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Abstract

In this paper, we propose to predict analytically the temperature of an evaporating spherical droplet. To do
so, we first review, from data in the literature, the effect of temperature on the physical parameters involved in
cooling-induced evaporation, namely the saturating vapor pressure, the diffusion coefficient of vapor in air, the
liquid density, the enthalpy of vaporization and the thermal conductivity of air. These data support a series of
approximations that allows us to derive an implicit equation for the liquid temperature. We propose a quadratic
approximation of the variation of the saturating vapor concentration with temperature to obtain an explicit pre-
diction of the drop temperature. As a result, an analytical prediction of the droplet lifetime including the cooling
effect is proposed.

1 Introduction

Sublimation of solid spheres has been investigated exper-
imentally by Morse in 1910 revealing that the mass loss
is not proportional to the surface area but to the radius
[1]. Langmuir rationalized these findings by considering
an adiabatic process where mass transfer is controlled by
the diffusion of the vapor in the air [2].

The study of spherical droplet evaporation holds sig-
nificant importance in diverse scientific and technical do-
mains that involve aerosols. Aerosol are produced natu-
rally under different phenomena such as sea spray, fog,
clouds, and rain drops. Suspended droplets are also gen-
erated by animals and humans during breathing and
speaking, which has recently gained attention for air-
borne contaminants [3, 4, 5]. Aerosols can also be pro-
duced artificially with spraying techniques for cooling,
painting applications, or fuel dispersion in motor en-
gines [6]. Therefore, understanding the mass transfer
of airborne volatile drops is crucial. This phenomenon
is complex due to the coupled heat and mass transfer
associated with the phase change, while the transport
could occur in a diffusive or a convective manner. As a
result, the theoretical description of the system is more
challenging than in the case of the Langmuir adiabatic
model.

Therefore, the physics community proposes models to
rationalize drop evaporation and predicting their life-
time. These attempts often involve numerical resolutions
of coupled equations that describe transport phenomena,
including a broad range of physical effects such as con-
vective or radiative transfer that may occur during the
process [7, 8, 9, 10, 11, 12, 13, 6].

At the same time, some studies derived analytical pre-
dictions of evaporation kinetics after making several hy-
pothesis [4, 14, 15]. These analytical predictions have
the ability to suggest directly how the mechanisms are
at play in the quantities of interest. In particular, the
cooling effect due to the enthalpy of vaporization is
known to have a significant effect on the drop lifetime
[16, 17, 18, 19, 20, 9, 8, 21, 22]. The variation of tem-
perature in the system leads to the variation of several
physical quantities relevant in the process, such as dif-
fusion coefficient, saturating vapor pressure, enthalpy of
vaporization, density and thermal conductivity.

In this article, we focus our attention on water spher-
ical droplet evaporating at ambient temperature. We
collect data available in the literature on this system to
report the temperature variation of the relevant physical
quantities to legitimate upcoming approximations. Next,
we consider the evaporation of the drop in the diffusion-
limited regime, and we propose to numerically solve the
coupling between evaporation and cooling to obtain the
interfacial temperature. We also use a quadratic approx-
imation to describe the variation of the saturating vapor
pressure, which enables to compute analytically the drop
temperature and thus its evaporation rate and lifetime.
We compare our description with two other approxima-
tions used in the literature, and in particular a linear
description of the saturating vapor pressure. We show
that this linear approximation leads to significant dif-
ferences with the numerical solution, while a quadratic
approximation provides an excellent analytical descrip-
tion.
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2 Temperature variation of some
physical constants

In this section, we present data available in the literature
on the temperature variation of the relevant physical con-
stants. Whenever possible, we present experimental data
and reference data extracted from a Handbook of chem-
istry and physics [23] and a meteorological table [24]. We
consider the saturating vapor pressure, the diffusion co-
efficient of vapor in air, the liquid density, the enthalpy
of vaporization and the thermal conductivity of air. We
limit our study to an ambient range of temperature be-
tween 0 and 30 ◦C.

2.1 Temperature variation of water
physical constants

2.1.1 Saturating vapor pressure Psat and concen-
tration csat

The measurements of saturating vapor pressure are gen-
erally carried out in a closed chamber, containing only
the compound to be analyzed, where the temperature
is set, and the equilibrium pressure is measured. The
evolution of saturating vapor pressure of water Psat as
a function of the temperature T is presented in fig-
ure 1(a) where reference data extracted from a Handbook
of chemistry and physics [23] are symbolized by the plus
symbols. It shows a significant increase of the saturating
vapor pressure with the temperature.

The variation of the saturating vapor pressure Psat

with temperature satisfies the Clausius-Clapeyron [15, 8]
equation

dPsat

dT
=

∆HvapMwPsat

RT 2
, (1)

where ∆Hvap is the enthalpy of vaporization of the con-
sidered material, here water, Mw its molar mass and
R ≃ 8.314 J·mol−1·K−1. Assuming that the enthalpy
of vaporization does not depend on temperature, the
Clausius-Clapeyron equation becomes

Psat

p◦
= exp

(−∆HvapMw

R

(
1

T
− 1

T ◦

))
, (2)

where p◦ and T ◦ are the pressure and temperature of a
reference boiling point.

A more robust equation, known as Antoine equation,
can be obtained with an additional fitting parameter [31]

Psat(T ) = p◦ 10A−B/(C+T ), (3)

where p◦ = 105 Pa and A, B, C are constants. For
water at T ∈ [0, 30] ◦C, A,B,C are obtained by fitting
the data extracted from [23], with A = 5.341± 0.003 K,
B = 1807.5± 1.6 K, and C = −33.9± 0.1 K. Figure 1(a)
shows a nice agreement between the data and the model.
The typical error between the data and the fit with these
parameters is about 0.1 Pa. Alternative expressions are

also available in the literature, such as Buck’s relation
(See for instance [9]), without any noticeable improve-
ments.

The vapor saturating concentration csat expressed in
kg.m−3, can be obtained from the ideal gas law

csat(T ) =
Psat(T )Mw

RT
, (4)

where Mw = 18.02 · 10−3 kg/mol.

2.1.2 Diffusion coefficient D of water vapor in
air

To calculate theoretically the diffusion coefficient of a bi-
nary system, a molecular theory of diffusion is developed
based on collisions of hard sphere in a gas. To solve
the obtained Boltzmann equation the Chapman-Enskog
method is used, which gives at first order for a molecule
A diffusing in B [32]

D(A,B) =
8.258 · 10−3

√
2

T 3/2
√

1
MA

+ 1
MB

Patm · ΩA,B

, (5)

where MA and MA are the molar masses, T is the tem-
perature, Patm is the atmospheric pressure and ΩA,B is
the diffusion collision integral for hard spheres. However,
this equation fails to capture the variation of D(A,B)
with the temperature. Indeed, the 3/2 power-law de-
pendence is obtained with an ideal hard spheres model,
but experimentally the measured exponent lies between
1.5 and 2 [33]. To obtain a more accurate description,
additional details on the inter-molecular interactions are
required, which depends on the temperature range con-
sidered and greatly increases the complexity of the cal-
culation. That is why most of the time, estimation of
diffusion coefficient relies on semi-empirical correlation.
For example, the diffusion coefficient of non-polar gases
may be estimated by the Fuller, Schettler, and Giddings’
method [33, 34] that gives

D(A,B) =
T 1.75

√
1

MA
+ 1

MB

Patm

(
V

1/3
A + V

1/3
B

)2 · 10−6. (6)

The diffusion coefficient D is expressed in m2/s, the mo-
lar mass of compound i is in g/mol and Vi is the diffusion
volume of the molecule i where Vi =

∑
j njVj with j a

given atom composing the molecule. The atomic param-
eters were determined by regression analysis of experi-
mental data and are available in [34]. For water diffus-
ing in air, the diffusion coefficient is written D and we
have Vair = 19.710−6 m3/mol, Vw = 13.110−6 m3/mol,
Mw = 18.02 g/mol, and Mair = 28.96 g/mol [34, 35].

To test the validity of the Fuller’s method, we gathered
measurements from different studies [25, 26, 27, 28, 29]
together with reference values [24, 23] in figure 1(b) and
compare them to equation (6).
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Figure 1: Temperature effect on some physical constants of water. (a) Saturating vapor pressure Psat. Plus symbols
are reference data extracted from a Handbook of chemistry and physics [23], solid blue curve is equation (3). (b)
Diffusion coefficient D of water vapor in air. Experimental data are extracted from Brown and Escombe [25]
(⋆), Gilliland [26] (⋄), Brookfield et al. [27] (□), Kimpton and Wall [28] (◦), Lee and Wilke [29] (△). Reference
data are extracted from List [24] (▽) and Lide [23] (+). The deep blue curve is Fuller’s equation (Eq. (6)) (c)
Enthalpy of vaporization of water ∆Hvap. Experimental data are extracted from Osborne [30] (8) and reference
data are extracted from List [24] (▽) and Lide [23] (+), the deep blue curve is equation (7). (d) Water density ρ.
The reference data are extracted from Lide [23] (+). The deep blue curve is a quadratic fit of the data. Fitting
parameters are given in equation (8).

There are many different ways to measure diffusion
coefficient which have various accuracy. However, to
measure diffusion coefficient in air at room tempera-
ture, the most used method is the evaporation tube
method [26, 27, 28, 29]. Water partially fill a capillary
and evaporates into the stagnant gas filling the rest of
the tube. Evaporation rate is measured from the vari-
ation of height of the liquid or the variation of weight
of the system. Under the assumptions of quasi-steady
evaporation, and, vapor and air being ideal gas, the dif-
fusion coefficient is obtained from the evaporation rate at
the temperature of the experiment. To get precise mea-
surements, the liquid must be carefully kept at constant
temperature at each time to avoid evaporative cooling of
the liquid. Indeed, small errors on the estimation of the
temperature of the interface and thus on the values of
other physical-chemistry parameters (such as Psat) can
lead to significant errors on the estimated diffusion coef-
ficient. Finally, surface contamination or convection ef-
fects can also lead to inaccurately estimate the diffusion

coefficient. This explains the quite large dispersion of
the experimental data in Figure 1. According to [32], at
best, the reliability of the measurements by the evapora-
tive tube method is several percent (≈ 10 %). Equation
(6) thus provides a correct estimation of the diffusion co-
efficient value and its temperature variation, even if it
underestimates most of the experimental results plotted
in figure 1(b) of about 5 %.

Other empirical models [9, 20, 36, 15] exist to calculate
the diffusion coefficient of a A in B at a temperature T
but to use them you need to know the value of D(A,B)
at a given reference temperature and their use does not
significantly improve the estimation of the diffusion coef-
ficient. Moreover, the Fuller’s method has the advantage
of being easily applicable to the study of other chemi-
cal compounds for which experimental measurements of
the diffusion coefficient are limited, unreliable or non-
existent.
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2.1.3 Enthalpy of vaporization

Experimental data obtained from calorimetry measure-
ments [30] as well as reference data for enthalpy of vapor-
ization of water ∆Hvap are plotted in figure 1(c) [24, 23].
To predict the evolution of the enthalpy of vaporization
of water with temperature, we choose to use the empiri-
cal equation given by Fleagle [37] and Andreas [9]:

∆Hvap = −2.274 · 103 T + 3.121 · 106, (7)

where ∆Hvap is expressed in J/kg for T in Kelvin [37, 9].
Equation (7) is plotted in solid blue curve in figure 1(c).
There is a good agreement between both experimental
and reference data and equation (9), the difference be-
tween equation (7) and the data of the literature being
less than 1 %.

2.1.4 Liquid density

In figure 1(d), we plot reference values for water density
extracted from [23] as function of temperature. We fit
the experimental data with a quadratic equation for T ∈
[10, 30]◦C and we extend the fit to the entire temperature
range which gives

ρ = −5.3 · 10−3 T 2 + 2.9T + 6.0 · 102, (8)

where ρ is in kg.m−3 and T in Kelvin. Equation (8) gives
a good estimation of water density with a an error of the
order of 5 · 10−2 % for T ∈ [0; 10] ◦C and 5 · 10−3 % for
T ∈ [10; 30] ◦C.

2.2 Temperature variation of air thermal
conductivity of air

In figure 2, we plot experimental data of the thermal
conductivity of dry air λair measured with the hot wire
method [38, 39, 40]. This method consists in recording
the temperature variation of a heated wire placed in the
fluid of interest to determine its thermal conductivity.
We also plot in figure 2 the reference data for λair ex-
tracted from [24, 23].

The equation to describe the evolution of the thermal
conductivity of dry air with temperature, given by An-
dreas [9]

λair = −3.47 · 10−8 T 2 + 9.88 · 10−5 T − 2.75 · 10−4, (9)

is also represented in figure 2. This equation describes,
with a good accuracy, the data from the literature with
an error of less than 1 % between equation (9) and ref-
erence data [24, 23] and an error of 1 to 2 % with ex-
perimental data [38, 39, 40]. There are other models in
the literature to predict the evolution of the thermal con-
ductivity of moist air as a function of temperature and
relative humidity [36, 20, 41] but they are more tedious
to compute and do not lead to a significant improvement
of the description of the data. At 20 ◦C, the relative
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Figure 2: Temperature effect on thermal conductivity
of air. Experimental data obtained by hot wire measure-
ments extracted from Taylor and Johnston [38] (⋆), Kan-
nuluik and Carman [39] (⋄), Rastorguev and Geller [40]
(◦) and reference data extracted from List [24] (▽) and
Lide [23] (+). Deep blue curve is equation (9).

difference between the thermal conductivity of dry and
saturated air is about 2 % so we consider that λair is inde-
pendent of RH and is equal to the thermal conductivity
of dry air. Moreover, the expression given in [36, 20, 41]
for the thermal conductivity of dry and moist air slightly
underestimate (error of 1 %) the reference data [24, 23].

2.3 Summary
The evolution of the physical parameters of the system
with temperature are evaluated with equations (3) and
(4) for csat(T ), (6) for D, (7) for ∆Hvap, (8) for ρ and
(9) for λair. These equations are in good agreement with
data from the literature. From this we can evaluate the
variation of all the important parameters when the tem-
perature increases from 0 to 30 ◦C. This analysis shows
that, when T varies from 0 to 30 ◦C, csat increases by
250 %, D increases by 20 %, ∆Hvap increases by 3 %, ρ
decreases by 0.5 %, and λair increases by 8 %.

3 Model for thermal effect on drop
lifetime

3.1 Equation of mass transfer
We consider the mass transfer of the water vapor in the
atmosphere surrounding the spherical drop of radius R(t)
and we assume that this process is limited by diffusion,
which is valid in a quiescent atmosphere. This is true
for droplet radius significantly larger than the mean-free
path of the vapor molecules, i.e. R larger than few mi-
crometers [15]. Over a timescale R2

0/D, where R0 is
the initial radius, the transfer can be considered to be
in a stationary regime. In practice, we can check that
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this timescale is short compared to the total evaporat-
ing time, such that the contribution of the starting non-
stationary regime is negligible.

Thus, the concentration field c is the solution of the
Laplace equation △c = 0, which writes in spherical co-
ordinates

1

r2
d

dr

(
r2

dc

dr

)
= 0. (10)

This equation is supplemented by two boundary condi-
tions on the concentration, respectively at the liquid-
vapor interface and far from the interface,

c(r = R) = csat(Ti), (11)
c(r → ∞) = c∞, (12)

where Ti is the temperature of the interface. The rel-
ative humidity is defined as RH = p∞/Psat(T∞) ≈
c∞/csat(T∞) in the ideal gas approximation, where T∞
is the air temperature far from the droplet.

By integrating (10), the local evaporative flux given
by the Fick’s law, j = −D dc

dr

∣∣
r=R

, writes

j = D(Ti)
∆c⋆

R
, (13)

with ∆c⋆ = csat(Ti)− c∞.
The integration of the local flux over the evaporating

surface gives Qev =
∫
j dS = 4πRD(Ti)∆c⋆, which can

be rewritten

Qev = 4πRD(Ti)csat(T∞)

(
csat(Ti)

csat(T∞)
−RH

)
. (14)

To compute the evaporation rate Qev the temperature
of the liquid must be determined. To do so, we write in
the next paragraph the heat transfer between the atmo-
sphere and the drop.

3.2 Equation of heat transfer
As for the mass transfer, we consider a diffusion limited
process in a stationary regime, for which, as for the mass
transfer, the air temperature field is a solution of the
Laplace equation △T = 0 with the boundary conditions
T (r = R) = Ti and T (r → ∞) = T∞. The steady-state
assumption also implies that the temperature in the drop
has reached its equilibrium value Ti and is uniform in
the liquid. This is validated if the timescale over which
the heat diffuses through the liquid R2

0/κℓ with κℓ the
thermal conductivity of the liquid, is short compared to
the evaporative time [8]. In practice, this is valid for
water droplet evaporating under ambient conditions [19,
9, 8, 3, 14].

The integration of the Laplace equation leads to a total
heat flux

Qh = −4πRλair(T )∆T ⋆, (15)

where ∆T ⋆ = T∞ − Ti and T is the average air temper-
ature T = (T∞ − Ti)/2 [19]. We assume that the air

temperature can be approximated by the effective tem-
perature T as done in various studies [15, 6].

The heat and mass fluxes are coupled through the en-
thalpy of vaporization ∆Hvap(Ti), ∆Hvap Qev = −Qh,
which gives

T∞−Ti =
∆Hvap(Ti)D (Ti) csat(T∞)

λair

(
T
) (

csat(Ti)

csat(T∞)
−RH

)
.

(16)
By finding the root of this equation, we can obtain the

interface temperature Ti. We remark that this tempera-
ture is independent of the droplet radius.

4 Discussion
We aim to provide an analytical expression of the in-
terfacial temperature Ti. First, we present the results
obtained with a numerical approach without further ap-
proximation. Then, we recall approximations found in
the literature, and we present a solution based on the
quadratic approximation of csat(T ). All these solutions
are compared to the numerical prediction, and we also
provide expressions for the drop lifetime.

4.1 Numerical approach

In this section, we consider the resolution of equation
(16) to obtain the temperature of the interface Ti for
given atmospheric conditions, namely the temperature
T∞ and the relative humidity RH. From the interfacial
temperature, the concentration ratio csat(Ti)/csat(T∞)
can be computed, and thus the drop evaporation and
lifetime. The typical evolution of the concentration ra-
tio with the temperature is plotted in figure 3(a) for
T∞ = 20 ◦C, where the reference data extracted from [23]
are represented by the + symbols and Antoine equa-
tion (3) is plotted with a deep blue line.

A numerical approach can be employed to determine
the root Ti of equation (16) by using Newton’s method
from scipy [42], together with equations (3)-(9) to get the
temperature evolution of the physical parameters. The
temperature of the liquid obtained by the full numeri-
cal resolution is plotted in solid gray line in the inset of
figure 3(b).

Nevertheless, the complexity of equation (16) prevents
analytical solutions. Thus, further approximations must
be made to solve equation (16). Due to the weak varia-
tions of ∆Hvap,D and λair with temperature, we assume
that these parameters are independent of the temper-
ature, and we choose to evaluate them at the ambient
temperature T∞. In this framework, equation (16) be-
comes

T∞ − Ti = χ

(
csat(Ti)

csat(T∞)
−RH

)
. (17)

where χ = ∆HvapDcsat(T∞)/λair.
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Figure 3: (a) Ratio csat(T )/csat(T∞) as a function of T∞−T for T∞ = 20 ◦C. Black crosses are data from literature
presented in Fig. 1 combined with equation (4). The deep blue curve is obtained from Antoine equation (Eq. (3)).
The green curve is computed from the linear approximation given by eq. (24). The light blue curve is the quadrature
defined by equation (31) with the fitting coefficient α1 = −5.5 · 10−2K−1 and α2 = 9.8 · 10−4K−2 at T∞ = 20 ◦C.
(b–d) Results obtained for spherical droplets evaporating at T∞ = 20 ◦C as a function of the relative humidity. (b)
Interfacial temperature Ti obtained with the numerical resolution of equation (17)(dashed-dotted black line), the
linear approximation (Eq. (26)) (green), and the quadratic approximation (Eq. (33)) (blue). The inset shows the
interfacial temperature obtained by the numerical resolution of equation (16) (gray) and of equation (17) (black)
as a function of the relative humidity RH. Dimensionless (c) evaporative flux Qev/Q0 and (d) lifetime τ/τ0 as a
function of 1−RH. The numerical resolution is represented in black. Results obtained with the linear approximation
are computed in green lines and results obtained with the quadratic approximation are represented in light blue
lines. Solid lines are equations (c) (27) (green) and (34) (blue) for the evaporative flux and (d) (28) (green) and
(35) (blue) for the drop lifetime. In dashed lines we check the internal coherence of the two approximations by
plotting equations (c) (29) and (d) (30) in which Ti is given by either the linear approximation (eq. (26)) (dashed
green lines) or the quadratic approximation (eq. (33) (dashed blue lines).

To test the validity of this hypothesis, we solve numer-
ically (with Newton’s method from scipy) equation (17)
where csat(T ) is given by Antoine’s equation (Eq. (3)) un-
der the perfect gas approximation (Eq. (4)). The temper-
ature of the liquid obtained is plotted in dashed dotted
black line in figure 3(b). Results are in excellent agree-
ment with the full numerical resolution (see the inset of
Fig. 3(b)), the maximum error being about 0.4 ◦C for
RH = 0. In the rest of the paper, we will thus work
under the assumption that ∆Hvap,D and λair are inde-
pendent of the temperature and their values are taken
at T∞. Applying this approximation to equation (14) we

get the evaporation rate of the drop

Qev = Q0

(
csat(Ti)

csat(T∞)
−RH

)
(18)

with
Q0 = 4πRDcsat(T∞), (19)

the evaporation rate of a spherical drop without evapo-
rative cooling (Ti = T∞) and placed in a dry atmosphere
(RH = 0).

The droplet lifetime is obtained from the conservation
of the drop volume Ω = 4

3πR
3,

Qev = −ρ
dΩ

dt
, (20)
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where ρ is the liquid density at the temperature of the
liquid Ti. We assume that ρ(Ti) = ρ(T∞), which is fairly
reasonable, as ρ decreases by only 0.5 % when the air
temperature varies from 0 to 30◦C.

After integration from R(0) = R0 to R(τ) = 0, we have
the dynamics of the droplet radius R(t) = R0

√
1− t/τ ,

where the droplet lifetime is

τ = τ0

(
csat(Ti)

csat(T∞)
−RH

)−1

. (21)

We noted τ0 = ρR2
0/2Dcsat(T∞) the lifetime of a spher-

ical drop evaporating in a dry atmosphere (RH = 0)
without cooling effect.

Results for evaporation rate and drop lifetime calcu-
lated with Ti obtained by numerical resolution of equa-
tion (17) are plotted in dashed-dotted black lines respec-
tively in figure 3(c) and in figure 3(d) as a function of
the relative humidity.

The complexity of Antoine equation still prevents us
to solve analytically equation (17). Therefore, we need
to establish further approximations on csat(T ) to pursue
analytical calculations. Next, we consider two approx-
imations of the literature, namely a Taylor expansion
of Clausius-Clapeyron in the limit ∆T → 0 [15] and a
linearized approximation of the evolution of the satu-
rating vapor concentration with the temperature [3, 14].
We also propose to use a quadratic approximation of the
variation of csat(T ) and we discuss the level of accuracy
of each approach.

4.2 Taylor expansion of the Clausius-
Clapeyron equation

In the case Ti ≈ T∞ and (T∞ − Ti)/T∞ ≪ 1, Fuchs [15]
provides an analytical solution of equation (17) by per-
forming a Taylor expansion of the Clausius-Clapeyron
equation (2) that gives at first order

Psat(Ti)

Psat(T∞)
≈ csat(Ti)

csat(T∞)
≈ 1−Mw ·∆Hvap

R
T∞ − Ti

T 2
∞

. (22)

In figure 3(a), we plot this equation in yellow line
for T∞ = 20 ◦C. The Taylor expansion of Clausius-
Clapeyron equation provides an excellent approximation
at T ≈ T∞ but leads to errors of the order of 30 % at
T = 10 ◦C and 200 % at T = 0 ◦C in the estimation of
csat(T )/csat(T∞).

The substitution of equation (22) into equation (17)
gives an explicit expression for the temperature of the
liquid

Ti = T∞ − χ

1 + χ
∆HvapMw

RT 2
∞

(1−RH) . (23)

This equation is represented in yellow line in fig-
ure 3(b). The temperature drop in a drop of water is
of the order of 10 ◦C, which invalidates the assumptions

used to perform the limited expansion of the Clausius-
Clapeyron equation and therefore leads to an incorrect
estimation of the temperature in the drop. Equation (23)
underestimates the interface temperature by about 4 ◦C
for RH = 0. Thus, this method only provides an ana-
lytical prediction of the cooling effect in the vicinity of
∆T → 0. Nevertheless, for water, the cooling effect can
be significant such that we seek for a more robust pre-
diction.

4.3 Linear approximation of csat(T )

In [3, 14], Netz and Eaton suggest using a linear approx-
imation of csat(T ) to perform an analytical resolution of
equation (17). We reproduce here this valuable approach
and comment it afterwards. The linearized concentration
writes

csat(T ) = csat(T∞) [1− Γ(T∞ − T )] , (24)

where

Γ =
1

(T∞ − Tm)

csat(T∞)− csat(Tm)

csat(T∞)
, (25)

with Tm is the melting temperature of the liquid. In fig-
ure 3(a), we plot this equation in green line for T∞ =
20 ◦C. The linear approximation gives a good descrip-
tion of the saturation concentration close to Tm and T∞
but lead to errors higher than 10 % for T ∈ [2; 15.5] ◦C
in the estimation of csat(T )/csat(T∞) and a maximal er-
ror of the order of 20 % for T ≈ 8◦C. As shown in fig-
ure 3(b), the interfacial temperature of the droplet is in
the range [4.5; 15] ◦C for RH ∈ [0; 60] %, the overestima-
tion of csat(Ti) will lead to errors when calculating the
evaporative flux and the drop lifetime in this humidity
range.

Combining equations (17) and (24) leads to an analyt-
ical prediction of the temperature difference

T∞ − Ti =
χ

1 + χΓ
(1−RH) . (26)

In figure 3(b), we plot the interfacial temperature as
a function of the relative humidity that we compare to
the numerical solution at T∞ = 20 ◦C. We observe that
in the range [0, 80] % of relative humidity, the linear ap-
proximation underestimate the cooling effect by about
1.5 ◦C.

Next, to compute the concentration ratio
csat(Ti)/csat(T∞), and therefore the evaporative flux
Qev and the drop lifetime τ , two approaches can be
considered.

The first approach consists in keeping the linear ap-
proximation (Eq. (24)) for using it into equation (18),
which leads to the evaporation rate

Qev = Q0
1−RH

1 + χΓ
, (27)
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where Q0 is given by equation (19). In figure 3(c), the
dimensionless evaporative flux Qev/Q0 is plotted against
the relative humidity, and we compare again the linear
approximation given by equation (27) (solid green line)
to the numerical solution (black line). By substituting
equation (27) in equation (20), we obtain the lifetime of
the drop

τ = τ0
1 + χΓ

1−RH
. (28)

Equation (28) is plotted in figure 3(d) in solid green line.
Figure 3(c) and (d) (solid green lines) shows that the

evaporation rate appears to be overestimated by about
20 % leading to underestimating the drop lifetime by
about 15 % over the range RH = [0, 80] %.

The second approach is to consider Antoine equation
(Eq. (3)), as a better approximation, after using equa-
tion (24) to calculate Ti, which is at the expense of the
internal coherence. The evaporative flux and the drop
lifetime write, respectively,

Qev = Q0

(
T∞

Ti
10B([C+T∞]−1−[C+Ti]

−1) −RH

)
, (29)

τ = τ0

(
T∞

Ti
10B([C+T∞]−1−[C+Ti]

−1) −RH

)−1

, (30)

with Ti given by equation (26). The results are plotted
in dashed green lines in figure 3(c) for the evaporation
rate and in figure 3(d) for the drop lifetime.

Due to the overestimation of the cooling effect ob-
served in figure 3(b) and the accurate description of the
saturated pressure in the second step of the calculation,
the evaporative flux is now underestimated by 30 % and
the lifetime is overestimated by about 50 % and up to
170 % at high relative humidity (RH = 80 %).

As a result, we conclude that the linear approxima-
tion used with the two previous approaches predicts the
correct trends for the evaporation rate and drop lifetime
but leads to significantly badly estimated values. The
two approaches are also inconsistent in their predictions.
Naturally, the difference in these physical quantities de-
pends on the atmospheric temperature and relative hu-
midity. We limited ourselves to a common situation of
T∞ = 20 ◦C. Indeed, for conditions where the interfacial
temperature tends either to the atmospheric tempera-
ture, i.e. at high relative humidity values, or the melting
temperature T, the linear approximation will be better.

In the next paragraph, we propose to refine the model
of the saturated pressure while allowing analytical calcu-
lations.

4.4 Quadratic approximation of csat(T )

We refine the model by introducing a quadratic approx-
imation of csat(T ), defined as

csat(T ) = csat(T∞)
(
1 + α1(T∞ − T ) + α2(T∞ − T )2

)
,

(31)

where α1 and α2 are obtained by fitting the data from
the literature as shown by the light blue curve in fig-
ure 3(a). For T∞ = 20 ◦C we have α1 = −5.5 · 10−2K−1

and α2 = 9.8 · 10−4K−2. The additional order provides
a better description of the saturation concentration as
shown in figure 3(a) and equation (31) is an excellent
approximation of Antoine equation.

Combining equations (17) and (31), we get

χα2 (T∞ − Ti)
2 + (χα1 − 1) (T∞ − Ti) +χ (1−RH) = 0.

(32)
Among the two roots admitted by equation (32), we keep
the one for which T∞−Ti decreases as RH increases, i.e.

T∞ − Ti =
1− χα1 −

√
(1− χα1)

2 − 4χ2α2 (1−RH)

2χα2
.

(33)
The previous equation is plotted in light blue line in fig-
ure 3(b) and is in excellent agreement with the numerical
solution (black line) of equation (17). The quadratic ap-
proximation provides a correct description of the liquid
temperature over the entire relative humidity range with
a maximum deviation of 0.1 ◦C.

Then, using again equation (31), the evaporative flux
(Eq. (18)) and the drop lifetime (Eq. (21)) can be written

Qev = Q0

[
α2(T∞ − Ti)

2 + α1(T∞ − Ti) + 1−RH

]
,
(34)

τ = τ0
[
α2(T∞ − Ti)

2 + α1(T∞ − Ti) + 1−RH

]−1
,

(35)

where T∞ − Ti is directly provided by equation (33).
These equations are plotted in solid blue lines respec-
tively in figures 3(c) and 3(d), which compare excep-
tionally well with the numerical resolution and mitigates
the error observed with the linear approximation. Com-
parison with numerical results shows that quadratic ap-
proximation leads to underestimating the drop lifetime
of about 1 %. We also checked that, by getting the liq-
uid temperature with equation (33) and inserting it into
equations (29) and (30), we get the same results for Qev

and τ as those obtained with equations (34) and (35).
The two approaches are consistent in their predictions
as shown by the superposition of the dashed and solid
blue lines in the figure 3(c) and (d).

5 Conclusion
In this paper, we developed an analytical method to pre-
dict the lifetime of a spherical drop evaporating in still
air by taking into account the evaporative cooling of the
liquid. Here, we focused on water droplets evaporating in
still air at ambient temperature, but this study can eas-
ily be extended to other liquids and other atmospheric
conditions.
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First, we used empirical laws to describe the varia-
tion of the relevant physical quantities such as diffusion
coefficient, saturating vapor pressure, enthalpy of vapor-
ization, liquid density, and air thermal conductivity. The
validity of these empirical laws were testified by compar-
ing their results to the reference data extracted from the
literature. Then, by solving numerically the coupling
between mass and heat transfer, we showed that it is
sufficient to consider only the variation of the saturating
concentration with temperature to describe correctly the
evaporative cooling. To give an analytical description of
the diffusion-limited evaporation of a spherical drop, we
considered two approximations for the saturated vapor
concentration and discussed their validity by comparing
their results to the numerical resolution of the problem.
We showed that a linear approximation predicts the cor-
rect trends but leads to significant errors on the values
of the interfacial temperature, the drop evaporation rate
and lifetime. We thus proposed a quadratic description
of the saturating vapor concentration that provides an
excellent analytical description of the problem.
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Appendix

T (°C) Psat (Pa)
0 6, 11× 102

1 6, 57× 102

2 7, 06× 102

3 7, 58× 102

4 8, 14× 102

5 8, 73× 102

6 9, 35× 102

7 1, 00× 103

8 1, 07× 103

9 1, 15× 103

10 1, 23× 103

11 1, 31× 103

12 1, 40× 103

13 1, 50× 103

14 1, 60× 103

15 1, 71× 103

16 1, 82× 103

17 1, 94× 103

18 2, 06× 103

19 2, 20× 103

20 2, 34× 103

21 2, 49× 103

22 2, 64× 103

23 2, 81× 103

24 2, 99× 103

25 3, 17× 103

26 3, 36× 103

27 3, 57× 103

28 3, 78× 103

29 4, 01× 103

30 4, 25× 103

Table 1: Saturated vapor pressure for water from [23].
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