
HAL Id: hal-04190380
https://hal.science/hal-04190380

Submitted on 29 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Operator approximation of the wave equation based on
deep learning of Green’s function

Ziad Aldirany, Régis Cottereau, Marc Laforest, Serge Prudhomme

To cite this version:
Ziad Aldirany, Régis Cottereau, Marc Laforest, Serge Prudhomme. Operator approximation of the
wave equation based on deep learning of Green’s function. Computers & Mathematics with Applica-
tions, 2023, 159, pp.21-30. �10.1016/j.camwa.2024.01.018�. �hal-04190380�

https://hal.science/hal-04190380
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Operator approximation of the wave equation1

based on deep learning of Green’s function2

Ziad Aldirany1, Régis Cottereau2, Marc Laforest1, and Serge Prudhomme13

1Département de mathématiques et de génie industriel, Polytechnique Montréal, Montréal,4

Québec, Canada5

2Aix-Marseille Université, CNRS, Centrale Marseille, LMA UMR 7031, Marseille, France6

August 29, 20237

Abstract8

Deep operator networks (DeepONets) have demonstrated their capability of approximating nonlinear9

operators for initial- and boundary-value problems. One attractive feature of DeepONets is their versa-10

tility since they do not rely on prior knowledge about the solution structure of a problem and can thus11

be directly applied to a large class of problems. However, convergence in identifying the parameters of12

the networks may sometimes be slow. In order to improve on DeepONets for approximating the wave13

equation, we introduce the Green operator networks (GreenONets), which use the representation of the14

exact solution to the homogeneous wave equation in term of the Green’s function. The performance15

of GreenONets and DeepONets is compared on a series of numerical experiments for homogeneous and16

heterogeneous media in one and two dimensions.17

Keywords: Deep learning, Wave equation, Neural networks, Green’s function, Fundamental solution, Deep18

operator networks, Physics-informed neural networks19

1 Introduction20

In the last few years, a large amount of work, see e.g. [10, 4, 20, 19], has been devoted to using deep learning21

methods for the solution of PDE-based problems, such as in fluid dynamics, elasticity, meteorology, etc.22

These works have been motivated by the ability of deep neural networks to approximate large classes of23

functions in high dimension over complex domains [9, 21].24

Prominent deep learning methods for solving partial differential equations rely on either learning the25

solution to the problem, as presented in [22, 28, 29], or learning the operators that describe the physical26

problem, as introduced in [18, 16, 17, 27]. In the first approach, the solution is approximated with a neural27

network by minimizing the residual of the PDE, as in so-called physics-informed neural networks (PINNs)28

introduced by [22]. The second approach learns the differential operator for a given family of parameters, e.g.29

deep operator networks (DeepONets) as presented in [18], thus allowing one to subsequently approximate30

the solution to a physical problem for a specific parameter in the vicinity of the trained parameters. The31

training of such a neural network can turn out to be quite expensive, but needs to be done only once.32

Computing the solution for a new parameter requires only one forward pass in the online phase, which is33

usually cost-effective. This makes the operator approximation method very attractive when the physical34

problem needs to be solved for a wide range of parameter values. For example, in seismology, uncertainties35

1

in the Earth’s properties often require thousands of simulations to obtain those solutions that best fit the36

measured data.37

In physics-based deep learning approaches, the training of the network does not require using any data38

as it is essentially based on the physics of the problem, in the sense that it approximates the solution39

to the partial differential equations along with the boundary and initial conditions. This is achieved by40

minimizing the residual associated with the partial differential equations. The most common approach is41

to consider a Least Squares approach, in which the loss function is defined in terms of the L2-norm of the42

strong form of the residual [22, 27]. In case the solution of the problem lacks regularity, one can define43

the loss function by minimizing the energy potential in the case of symmetric problems, such as the Ritz44

formulation [28], or by minimizing the norm of the residual functional, see e.g. [12, 29]. The choice of the45

loss function that one should consider for the solution of PDE problems with neural networks, is still viewed46

as an open question [26]. However, evaluation of the residual has been made more amenable thanks to47

automatic differentiation [3]. In this work, we will formulate the problem using the classical Least Squares48

method that involves the strong form of the residual due to its simplicity and convergence ability.49

The main objective in this paper focuses on approximating the operator of the wave equation for a family50

of initial conditions. The architecture presented in DeepONets is general and can be applied to a large51

class of parametric PDEs. In order to improve on DeepONets, we propose here an approach based on the52

representation of the exact solution to the homogeneous wave equation on unbounded domains in terms of the53

Green’s function (for details on Green’s function, we refer the reader to [6]). The method will be heretofore54

referred to as the Green operator networks (GreenONets). GreenONets provide an approximation of the55

operator of the wave equation in terms of the corresponding Green’s function. Similar techniques based on56

the approximation of the Green’s function have been recently considered for the solution of linear and non-57

linear operators, see e.g. [5, 7, 17]. The architecture used in [5] is similar to the one presented in our work.58

However, in their work, the authors approximate the operator for a family of forcing terms and the training59

is performed by minimizing the error between the approximated solution and the exact solution, which60

makes their approach data-based, while the training in our work is based on the physics of the problem.61

In [7], a dual-autoencoder architecture is presented to approximate the operator for non-linear boundary62

value problems, by linearizing the problem and approximating the corresponding Green’s function. The63

authors in [17] introduced the graph neural operator, which is inspired by the Green’s function. However,64

the graph neural operator does not compute the Green’s function but aims at learning a corresponding kernel65

function using an iterative architecture. We will illustrate on a series of numerical examples involving the66

homogeneous and heterogeneous wave equations that the approximation of the operator using GreenONets67

exhibits in general better results in terms of accuracy and convergence when compared to DeepONets.68

The paper is organized as follows. We introduce in Section 2 the model problem and some preliminary69

notations. In Section 3, we briefly present DeepONets and its architecture. We then describe in Section 470

the main features of GreenONets. We compare the performance of GreenONets and DeepONets on several71

numerical results for the homogeneous and heterogeneous wave equation in Section 5. Finally, our main72

conclusions and potential extensions of the current research work are summarized in Section 6.73

2 Preliminaries74

We introduce here some preliminaries and notations in order to describe the notion of operator of the wave75

equation using neural networks. We first present the model problem and continue with a brief account of76

2

neural networks and the use of PINNs to solve initial boundary-value problems.77

2.1 Model problem78

The linear wave equation describes small perturbations from the steady state of a system that locally behaves79

like an elastic body. The material system is entirely characterized in its domain Ω ⊂ Rd, d = 1, 2, or 3,80

by the distribution of a bounded function c(x) in Ω. The perturbations are introduced either as initial81

displacements u0, initial velocities u1, or as perturbations entering the domain through its boundary ∂Ω82

at different times. For the sake of simplicity, we will assume that the boundary conditions are given by83

homogeneous Dirichlet boundary conditions on the displacement. To be more specific, given a wave speed84

c(x), initial displacement u0(x), initial velocity u1(x), and a final time T > 0, the problem is to find the85

perturbation u(x, t), for all x ∈ Ω̄ and t ∈ (0, T) such that86

∂ttu(x, t)− c2(x)∇2u(x, t) = 0, ∀(x, t) ∈ Ω × (0, T), (1)

subjected to the initial and boundary conditions

u(x, 0) = u0(x), ∀x ∈ Ω, (2)

∂tu(x, 0) = u1(x), ∀x ∈ Ω, (3)

u(x, t) = 0, ∀(x, t) ∈ ∂Ω × (0, T). (4)

Our goal is to obtain a neural network approximation of the (inverse) operator of the wave equation that87

would provide the solution u = u(x, t;u0) for a family of initial conditions u0. In this case, the networks will88

be trained on a family on initial conditions generated by Gaussian random fields (GRF) [23]. The resulting89

neural network solution will allow one to compute an approximation to the wave equation for any initial90

condition. The hope is that this approximation should be accurate for initial conditions that are close to91

those used in the training phase. For the sake of simplicity, we shall focus mostly on the case where u1 = 092

but we will indicate how our approach can be extended to non-zero initial velocities u1.93

2.2 Green’s functions94

The Green’s function of the operator defined previously is defined as the solution of the same problem with95

an impulse (localized in space) as initial condition. More precisely, g(x, t, ξ) is defined, for all x ∈ Ω and96

t ∈ (0, T), as the solution of97

∂ttg(x, t, ξ)− c2(x)∇2g(x, t, ξ) = 0, ∀(x, t) ∈ Ω × (0, T), (5)

subjected to the initial and boundary conditions

g(x, 0, ξ) = δ(x− ξ), ∀x ∈ Ω, (6)

∂tg(x, 0, ξ) = 0, ∀x ∈ Ω, (7)

g(x, t, ξ) = 0, ∀(x, t) ∈ ∂Ω × (0, T). (8)

An interesting feature of the Green’s function is that the solution u(x, t) of the problem presented in the98

previous section can be obtained as a simple convolution with the initial condition u0(x):99

u(x, t) =

∫
Ω

g(x, t, ξ)u0(ξ)dξ. (9)

3

Although we have considered here the case when u1(x) vanishes, an additional Green’s function can be100

defined with the Dirac delta function on Eq. (7) rather than on Eq. (6), so that the solution would become101

a sum of two convolutions by the principle of superposition.102

A Green’s function can be defined for any geometry of the domain and any distribution of properties c(x).103

However, in the more simple case of an unbounded domain Ω = R and homogeneous properties c(x) = c,104

the Green’s function takes the simple form105

g(x, t, ξ) =
1

2
δ
(
ct− |x− ξ|

)
. (10)

More examples of Green’s function (for higher dimensions and bounded domains) can be found in [6] or [11].106

2.3 Neural networks107

Neural networks have been the subject of intensive research in the past decades [14, 8] and more recently108

have been used as a discretization approach for solving differential equations [25, 22]. By definition, a neural109

network maps an input into an output by a composition of linear and nonlinear functions, with adjustable110

weights and biases. The objective is usually to train the network by adjusting its weights and biases in111

order to minimize some measure of error between the output and the corresponding target values over a112

specific training set. In this sense, the optimal neural network is very much like the least-squares fit of some113

fixed model to experimental data, but in contrast to a least-squares fit, the minimization problem might not114

always possess a unique solution. The resulting network can then be used as a predictive model that should115

hopefully provide accurate output when considering a wider set of input. There exist several neural network116

architectures, e.g. convolutional neural networks [14], feedforward neural networks [15]. We describe below117

the feedforward neural networks (FNN) that will be used later with DeepONets and GreenONets.118

Let us consider a FNN with d hidden layers, each layer having a width Ni, i = 1, . . . , d, and let N0 denote119

the size of the input data and Nd+1 the size of the output layer. Denoting the activation function by σ, the120

neural network with input (x, t) and output u is defined as121

Input layer: z0 = (x, t),

Hidden layers: zi = σ(Wizi−1 + bi), i = 1, · · · , d,

Output layer: u = Wd+1zd + bd+1,

(11)

where Wi is the weights matrix of size Ni ×Ni−1 and bi is the biases vector of size Ni. For convenience, we122

will combine the weights and biases into the single parameter θ of the neural network. In this work, we shall123

consider the tanh activation function, but other activation functions could be used as well.124

2.4 Physics-informed neural networks and operator approximation125

We recall here the physics-informed neural network approach for solving partial differential equations, first126

introduced in [22], as applied to the wave equation. We denote the residual associated with the partial127

differential equation of the wave equation as128

R
(
x, t, u

)
= ∂ttu(x, t)− c2(x)∇2u(x, t), ∀(x, t) ∈ Ω × (0, T), (12)

introduce the residual associated with the Dirichlet boundary condition as:129

B
(
x, t, u

)
= u(x, t), ∀(x, t) ∈ ∂Ω × (0, T), (13)

4

and the residuals associated with the initial conditions as:

I1
(
x, u

)
= u(x, t = 0)− u0(x), ∀x ∈ Ω, (14)

I2
(
x, u

)
= ∂tu(x, t = 0), ∀x ∈ Ω. (15)

We note that if u1(x) is different from zero, then it should be subtracted from Eq. (15).130

In PINNs, the goal is to obtain the solution u to the problem by approximating u with a neural network131

uθ(x). The training is usually performed by minimizing the following loss function:132

L(θ) = wr

∫ T

0

∫
Ω

R(x, t, uθ)
2dxdt+ wbc

∫ T

0

∫
∂Ω

B(x, t, uθ)
2dxdt+ wic

∫
Ω

I1(x, uθ)
2 + I2(x, uθ)

2dx, (16)

where wr, wbc, and wic are weighting coefficients.133

The minimization is usually done using a gradient-based method, e.g. ADAM [13], since the minimization134

problem is non-convex with respect to the trained parameters. Some of the main advantages of the PINNs135

is that it is a meshless method, and therefore we eliminate the process of mesh construction that can be very136

time consuming. Moreover, the implementation of the different types of boundary and initial conditions is137

similar in all cases and can be simply done by adding an extra weighted term in the loss function as presented138

in (16).139

3 Deep operator networks140

If one seeks to calculate the solution using PINNs for several values of some parameters s of the model141

problem, one should have to recompute the approximate solution uθ for each instance of s by training the142

network from the beginning. This becomes quickly inefficient if the solution has to be evaluated for multiple143

values of the parameters, such as in a multi-query approach for uncertainty quantification or optimization.144

An alternative approach is to construct a surrogate model, in which the solution is searched as an operator145

acting on the parameters s, i.e. u = Q(s). Similarly to PINNs, the operator Q can be approximated using146

deep learning by minimizing the loss function associated with the residuals of the partial differential equation147

and the boundary and initial conditions for a family of parameters. This approach becomes more attractive148

when the initial boundary value problem should be solved multiple times for different parameters, since it149

requires only one forward pass to compute the solution of a new parameter in the online phase.150

We briefly review the deep operator networks first introduced by [18]. In this work, we will be learning151

the operator from the partial differential equation and the initial and boundary conditions. In other words,152

the physics-informed DeepONets, described in [27], will be presented.153

Given Banach spaces U and S, we want to learn the operator Q : S → U such that for any input parameter154

s ∈ S (which in our case represents an initial condition), Q(s) ≡ u ∈ U is the solution of problem (12) with155

the boundary conditions (13). In order to approximate the operator Q, we present the unstacked DeepONets156

architecture originally introduced in [18] and schematically shown in Figure 1. We start by defining the input157

vector s of initial conditions [u0(xi)]i=1,...,m evaluated at a collection of m points {xi}mi=1, known as sensors.158

Then, as illustrated in Figure 1, the operator is approximated as159

Q̂(s)(x, t) =

q∑
k=1

bk
(
s
)
tk(x, t), (17)

where {bk}qk=1 is the output of the branch network that takes s as an input and {tk}qk=1 is the output of the160

trunk network that takes x as an input. The value of q will be chosen in the numerical experiments as the161

5

DeepONet

s

b1

.

.

.
bq

Branch Net

x

t

t1

.

.

.
tq

Trunk Net

× Q̂(s)(x, t)

R
(
Q̂(s)

)

B
(
Q̂(s)

)

PDE

BC&IC

Loss

Figure 1: Illustration of the architecture of the unstacked DeepONets. It consists of two networks, the branch
net and the trunk net. The branch net takes as input the input vector while the trunk net takes the input
coordinates. Their outputs are merged with dot product to give the approximated operator. The network
is trained to minimize the loss function that consists of the residuals of the partial differential equation and
the initial and boundary conditions.

width of the layers in the neural network. We will consider a simple FNN for both the branch and trunk162

networks. We note that a convolutional neural network [14] could also be used for the branch network when163

working with uniformly distributed sensors.164

We consider here the physics-informed DeepONets, where the network is trained by penalizing the resid-

uals associated with the governing partial differential equation and with the initial and boundary conditions

for a family of N input functions {s(i)}Ni=1. The loss function in this case reads:

L(θ) =
1

N

N∑
i=1

[
wr

∫ T

0

∫
Ω

R
(
x, t, Q̂(s(i))(x, t)

)2
dxdt+ wbc

∫ T

0

∫
∂Ω

B
(
x, t, Q̂(s(i))(x, t)

)2
dxdt

+ wic

∫
Ω

I1
(
x, Q̂(s(i))(x, t)

)2
+ I2

(
x, Q̂(s(i))(x, t)

)2
dx

]
. (18)

4 Green operator networks165

The architecture presented in the DeepONets is a general architecture that works can accommodate different166

problems with different input parameters. Our objective here is to develop an approach that improves upon167

the efficiency of the DeepONets for certain types of parameters. We will focus on the solution of the wave168

equation for homogeneous and heterogeneous materials, as presented in Section 2.1. We thus propose the169

Green operator networks (GreenONets), that approximate the Green’s function of the operator, to solve the170

aforementioned problem.171

In this work, we are interested in learning the operator of the wave equation for different initial conditions,172

i.e. the input function is defined as s = u0. Therefore, instead of using a general architecture as the173

DeepONets, we introduce the Green operator networks, shown in Figure 2, as a discrete approximation of174

the integral in Eq. (9). The GreenONet is defined as175

Q̂(s)(x, t) =
1

m

m∑
i=1

G(x, t,xi)u0(xi), (19)

6

GreenONet

x

t

xi

FNN

G(x, t,xi) ×

s(xi)

Q̂(s)(x, t)
Avg.

R
(
Q̂(s)

)

B
(
Q̂(s)

)

PDE

BC&IC

Loss

Figure 2: Illustration of the architecture of the GreenONets. A FNN takes as input the coordinates and
sensor points and outputs an approximated Green’s function G with respect to each sensor point. Then, the
operator is computed by averaging the product of the Green’s function and the input function over the sensor
points. The network is then trained to minimize the loss function that consists of the residuals associated
with the partial differential equation and the initial and boundary conditions.

where G is a simple feedforward neural network. We note that the formulation of GreenONets depends176

explicitly on the sensor points {xi}mi=1. Similar to the physics-informed DeepONets, the GreenONets are177

trained by minimizing the loss function (18). We notice that in our approximation, the solution is zero if178

the initial condition is zero. However, if the Dirichlet boundary condition or the initial speed are different179

from zero, we should add a term in (19), that should be approximated by a new network, to compensate for180

these conditions.181

Although the exact solution in (9) is only presented for a homogeneous material and an unbounded182

domain, the following numerical results show that GreenONets yield better results when compared to Deep-183

ONets for bounded domains with homogeneous or heterogeneous properties.184

5 Numerical results185

In this section, we approximate the operator of the wave equation for homogeneous and heterogeneous186

materials in the case of a family of initial conditions, in order to show the effectiveness of GreenONets when187

compared to DeepONets.188

We consider Ω = (−1, 1)d and we set u1(x) = 0 in all cases. In order to define the training set, on which189

we want to minimize our residuals, we start by defining a family of N input functions {s(i)}Ni=1. For each190

s(i), we randomly define
{(

x
(i)
ic,j , 0

)}Pic

j=1
on which we will penalize the initial conditions,

{(
x
(i)
bc,j , t

(i)
bc,j

)}Pbc

j=1
191

on the boundary of the domain at different times, for which we will penalize the boundary conditions, and192 {(
x
(i)
r,j , t

(i)
r,j

)}Pr

j=1
on (−1, 1)d× (0, T), for which we will penalize the bulk residual. Using the sampling points193

to estimate numerically the integrals, the loss function (18) is approximated as194

L(θ) = wrLr(θ) + wbcLbc(θ) + wicLic(θ), (20)

7

where195

Lr(θ) =
1

NPr

N∑
i=1

Pr∑
j=1

∣∣∣∣∂ttQ̂(
s(i)

)(
x
(i)
r,j , t

(i)
r,j

)
− c

(
x
(i)
r,j

)2∇2Q̂
(
s(i)

)(
x
(i)
r,j , t

(i)
r,j

))∣∣∣∣2,
Lbc(θ) =

1

NPbc

N∑
i=1

Pbc∑
j=1

∣∣∣∣Q̂(
s(i)

)(
x
(i)
bc,j , t

(i)
bc,j

)∣∣∣∣2,
Lic(θ) =

1

NPic

N∑
i=1

Pic∑
j=1

∣∣∣∣Q̂(
s(i)

)(
x
(i)
ic,j , 0

)
− u0(x

(i)
ic,j)

∣∣∣∣2 + ∣∣∣∣∂tQ̂(
s(i)

)(
x
(i)
ic,j , 0

)∣∣∣∣2.
Again, wr, wic, and wbc are the weighting coefficients. The initial conditions s(i) are randomly sampled196

from a Gaussian random field (GRF), as presented by [18], with a defined length scale l. In the following197

experiments, the FNNs in the DeepONets and GreenONets are defined with d = 6 hidden layers and Ni = 50198

for all hidden layers. The loss function is minimized using the ADAM optimizer [13] with the default hyper-199

parameters, while considering different learning rates for each experiment.200

5.1 One-dimensional problems201

We start by comparing the GreenONets with the DeepONets for the one-dimensional case, i.e. d = 1. The202

input functions s are defined by a GRF and then modified to verify the homogeneous Dirichlet boundary203

conditions by subtracting the proper linear function. Figure 3 shows examples of the modified GRF for length204

scales l = 0.5 and l = 0.1. The numerical comparison is performed for homogeneous and heterogeneous205

material properties with different length scales in the GRF.206

Figure 3: Examples of the input functions s(i) for a length scale l = 0.5 (left) and l = 0.1 (right).

5.1.1 Homogeneous case with a length scale of 0.5207

We first approximate the operator for a homogeneous material using DeepONets and GreenONets. The208

sensor points are chosen uniformly with m = 21 while the input parameters s are generated using a GRF209

with length scale l = 0.5. We take the initial learning rate as 10−3 and let it decrease with a rate of 0.9995210

at each epoch. In this example, we choose N = 1000 and Pr = Pbc = Pic = 10. The weights in (20) are set211

to wr = 0.1 and wic = wbc = 10. The training is done for 5000 epochs with 16 mini-batches.212

8

Figure 4: The evolution of the loss function on the training and testing sets during the training with
GreenONets and DeepONets for the example of Section 5.1.1.

Figure 4 compares the evolution of the loss function on the training and testing sets for the GreenONets213

and DeepONets. We observe that the loss functions decrease faster with GreeONets and after 5000 epochs214

we have smaller losses when compared to the DeepONets loss functions. In order to verify our operators, we215

compute the solution at t = 2 for the initial conditions u0(x) = (1− x2)k, with k = 2 and k = 10, as shown216

in Figure 5 (left). We observe in Figure 5 (middle), that the pointwise error at t = 2 for k = 2 is slightly217

larger when using DeepONets. However, as shown in Figure 5 (right), for k = 10 the DeepONets solution218

exhibits a maximum pointwise error of 0.14 while the maximum pointwise error for the GreenONets solution219

is 0.04. Therefore, the GreenONets solutions seem to generalize better at higher frequencies.220

Figure 5: Example of Section 5.1.1: (left) Initial conditions with which we test the networks. (middle)
Pointwise error at t = 2 for k = 2 using GreenONets and DeepONets. (right) Pointwise error at t = 2 for
k = 10 using GreenONets and DeepONets.

5.1.2 Homogeneous case with a length scale of 0.1221

Here, we solve the same problem as in the previous section but the input parameters s are defined using222

a GRF with length scale l = 0.1. In other words, we now compare the two methods for higher frequency223

9

solutions. The sensor points are defined uniformly with m = 60. We initialize the learning rate to 5× 10−4
224

and let it decrease with a rate of 0.999 at each epoch. In this example, we take N = 3000, Pr = 30, and225

Pbc = Pic = 3. The weights associated with each component of the loss function (20) are wr = 0.2 and226

wic = wbc = 100. We train both networks for 2000 epochs with 128 mini-batches.227

Figure 6: Example of Section 5.1.2: (left) Evolution of the loss function on the training and testing sets with
GreenONets and DeepONets. (middle) Pointwise error at t = 2 for k = 50 and k = 200 using GreenONets.
(right) Comparison of the solution obtained by GreenONets at t = 2 for k = 200 with the exact solution.

We observe in Figure 6 (left) that, using the same hyper-parameters, the loss functions for the GreenONets228

attain 8×10−2 in 2000 epochs while those for the DeepONets plateau earlier. In Figure 6 (middle), we show229

the pointwise errors of the GreenONets solutions for u0 = (1−x2)k, with k = 50 and k = 200. The maximum230

pointwise error is around 0.01 for k = 50 and around 0.1 for k = 200. The pointwise error of the DeepONets231

solutions is not available since the loss functions did not converge. To better characterize the error for232

k = 200, we compare the solution using GreenONets to the exact solution at t = 2 in Figure 6 (right). We233

remark that the large errors are close to the propagating wave and did not spread in the rest of the solution.234

Figure 7: Example of Section 5.1.2: The approximated Green’s function G(x, t, xi), for xi = 0 at t = 0 and
t = 0.5.

We show in Figure 7 the approximated Green’s function G(x, t, xi), as computed by Equation (19), for235

10

xi = 0 at t = 0 and t = 0.5. As expected, we observe that G approximates a Dirac delta function around236

x = 0 at t = 0, which splits into two functions at t = 0.5 with half the amplitude of the original one.237

5.1.3 Heterogeneous case with a length scale of 0.3238

In this section, we use the GreenONets to approximate the operator of the heterogeneous wave equation.239

We consider the wave speed c(x)2 = 1+H(x−0.5), where H is the Heaviside function. We consider a family240

of initial conditions with a length scale l = 0.3 and use uniformly distributed sensor points with m = 30.241

The learning rate is 10−3 and decreases with a rate of 0.9995 per epoch. We set N = 2000, Pr = 15, and242

Pbc = Pic = 3. The weights of the loss functions are wr = 1 and wic = wbc = 100. We divide our training243

set into 32 mini-batches and train the networks for 2500 epochs.244

Figure 8: Example of Section 5.1.3: (left) Evolution of the loss function on the training and testing sets
with GreenONets and DeepONets. (middle) Pointwise error at t = 1 for k = 10, using GreenONets and
DeepONets. (right) Comparison of the solutions obtained by GreenONets and DeepONets at t = 1 for
k = 10 with an overkill solution using the spectral element method.

As shown in Figure 8 (left), the loss functions on the training set and testing set decrease faster using245

GreenONets than with DeepONets. Figure 8 (middle) shows the pointwise error in the solution at t = 1246

using GreenONets and DeepONets with an initial condition u0 = (1−x2)10. The maximum pointwise errors247

are similar for both networks with a value close to 0.035. We also plot the solutions at t = 1 along with248

the exact solution – actually, an overkill solution using the spectral element method, see e.g. [2, 24, 1],249

and references therein – in Figure 8 (right). We remark that the errors in the solution of the GreenONets250

remain localized around the main pulses and are proportional to the wave amplitude. However, in the case251

of DeepONets, the pointwise errors have the tendency to spread over the whole domain. Therefore, one252

could conclude that GreenONets tend to provide better approximations of the propagating waves without253

introducing large errors away from the main pulses.254

5.2 A two-dimensional example255

In this section, we present some numerical results obtained with DeepOnets and GreenOnets for the two-256

dimensional homogeneous wave equation with c(x, y) = 1, where (x, y) denote the spatial coordinates. The257

input functions s are defined as258

s(x, y) = (1− x2)(1− y2)h(x, y),

where h is randomly sampled from a zero-mean Gaussian random field with a length scale l = 1. We choose259

m = 49 sensor points uniformly distributed in Ω = [−1, 1] × [−1, 1]. We consider an initial learning rate260

11

10−3 that decreases with a rate 0.9995 at each epoch. The training set is defined with N = 50000, and261

Pr = Pbc = Pic = 1. The weights in Equation (20) are set to wr = 1 and wic = wbc = 100. The networks262

are trained for 400 epochs with 100 mini-batches.263

Similarly to the one-dimensional case, the loss functions have decreased faster for the GreenONets after264

400 epochs, see Figure 9. We compare in Figure 10 the error in the solutions obtained with DeepONets265

and GreenONets. In this figure, we show the initial condition u0 = cos(xπ/2) cos(yπ/2), with which we266

test our networks, and the pointwise errors at t = 1.5 using DeepONets and GreenONets. We observe that267

the maximum pointwise error remains consistently smaller when using GreenONets. Moreover, we plot in268

Figure 11 the approximated Green’s function G(x, y, t, xi, yi) for (xi, yi) = (0, 0) at t = 0 and t = 0.4. The269

Green’s function initially peaks at the origin and then radially propagates through the domain, as expected.270

Figure 9: Example of Section 5.2: Evolution of the loss function on the training and testing sets.

6 Conclusions271

In this work, we have introduced the Green operator networks, that approximate the operator of the wave272

equation in homogeneous and heterogeneous domains for a family of initial conditions. The GreenONets273

architecture is inspired by the exact representation of solution of the wave equation in terms of the Green’s274

function in unbounded domains. This architecture yields better results, when approximating the wave oper-275

ator for homogeneous and heterogeneous domains in one and two dimensions, when compared to DeepONets.276

The increased performance is attributed to the fact that the GreenONets architecture is better suited to277

this type of problems, but we also recognize that the DeepONets architecture is more general. We have278

in particular showed that the loss functions associated with the GreenONets always converge with fewer279

epochs. The numerical results also highlighted the fact that the pointwise errors are generally smaller with280

GreenONets and that the solutions generalize better when tested on initial conditions with frequencies higher281

than that of the training set. Finally, we have observed that the errors in the GreenONets solutions remained282

localized around the peak amplitudes while the errors with DeepONets had the tendency to spread within283

the domain. Plans for future works will focus on testing the GreenONets for the two- and three-dimensional284

wave equation involving materials with various heterogeneous properties and to extend the methodology to285

other model problems.286

12

Figure 10: Example of Section 5.2: (left) Initial condition; (middle) Pointwise error at t = 1.5 using Deep-
ONets; (right) Pointwise error at t = 1.5 using GreenONets.

Acknowledgements. SP and ML are grateful for the support from the Natural Sciences and Engineering287

Research Council of Canada (NSERC) Discovery Grants [grant numbers RGPIN-2019-7154, PGPIN-2018-288

06592]. This research was also partially supported by an NSERC Collaborative Research and Development289

Grant [grant number RDCPJ 522310-17] with the Institut de Recherche en Électricité du Québec and290

Prompt. ZA and SP are thankful to the Laboratoire de Mécanique et d’Acoustique UMR 7031, in Marseille,291

France, for hosting them. This work received support from the French government under the France 2030292

investment plan, as part of the Initiative d’Excellence d’Aix-Marseille Université - A*MIDEX - AMX-19-IET-293

010. Finally, the authors also thank J.-P. Ampuero, for having shared SEMLAB [2] with the community.294

References295

[1] Z. Aldirany, R. Cottereau, M. Laforest, and S. Prudhomme. Optimal error analysis of the spectral296

element method for the 2D homogeneous wave equation. Computers and Mathematics with Applications,297

119:241–256, 2022.298

[2] J.-P. Ampuero. SEMLAB. MATLAB Central File Exchange, (https://www.mathworks.com/299

matlabcentral/fileexchange/6154-semlab), 2023. (Accessed 1 June 2023).300

13

Figure 11: Example of Section 5.2: The approximated Green’s function G(x, y, t, xi, yi) for (xi, yi) = (0, 0)
at t = 0 and t = 0.4. The red dot denotes the point (xi, yi) = (0, 0).

[3] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in machine301

learning: a survey. Journal of Marchine Learning Research, 18:1–43, 2018.302

[4] A. Bihlo and R. O. Popovych. Physics-informed neural networks for the shallow-water equations on the303

sphere. Journal of Computational Physics, 456:111024, 2022.304

[5] N. Boullé, C. J. Earls, and A. Townsend. Data-driven discovery of Green’s functions with human-305

understandable deep learning. Scientific reports, 12(1):4824, 2022.306

[6] D. G. Duffy. Green’s functions with applications. CRC press, Boca Raton, FL, 2015.307

[7] C. R. Gin, D. E. Shea, S. L. Brunton, and J. N. Kutz. DeepGreen: Deep learning of Green’s functions308

for nonlinear boundary value problems. Scientific reports, 11(1):21614, 2021.309

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-310

gio. Generative adversarial networks. Communications of the ACM, 63(11):139–144, 2020.311

[9] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approxima-312

tors. Neural networks, 2(5):359–366, 1989.313

[10] X. Jin, S. Cai, H. Li, and G. E. Karniadakis. NSFnets (Navier-Stokes flow nets): Physics-informed314

neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics,315

426:109951, 2021.316

[11] E. Kausel. Fundamental Solutions in Elastodynamics - A Compendium. Cambridge University Press,317

2006.318

[12] E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed neural networks for solving319

partial differential equations. arXiv preprint arXiv:1912.00873, 2019.320

[13] D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. In International Conference321

on Learning Representations, 2015.322

14

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural323

networks. Communications of the ACM, 60(6):84–90, 2017.324

[15] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.325

[16] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.326

Fourier neural operator for parametric partial differential equations. arXiv:2010.08895, 2020.327

[17] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.328

Neural operator: Graph kernel network for partial differential equations. arXiv:2003.03485, 2020.329

[18] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via DeepONet330

based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3):218–229,331

2021.332

[19] B. Moseley, A. Markham, and T. Nissen-Meyer. Solving the wave equation with physics-informed deep333

learning. arXiv preprint:2006.11894, 2020.334

[20] C. L. Pettit and D. K. Wilson. A physics-informed neural network for sound propagation in the at-335

mospheric boundary layer. In Proceedings of Meetings on Acoustics 179ASA, volume 42, page 022002.336

Acoustical Society of America, 2020.337

[21] A. Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–195,338

1999.339

[22] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning340

framework for solving forward and inverse problems involving nonlinear partial differential equations.341

Journal of Computational Physics, 378:686–707, 2019.342

[23] C. E. Rasmussen, C. K. Williams, et al. Gaussian processes for machine learning, volume 1. Springer,343

2006.344

[24] G. Seriani and E. Priolo. Spectral element method for acoustic wave simulation in heterogeneous media.345

Finite Elem. Anal. Des., 16:337—-348, 1994.346

[25] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential347

equations. Journal of Computational Physics, 375:1339–1364, 2018.348

[26] C. Wang, S. Li, D. He, and L. Wang. Is L2 physics-informed loss always suitable for training physics-349

informed neural network? arXiv preprint arXiv:2206.02016, 2022.350

[27] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial differential351

equations with physics-informed DeepONets. Science Advances, 7(40):eabi8605, 2021.352

[28] E. Weinan and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving353

variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.354

[29] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial differential355

equations. Journal of Computational Physics, 411:109409, 2020.356

15

