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Abstract
In the scope of our oral reading exercise for 5-8-year-old

children, models need to be able to precisely detect and di-
agnose reading mistakes, which remains a considerable chal-
lenge even for state-of-the-art ASR systems. In this paper,
we compare hybrid and end-to-end acoustic models trained for
phoneme recognition on young learners’ speech. We evaluate
them not only with phoneme error rates but through detailed
phoneme-level misread detection and diagnostic metrics. We
show that a traditional TDNNF-HMM model, despite a high
PER, is the best at detecting reading mistakes (F1-score 72.6%),
but at the cost of low precision (73.8%) and specificity (74.7%),
which is pedagogically critical. A recent Transformer+CTC
model, to which we applied our synthetic reading mistakes aug-
mentation method, obtains the highest precision (81.8%) and
specificity (86.3%), as well as the highest correct diagnosis rate
(70.7%), showing it is the best fit for our application.
Index Terms: child speech, misread detection and diagnosis,
end-to-end, synthetic reading mistakes augmentation

1. Introduction
The speech of children aged 5 to 7 is subject to peculiarities
linked to the growth of their speech production apparatus and
to their poor body control: unstable articulatory mechanisms,
intra- and inter-speaker spectral variability [1], higher funda-
mental and formant frequencies [2], phonological errors [3], etc.
These morphological and phonological differences are the main
reasons for the poor performance of automatic speech recogni-
tion (ASR) systems on children’s voices.

Prior studies on ASR for child speech have indeed demon-
strated that the performance is lower than for adult speech [4,
5, 6]. Due to limited available children data in most lan-
guages, deep neural network (DNN)-based systems only re-
cently started to be exploited, with hybrid DNN-HMM (Hidden
Markov Model) acoustic modelling approaches. For a children
language learner application, [7] presents a DNN-HMM that,
even trained on less data, surpasses Gaussian Mixture Models
(GMM)-HMM systems. A factorised time-delay neural net-
work (TDNNF-HMM) also shows to outperform GMM-HMM
models for child speech recognition in [8]. Valuable insights
on acoustic modelling for child speech recognition with DNN-
HMM are given in [5]. End-to-end acoustic modelling for child
speech recognition is not yet common due to limited available
child speech data. In [9], the authors show improvement with a
CTC-based end-to-end system trained on very large quantities
of mixed adult and child speech data. Usage of sequence-to-
sequence (Seq2Seq) architectures for child speech recognition,
is a new research subject, as shows their absence on a system-
atic review on child ASR published in 2022 [10], and the very

recent communication of studies [11, 12] on this matter.
Reading tutors have a strong pedagogical impact for read-

ing learners, and several projects, applied to different languages,
age groups and reading tasks, have been implemented over the
years [13, 14, 15, 16]. Lalilo provides an online reading as-
sistant1 for 5-8 year-old children, featuring a reading aloud ex-
ercise where children record themselves reading, and get feed-
back on their reading. Speech recognition for children learn-
ing to read is an arduous task: non-proficient readers’ speech
contains many disfluencies and reading mistakes that can be la-
borious to detect automatically [17, 18]. Nonetheless, our aim
is specifically to be able to detect these reading mistakes, as
well as to diagnose their nature: if the child inserts a phoneme,
does the insertion constitute a familiar word? Do the most of-
ten deleted phonemes correspond to particularly hard-to-read
graphemes? If two phonemes were confused, which ones? And
most importantly, is the child making the same mistakes recur-
rently? The ASR system must be very precise on what it tran-
scribes to identify the student’s difficulties, provide reliable and
relevant feedback, and efficiently help them in their learning.

In our previous studies, we were focused on improving our
phoneme recognition system’s ability to transcribe young read-
ers’ speech as precisely as possible. For this we compared sev-
eral phoneme recognition systems based on their error rates. In
this work, we push further the comparison done in [12] between
several hybrid and end-to-end models, by evaluating how well
they perform from a misread detection and diagnosis (MDD)
point of view. We take inspiration from language learners mis-
pronunciation detection and diagnosis studies [19, 20, 21]. We
also apply our synthetic reading mistakes data augmentation
method [22] to the best model, and examine the impact on its
MDD performance. Our analysis shows that the different mod-
els display different strengths and weaknesses and brings valu-
able insights to choose the right system for a given application.

2. Speech Material
We use two sets of French speech: the Common Voice adult cor-
pus, and an in-house children corpus, hereinafter called Lalilo.

2.1. Adult dataset: Common Voice

The Commonvoice corpus2 is created through a participatory
online platform, where everyone can record themself reading
sentences. In French, the training set we used for these ex-
periments contains approximately 150 hours of speech. Each
recording is validated by two annotators, thereby the corpus
contains few misread words.

1https://www.lalilo.com/
2Corpus available at: https://voice.mozilla.org/fr
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2.2. Child dataset: Lalilo

The Lalilo corpus contains recordings of Kindergarten-to-2nd-
Grade children, aged 5-8, reading aloud isolated words, sen-
tences and short stories. Young readers’ speech is very difficult
and costly to annotate due to the presence of reading mistakes.
Our manual annotation process has two levels: 1) labeling the
words as correct/incorrect 2) transcribing at the phoneme level
if the word is incorrect. The correct words are automatically
phonetized with a pronunciation dictionary. Annotations are
done by two human judges, and recordings have been discarded
in case of disagreement. The level 2 is the most difficult to at-
tain, thus we have very few data containing reading mistakes
annotated at this level. We prioritized including this data in the
test set to evaluate our systems in real-life conditions.The train-
ing and validation sets contain respectively 13 and 0.41 hours
of data that does not contain reading mistakes. The test set con-
tains 0.48 hours of utterances, only sentences to ease the analy-
sis, that may or may not contain reading mistakes.

3. Systems description
In this work we aim at comparing several systems: one hybrid
and three end-to-end. Our systems are trained for phoneme
recognition rather than word recognition through characters,
which is mostly seen in end-to-end systems. For a reading as-
sistant application, we prefer phonemes over words, the latter
being less precise and making it difficult to handle phoneme-
level reading mistakes that constitute non-existing words.

All models are trained with the same procedure: we first
train a source model on the Common Voice adult speech dataset,
then adapt it to child speech characteristics through transfer
learning (TL). The transfer is done by retraining all layers with
the Lalilo child speech dataset, which is advised in [5] for a
dataset of 10+ hours of speech from very young children (5-8).
All structures and hyperparameters are fully detailed in [12].
Models are trained on a single GTX 2080 Ti GPU.

3.1. TDNNF-HMM: the baseline

Hybrid approaches for automatic speech recognition consists in
linking an HMM to a DNN. We use as a baseline a TDNNF-
HMM [23] that was shown to be more efficient than a TDNN-
HMM on a limited quantity of child speech data [8]. Training
the source model on the Common Voice dataset, then the TL
model on the Lalilo dataset, takes in total 48 hours. A single
training of this system consumes approximately 5.2 kg CO2eq3,
which equals to the consumption of a 1-person car over 20 km.

3.2. RNN-CTC

The CTC paradigm, introduced by [24], discards the obliga-
tion of having an HMM by learning automatically alignments
between the input and output sequences. Our first end-to-end
model is named RNN-CTC and is composed of a simple en-
coder with Bidirectional Gated Recurrent Unit layers (BiGRU)
and a CTC function. This model takes in total (source + TL) 28
hours to train, which consumes approximately 3 kg CO2eq per
training3.

3.3. LAS+CTC

Our second end-to-end model is a Seq2Seq model that fol-
lows the Listen, Attend and Spell (LAS) architecture [25]. It

3Calculator: https://mlco2.github.io/impact

contains an encoder and a decoder that are based on Bidirec-
tional Long-Short Term Memory (BiLSTM) layers and linked
by an attention mecanism. Our LAS+CTC system combines
a Cross-Entropy (CE) with a CTC loss function and uses a
joint CTC/attention decoding, as proposed in [26]. Training
the LAS+CTC takes 54 hours, consuming approximately 5.8
kg CO2eq3.

3.4. Transformer+CTC

Presented by [27] and adapted to speech recognition by [28],
the Transformer model follows a Seq2Seq encoder-decoder ar-
chitecture, but relies solely on attention mechanisms, instead of
recurrent neural networks in classical Seq2Seq systems. It is
composed of self-attention-based encoder and decoder, which
are linked by an attention module. In the same way as the
LAS+CTC, it is trained with a multi-objective CE+CTC learn-
ing method and uses a joint CTC/attention decoding (proposed
for Transformer architectures in [29]). Discarding the need for
recurrent neural networks enables to compute dependencies be-
tween each pair of positions at once, instead of one by one. It
allows for faster training in comparison with LAS systems. This
model thus takes less time to train: 33 hours in total, which con-
sumes approximately 3.6 kg CO2eq3.

3.5. Synthetic reading mistake data augmentation

We observed in [12] that the TDNNF-HMM and Trans-
former+CTC models had difficulties accurately transcribing
words that contain reading mistakes. It can be explained by
the acoustic and linguistic characteristics being modified when
a child misreads a word (slow speech rate, modified pronuncia-
tion, hesitations, etc). Another explanation is linked to the train-
ing set that contains only correctly read words: the model does
not learn uncommon phoneme sequences that can be generated
by reading mistakes. In the case of the Transformer+CTC, the
decoder module in particular acts like a language model that
favours known sequence of phonemes and thus tend to cover
mistakes. We do not use a language model with the TDNNF-
HMM to avoid this undesirable effect.

To counter it, we proposed in [22] a data augmentation
method that consists in creating synthetic reading mistakes to
train the model on more diverse content, including non-existing
words. The method reduces the Phoneme Error Rate (PER)
both on the whole test set and on a reduced set containing only
words with reading mistakes, showing its efficiency on mitigat-
ing the implicit language model effect. In this work, we apply
this technique to the model named Transformer+CTC+aug. As
expected, applying it to the TDNNF-HMM did not bring signif-
icant improvement, and results will not be displayed here.

4. Metrics
Our models’ objective is to detect phoneme-level reading mis-
takes that a child makes: we thus stay at the phoneme-level to
evaluate their performance. Three types of phoneme sequences
will be used:
• Prompted sequence: what the child was supposed to read;
• Uttered sequence: what the child actually read;
• Predicted sequence: what the ASR model transcribed.
The prompted sequence is phonetized automatically from words
with a word-to-phoneme dictionary. It includes the liaisons be-
tween words that are featured in the French language. The ut-
tered sequences are manually annotated at the phoneme-level.
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4.1. Phoneme error rate

The traditional metric to assess an ASR model’s performance
is the WER. Here we compute PER values, by aligning uttered
and predicted sequences and counting correct predictions, in-
sertions, deletions and substitutions.

4.2. Misread detection rates

Uttered phonemes

Correctly read Misread

True 
Acceptance

“TA”

False 
Rejection

“FR”

False 
Acceptance

“FA”

True 
Rejection

“TR”

Correct 
Diagnosis

“CD”

Diagnosis 
Error
“DE”

Figure 1: Representation of MDD classification: in green (re-
spectively, red), numbers to maximize (resp. minimize)

To evaluate the capacity of a model to detect misread
phonemes, we adapt word-level mispronunciation detection and
diagnosis from second language automatic assessments [19, 20,
21] to phonemes. We compare the three phoneme sequences
to obtain the number of true acceptances (TA), false rejections
(FR), false acceptances (FA) and true rejections (TR) as shown
in Fig. 1. The computation is done in several steps. An example
is provided in Fig. 2 for better understanding.

prompted: E  L   -   a   y  N  -   a  SH  -
uttered: -   L   -   -   y  M R  y  SH  i
predicted: -   L   i   a   y   -  R  y  SH  -
prompted/uttered correctness: E  C  C  E  C  E  E  E  C   E
prompted/predicted correctness: E  C  E  C  C  E  E  E  C   C

MDD classes:           TR TA FR  FA  TA TR TR TR  TA   FA

              CD                          DE CD CD

Figure 2: Example of prompted, uttered and predicted phoneme
sequences, correctness vectors and MDD classes for each
phoneme, for the French sentence ”elle a une hache”

1. Alignment of the uttered and predicted sequences using the
Levenshtein distance [30], adding of a blank phoneme ”-” to
model insertions and deletions;

2. Computation of a correctness vector between prompted and
uttered sequences (prompted/uttered correctness in Fig. 2),
that will describe whether each uttered phoneme is correctly
read or not. We go through every operation of the alignment
between the two sequences:

• If the operation is ”=”, we label it as correct ”C”;
• If the operation is a deletion or substitution, we label it as

erroneous ”E”;
• If the operation is an insertion, and the uttered phoneme

is the blank phoneme, we label it as ”C” (see red box in
Fig. 2). It the uttered phoneme is not the blank phoneme,
then it is labeled as ”E” (blue box).

Because prompted-uttered and prompted-predicted align-
ments sometimes do not match, we perform an additional
automatic correction step that handles exceptional cases.

3. Computation of the correctness vector between prompted and
predicted sequences, in the same way as the previous step;

4. Computation of the TA, FR, FA, TR values by comparing the
two correctness vectors.

From these values, we compute i) the precision, that rep-
resents the proportion of phonemes detected as misreads that
really were misread by the child ii) the recall, that corresponds
to the proportion of misread phonemes that are detected as such
iii) the specificity, that measures the proportion of phonemes
detected as correct that really were correctly read by the child.

4.3. Diagnosis rates

Among the true rejections, we also want to differentiate the cor-
rect diagnosis (CD) from the diagnosis errors (DE), as shown
in Fig.1. These values will measure our models’ ability to di-
agnose the correct mistake. Starting again after step 3, we now
compute the CD and DE numbers by taking only the true re-
jections and checking whether the ASR predicted the correct
phoneme:
• If the child deletes a phoneme, the correct diagnosis corre-

sponds to the ASR deleting the phoneme as well;
• If the child substitutes (respectively, inserts) a phoneme, the

correct diagnosis corresponds to the ASR substituting (resp.
inserting) the same phoneme as the child at the same location
in the sequence.

From these numbers, we compute the CD and DE rates by di-
viding by the number of true rejections.

5. Evaluation
When computing MDD metrics, we encountered difficulties
with utterances for which the predicted sequence was very dif-
ferent in length from the uttered sequence, with a lot of dele-
tions and insertions. Our alignment algorithm was not capable
of aligning the sequences properly and we were confronted to
correctness vectors with different lengths, thus not comparable.
We chose to manually remove any utterance for which the pre-
diction of at least one model could not be aligned properly, dis-
carding 69 utterances out of 353. We conducted a qualitative
analysis on the corresponding recordings, and observed that the
vast majority contain classroom noise or saturation or the child
is whispering or speaking very loudly.

We display in Table 1 both the PER computed on the whole
test dataset (353 utterances, results published in [6, 31]) and
on the reduced dataset (284 utterances). The value between
parentheses corresponds to the number of utterances for which
the model’s prediction could not be aligned and consequently
were added to the list of utterances to discard for all mod-
els. We can see that the PER values on the reduced dataset
are lower due to the discarding of hard to transcribe utterances.
However, the ranking of models remains the same. The Trans-
former+CTC+aug model obtains the lowest PER value, with a
10.2% (9.5% on the reduced set) absolute improvement over the
baseline hybrid TDNNF-HMM. We observe that the lower the
PER is, the lower is the number of utterances for which the pre-
diction was not good enough to be aligned. It suggests that we
need to reduce further our model’s PER to be able to compute
MDD metrics on all utterances.

Table 2 displays the misread detection rates: precision
(Prec), recall (Rec), specificity (Spec) and F1-score. The last
column shows the number (#) and percentage (%) of correct di-
agnosis among true rejections. Results show that the TDNNF-
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Table 1: PER (%) obtained with different systems, tested on the
test dataset and the reduced test dataset

Model Whole Reduced (#utt)
TDNNF-HMM 28.9 26.3 (23)
RNN-CTC 31.0 28.5 (27)
LAS+CTC 23.2 20.5 (24)
Transf+CTC 19.6 17.9 (15)
Transf+CTC+aug 18.7 16.8 (16)

HMM, despite its high PER, obtains the best F1-score. Among
the end-to-end models, the LAS+CTC obtains the best F1-
score, the RNN-CTC the best recall, and Transformer+CTC
the best precision and specificity. By comparing the Trans-
former+CTC and Transformer+CTC+aug results, we can see
that the synthetic reading mistakes data augmentation is highly
effective for misread detection and diagnosis, since it improves
each metric by 1.2 to 3.5%.

Applying the synthetic mistakes augmentation to the
TDNNF-HMM did not bring any improvement on the PER nor
on the MDD metrics, and is thus not relayed here. We explain
this phenomenon by the fact that we do not use a language
model for the TDNNF-HMM, while the Transformer+CTC
model is subjected to an implicit language model effect, that
tends to covering misread words by favouring existing words
seen during training. The augmentation, that consists in show-
ing reading mistakes during training, alleviates this undesirable
effect, but is ineffective on the TDNNF-HMM.

Table 2: Misread detection and diagnosis metrics (% or #) ob-
tained with different systems, tested on the reduced dataset.

Model Prec Rec Spec F1 CD (% / #)
TDNNF-HMM 73.8 71.4 74.7 72.6 68.4 / 357
RNN-CTC 70.5 62.8 73.7 66.4 58.7 / 273
LAS+CTC 78.2 61.5 82.9 68.9 58.9 / 265
Transf+CTC 79.8 58.8 85.1 67.7 67.2 / 279
Transf+CTC+aug 81.8 61.5 86.3 70.2 70.7 / 307

6. Discussion
We had shown in a previous study [6] that although the PER
of the TDNNF-HMM is higher than the PER of the Trans-
former+CTC model, it was better at correctly transcribing
words containing reading mistakes. This is due to the implicit
language model effect conveyed by the encoder-decoder struc-
ture of the Transformer, that tends to cover reading mistakes.
We see in this work that the TDNNF-HMM obtains a signif-
icantly better recall than the Transformer+CTC, which means
that it is indeed better at detecting reading mistakes as such, and
a better correct diagnosis rate, which confirms that it transcribes
with better accuracy the erroneous phonemes.

Applying the synthetic mistake augmentation greatly im-
proves the Transformer+CTC model’s ability to correctly de-
tect and diagnose the reading mistakes. It improves its F1-
score by 2.5% absolute and its CD rate by 3.5%. These results
corroborate our previous work [22, 6], where we had shown
that the augmentation improves the Transformer+CTC model’s
PER on word containing reading mistakes. In terms of CD rate,
the Transformer+CTC+aug outperforms the TDNNF-HMM by
2.3% absolute. However, since the latter has a better recall,
it diagnoses correctly more phoneme-level mistakes (357 vs

307). This analysis brings depth to previous findings: the Trans-
former+CTC+aug obtains a better PER than the TDNNF-HMM
on words containing reading mistakes, but still makes more di-
agnosis errors.

In the MDD point of view, we want to maximize the F1-
score, that is based on the precision and recall. Our best model
from this aspect is the hybrid TDNNF-HMM, which also ob-
tains the best recall by far. However, this high detection of
reading mistakes is made at the cost of having one of the lowest
specificity and precision, which implies that a high proportion
of correctly read phonemes are wrongly detected as misreads.
In the pedagogical point of view, it is certainly important to de-
tect as many mistakes as possible, but it is even more important
to avoid giving children negative feedback when they have read
correctly. It generates a lot of frustration, especially in a human-
machine interaction where the child is autonomous, and can
severely disrupt a child’s learning. Our two main objectives are
thus, in this order, to 1) minimize false rejections and 2) maxi-
mize true rejections. It implies that we want firstly to maximize
precision, then specificity, and finally recall. The best model
from this aspect is undoubtedly the Transformer+CTC+aug. It
indeed displays the best precision and specificity by far, while
ranking second in F1-score and third in recall.

Additionally, its good CD rate would enable us to bring
valuable insights to teachers on the nature of reading mistakes
their students need. For example, knowing that a given student
has confused several times the sounds /b/, /p/, /d/, /k/ –which is
common in French since the letters b, p, d, and q are mirrored
letters– can encourage the teacher to offer remediation on this
particular skill to the student. This knowledge can also be used
in our platform’s adaptive learning algorithm, that chooses the
best reading exercise for each child, to prioritize exercises on
that subject. We will therefore use the Transformer+CTC+aug
model in our application to maximize its efficiency in helping
children learning to read.

Finally, training a Transformer+CTC model consumes 1.6
kg CO2eq less than training a TDNNF-HMM. It might seem
negligible, but is not since we usually train dozens of models to
find the right hyper-parameters. It is thus an important parame-
ter to take into account when doing ASR research.

7. Conclusions
Automatic speech recognition systems are usually evaluated
through error rate measures, that assess the accuracy of the gen-
erated transcription. In the scope of our oral reading exercise
for 5-8 year-old children, we aim at detecting and diagnosing
the reading mistakes they make, to help them in their learning.
Choosing the right model architecture for our application thus
necessitates to evaluate models from a misread detection and
diagnosis (MDD) point of view.

In this work, we compare several hybrid and end-to-end
phoneme recognition system with traditional PER and MDD
metrics and show that the different models display different
strengths and weaknesses. The hybrid TDNNF-HMM obtains
the worse PER but the best F1-score and recall, at the cost of a
high proportion of false rejections, which is pedagogically criti-
cal. An end-to-end Transformer+CTC, to which we applied our
innovative synthetic reading mistakes data augmentation tech-
nique, obtains the best precision and specificity, which are the
metrics to maximize in the pedagogical point of view. It also
displays the highest correct diagnosis rate, which will be useful
to provide insightful remediation reports to teachers.
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