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Abstract13

We present a new approach to computing the probability of epidemic “burnout”,14

i.e., the probability that a newly emergent pathogen will go extinct after a major epi-15

demic. Our analysis is based on the standard stochastic formulation of the Susceptible-16

Infected-Removed (SIR) epidemic model including host demography (births and deaths),17

and corresponds to the standard SIR ordinary differential equations (ODEs) in the in-18

finite population limit. Exploiting a boundary layer approximation to the ODEs and19

a birth-death process approximation to the stochastic dynamics within the boundary20

layer, we derive convenient, fully analytical approximations for the burnout probabil-21

ity. We demonstrate—by comparing with computationally demanding individual-based22

stochastic simulations and with semi-analytical approximations derived previously—23

that our fully analytical approximations are highly accurate for biologically plausible24

parameters. We show that the probability of burnout always decreases with increased25

mean infectious period. However, for typical biological parameters, there is a relevant26

local minimum in the probability of persistence as a function of the basic reproduction27

number R0. For the shortest infectious periods, persistence is least likely if R0 ≈ 2.57;28

for longer infectious periods, the minimum point decreases to R0 ≈ 2. For typical29

acute immunizing infections in human populations of realistic size, our analysis of the30

SIR model shows that burnout is almost certain in a well-mixed population, implying31

that susceptible recruitment through births is insufficient on its own to explain disease32

persistence.33
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1 Introduction34

It is well known that solutions of the standard ordinary differential equations (ODEs) de-35

scribing a Susceptible-Infected-Removed (SIR) epidemic with host births and deaths (aka36

“vital dynamics” or “demography”) eventually converge on a globally asymptomatically sta-37

ble equilibrium [9]. Approach to the endemic equilibrium (EE) typically occurs via damped38

oscillations, motivating the use of the SIR model with demography as a basis for models of ob-39

served recurrent epidemics observed of childhood infections such as measles [1, 6, 18, 33, 48].40

For many biologically reasonable parameter values and population sizes, however, the troughs41

of these oscillations pass through infected-host densities corresponding to a small fraction of42

an individual—the so-called “atto-fox problem” [54]—calling into question the appropriate-43

ness of the deterministic SIR model.44

Here, we estimate the probability that a pathogen disappears at the end of a major45

epidemic in a stochastic individual-based SIR model, in a population of finite size. In the46

large population limit, the densities of each type (S, I, R) are asymptotically deterministic47

and governed by the standard SIR ODEs [21]. We will refer to pathogen extinction soon after48

introduction as fizzle, whereas if the pathogen escapes fizzle, we will refer to extinction at the49

end of a major epidemic as epidemic burnout1, following the terminology of [15]. We will50

say that the pathogen persists if it has a subsequent epidemic wave, although it is worth51

mentioning that we always expect eventual extinction in a stochastic model with a finite52

population [37]. Figure 1 shows sample paths of the proportion of infected individuals for53

the stochastic SIR model (together with the trajectory obtained from the ODE), illustrating54

fizzle, burnout, and persistence.55

The problem of epidemic burnout has been of ongoing interest [1, 10, 14], e.g.,56

“The question ‘will the agent go extinct after the first outbreak?’ cannot be57

answered within the context of a deterministic description. So we would like to58

be able to switch back to a stochastic description at the end of the epidemic59

outbreak. While it is well known how to calculate the probability of extinction60

from a branching process in a constant environment [. . . ], it seems difficult to61

do so when environmental quality (from the point of view of the agent, i.e., the62

presence of susceptibles!) is improving linearly at a certain rate.” [14, p. 42]63

and has been previously approached via perturbation methods [51, 61] and by hybrid analytical-64

numerical approaches [4]:65

1. van Herwaarden [61] starts from a large population diffusion approximation to the66

Markov chain formulation of the SIR model (see §2.1 below). Under the assumption67

that the individual mortality rate is low, a highly accurate approximation to the so-68

lution of the infinite-population limit SIR ODEs is obtained, which is in turn used to69

estimate the point of entry to a boundary layer where the number of infected indi-70

viduals is very small. In the boundary layer, the backward equation for the diffusion71

1While “fade-out” (or “fadeout”) is commonly used to describe this extinction, e.g., [1, §2.3], we find it
conceptually useful to follow [15] in distinguishing between extinction after a first major epidemic versus
that occurring after multiple epidemics, and reserve the term “fadeout” for the latter.
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approximation2 is tractable, and is used to obtain an analytical approximation to the72

burnout probability ([61, Eq. (5.13)], which requires the numerical evaluation of an73

integral). It is, to quote [14, p. 42], “an ingenious piece of work”, although challenging74

to interpret for those lacking expertise in the approach.75

2. By contrast, Meerson and Sasorov [51] retain the discrete population model. They76

estimate the probability of extinction as the probability of reaching the state with only77

one infective individual (weighted by the expected number of returns to this state3)78

times the probability that a single infective recovers before transmitting to any other79

individuals. They approximate this probability by the product of the expected total80

time (summed over multiple returns) in the state with a single infected individual and81

the disease recovery rate (which is the rate of going extinct given that there is only one82

infected individual). The time in the single-infective state is characterized by linear83

equations obtained by integrating the forward equations (see, e.g., [39, §14.2]) for all84

transient states over all time, for which an approximate solution is found via a WKB85

ansatz (see, e.g., [7, Chapter 10]) in the large population limit (i.e., a diffusion approx-86

imation is introduced implicitly). Under these assumptions, the burnout probability is87

shown to decay exponentially in the population size, with a constant of proportionality88

that is approximated analytically in the parameter regime where the initial exponen-89

tial growth rate of infected individuals greatly exceeds the per capita turnover rate90

(equivalent to β−γ ≫ µ in our formulation below). While providing coarser estimates91

than van Herwaarden [61], this approach yields a deterministic approximation to the92

most probable trajectory to pathogen extinction via a Hamiltonian formalism (see,93

e.g., [28] and [13, Exercise 5.7.36]). Like van Herwaarden [61], the approximation of94

Meerson and Sasorov [51] involves an integral that cannot be evaluated analytically95

and presents a non-trivial numerical problem due to singularities in the integrand.96

3. More recently, after identifying discrepancies between the analytical results of van97

Herwaarden [61] and Meerson and Sasorov [51] and the results of simulations, especially98

at smaller values of the expected population size n, Ballard et al. [4] introduced a99

computational approach that scales as O(n2). As in the previous approaches, Ballard100

et al. use the solution of the SIR ODEs—now evaluated numerically and summed with101

a higher-order Gaussian correction [21, Theorem 11.2.3]—to identify the point of entry102

into a boundary layer, where a simplified form of the Markov chain is then simulated103

to estimate the probability of burnout.104

The approximations of van Herwaarden [61] and Meerson and Sasorov [51] are summa-105

rized in §2.3 of Ballard et al. [4]. We compare the performance of these approximations with106

that of a new analytical approximation that we have derived in the spirit of the quote from107

Diekmann and Heesterbeek [14] above. Like van Herwaarden [61] and Ballard et al. [4], we108

use the SIR ODEs to approximate the stochastic SIR trajectories outside a boundary layer.109

Then, inside the boundary layer, we use a time-inhomogeneous birth-and-death process that110

2See e.g., [39] or [24] for a discussion of the forward and backward diffusion equations; [29] is an excellent
introduction to boundary-layer methods for Markov chains.

3In practice, there is negligible probability of returning to the state with one infective after an excursion
to a state with many infectives.
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approximates the true stochastic dynamics more accurately than the diffusion approximation111

of van Herwaarden [61] (in Appendix D, we obtain the expression from van Herwaarden [61]112

as an approximation to ours). Our approach is simpler and more intuitive than the diffusion113

approximation, and—in contrast to all previous work—we obtain fully analytical expressions114

that are numerically stable and can be computed without recourse to numerical evaluation115

of integrals. Our approach yields expressions for the probability of persistence after any116

number of epidemic waves, and is also more amenable to generalizations and rigorous proof117

than diffusion approximations; indeed, while we do not discuss the matter in detail here, the118

boundary-layer diffusions of van Herwaarden [61] correspond to large population approxima-119

tions for the branching processes we consider here (similar to limits in Feller [22], Lamperti120

[46]). We will present rigorous proofs for the heuristics derived in this paper in a companion121

manuscript.122

2 Methods123

2.1 Model124

We consider the spread of an infectious disease in a discrete population in which births125

balance deaths on average, so there is a well-defined expected population size n. We126

consider a sequence of models indexed by n, and for the nth model denote by Sn(t), In(t)127

and Rn(t) the numbers of individuals at time t who are susceptible, infected, and removed,128

respectively. The total population size is129

Nn(t) = Sn(t) + In(t) +Rn(t) . (1)130

Thus, at every time t we have131

E
[
Nn(t)] = n , (2)132

where the expectation is taken over realizations of the stochastic process.133

Births of new susceptible individuals and deaths occur at per capita rate µ, independent134

of disease status. Infected individuals recover at rate γ, and new infections occur according135

to the law of mass action in a well-mixed population, i.e., at rate136

βSn(t)In(t)

n
. (3)137

Since the demographic and epidemiological rates depend only on the state of the system138

at the current time, our sequence is an ensemble of Markov chain models (indexed by the139

expected total population size n).140

Following a common convention in probability theory, we use upper case for functions,141

and lower case for indices and the values of functions at a given time. We index the functions142

by expected population size because we need to consider the limit of the sequence of functions143

as n → ∞, whereas we use subscripts on function values to specify time, e.g., s0 = Sn(0).144

The model structure is indicated in a compartmental flow chart in Figure 2, and the145

nature and rates of each type of event are summarized in Table 1.146
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Figure 1: Sample paths of the stochastic SIR model (Figure 2) and the ODE (5) showing
fizzle, burnout, and persistence. (a) The frequencies of susceptible, infected, and removed
individuals in the ODE (symbols indicate the critical points of the curve of the corresponding
colour). Dashed lines indicate the endemic equilibrium (8) of the deterministic model (5).
(b) The proportion of infected individuals as a function of time. The boundary layer—
inside which we approximate the stochastic dynamics with a birth-death process—is shaded
in yellow, and the first point at which the deterministic trajectory enters the boundary layer
is indicated with a heavy yellow dot. (c) Probability density of the time to extinction,
estimated from 106 realizations of the stochastic process. The vertical lines show the time
τδ [Equation (G.11)] for which the probability of fizzle after τδ is less than δ (the lines
correspond to δ = 10−4 and 10−6). (d,e) Trajectories in the susceptible-infected phase plane
with the nullclines; the vertical scale is linear in (d) and logarithmic in (e). The thin black
curve is the boundary of the deterministically accessible region, defined by S + I = 1.
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Figure 2: Compartmental model for an SIR epidemic with demography. Labels on the arrows
correspond to individual jump rates between states. For simplicity, the model is defined so
that births/immigrations on average balance deaths, so that the expected total population
size (E[Nn(t)] = n) is fixed.

Table 1: Event types in the stochastic SIR model.

Event type Rate Transitions
birth/immigration µNn Sn → Sn + 1
transmission βSnIn/Nn Sn → Sn − 1, In → In + 1
recovery γIn In → In − 1, Rn → Rn + 1
susceptible death µSn Sn → Sn − 1
infected death µIn In → In − 1
removed death µRn Rn → Rn − 1

2.2 Deterministic Approximation147

In the limit of large population size, the stochastic SIR model (Figure 2, Table 1) is well-148

approximated by deterministic ODEs. More precisely, writing149

Xn =
Sn

n
, Yn =

In
n

, Zn =
Rn

n
, (4)150

in the limit n → ∞, the frequencies
(
Xn(t), Yn(t), Zn(t)

)
converge (almost surely on finite151

time intervals [21]) to the solution
(
X(t), Y (t), Z(t)

)
of the ODEs,152

dX

dt
= µ(1−X)− βXY , (5a)153

dY

dt
= (βX − γ − µ)Y , (5b)154

dZ

dt
= γY − µZ . (5c)155

Formally, to make this connection, one must be careful to have a sensible relationship between156

the initial conditions for the stochastic processes and the initial conditions for the ODEs.157

For example, given an initial state
(
X(0), Y (0), Z(0)

)
for the ODEs, if one takes158 (

Xn(0), Yn(0), Zn(0)
)
=

1

n

(
⌊nX(0)⌋ , ⌊nY (0)⌋ , ⌊nZ(0)⌋

)
(6)159

then the theorem applies. More generally, one must choose initial conditions
(
Xn(0), Yn(0), Zn(0)

)
160

for the stochastic processes such that the limits limn→∞Xn(0), etc. exist, and one must take161
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these limits as initial conditions for the ODEs (see Theorem 11.2.1 in Ethier and Kurtz [21,162

p. 456]; Example B on p. 453 of Ethier and Kurtz [21] illustrates how the SIR model with-163

out demography relates to the hypotheses of the theorem, and Chapter 5 in [2] provides a164

pedagogical introduction to Kurtz’s results in the context of epidemic models).165

The trajectories of the deterministic SIR model (5) always converge to a globally asymp-166

totically stable (GAS) equilibrium point, which can be shown via a combination of the167

Poincaré Bendixson Theorem and Dulac’s criterion [34] or via a Lyapunov function [43].168

The nature of the asymptotic state is determined by the basic reproduction number169

(the expected total number of new infections caused by a single infective individual intro-170

duced into a näıve population),171

R0 =
β

γ + µ
. (7)172

IfR0 ≤ 1 then the GAS fixed point is the disease free equilibrium, (x, y) = (1, 0), whereas173

if R0 > 1 then all solutions converge—either via damped oscillations or monotonically—to174

an endemic equilibrium,175

(x⋆, y⋆) =

(
1

R0

, ε
(
1− 1

R0

))
, (8)176

where177

ε =
µ

γ + µ
(9)178

gives the mean infectious period as a fraction of the mean host lifetime. Our analysis179

requires that ε is small but not too small ( 1
n
≪ ε ≪ 1), which is true for a wide variety of180

common acute immunizing infections (see Table 2). The upper bound (ε ≪ 1) is essential181

so we can justify perturbation expansions in ε. The lower bound ( 1
n
≪ ε) is equivalent to182

nε ≫ 1, which ensures that the number of infectives at equilibrium (ny⋆) is substantially183

greater than 1 (from Equation (8), ny⋆ ∼ nε). The ODEs continue to provide a good184

approximation to the epidemic dynamics until the prevalence y (the proportion of hosts185

that are infected) becomes small; we take “small” to mean that y is less than the equilibrium186

prevalence y⋆ (8). Thus, we take the boundary layer—within which the dynamics must187

be treated stochastically—to be the region of the phase plane where y < y⋆ (in Appendix D,188

we also give approximations independent of the specific choice of boundary layer).189

The need to analyze the dynamics differently within the boundary layer is especially190

clear if we consider the introduction of a single infected individual into a fully susceptible191

population. If R0 > 1 then in the ODE system (5) Y (t) will deterministically increase,192

whereas in the stochastic model Yn(t) will fizzle with probability 1/R0 [5]; i.e., the ODE (5)193

fails to capture the dynamics of the stochastic model (Figure 2) when there are few infectives.194

We therefore use a birth-and-death process to approximate the dynamics of the number of195

infected hosts when that number is small (in contrast, susceptibles can be assumed to remain196

sufficiently abundant that we can always use the deterministic approximation X(t)).197

2.3 Birth-and-Death Process Heuristic198

New infections occur at rate199

βSn(t)

n
In(t) = βXn(t)In(t) ≈ βX(t)In(t), (10)200
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while the number infected decreases by one due to recovery or death at rate201

(γ + µ)In(t) . (11)202

When there are few infected hosts (In(t) < ny⋆), we approximate In(t) by a birth and death203

process with time-inhomogeneous rates b(t) and d(t), where204

b(t) = βX(t) , (12)205

d(t) = γ + µ . (13)206

Note that when X(t) equals x⋆ (the classical herd immunity threshold), b(t) = d(t), and207

the birth and death process transitions from subcritical to supercritical. Unlike in models208

without demography, the birth of new susceptible individuals ensures that a population will209

eventually cross the herd immunity threshold. Therefore, even if the number of infected210

hosts initially declines it can eventually grow exponentially, if the infection survives until211

X(t) > x⋆.212

We can estimate the survival probability for this branching process, and thus the persis-213

tence probability, using the following result.214

Theorem 1 (Kendall (1948) [40]). Let K(t) be a birth and death process with time-inhomogeneous215

per-capita birth rate b(t) and death rate d(t). The probability of eventual extinction starting216

from one individual at time 0 is217

q =

(
1 +

1∫∞
0

e−
∫ t
0 [b(s)−d(s)] dsd(t) dt

)−1

. (14)218

The extinction probability starting from k individuals is qk.219

Consequently, the probability of indefinite persistence (a branching process will either go220

extinct or grow indefinitely), starting from k individuals at time 0, is221

P{K(∞) > 0} = 1− qk . (15)222

To complete our persistence probability estimate, we need an expression for the propor-223

tion susceptible at time t (X(t) in Equation (12)). As suggested visually by the example224

shown in Figure 1, inside the boundary layer (y < y⋆), both the deterministic and the225

stochastic trajectories spend most of their time at prevalences much lower than y⋆ (note the226

log scale in the subfigures (b) and (e)). Consequently, we can approximate X(t) by solving227

Equation (5) with Y (0) = 0. Thus, we set228

dX

dt
≈ µ(1−X), (16)229

and solve this approximate equation as if it were exact to obtain230

X(x0, t) ≈ 1− (1− x0)e
−µt . (17)231
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Here, x0 is the fraction susceptible at the initial time t = 0, and we write X(x0, t) to232

emphasize the dependence on the initial state. We also write q(x0) for the value of q in233

Equation (14) obtained by taking b(t) = βX(x0, t).234

We first apply this branching process approximation to a population at the disease-free235

equilibrium (DFE). Thus, we set x0 = 1 in Equation (17), which yields X(1, t) ≡ 1; hence we236

have a time-homogeneous branching process in this case, and the integral in Equation (14) is237

easily evaluated and yields q(1) = 1
R0

= x⋆. Considering a small number of initially infective238

individuals, In(0) = k, we recover the classical expression for the establishment probability239

[5], that is, the probability that the pathogen does not fizzle:240

pk = 1− xk
⋆. (18)241

We now use Kendall’s q (14) to compute the burnout probability. Assuming that the242

pathogen does not fizzle, the number of infected hosts will rapidly exceed ny⋆ individuals,4243

at which point the densities of both susceptible and infective hosts are well-approximated by244

the ODEs (5). To proceed, we need a formula for the fraction of hosts that are susceptible245

when the trajectory enters the boundary layer at the end of an epidemic; we denote this246

fraction xin to emphasize that it refers to the susceptible proportion upon entry into the247

boundary layer. In [60], assuming ε is small,5 we derive an approximate expression for248

the fraction susceptible, X(y, xi), as a function of the fraction infected (y) and the initial249

fraction susceptible (xi). Using that approximation, we have250

251

xin = X(y⋆, xi) ≈ −x⋆W0

(
−R0xie

−R0(xi−y⋆)
)
+ ε eR0y⋆

(
E1(R0y⋆) − E1(R0y0)

)
. (19)252

Here, W0 denotes the principal branch of the Lambert W -function6 [12], E1(x) =
∫∞
x

e−t

t
dt253

is the exponential integral function [56, 8.2.1] and y0 is the peak prevalence in the limit254

ε → 0, i.e., it is the maximum fraction infected in the SIR model without vital dynamics,255

y0 = xi − x⋆

(
1 + ln (xi/x⋆)

)
. (21)256

(See e.g., [47] for a derivation of y0.) Taking xi = 1 corresponds to the invasion of a novel257

pathogen into an epidemiologically näıve population (i.e., at the DFE); in Appendix B we258

give an iterative scheme for xi,j, an “effective initial fraction susceptible” that, substituted259

4More precisely, for any y < y0 [see Equation (21)], conditional on not fizzling, the probability that In(t)
hits 0 before hitting yn is exponentially small in n with exponential rate depending on y (for a rigorous
demonstration see [59, Supplementary Information §8.2]; [58] gives explicit higher order terms for the SIS
model).

5In [60], we use ϵ = ε/R0 rather than ε as the small parameter, because using ϵ leads to simpler expressions
(see e.g., (24) below for an example). Here, however, we analyze the dependence of our expressions on the
epidemiologically relevant parameters R0 and ε and have re-written expressions from [60] accordingly.

6If E (z) = zez, Lambert’s W -function W (z) [12] solves the “left-sided” inverse relation E (W (z)) = z.
This equation has countably many solutions, each corresponding to branches Wi of the W -function; we will
need the two real branches, W0, which maps [− 1

e ,∞) to [−1,∞), and W−1, which maps [− 1
e , 0) to (−∞,−1].

For these two branches, Wi is a partial “right-sided” inverse function for E (z):

W−1(E (z)) = z if z ≤ −1

W0(E (z)) = z if z ≥ −1.
(20)
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Figure 3: Susceptible proportion (xin) upon entry into the boundary layer (y < y⋆). (a) xin

as a function of R0 (7). (b) xin as a function of ε (9). The exact value of xin [obtained
by numerically solving the SIR ODEs (5)] is shown with solid curves, our approximation
[Equation (19)] is shown with dashed curves, and the approximation of van Herwaarden
[61] is shown with dotted curves. Based on Equation (C.3), the minimum R0 for which our
approximation of xin [Equation (19)] is valid is ≈ e2ε (i.e., 1.02027 for ε = 0.01 and 1.0020027
for ε = 0.001).

for xin in (19) and (21), gives the fraction susceptible at the end of the jth epidemic wave260

after invasion at the DFE. We compare our approximation of xin for xi = 1 to the value261

obtained by numerically integrating the SIR ODEs (5) in Figure 3 and discuss its domain of262

applicability in Appendix C.263

If we now take t = 0 to be the end of a major epidemic, i.e., the time when the infected264

host density falls below y⋆ and x0 = xin, then the density of infected hosts is small, and the265

density of susceptible hosts is well-approximated by X(xin, t) (in a companion manuscript,266

we give rigorous statements and justifications for these results; here we will content ourselves267

with showing that our analytical results closely match the results of individual-based simula-268

tions). We can thus estimate the conditional burnout probability—i.e., the probability269

of burnout conditional on not fizzling—by270

q(xin)
ny⋆ . (22)271
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and the conditional persistence probability by272

1− q(xin)
ny⋆ . (23)273

In Appendix A (below) we compute an exact expression for q(xin),274

q(xin) =

(
1 +

ε

z−aezg(a, z)

)−1

(24a)275

where z =
R0

ε
(1− xin), (24b)276

and a =
R0

ε
(1− x⋆) , (24c)277

where g denotes the lower incomplete gamma function7 [56, 8.2.1]; we use the nonstandard278

notation g to avoid confusion with our recovery rate parameter γ. In Appendix A, we derive279

an approximation that is extremely accurate for small values of ε:280

q(xin) ≈

1 +
1√

2π
ε(R0−1)

(
1−x⋆

1−xin

)R0
ε

(
1−x⋆

)
e

R0
ε

(
x⋆−xin

)


−1

. (25)281

We emphasize that this expression is elementary and numerically stable.282

Thus, the burnout probability—i.e., the probability of not fizzling (18) but disap-283

pearing after an epidemic—is284

pk q(xin)
ny⋆ , (26)285

where n is the expected total population size, y⋆ is the equilibrium prevalence (8), q is the286

probability of eventual extinction (under post-epidemic conditions) starting from one infected287

individual (14), and k is the initial number of infected individuals. Our exact expression288

for q(xin) is given in Equation (24). Similarly, the persistence probability—i.e., the289

probability of not fizzling (pk) and then not burning out after a first epidemic (23)—is290

P1(R0, ε, n, k) = pk (1− q(xin)
ny⋆) . (27)291

More generally, the probability of persisting beyond the mth epidemic wave is292

Pm(R0, ε, n, k) = pk

m∏
j=1

(1− q(xin,j)
ny⋆) . (28)293

where294

xin,j = X(y⋆, xi,j) (29)295

(see Equation (19) and Appendix B). For biologically reasonable values of ε, R0, and n, we296

find that the difference between P1(R0, ε, n, k) and Pm(R0, ε, n, k) is negligible (not shown),297

7g(a, z) =
∫ z

0
ta−1e−t dt is proportional to the cumulative distribution function for the gamma distribu-

tion. We use this fact to compute g(a, z) accurately in our burnout R package, mentioned in Footnote 8.
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because q(xin,j) ≪ 1 for j ≥ 2. Intuitively, because the troughs between epidemics get298

shallower and shallower, an invading disease that survives burnout is almost certain to persist299

through many more cycles.300

Thus, in the §3 (below) we focus on burnout after the initial epidemic when a novel disease301

invades a fully susceptible population. There, we use our accurate, numerically stable,302

and computationally efficient approximation for q(xin) (25), obtained via Equations (19)303

and (A.8) to compute the probability of burnout.304

3 Results305

Figure 4 shows that our analytical approximation for the persistence probability (27) agrees306

very well with the same probability estimated from large numbers of simulations. The307

probability is shown as a function of the basic reproduction number (R0) with fixed mean308

infectious period (ε = 0.01). The panels differ only in the underlying expected population309

size (ranging from n = 104 to 107). For each value of R0, the simulation-based persistence310

probability was estimated from 107 individual-based stochastic realizations of the model311

(Figure 2, Table 1). Note that ε = 0.01 corresponds to an infectious period that is 1% of312

the average host lifetime, far longer than is realistic for most acute immunizing infections;313

however, our approximation only improves for smaller ε.314

Our simple approximation for Kendall’s q [Equation (25)] allows us to easily and quickly315

explore the conditional and unconditional probability of pathogen extinction across the entire316

range of biologically plausible values of R0 and ε. Figure 5 shows a contour plot of the317

persistence probability (this graph would have required years of computer time to produce318

from simulations). As was observed previously [4, 20] , Figure 5 indicates that the burnout319

probability is non-monotone in R0 for ε ≲ 0.016. In this range of ε, the probability320

of persistence is lowest for basic reproduction numbers in the range 2 ≲ R0 ≲ 2.57, and321

increases rapidly with increasing R0. We compute a linear approximation to the value of322

R0 at which the persistence probability is minimized in Appendix E [the upper limit of323

2.57 for the range of R0 is the limit as ε → 0 in Equation (E.5)]; Figure 5 shows that this324

linear approximation performs very well over the range where the persistence probability is325

non-monotonic. Less intuitively, the persistence probability increases for small R0 (below326

the red curve in Figure 5) as R0 decreases to one. We note, however, that except for very327

large expected population size n, the secondary peak in the persistence probability—which328

occurs for 1 < R0 ≲ 2—remains small (cf. Figure 4), except for pathogens with extremely329

long infectious periods. Figure 5 also suggests that the probability of persistence always330

increases with increasing ε, which we confirm analytically in Appendix F.331

4 Discussion332

The problem of infectious disease persistence following a major epidemic [1; 14, p. 42; 42,333

p. 451; 15; 20; 10] is important for identifying characteristics of pathogens that can success-334

fully invade, and is related to the notion of a “critical community size” required for a disease335

to persist in the long term [5].336
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Figure 4: Persistence probability as a function of the basic reproduction number R0, for
population sizes ranging from n = 104 to 107. The vertical scale is linear in the left column
and logarithmic in the right column; the horizontal scale is logarithmic (in R0 − 1) in
all panels. (The horizontal axis range is from R0 − 1 = 1

64
= 0.015625 to 64, but our

approximation is valid only for R0 − 1 ≳ 0.02027; see Equation (C.3).) The initial state is
(Sn(0), In(0), Rn(0)) = (n−1, 1, 0). The mean infectious period as a fraction of mean lifetime
is ε = 0.01, which is unrealistically long for most infections (Table 2), but the agreement
between the analytical approximation (27) and numerical simulations (Appendix G) is better
for smaller ε. In addition to our analytical approximation (27), we show the semi-analytical
approximations of Meerson and Sasorov (MS [51]) and van Herwaarden (vanH [61]). The
thin red curve shows the probability of not fizzling, 1− x⋆.
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Figure 5: Probability of persistence after a large epidemic [P1, Equation (27)] as a function
of basic reproduction number (R0) and mean infectious period as a proportion of mean
lifetime (ε), for population size n = 106. The initial state is assumed to be a single individual
introduced into a fully susceptible population (In(0) = k = 1, Sn(0) = n − k). Positions
for the red dots for infectious diseases of humans are from Table 2 (to avoid text overlap,
measles is shifted up by 1 to 18, pertussis down by 1 to 16, and COVID-19 (Delta) up by
0.6 to 7.4). The solid red curve shows the local minimum of persistence probability, and the
dotted red line shows the analytical approximation (E.5) to the local minimum.
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Table 2: Representative parameters for acute immunizing infections (and HIV for compari-
son).

Disease R0
Tlat Tinf ε× 103 Source

[days] [days]
measles 17 8 5 0.71 [1]
pertussis 17 8 14 1.2 [1]
mumps 12 15 6 1.1 [1]
chickenpox 11 10 5 0.82 [1]
COVID-19 (Delta) 6.8 5.8 14 1.1 [47]
rubella 6.5 10 7 0.93 [1]
scarlet fever 5.5 1.5 18 1 [1]
smallpox 4.5 15 7 1.2 [44]
COVID-19 (ancestral) 3 3.7 14 0.97 [47]
HIV 2.2 87 270 19 [35]
influenza (1918) 1.8 2 2.5 0.25 [1, 52]
Ebola 1.6 9.3 7 0.89 [62]
pneumonic plague 1.3 4.3 2.5 0.37 [23]

The basic reproduction number (R0), mean latent period (Tlat), and mean infectious period (Tinf) are taken
from the cited sources. The dimensionless parameter ε is defined in Equation (9) in terms of the recovery
rate (γ) and birth-death rate (µ) in the SIR model. We associate 1/γ with the mean generation interval of
the SEIR model, i.e., 1/γ = Tlat + Tinf [11, 45], set µ = 0.02/year to mimic human birth and death rates,
and compute ε = µ/(γ + µ). Where original sources present a range, we have listed the midpoint. Many of
the estimates come from Anderson and May [1] (R0 is taken from Table 4.1 [1, p. 70]; the mean latent and
infectious periods come from Table 3.1 [1, p. 31]). All the diseases listed in this table are shown in Figure 5.
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Given sufficient computing resources, it is possible to estimate the persistence probabil-337

ity for a given model from large numbers of stochastic, individual-based simulations. The338

grey curves in Figure 4 show this probability estimated from simulations of the SIR model.339

Figure 4 also shows the probability estimated using previous analytical methods [51, 61]340

(blue and orange curves) and our new approximation (black curves). All three analytical341

approaches yield similar results8, and differences in the estimated probabilities can be seen342

only on a logarithmic scale in the limit as R0 → 1+ (e.g., for R0 ≲ 1.05 in Figure 4), where343

all of these approximations9 are technically invalid: in a stochastic, finite population model,344

as R0 → 1+ there is no phase during which the deterministic model is a good approximation,345

and the distinction between fizzle, burnout and fadeout breaks down [55]. Analysis of the346

limit R0 → 1+ could improve understanding of the process of eradication as the magnitude347

of control measures is increased—and for this reason we will discuss approximations that348

are more appropriate for R0 ∼ 1 in future work—but for the burnout problem on which we349

focus here, the limit R0 → 1+ is of limited interest.350

While our approximation agrees closely with previous work [51, 61] for ranges of R0 that351

are biologically relevant, there are several important theoretical and practical advantages of352

our approach; our analysis:353

• is more precise and easier to justify theoretically since it is based directly on the354

underlying stochastic process rather than a diffusion approximation;355

• is simpler and easier to understand, and thus easier to apply to models that are more356

complex than the SIR model considered here;357

• yields fully analytical approximations that are numerically stable, unlike the previous358

analytical approaches [51, 61], which depend on non-trivial numerical integrations with359

singular integrands;360

• predicts the persistence probability after an arbitrary number of epidemic waves.361

We expand on these points below.362

We have obtained useful analytical estimates [Equations (24), (25), (27) and (28)] of363

the SIR epidemic burnout and persistence probabilities in a well-mixed population, via a364

hybrid use of ODEs when prevalence is high and time-dependent branching processes when365

prevalence is low. As noted after Equation (28), the probability of burning out in each366

subsequent epidemic trough after persisting through the first is negligibly small for the SIR367

model. In future work, we will apply our method to more detailed models that account368

for disease-induced mortality, decay of immunity, vaccination, super-spreading, and other369

factors.370

By coupling methods for birth-and-death processes [3] with functional central limit theo-371

rems for ODE approximations [21], we are able to support our approximations with rigorous372

error estimates (which we will present in a technical companion paper). Rigorous proofs373

8We have implemented all three approximations in an open-source R package, which we used to create
our figures. The package is available at https://github.com/davidearn/burnout.

9Differences between our approximation and those reported in [51, 61] as R0 → 1+ are at least in part
because they use µ rather than ε as the small parameter, and consequently predict persistence for β/γ > 1
rather than β/(γ + µ) > 1.
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are much more difficult for asymptotic methods applied to the partial differential equation374

(PDE) corresponding to the diffusion approximation [51, 61] and its boundary-layer ap-375

proximations, the latter being degenerate elliptic PDEs on a manifold with corners and/or376

boundaries.377

Our time-dependent branching process approach (§2.3) also yields analytical results that378

are more amenable to computation than previous approximations [51, 61]. Our application379

of Laplace’s method to approximate the integral in Kendall’s q [Equation (14)] is particu-380

larly useful. Equation (25) for the conditional burnout probability provides a fully analyt-381

ical formula—not requiring the numerical evaluation of integrals as in previous approaches382

[51, 61]—that can be evaluated without numerical instabilities and agrees very well with383

numerical simulations across a wide range of biologically plausible values of R0 and ε. The384

convenience and speed of our simple analytical expression for the persistence probability385

(27) also allows us to obtain results for larger population sizes than are tractable via hybrid386

numerical methods [4], and facilitates efficient exploration of more of the parameter space387

(though with less accuracy at smaller population sizes).388

As is suggested visually by Figure 5, and proved in Appendix F, the persistence proba-389

bility increases with infectious period (ε) across all values of R0. For any given infectious390

period, one viable life history strategy for persistence is a high R0 (dark grey shading in391

Figure 5). In addition to this high R0 strategy, for a limited range of longer infectious pe-392

riods (0.01 ≲ ε ≲ 0.016) there is a second life-history strategy that promotes persistence:393

R0 close to but greater than one (from Figure 5 we can infer that ε ≳ 0.01 is necessary for394

a pathogen with R0 < 2 to have even a 10% chance of avoiding fizzle or burnout, whereas395

the secondary peak in persistence probability disappears for ε ≳ 0.016). In Appendix E,396

we use our analytical results to compute a linear approximation to the value of R0 > 1 at397

which the burnout probability is maximized [Equation (E.5)]. This shows excellent agree-398

ment with the numerical results over the range of ε for which the secondary peak exists399

and the burnout probability is numerically distinguishable from 1 (in Figure 5 the dotted400

red curve is the approximation and the solid red curve is the numerically computed exact401

value). Intriguingly, with the exception of the ancestral strain of SARS-CoV-2—which has402

been replaced by variants with much higher R0—the endemic infectious diseases of humans403

listed in Table 2 roughly divide into high and low R0 strategies.404

These strategies can be interpreted in terms of the herd immunity threshold, x⋆, i.e.,405

the minimum proportion susceptible at which the epidemic can grow from a small number406

of infections. When R0 is large, the susceptibility threshold x⋆ is low, allowing the fraction407

susceptible to rapidly reach the threshold. When R0 is low, there is a larger reservoir of408

susceptible hosts at the end of the first major epidemic, which reduces the wait until the herd409

immunity threshold is crossed. In either case, a longer infectious period (larger ε) allows the410

pathogen to “wait out” the period of herd-immunity. This non-monotonicity of the burnout411

probability as a function of R0 was previously observed [4, 20], and the maximum burnout412

probability was conjectured to occur for R0 ≈ 3 [20] or R0 = 2 [4]. We have shown that,413

in fact, the value of R0 at which the probability is maximized is a decreasing function of414

ε (solid red curve in Figure 5). The probability-maximizing R0 varies from R0 ≃ 2.57 for415

ε → 0 [Equation (E.5)] to R0 ≃ 2 for ε ≃ 0.016; for larger ε, the persistence probability416

increases monotonically with R0.417

These results also have evolutionary implications: reduced virulence may be associated418
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with longer infectious periods (e.g., if fewer hosts die while infectious), thereby reducing419

the probability of burnout. This suggests a mechanism—distinct from the population ge-420

netics/weak selection arguments presented in [59]—that could explain how natural selection421

may favour strains with longer infectious periods, rather than the maximal R0 strain, in422

finite populations. We are currently working on a multi-strain model that properly captures423

this possibility.424

While the qualitative inferences we have made from analysis of the stochastic SIR model425

are suggestive of general processes, and—as we observe above—could have interesting im-426

plications, further research is needed to determine if they really do generalize broadly. Most427

acute immunizing infections afflicting human populations have short infectious periods and428

moderate R0 values, and with these constraints our analysis of the stochastic SIR model429

indicates that extinction of the pathogen at the end of the first major epidemic is almost430

certain in a well-mixed population.431

Figure 5 makes clear that the stochastic SIR model is insufficient on its own to explain432

population persistence; it is essential to consider additional mechanisms, e.g., waning im-433

munity or antigenic evolution resulting in effective loss of host immunity [19], effects in434

a meta-population [16, 30], long-lived carrier infections (see [31] for a recent survey), or435

zoonotic reservoirs [19, 32].436

Multi-type or non-Markovian birth-and-death processes [36, 53], combined with more437

complicated compartmental models or renewal equation models with more general generation438

intervals [11] may allow our approach to be extended to models incorporating, e.g., latent439

periods and asymptomatic and carrier infections, or greater or lesser variability in infectious440

periods. A more difficult problem is to consider pathogen persistence in a meta-community441

of linked sites [16, 50], or other structured populations, rather than a well-mixed population.442

Smaller local community sizes tend to make local extinction more likely, whereas asynchrony443

in epidemic dynamics could allow pathogens to reinvade following a local extinction [17]. Are444

these processes adequate to plausibly explain the persistence of pathogens? Is the existence445

of low/high R0 strategies generic, or an artifact of the SIR compartmental model? Are446

longer infectious periods always favourable for pathogen persistence? We will pursue these447

questions in future work.448
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A Computing the Epidemic burnout Probability613

To apply Kendall’s q (14) to the problem of epidemic burnout, we need to compute the614

integral615

616 ∫ ∞

0

e−
∫ t
0 [βX(xin,s)−(γ+µ)] ds(γ + µ) dt617

=

∫ ∞

0

exp
(
−
∫ τ

0

[
R0X(xin,

σ

γ + µ
)− 1

]
dσ
)
dτ , (A.1)618

where, on the right hand side, we use the mean duration of infection (1/(γ+µ)) as the time619

unit and write σ = (γ + µ)s, τ = (γ + µ)t. Recalling (17), we can write620

X(σ) ≡ X
(
xin,

σ

γ + µ

)
= 1− (1− xin)e

−εσ , (A.2)621

and hence622

X ′(σ) = ε(1− xin)e
−εσ = ε

(
1−X(σ)

)
. (A.3)623

Now, to evaluate the inner integral in (A.1), we make a change of variables, using x as the624

variable of integration:625

626 ∫ τ

0

[
R0X(xin,

σ

γ + µ
)− 1

]
dσ627

=

∫ X(τ)

X(0)

[
R0x− 1

] 1
dx
dσ

dx =

∫ X(τ)

xin

R0x− 1

ε(1− x)
dx628

= −R0

ε
(X(τ)− xin)−

R0

ε
(1− x⋆) ln

1−X(τ)

1− xin

. (A.4)629

Changing variables in a similar way, we have630 ∫ T

0

exp
(
−
∫ τ

0

[
R0X(xin,

σ

γ + µ
)− 1

]
dσ
)
dτ (A.5a)631

=

∫ T

0

exp
(R0

ε
(X(τ)− xin) +

R0

ε
(1− x⋆) ln

1−X(τ)

1− xin

)
dτ (A.5b)632

=

∫ X(T )

xin

e
R0
ε

(x−xin)

(
1− x

1− xin

)R0
ε

(1−x⋆) dx

ε(1− x)
. (A.5c)633

We are interested in the probability of ultimate extinction, which corresponds to taking the634

limit as T → ∞, or, equivalently, X(T ) → 1, giving us635 ∫ 1

xin

e
R0
ε

(x−xin)

(
1− x

1− xin

)R0
ε

(1−x⋆) dx

ε(1− x)
(A.6a)636

=
1

ε
e

R0
ε

(1−xin)

(R0

ε
(1− xin)

)−R0
ε

(1−x⋆) ∫ R0
ε

(1−xin)

0

e−xx
R0
ε

(1−x⋆)−1 dx (A.6b)637

24



=
1

ε
e

R0
ε

(1−xin)

(R0

ε
(1− xin)

)−R0
ε

(1−x⋆)

g

(R0

ε

(
1− x⋆

)
,
R0

ε
(1− xin)

)
, (A.6c)638

where we recall g denotes the lower incomplete gamma function. Equation (24) follows639

immediately.640

Asymptotics for Small ε We may also write the integral (A.6a) as641

1

ε

∫ 1

xin

1

1− x
e

R0
ε

(
x−xin+

(
1−x⋆

)
ln
(

1−x
1−xin

))
dx =

1

ε

∫ 1

xin

h(x)e
ϕ(x)
ε dx , (A.7)642

for h(x) = 1
1−x

and ϕ(x) = R0

(
x− xin +

(
1− x⋆

)
ln
(

1−x
1−xin

))
. Assuming ε is small, we can643

apply Laplace’s method [7, §6.4]: provided xin ≤ x⋆, ϕ(x) has its maximum at x = x⋆, so644

the above is asymptotically equal to645

1

ε

√
2πε

|ϕ′′(x⋆)|
h(x⋆)e

ϕ(x⋆)
ε =

√
2π

ε(R0 − 1)
e

R0
ε

(x⋆−xin)

(
1− x⋆

1− xin

)R0
ε

(1−x⋆)

, (A.8)646

yielding (25).647

Remark 1. Note that, since xin < x⋆,648

0 < −R0

∫ x⋆

xf

ln (1− t) dt = R0 ((x⋆ − xin) + (1− x⋆) ln (1− x⋆)− (1− xin) ln (1− xin))649

< R0 ((x⋆ − xin) + (1− x⋆) ln (1− x⋆)− (1− x⋆) ln (1− xin)) = ϕ(x⋆),650

so the Laplace approximation, and thus the original integral (A.6a), are both exponentially651

large in ε−1.652

B Subsequent epidemic waves653

In [60], we derive an iterative scheme to compute “effective initial conditions” for every654

epidemic wave following initial disease invasion. Writing xi,j for the fraction susceptible at655

the start of the jth epidemic wave, we find our trajectory approximations agree very closely656

with the “exact” value obtained by solving the SIR ODEs (5) numerically, starting from the657

DFE.658

Setting xi,1 = 1, we iteratively obtain xi,j+1 from xi,j by computing659

xf,j = −x⋆W0

(
E (−xi,j/x⋆)

)
, (B.1a)660

y0,j = xi,j − x⋆ (1 + ln (xi,j/x⋆)) . (B.1b)661

xi,j+1 = 1 + (1− x⋆)W0

(
E

(
− 1− xf,j

1− x⋆

))
. (B.1c)662

The intermediate quantities in this recurrence relation, xf,j and y0,j, are the final fraction663

susceptible and maximal fraction infected, respectively, for the SIR model without vital664

dynamics (ε = 0) with initial condition (xi,j, 0).665
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C The Domain of Applicability of the Approximation666

(19) to xin667

The refined trajectory approximation that yields Equation (19) is derived in [60] under the668

assumption that R0 is large. Despite this, we find that the approximation to xin obtained669

from it (19) performs very well for all but values of R0 very close to 1 or very large values670

of ε > 0 (see Figure 3.). In particular, W0(x) is undefined for x < −e−1, so we must have671

−R0e
−R0(1−y⋆) > −e−1, (C.1)672

or, expanding and rearranging,673

ε < 1− lnR0

R0 − 1
= 1 +

x⋆ lnx⋆

1− x⋆

. (C.2)674

Alternately, we can find an approximate lower bound for R0,675

R0 > e2ε (C.3)676

by observing that 1 − lnx
x−1

≤ 1
2
lnx. To derive this latter inequality, note that both sides677

approach a limit of 0 as x → 1, whereas678

d

dx

(
1− lnx

x− 1
− 1

2
lnx

)
=

1

(x− 1)2

(
lnx− x2 − 1

2x

)
. (C.4)679

Again, lnx− x2−1
2x

vanishes at x = 1, whereas680

d

dx

(
lnx− x2 − 1

2x

)
= −(x− 1)2

2x
≤ 0, (C.5)681

so lnx − x2−1
2x

≤ 0 for x ≥ 1, and thus d
dx

(
1− lnx

x−1
− 1

2
lnx
)
≤ 0 also, proving the desired682

inequality.683

D Boundary Layer Independent Estimates684

Thus far, we have computed the burnout probability via a specific, but arbitrary choice of685

boundary layer y⋆, and explicit solutions for xin, the fraction susceptible when first entering686

the boundary layer under the ODE approximation (5). Here, we consider an alternative687

approach, using results from [60] to implicitly characterize xin. In conjunction with (A.6a),688

this allows us – at the cost of a small loss of precision – to give expressions for the extinction689

and persistence probabilities that is independent of the precise choice of threshold, provided690

the threshold is O(ε). In addition to be of interest in and of themselves, we use them in691

Appendix E to compute the value of R0 maximizing the burnout probability and also to692

show how one derives the result of [61] as an approximation to Equation (24).693

In [60], we use the method of matched asymptotic expressions [41, 57] to derive analytical694

approximations to the phase-plane trajectories of the SIR model with vital dynamics, i.e.,695
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expressions Y (x) and X(y) expressing the density of infected hosts as a function of the696

density of susceptible hosts and vice versa. In the boundary later we obtain lowest and first697

order approximations to Y (x): the lowest order approximation is698

Y (x) ≈ y0

(
1− xf

1− x

)R0
ε

(1−x⋆)

e
R0
ε

(xf−x), (D.1)699

whereas the refined estimate is700

Y (x) ≈
(

1

xf

− 1

)
(x⋆ − xf)

(
1− xf

1− x

)R0
ε

(1−x⋆)

e
−R0

ε
(x−xf)+

(
1
xf

−1
)−1

Y1
xf
(1)
, (D.2)701

where702

xf = −x⋆W0

(
−R0e

−R0
)
, (D.3)703

is the final size of the SIR epidemic without vital dynamics [49] and704

Y1
xf
(1) =

∫ 1

xf

[(x⋆

t
− 1
)(1

u
− 1

)
1

1− u+ x⋆ lnu
−
(

1

xf

− 1

)
1

t− xf

]
dt (D.4a)705

≈
(

1

xf

− x⋆

x⋆ − xf

)
lnxf −

x⋆

x⋆ − xf

(
1

xf

− 1

)
. (D.4b)706

A very closely related expression (using µ rather than ε as the small parameter) is derived707

in [61].708

Recalling that, Y (xin) = y⋆, evaluating either of (D.1) or (D.2) at x = xin gives us a709

relation between xin, xf , and y⋆. From the former (D.1), we have710 (
1

1− xin

)R0
ε

(1−x⋆)

e−
R0
ε

xin =
y⋆
y0

(
1

1− xf

)R0
ε

(1−x⋆)

e−
R0
ε

xf , (D.5)711

whereas the latter (D.2) gives us712 (
1

1− xin

)R0
ε

(1−x⋆)

e−
R0
ε

xin =
y⋆

(1− xf)
(

x⋆

xf
− 1
) ( 1

1− xf

)R0
ε

(1−x⋆)

e
−R0

ε
xf+

(
1
xf

−1
)−1

Y1
xf
(1)
.

(D.6)713

Substituting expression (D.5) into the integral (A.6a) and proceeding as in Appendix A714

gives715 ∫ 1

xin

(
1− x

1− xin

)R0
ε

(1−x⋆)

e
R0
ε

(x−xin)
dx

ε(1− x)
(D.7a)716

=
y⋆
y0

∫ 1

xin

(
1− x

1− xf

)R0
ε

(1−x⋆)

e
R0
ε

(x−xf)
dx

ε(1− x)
(D.7b)717

=
1

ε

y⋆
y0

(R0

ε
(1− xf)

)−R0
ε

(1−x⋆)

e
R0
ε

(1−xf)g

(R0

ε
(1− x⋆),

R0

ε
(1− xin)

)
. (D.7c)718
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Now, for a
z
fixed, as a → ∞, g(a, z) ∼ Γ(a)− zae−z (see [56, 8.11.6]) and thus719

z−aez(g(a, z)− g(a, z′)) ∼
(
z′

z

)a

ez−z′ − 1. (D.8)720

Applying this with a = R0

ε
(1− x⋆), z = R0

ε
(1− xf), and z′ = 1−xin

ε
, we see that the error in721

replacing xin by xf in the incomplete gamma function above is equal to722

1

ε

y⋆
y0

(
1− xin

1− xf

)R0
ε

(1−x⋆)

e−
R0
ε

(xf−xin) =
1

ε

y⋆
y0

e
R0
ε

[
(1−x⋆) ln

(
1−xin
1−xf

)
−(xf−xin)

]
(D.9a)723

=
1

ε

y⋆
y0

e
R0
ε

[
(1−x⋆) ln

(
1+

xf−xin
1−xf

)
−(xf−xin)

]
(D.9b)724

=
1

ε

y⋆
y0

e
R0
ε

[
(xf−xin)

xf−x⋆
1−xf

+O(ε2)
]
. (D.9c)725

Both xf − xin and y⋆ are O(ε) whereas xf−x⋆

1−xf
is O(1), so this error is O(1). Thus in absolute726

terms the error is not small. However, as we observed in Appendix A above, the integral727

(D.7a) is exponentially large in ε−1, so the error is negligible relative to this leading term728

(indeed, replacing the incomplete gamma function by Γ
(R0

ε
(1− x⋆)

)
produces a similarly729

negligible error). We can also replace xin by xf the Laplace approximation with negligible730

error:731 ∫ 1

xin

(
1− x

1− xin

)R0
ε

(1−x⋆)

e
R0
ε

(x−xin)
dx

ε(1− x)
≈ y⋆

y0

√
2π

ε(R0 − 1)

(
1− x⋆

1− xf

)R0
ε

(1−x⋆)

e
R0
ε

(x⋆−xf),

(D.10)732

Similarly, repeating the same argument using the higher order expression (D.6) gives733 ∫ 1

xin

(
1− x

1− xin

)R0
ε

(1−x⋆)

e
R0
ε

(x−xin)
dx

ε(1− x)
(D.11a)734

≈

1

ε

y⋆

(1− xf)
(

1
R0xf

− 1
) (R0

ε
(1− xf)

)−R0
ε

(1−x⋆)

e
R0
ε

(1−xf)+
(

1
xf

−1
)−1

Y1
xf
(1)

× g

(R0

ε

(
1− x⋆

)
,
R0

ε
(1− xf)

) (D.11b)735

≈ y⋆

(1− xf)
(

1
R0xf

− 1
)√ 2π

ε(R0 − 1)

(
1− x⋆

1− xf

)R0
ε

(1−x⋆)

e
R0
ε

(x⋆−xf)+
(

1
xf

−1
)−1

Y1
xf
(1)
.

(D.11c)

736

Now, we recall that the burnout probability is737

q(xin)
ny⋆ =

1 +
1∫ 1

xin

(
1−x
1−xin

)R0
ε

(1−x⋆)

e
R0
ε

(x−xin) dx
ε(1−x)


−ny⋆

(D.12a)738
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= e

−ny⋆ ln

1+ 1∫ 1
xin(

1−x
1−xin

)
R0
ε (1−x⋆)

e
R0
ε (x−xin) dx

ε(1−x)


(D.12b)739

≈ e

− ny⋆∫ 1
xin(

1−x
1−xin

)
R0
ε (1−x⋆)

e
R0
ε (x−xin) dx

ε(1−x) . (D.12c)740

In Remark 1, we showed that
∫ 1

xin

(
1−x
1−xin

)R0
ε

(1−x⋆)

e
R0
ε

(x−xin) dx
ε(1−x)

is exponentially large in ε,741

and thus that the error in making the last approximation above is exponentially small.742

Substituting any of the expressions (D.7c), (D.10), (D.11b), or (D.11c) for the integral, we743

see that the terms y⋆ cancel, giving us an approximate expression for the burnout probability744

that does not depend on the specific choice of threshold, only upon its order of magnitude,745

ε:746

q(xin)
ny⋆ ≈ e

− nεy0

(R0
ε (1−xf ))

−R0
ε (1−x⋆)

e
R0
ε (1−xf )g(R0

ε (1−x⋆),
R0
ε (1−xf )) (D.13a)747

≈ e−ny0

√
ε(R0−1)

2π ( 1−xf
1−x⋆

)
R0
ε (1−x⋆)

e
R0
ε (xf−x⋆)

. (D.13b)748

or749

q(xin)
ny⋆ ≈ e

−
nε(1−xf )( 1

R0xf
−1)

(R0
ε (1−xf ))

−R0
ε (1−x⋆)

e

R0
ε (1−xf )+( 1

xf
−1)

−1
Y1
xf

(1)
g(R0

ε (1−x⋆),
R0
ε (1−xf )) (D.14a)750

≈ e
−n(1−xf)

(
1

R0xf
−1

)√
ε(R0−1)

2π ( 1−xf
1−x⋆

)
R0
ε (1−x⋆)

e
R0
ε (xf−x⋆)−( 1

xf
−1)

−1
Y1
xf

(1)

. (D.14b)751

respectively.752

Remark 2. If in Equation (D.14a) we approximate g
(R0

ε
(1− x⋆),

R0

ε
(1− xf)

)
by Γ

(R0

ε
(1− x⋆)

)
753

(i.e., if we approximate the integral up to R0

ε
(1− xf) by the integral over the whole real line,754

introducing an error of O(ε)), we obtain an expression for the burnout probability equivalent755

to that from [61] (up to minor differences resulting from using different small parameters, µ756

and ε).757

E The R0 Maximizing the Probability of Burnout758

Using the simplified expression for burnout probability (D.13b), we can obtain an approxima-759

tion to the value of R0 that maximizes the probability of burnout linear in ε which is highly760

accurate across the range of values of ε for which the burnout probability is non-monotone.761

The expression (D.13b) is minimized when762

y0

√
ε(R0 − 1)

2π

(
1− xf

1− x⋆

)R0
ε

(1−x⋆)

e
R0
ε

(xf−x⋆) (E.1)

is maximized, or equivalently, when its partial derivative with respect to R0 is equal to zero.763

Computing the partial derivative and collecting terms of like order in ε, we seek R0 such764
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that765

1

ε

[
ln

(
R0 +W0

(
−R0e

−R0
)

R0 − 1

)
− 1

R0

]
+

lnR0

R0(R0 − 1− lnR0)
+

√R0 − 1

2
= 0. (E.2)766

An analytical closed form solution does not appear to exist, but one can use a formal asymp-767

totic series expansion R0 =
∑∞

j=0 rjε
j to obtain a polynomial approximation in ε to arbi-768

trarily large degree (here, we content ourselves with a linear approximation). Substituting769

this series into Equation (E.2) and collecting terms of order ε−1 and order one, we obtain770

ln

(
r0 +W0 (−r0e

−r0)

r0 − 1

)
− 1

r0
= 0 (E.3)771

−1 + (r20 − r0 + 1)W0 (−r0e
−r0)

r20(r0 − 1)(1 +W0 (−r0e−r0))
r1 +

√
r0 − 1

2
+

ln r0
r0(r0 − 1− ln r0)

= 0. (E.4)772

We may solve Equation (E.3) by Newton iteration to find the unique root r0 = 2.572629848,773

which we use to solve Equation (E.4) to find r1 = −27.71866282, giving us the linear ap-774

proximation775

argmax
R0>1

q(xin)
ny⋆ ≈ 2.572629848− 27.71866282ε. (E.5)776

We compare this linear approximation to the numerically determined minimum in Figure 5.777

F The Burnout Probability is a Decreasing Function778

of ε779

In what follows, we show that ∂q(xin)
∂ε

≤ 0, from which we conclude that q(xin) is decreasing780

as ε increases, for all values of R0. If we set781

a =
R0

ε
(1− x⋆) and z =

R0

ε
(1− xin),

then we can write Equation (24) as782

q(xin) =

(
1 +

ε

ezz−ag(a, z)

)−1

, (F.1)783

whence784

∂q(xin)

∂ε
= −q(xin)

2

(
1

ezz−ag(a, z)
− ε ∂

∂ε

[
ezz−ag(a, z)

]
e2zz−2ag(a, z)2

)
. (F.2)785

The first term in the large brackets on the right hand side is always positive, so the result786

follows if one can show that ε ∂
∂ε

[
ezz−ag(a, z)

]
≤ 0. Applying the chain rule gives787

ε
∂

∂ε

[
ezz−ag(a, z)

]
= ε

∂z

∂ε

∂

∂z

[
ezz−ag(a, z)

]
+ ε

∂a

∂ε

∂

∂a

[
ezz−ag(a, z)

]
(F.3a)788

= −
(
z +R0

∂xin

∂ε

) ∂

∂z

[
ezz−ag(a, z)

]
− a

∂

∂a

[
ezz−ag(a, z)

]
. (F.3b)789
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Recalling that g(a, z) =
∫ z

0
ta−1e−t dt, the latter is equal to790

−
(
z +R0

∂xin

∂ε

)(
ezz−ag(a, z)

(
1− a

z

)
+

1

z

)
− aezz−a

(∫ z

0

ta−1e−t ln t dt− g(a, z) ln z

)
.

(F.4)791

Integrating by parts in the rightmost term, this becomes792

793

−
(
z +R0

∂xin

∂ε

)(
ezz−ag(a, z)

(
1− a

z

)
+

1

z

)
− aezz−a

∫ z

0

g(a, t)

t
dt794

= −R0
∂xin

∂ε

(
ezz−ag(a, z)

(
1− a

z

)
+

1

z

)
− ezz−a+1g(a, z)− 1795

− ezz−a

∫ z

0

(a
t
g(a, t)− a

z
g(a, z)

)
dt (F.5)796

Now, g(a, z) ≥ 0, whereas a
z
= 1−x⋆

1−xin
≤ 1, since xin < x⋆, so 1− a

z
≥ 0 and, since g(a, z) is an797

increasing function of z, we have798 ∫ z

0

(a
t
g(a, t)− a

z
g(a, z)

)
dt ≥

∫ z

0

(a
t
− a

z

)
g(a, t) dt ≥ 0. (F.6)799

Thus, provided ∂xin

∂ε
≥ 0, ε ∂

∂ε

[
ezz−ag(a, z)

]
≤ 0, as required.800

Finally, from Equation (19), we see that801

∂xin

∂ε
= lim

ε→0
eR0y⋆

(
E1(R0y⋆)− E1(R0y0)

)
≥ 0 , (F.7)802

since y⋆ ≤ y0 and E1(x) is a decreasing function of x.803

G Simulations804

Stochastic simulation algorithm Exact realizations of the stochastic SIR model (Fig-805

ure 2 and Table 1) can be obtained using the standard Gillespie algorithm [25, 26]. If we806

denote the various event rates ai (e.g., a1 = µn, etc.) then the total event rate is a =
∑

i ai.807

The time to the next event is drawn from an exponential distribution with mean 1/a, and808

the event is taken to be of type i with probability ai/a. This algorithm scales with expected809

population size n and is prohibitively slow when running large numbers of simulations with810

n ≳ 105. We therefore used the adaptive τ -leaping approximation [27], as implemented in811

the adaptivetau R package [38]. The key idea in this approach is to identify, at any point of812

the simulation, a time τ over which the various event rates can be considered approximately813

constant, and then determine the number of events of each type that can be expected over814

this time interval. We then “leap forward” by time τ rather than treating events individually.815

Estimating the Required Number of Simulations To determine the number of sim-816

ulations required to estimate the epidemic burnout probability to a given accuracy, we use817

the central limit theorem. Suppose we run m independent simulations. Let818

1i =

{
1 if the ith simulation ends in burnout, and

0 otherwise.
(G.1)819
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Then, the law of large numbers [8, §6] tells us that820

lim
m→∞

1

m

m∑
i=1

1i = E[11] = q, (G.2)821

where q is Kendall’s q (14). Consequently, qm = 1
m

∑m
i=1 1i is an unbiased estimator [8,822

p. 483] of q. Let E = q − qm be the error in our estimates. Then, the central limit theorem823

[8, §27] tells us that
√
mE = 1√

m

∑m
i=1(1i − q) converges to a normal distribution with the824

same variance as 11 − q, i.e.,
√
mE converges in distribution to a normal random variable825

with variance826

σ2 = E
[
(11 − q)2

]
= E

[
1
2
1 − 2q11 + q2

]
(G.3a)827

=
(
12 · q + 02 · (1− q)

)
− 2q

(
1 · q + 0 · (1− q)

)
+ q2 (G.3b)828

= q(1− q) ≤ 1

4
, (G.3c)829

where the inequality (G.3c) follows because 0 ≤ q ≤ 1. In particular, for large m, the830

expected squared error is E[E2] ≲ 1
4m

, and thus, to have E[E2] ≤ δ, we perform at least831

m = ⌈ 1
4δ
⌉ runs.832

Fizzle vs. Epidemic burnout To efficiently distinguish fizzles from epidemic burnout,833

we use Equation (15) to estimate a time τδ (measured in units of the mean infectious period834

1/(γ + µ)) such that the probability that, starting from k infected individuals and xi = 1,835

a sample path in which infective individuals are still present at time τδ eventually fizzles is836

less than δ. Let Tk be the (random) time of fizzle starting from k individuals. Then,837

P{Tk > t} = P{Z(t) > 0 | Z(0) = k} (G.4)838

= 1−
(
1 +

1∫ t

0
e−

∫ s
0 [β−(γ+µ)] du(γ + µ) ds

)−k

(G.5)839

= 1−
(
1 +

1
1

R0−1
(1− e−(β−γ−µ)t)

)−k

. (G.6)840

Now, because fizzle is not a certainty,841

lim
t→∞

P{Tk > t} = 1− xk
⋆ > 0 . (G.7)842

To determine τδ, we condition on eventual fizzle to estimate its time of occurrence:843

P{Tk > t | Tk < ∞} =
P{Tk > t} − P{Tk = ∞}

P{Tk < ∞} (G.8)844

=

(
1
R0

)k
−
(
1 + 1

1
R0−1(1−e−(β−γ−µ)t)

)−k

(
1
R0

)k (G.9)845
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= 1−
(
1 +

1
R0

R0−1
(1− e−(β−γ−µ)t)

)−k

. (G.10)846

Solving for P{Tk > τδ | Tk < ∞} = δ yields847

τδ =
1

R0 − 1
ln

(
(1− δ)−

1
k − 1

R0

(1− δ)−
1
k − 1

)
. (G.11)848

Choosing a suitably small δ, we assume that any sample path in which infective individuals849

are still present at τδ will not fizzle.850
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