − A) the characteristic polynomial of A (with this definition χA(X) is a monic

polynomial). We use the convention
∏0

i=1 ai = 1. An elementary Jordan matrix is a matrix composed
of zeroes everywhere except for the diagonal, which is filled with a fixed element λ ∈ K, and for the
superdiagonal, which is composed of ones. The Frobenius companion matrix of the monic polynomial

P (X) = Xn +
∑n−1

i=0 aiX
i is the square matrix defined as C(P ) =


0 · · · 0 −a0

1
. . .

... −a1
. . . 0

...
1 −ad−1

 .

A classical results states that the set of diagonalizable matrices is dense over C but not over R.
Here, we want to find a subset of Mn(K) containing all diagonalizables matrices which is dense in the
cases K = R,C and we want to find the interior of his set. For this, we will study the objects introduced
in the following definitions :

Definition 1.1. i) A X-form matrix is a square matrix for which only the diagonal and the anti-diagonal
elements can be different from zero.
ii) An endomorphism u of a finite dimensional vector space E is X-formable if there is a basis of E with
respect to which the matrix of u is a X-form matrix.
iii) A X-formable matrix is a matrix similar to a X-form matrix.

First, we give some of the easy properties verifying by that kind of matrices :

• Matrices of size 1 or 2 are X-form matrices;
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• X-form matrices of odd size has an eigenvalue belonging to K;
• If A is a X-form matrix then At is a X-form matrix;
• If A is diagonalizable then A is X-formable;
• The set of X-form matrices of size n is a vector subspace of Mn(K);
• If A and B are X-form matrices then AB is a X-form matrix;
• If A is an invertible X-form matrix then A−1 is a X-form matrix (this follows from the last two

points and the equality A−1 = −1
a0

(Ar−1 +
∑r−1

i=1 aiA
i−1) with πA(X) = Xr +

∑r−1
i=0 aiX

i, a0 ̸= 0

since A is invertible).

We also have some other properties in the case of central-symmetric X-form matrices (see [6, 7]) and
also in the case of block central-symmetric X-form matrices (see [8]).

A classical result states that a square matrix is diagonalizable if and only if its minimal polyno-
mial is a product of distinct linear factors over K. It is natural to find a similar characterization in the
case of X-formable matrices. This seems to be not very difficult but we have been unable to locate such
a result in the litterature. Hence, our first objective is to prove the following result :

Theorem 1.2. Let K be a commutative field and A ∈ Mn(K). A is X-formable if and only if

πA(X) =

r∏
i=1

Pi(X)

q∏
i=1

(X − λi)
ni ,

with r, q ≥ 0, Pi irreducible monic polynomials of degree 2, λi ∈ K, 1 ≤ ni ≤ 2, Pi ̸= Pj and λi ̸= λj for
i ̸= j.

To simplify the proof, we will use the following notation : a polynomial verifies the property (P) if it
has the same factorization as in the previous theorem.

Then, we will consider some topological properties of X-formable matrices over R and C related
to our initial goal. The main results of this text gathered in the following theorem give an answer to this
problem :

Theorem 1.3. n ∈ N∗. Let F be the set of X-formable matrices of size n over C and G the set of
X-formable matrices of size n over R.
i) F is dense in Mn(C).
ii) The interior of F is {A ∈ Mn(C), χA verifies (P)} = {A ∈ Mn(C), χA has only simple or double roots}.
iii) G is dense in Mn(R).
iv) The interior of G is {A ∈ Mn(R), χA verifies (P)}.

2. X-formable matrices

In this subpart, K is an arbitrary commutative field. We begin by an easy lemma.

Lemma 2.1. A matrix A is X-formable if and only if it is similar to a block-diagonal matrix in which
each block has a size less than 2.

Proof. First, we consider the case n = 2m. Let A be a X-formable matrix of size n. Let u be an endomor-
phism of Kn whose matrix in the canonical basis is A. It exists B = (e1, . . . , e2m) a basis of Kn such that
the matrix of u in B is a X-form matrix. The matrix of u in the basis (e1, e2m, e2, e2m−1, . . . , em, em+1)
is a block-diagonal matrix in which each block has a size less than 2. Let A be a matrix similar to a
block-diagonal matrix in which each block has a size less than 2 and u be an endomorphism of Kn whose
matrix in the canonical basis is A. It exists B′ = (f1, . . . , f2m) a basis of Kn such that the matrix of u
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in B′ is a block-diagonal matrix in which each block has a size less than 2. The matrix of u in the basis
(f1, f3, . . . , f4, f2) is a X-form matrix. The proof of the case n = 2m+ 1 is similar.

□

Note that this result, combined with the normal matrices reduction theorem (see [3] Theorem 4, p
271), allows us to see that normal matrices on R are X-formable.

2.1. Proof of theorem 1.2.

Proof. Let A be a X-formable matrix of size n. By the previous lemma, it exists a basis of Kn such
that the matrix of u in this basis is a block-diagonal matrix C in which each block has a size less than
2. Thus, πA is the least common multiple of the minimal polynomials of the diagonal blocks of C. The
minimal polynomials of matrix of size 1 or 2 are one of the following type :

• irreducible monic polynomial of degree 2;
• (X − λ)2;
• (X − λ);
• (X − λ1)(X − λ2), λ1 ̸= λ2.

Hence, they verify (P). Thus, πA verifies (P).

Now, we want to prove the remaining implication of the theorem.

Firt, we consider a matrix A of size n such that πA verifies (P) and such that πA has only one irre-
ducible factor (over K). We have three cases :

• πA = (X − λ) then A is diagonalizable, and so X-formable.
• πA = (X−λ)2. By the decomposition theorem of Jordan, A is similar to a block diagonal matrix

H =

J1
. . .

Jl

 in which Ji is an elementary Jordan matrix. Besides, each Ji is a square

matrix of size ni ∈ {1, 2}. Indeed, πA = πH = lcm(πJi
, 1 ≤ i ≤ l) and πJi

= (X − λ)ni . Hence,
A is X-formable, by lemma 2.1.

• πA is an irreducible monic polynomial of degree 2. By the decomposition theorem of Frobenius,
A is similar to a block diagonal matrix

H =

C(R1)
. . .

C(Rt)

 ,

with Ri monic polynomials verifying Ri divides Ri+1. Since πA = πH = lcm(Ri, 1 ≤ i ≤ t) and
πA irreducible, Ri = πA. Thus, H is block-diagonal matrix in which each block has size 2 and A
is X-formable, by lemma 2.1.

Now, we proceed by induction on the size n of the matrix. If n = 1, then the result is true. Suppose
it exists n ≥ 1 such that all matrices of size less than n whose minimal polynomial verifies (P) are
X-formable. Let A be a matrix of size n+ 1 whose minimal polynomial verifies (P) and u the endomor-
phism canoniquely associated to A. If πA has only one irreducible factor, then the result is true by the
previous discussion. Suppose πA has several irreducible factors. It exists a monic polynomial P such that
πA = P πA

P , P has degree greater or equal to 1, P and πA

P are relatively prime polynomials. P and πA

P

verify (P). Consider F = Ker(P (u)) and G = Ker(πA

P (u)). Hence, by the kernel lemma1, Kn+1 = F ⊕G

1This translation of the French name ”lemme des noyaux” seems to be the most used name for this result.



4 FLAVIEN MABILATa

and F , G are invariant subspaces of u.

By induction assumption, u|G (restriction of u to G) and u|F are X-formable. Hence, u is X-formable
and theorem 1.2 is proved.

□

2.2. Some additional elements about theorem 1.2.

In the case of an algebraically closed field we have the following result :

Corollary 2.2. Let K be an algebraically closed field and A ∈ Mn(K). The following assertions are
equivalent :
i) A is X-formable.
ii) πA(X) =

∏q
i=1(X − λi)

ni with q ≥ 1, λi ∈ K, 1 ≤ ni ≤ 2 and λi ̸= λj for i ̸= j.
iii) All the Jordan blocks appearing in the Jordan normal form of A have their size equal to 1 or 2.

If A is a X-formable matrix then there is not a unique X-form matrix similar to A. For example,

A =

(
1 1

0 2

)
is a X-form matrix but A is also similar to

(
1 0

0 2

)
which is also a X-form matrix.

We now give the two following examples :

• We consider K = R and B =

1 1 1
0 1 1
0 0 1

. πB(X) = (X − 1)3. Hence, by the theorem 1.2, B is

not X-formable.

• We consider K = R and C =


−22 47 −19 18
1 3 −3 −5
14 −23 7 −16
−15 27 −9 17

. πC(X) = (X − 2)(X − 3)(X2 + 2).

Hence, by the theorem 1.2, C is X-formable. For instance,

C =


1 2 3 4
0 2 1 2
0 3 0 1
1 0 1 1




4 0 0 1
0 1 1 0
0 −3 −1 0
−2 0 0 1



−1 1 0 2
1 −2 1 −1
4 −7 2 −4
−3 6 −2 3

 .

We conclude this part by giving some elements about the product of X-formable matrices. We have
the following result :

Theorem 2.3 (Botha, [1] Theorem 2.1). Let K be any field such that the characteristic of K is different
from 2 and such that K ̸= F3 (the field with 3 elements). Then every matrix over K is a product of two
diagonalizable matrices.

Since diagonalizable matrices are X-formable, this result covers a lot of cases. Here, we consider the
case of F3. By the decomposition theorem of Frobenius, it is sufficient to consider companion matrices.
We have the following equality :

0 · · · 0 a0

1
. . .

... a1
. . . 0

...
1 ad−1

 =

 1

. .
.

1




1 ad−1

. .
. ...

1 a1
0 . . . 0 a0

 .
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The first matrix on the right is diagonalizable since its minimal polynomial is (X−1)(X+1) and 1 ̸= −1
in F3. If a0 = ±1 then the second matrix on the right is X-formable since its minimal polynomial divides
(X − 1)2(X + 1)2 (theorem 1.2). If a0 = 0 then the second matrix on the right is X-formable since its
minimal polynomial divides X2(X−1)2(X+1)2 (theorem 1.2). Hence, every matrix over F3 is a product
of two X-formable matrices.

3. Some topological aspects of the set of X-formable matrices

The aim of this section is to prove theorem 1.3. Here, we suppose K = R,C. The set of polynomials of
degree less than n over K is denoted Kn[X]. We use the following norm, if A = (ai,j)1≤i,j≤n ∈ Mn(K) we
denote ∥A∥∞ = max(|ai,j | , 1 ≤ i, j ≤ n) (we recall that all norms are equivalent on Mn(K)). We start
by some preliminary results.

3.1. Prelimirary lemmas. In this subsection, we give some results concerning polynomials over K. If
P (X) =

∑n
k=0 akX

k, we denote ∥P∥∞ = max(|ak| , 0 ≤ k ≤ n) and D(z, r) = {w ∈ C, |z − w| < r}. We
begin by the following well-known result :

Theorem 3.1 (Continuity of the roots of a polynomial, [4]). Let P be a polynomial, zi its distinct roots
with i = 1, . . . , p, mi the multiplicity of the root zi (m1 + ... +mp = deg(P )). Then for any ϵ > 0 such
that D(zi, ϵ)∩D(zj , ϵ) = ∅ for any i ̸= j there exists η > 0 such that any polynomial Q whose coefficients
differ from those of P only by less than η has exactly mi roots (distinct or not) in D(zi, ϵ).

Now we can prove the following result :

Proposition 3.2. n ∈ N∗. The set F̂ of polynomials over C of degree n whose roots are simple or double
is an open subset of Cn[X].

Proof. Let P ∈ Cn[X] with deg(P ) = n. We assume that P has only simple and double roots. We
denote zi its distinct roots with i = 1, . . . , p and mi the multiplicity of the root zi. We have mi ≤ 2 and
m1 + ...+mp = n.

Since C is a separated nomed space, it exists ϵ > 0 such that D(zi, ϵ) ∩ D(zj , ϵ) = ∅ for any i ̸= j.
Hence, by the previous theorem it exists η > 0 such that any polynomial Q verifying ∥P −Q∥∞ < η has
exactly mi roots (distinct or not) in D(zi, ϵ). So, in each D(zi, ϵ), Q has exactly one root of multiplicity
less than two or two roots of multiplicity one. Besides, Q has n roots (with multiplicity) in

⋃p
i=1 D(zi, ϵ)

and deg(Q) ≥ n.

Hence, a polynomial T belonging to Cn[X] and verifying ∥P − T∥∞ < η has degree n and all its roots

are simple or double. Thus, F̂ is an open subset of Cn[X].
□

This result is no longer true if we replace C by R. For instance, we can consider the polynomial
sequence Pn = X2 + 1

nX + 1
n . For all n ∈ N∗, Pn is irreducible, since its discriminant is 1

n (
1
n − 4) < 0.

However, this sequence converges to X2. Hence, the complementary of the set of polynomials over R of
degree 2 whose roots are simple or double is not closed. So, this set is not an open set. However, we can
still have a similar result :

Proposition 3.3. n ∈ N∗. The set Ĝ of polynomials over R of degree n which verify (P) is an open
subset of Rn[X].

Proof. Let P ∈ Rn[X] with deg(P ) = n. We assume that P verifies (P). We denote zi its distinct roots
in C with i = 1, . . . , p and mi the multiplicity of the root zi. Since P verify (P), we have mi ≤ 2 and
m1 + ...+mp = n. Besides, if zi ∈ C− R then mi = 1 and zi is also a root of P of multiplicity 1.
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Since C is a separated nomed space, it exists ϵ > 0 such that D(zi, ϵ) ∩ D(zj , ϵ) = ∅ for any i ̸= j.
Hence, by the previous theorem it exists η > 0 such that any polynomial Q in R[X] ⊂ C[X] verifying
∥P −Q∥∞ < η has exactly mi roots (distinct or not) in D(zi, ϵ). In particular, Q has n roots in C (with
multiplicity) belonging to

⋃p
i=1 D(zi, ϵ) and deg(Q) ≥ n. We have several possible cases for the roots of

Q belonging to D(zi, ϵ) :

• D(zi, ϵ) contains exactly one real root of multiplicity less than two or two real roots of multiplicity
one.

• D(zi, ϵ) contains exactly one root λ of multiplicity one belonging to C−R. Then, D(zi, ϵ) contains
exactly one root λ of multiplicity one. Thus, the polynomial (X − λ)(X − λ) is an irreducible
real factor of Q and this factor appears only one time in Q.

• D(zi, ϵ) contains exactly two roots of multiplicity one, λ and µ, belonging to C−R. In this case,
zi ∈ R (since the non-real roots of P has multiplicity one). Besides, λ and µ are roots of Q of
multiplicity one and they also belong to D(zi, ϵ) (since zi ∈ R). Hence, µ = λ. Thus, the poly-
nomial (X−λ)(X−λ) is an irreducible real factors of Q and this factor appears only one time in Q.

• D(zi, ϵ) contains exactly one real root of multiplicity one x and one root of multiplicity one λ
belonging to C − R. In this case, zi ∈ R (since the non-real roots of P has multiplicity one).
Besides, λ is a root of Q of multiplicity one which belongs to D(zi, ϵ) (since zi ∈ R). Hence, this
case is not possible.

Hence, a polynomial T belonging to Rn[X] and verifying ∥P − T∥∞ < η has degree n and verifies (P).

Thus, Ĝ is an open subset of Rn[X].
□

Remark 3.4. In the first case considered in the proof, zi ∈ R. Indeed, suppose zi is a non-real root of
P . D(zi, ϵ) contains only one root of multiplicity one (since the non-real roots of P has multiplicity one).
zi is a root of P of multiplicity one. Hence, D(zi, ϵ) contains exactly one root of Q. We set x this root.
x is necessarily real since otherwise D(zi, ϵ) would contain a non-real root which would be x. Besides,
|zi − x| = |zi − x| ≤ ϵ. Thus, x ∈ D(zi, ϵ) ∩ D(zi, ϵ). This is not possible since D(zi, ϵ) ∩ D(zi, ϵ) = ∅.
Thus, zi ∈ R.

3.2. Proof of theorem 1.3.

Proof. We consider the following continued map
φ : Mn(K) −→ Kn[X]

A 7−→ χA
.

i) The set of diagonalizable matrices Dn(C) is included in F . Moreover, Dn(C) is dense in Mn(C).
Hence, F is dense in Mn(C).

ii) F̂ is an open subset of Cn[X] (proposition 3.2). Hence,

φ−1(F̂ ) = {A ∈ Mn(C), χA verifies (P)} = {A ∈ Mn(C), χA has only simple or double roots}

is an open subset of Mn(C). Besides, φ−1(F̂ ) is included in F (by the theorem 1.2 and the theorem of

Cayley-Hamilton). Hence, φ−1(F̂ ) is included in the interior of F .

Let A ∈ F such that χA doesn’t verify (P). By corollary 2.2, all the Jordan blocks appearing in the
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Jordan normal form of A have their size equal to 1 or 2. Since, χA doesn’t verify (P), it exists λ such
that (X − λ)3 divides χA. Thus, one of the following occurs :

• a) the Jordan normal form of A contains two blocks Jλ =

(
λ 1
0 λ

)
;

• b) the Jordan normal form of A contains three blocks (λ);

• c) the Jordan normal form of A contains one block Jλ =

(
λ 1
0 λ

)
and one block (λ).

We consider each case separately :

• If a) occurs. It exists P ∈ GLn(C) such that A = P

Jλ
Jλ

B

P−1. For all n ∈ N∗, we

define An = P


λ 1 1

n 0
0 λ 0 1

n
0 0 λ 1
0 0 0 λ

B

P−1. (An) converges to A. However, for all n ∈ N∗, (X−λ)3

divides πAn
. Hence, An /∈ F (theorem 1.2). Thus, A doesn’t belong to the interior of F .

• If b) occurs. It exists P ∈ GLn(C) such that A = P


λ

λ
λ

B

P−1. For all n ∈ N∗, we

define An = P


λ 1

n 0
0 λ 1

n
0 0 λ

B

P−1. (An) converges to A. However, for all n ∈ N∗, (X − λ)3

divides πAn . Hence, An /∈ F (theorem 1.2). Thus, A doesn’t belong to the interior of F .

• If c) occurs. It exists P ∈ GLn(C) such that A = P

Jλ
λ

B

P−1. For all n ∈ N∗, we define

An = P


λ 1 0
0 λ 1

n
0 0 λ

B

P−1. (An) converges to A. However, for all n ∈ N∗, (X−λ)3 divides

πAn
. Hence, An /∈ F (theorem 1.2). Thus, A doesn’t belong to the interior of F .

Hence, the interior of F is equal to φ−1(F̂ ).

iii) Let A ∈ Mn(R). If A is triangularizable then it exists a sequence (An) of diagonalizable matri-
ces such that (An) converges to A.

Suppose now A is not triangularizable. Thus, πA =
∏r

i=1 P
ni
i

∏l
i=1(X − λi)

mi with r ≥ 1, l ≥ 0,
λi ∈ R, λi ̸= λj for i ̸= j, ni,mi ≥ 1 and Pi irreducible monic polynomials of degree 2, Pi ̸= Pj for
i ̸= j,. Therefore, A is similar to a block-diagonal matrix in which each block has its minimal polynomial
equals to Pni

i or (X − λi)
mi (by the kernel lemma). Hence, it is sufficient to consider square matrices

whose minimal polynomial is the power of an irreducible monic polynomial of degree 2 (since the case of
triangularizable matrices has already been considered).
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Let B ∈ Mn(R) such that πB = Pm with P an irreducible monic polynomial of degree 2 and m ≤ n
2 . It

exists λ ∈ C − R such that P (X) = (X − λ)(X − λ). By the decomposition theorem of Frobenius, B is
similar to a block diagonal matrix

H =

C(R1)
. . .

C(Rt)

 ,

with Ri real polynomials verifying Ri divides Ri+1. Since πB = πH = lcm(Ri, 1 ≤ i ≤ t) and πB = Pm

with P irreducible, Ri is a power of P . Thus, it exists 1 ≤ ri ≤ m such that Ri = P ri = (X−λ)ri(X−λ)ri .

We set Ri,n =
∏ri

j=1(X−λ+ j
n2 )(X−λ+ j

n2 ). (Ri,n) converges to Ri. Hence, C(Ri,n) converges to C(Ri).

Besides, Ri,n verifies (P) for all n ∈ N∗ and πC(Ri,n) = Ri,n. Thus, C(Ri,n) is X-formable (theorem 1.2).

So, it exists a sequence of X-formable matrices which converges to B.

Hence, G is dense in Mn(R).

iv) Ĝ is an open subset of Rn[X] (proposition 3.3). Hence, φ−1(Ĝ) = {A ∈ Mn(R), χA verifies (P)}
is an open subset of Mn(R). Besides, φ−1(Ĝ) is included in G (by the theorem 1.2 and the theorem of

Cayley-Hamilton). Hence, φ−1(Ĝ) is included in the interior of G.

Let A ∈ G such that χA doesn’t verify (P). A is similar to a block-diagonal matrix in which each
block has a size less than 2 (lemme 2.1). Besides, each triangularizable block has a Jordan normal form.
Hence, A is similar to a block-diagonal matrix C in which each block is a Jordan block of size 1 or 2 or
a square matrix of size 2 whose charateristic polynomial is an irreducible monic polynomial of degree 2.
Since, χA doesn’t verify (P), it exists λ such that (X − λ)3 divides χA or it exists an irreducible monic
polynomial P of degree 2 such that P 2 divides χA. Thus, one of the following occurs :

• a) C contains two blocks Jλ =

(
λ 1
0 λ

)
;

• b) C contains three blocks (λ);

• c) C contains one block Jλ =

(
λ 1
0 λ

)
and one block (λ);

• d) C contains two blocks T =

(
x y
z t

)
and O =

(
u v
w h

)
which have the same irreducible char-

acteristic polynomial S(X) = X2 + αX + β. In particular, y, z, v, w ̸= 0.

We can study the first three cases in the same way as that used previously.

If d) occurs. It exists P ∈ GLn(R) such that A = P

T
O

B

P−1. For all n ∈ N∗, we define An =

P


x y 0 1

n
z t 0 0

u v
w h

B

P−1. The minimal poynomial of Zn =


x y 0 1

n
z t 0 0
0 0 u v
0 0 w h

 is equal to the minimal
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polynomial of An. Besides, S divides the minimal polynomial of Zn. S(Zn) =


0 0 w

n
x+h+α

n
0 0 0 z

n
0 0 0 0
0 0 0 0

 ̸= 04

(since w ̸= 0) and S2(Zn) = 04. Hence, πZn
̸= S and πZn

divides S2. Thus, πZn
= S2, since S is ir-

reducible. Hence, πAn = S2. So, πAn doesn’t verify (P) and An /∈ G (theorem 1.2). However, (An)
converges to A. Thus, A doesn’t belong to the interior of G.

Hence, the interior of G is equal to φ−1(Ĝ).
□

We have therefore, as announced, a dense subset of Mn(R) and Mn(C) and a complete characterization
of the interior and of this set. We conclude by noticing a curious similarity between the diagonalizable
matrices and the X-formable matrices. For this, we will use the following notation : a polynomial verifies
the property (Q) if it is a product of distinct linear factors over K. Let A ∈ Mn(K) with K = R,C, we
have :

• A is diagonalizable if and only if πA verifies (Q); A belongs to the interior of the set of diagonal-
izable matrices if and only if χA verifies (Q);

• A is X-formable if and only if πA verifies (P); A belongs to the interior of the set of X-formable
matrices if and only if χA verifies (P).

4. Some open problems

We collect here some open problems related to X-formable matrices. The firt problem is related to
theorem 1.3. Indeed, we know some topological properties of the set of X-formable matrices. Therefore,
it is natural to want to look for other.

Problem 4.1. Find other topological properties of the set of X-formable matrices over R and C.

We have a certain number of results concerning the maximum dimension of a vector subspace all of
whose elements verify a given property (such as Gerstenhaber’s theorem, see [2]). This naturally leads
to the following problem :

Problem 4.2. What is the maximal dimension of a vector subspace of Mn(K) containing only X-formable
elements ?

In the case of diagonalizable matrices we have the following result :

Theorem 4.3 (Klarès’s criterion, [5] p 125). Let B ∈ Mn(K) with K an algebraically closed field. We
set AdB : M ∈ Mn(K) 7−→ BM −MB. B is diagonalizable if and only if Ker(AdB) = Ker(Ad2B).

This leads to the formulation of the problem below :

Problem 4.4. Can we find a “similar” criterion for X-formable matrices ?
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