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1 Introduction

The functional integral is the most direct approach to quantum gravity coupled to matter.
However, this strategy is difficult to carry out in four dimensions: first, because of the compu-
tational complexity of the functional integral, second, because gravity is non-renormalizable.

In such circumstances, a natural exercise is to study the corresponding theory in a lower
number of dimensions, in particular, in two dimensions. In this case, computations can
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often be carried out explicitly and one can gain intuition for approaching and understanding
the higher-dimensional problem. This paper will thus be concerned about two-dimensional
quantum gravity, which is particularly simple because the Einstein-Hilbert action is trivial
and only the matter and the cosmological constant contribute to the dynamics of gravity.

Since the metric in two dimensions contains only one degree of freedom, the standard
approach consists in splitting the metric into a conformal factor, called the Liouville field
σ, and a fixed background metric ĝµν . Then, the dependence in the Liouville mode of the
functional integral can be factored from the matter by introducing a Wess-Zumino-Witten
term – called the gravitational action – for the Liouville field.

In his seminal paper [1], Polyakov found that the gravitational action for a scalar field is
given by the famous Liouville action. In fact, this statement holds for any conformal field
theory (CFT) by relating the action to the conformal anomaly on a curved manifold. The
properties of this theory have been largely investigated, and the reader is refereed to [2–15]
for a selected set of references and to the reviews [16–20] for additional details.

For a model to be faithful to our four-dimensional world, it should contain non-conformal
matter.1Surprisingly, this topic has been mostly ignored in the literature and only the last
decade saw the beginning of an investigation from first-principles based on the heat kernel.
The first terms of a development in the mass of the gravitational action for a massive scalar
field (with and without non-minimal coupling to gravity) on a compact Riemann surface have
been computed in [22–24]. Besides the Liouville action, two other functionals well-known
from the mathematicians appear in the development: the Mabuchi2 and the Aubin-Yau
functionals [29, 30]. Finally, the gravitational action has later been computed completely
in the case of manifolds with and without boundaries [31, 32].

The historical approach to the coupling of non-conformal matter to 2d gravity follows the
David-Distler-Kawai (DDK) construction [6, 7]. It provides an ansatz for the gravitational
action in two situations: 1) when the matter is a CFT deformed by a set of primary operators,
2) when changing to the free field measure for the Liouville mode. The second case has
received strong support, both directly from an explicit derivation [33–35], and indirectly from
the rigorous constructions of the Liouville CFT using the conformal bootstrap [17, 20, 36]
or the Gaussian multiplicative chaos [37, 38]. On the other hand, it is known that the
first case presents some problems. In particular, the β-functions associated with the matter
coupling constants do not vanish, and the theory is not conformally invariant at the quantum
level [39, 40]. Moreover, the functional integral of the Liouville field cannot be factorized
from the matter functional integral.

The goal of this paper is to compute the gravitational action of a massive Majorana
fermion on a compact Riemann surface of arbitrary genus (without boundary), developing
the computations performed in [41] on the sphere (see also [42] for earlier computations
and alternative methods). On flat space, a massive Majorana fermion in two dimensions is
equivalent to the Ising model at finite temperature (or massive Ising model) [43, 44]. The latter
is a conformal deformation of the Ising model, which is a CFT with central charge c = 1/2 [45].

1Some aspects of massive matter coupled to classical two-dimensional gravity have been recently discussed
in [21].

2The string susceptibility and spectrum of this action have been discussed in [25–27]. A rigorous mathe-
matical construction based on a generalization of the Gaussian multiplicative chaos has been given in [28].
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It is interesting to study the coupling of this model to gravity for two reasons. First, it
is the simplest model after the massive scalar field, since it is also a free theory. Thus, it is
expected that the gravitational action can be explicitly computed. This point would be helpful
to provide more insights on the possible sources for the Mabuchi action. In a second time, one
can compare this expression with the ansatz provided by the DDK construction. Ultimately,
we find that both actions do not agree, which calls for a deeper study of the DDK ansatz.

Outline. In section 2, we introduce the field theory of a massive Majorana fermion on
a curved space. We discuss in length how to define the functional integral of a Majorana
field in a general basis. This yields an expression for the effective action as a functional
determinant. Section 3 is devoted to defining the tools needed for the spectral analysis.
In particular, we define the spectral functions which appear in the computations (Green
functions, zeta function, heat kernel) and derive their conformal variations. We also explain
how to handle zero-modes properly. The gravitational action for a Majorana fermion coupled
to 2d gravity on a Riemann surface of arbitrary genus is derived in section 4, see (4.36),
which is the main result of our paper. We also comment on the small mass expansion and
show that the first correction contains the Mabuchi action. Appendix A summarizes our
conventions, while appendix B gathers formulas on two-dimensional Euclidean fermions and
gamma matrices. In appendix C, we recall the DDK construction, describe its possible
problems and discuss them, in view of our results. Finally, in appendix D, we give some
detailed computations of identities that were used in 4.

Note added. While we were finalizing our manuscript, the paper [46] appeared and obtained
results similar with this paper and the earlier draft [42] (written prior to [41] and which
already computed the zero-modes, projectors and finite variations) for arbitrary genus.

2 Majorana fermion field theory

In this section, we present the action and the associated functional integral of a two-dimensional
massive Majorana fermion coupled to gravity in Euclidean signature. We consider a compact
Riemann surface without boundaries. Conventions are given in appendix A, and general
properties of gamma matrices and spinors in two dimensions are given in appendix B.

2.1 Classical action

The action for a two-dimensional Majorana fermion Ψ coupled to gravity is given by [43, 47]

Sm[g,Ψ] = 1
4π

∫
d2x
√
g Ψ̄(i /∇+mγ∗)Ψ, (2.1)

where the Dirac adjoint reads Ψ̄ = Ψ† and m is the mass.3The Dirac operator /∇ is defined
as (see appendix A for more details):

/∇ := γµ∇µ, ∇µΨ := ∂µΨ+ ΓµΨ, (2.2)
3The Dirac conjugation is sometimes defined by Ψ̄ = Ψ†γ0 [45, sec. 5.3.2], [48, sec. 9.7], but the above

object does not transform appropriately under Lorentz transformations (see appendix B).
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where the connection reads:

Γµ := − i
4 ωµγ∗, ωµ := ωµabϵ

ab, (2.3)

with ωµab is the spin connection, ϵ01 = 1 is the antisymmetric Levi-Civita symbol, and
γ∗ = iγ0γ1. Curved indices are denoted with Green letters (µ, ν, etc.), and indices of the
local flat frame by Latin letters (a, b, etc.). One has to introduce the chirality matrix γ∗ in
the mass term, since the standard bilinear Ψ̄Ψ vanishes (see appendix B). Finally, let us
mention that i /∇ is Hermitian with the usual inner-product, defined below in (2.18), since
γ∗ is Hermitian and the complex conjugation of the factor i compensates the sign arising
from the integration by parts.

Even though the connection term vanishes due to the flip relation (B.16) [49], one needs
to keep it when defining the functional integral in order to work with a covariant object. In
particular, in the Weyl basis, writing Ψ = (ψ̄, ψ) this action reads

S[g,Ψ] = 1
4π

∫
d2z
√
g (ψ∂̄ψ − ψ̄∂ψ̄ + 2mψψ̄) (2.4)

where ∂ = 1
2(∂0 − i∂1) and ∂̄ = 1

2(∂0 + i∂1). This is the standard form for the massive
Ising model [50, sec. 9.2.2].

2.2 Functional integral

The partition function of the theory is given by the functional integral

Z =
∫
DgDΨe−S[g,Ψ]−Sµ[g] :=

∫
Dg Z[g], (2.5)

where Sµ[g] = µ
∫
d2x
√
g = µA is the cosmological constant action. In this paper, we will

not be interested in the integration over the metrics but restrict ourselves to the matter
part. For this reason, we also do not take into account the Einstein-Hilbert action, which in
two dimensions is just a constant proportional to the Euler number of the Riemann surface.
Z[g] can be further decomposed as

Z[g] = e−Sµ[g]
∫
DΨe−S[g,Ψ] := e−Sµ[g] Zm[g]. (2.6)

The effective action Seff[g] is defined by

Zm[g] := e−Seff[g]. (2.7)

Computing Seff[g] directly is very challenging, and it is simpler to obtain the gravitational
action

Sgrav[ĝ, g] := Seff[g]− Seff[ĝ] = − ln Zm[g]
Zm[ĝ]

, (2.8)

where g and ĝ are two different metrics. One then has

Z[g] = e−Sµ[g] e−Sgrav[ĝ,g] Zm[ĝ] (2.9)

and the complete action reads

Scg[ĝ, g,Ψ] = Sgrav[ĝ, g] + Sm[ĝ,Ψ]. (2.10)
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Since the action is quadratic, the path integral is Gaussian and reduces to the determinant
of the kinetic operator

D = i /∇+mγ∗ (2.11)

to some power. The operator D is Hermitian since i /∇ and γ∗ are Hermitian. Moreover, it is
possible to rewrite the determinant in terms of the square of the operator D

D2 = −∆+ R

4 +m2, (2.12)

where ∆ is the spinor Laplacian:

∆Ψ := gµν ∇µ∇ν Ψ. (2.13)

Note that D2 is diagonal only in the Weyl basis (B.22), where γ∗ = diag(1,−1). The rest
of this section is devoted to the derivation of this result, which is obtained by diagonalizing
(formally) the kinetic operator.

2.2.1 Mode expansion

There is no solution to the eigenvalue equation

DΨ = (i /∇+mγ∗)Ψ
?= λΨ (2.14)

with λ ∈ R (since D is Hermitian) and such that Ψ satisfies the Majorana condition:

Ψ∗ = CΨ, (2.15)

with C the charge conjugation matrix defined in (B.12). Indeed, by taking the conjugate
of the equation and inserting the Majorana condition, one finds

DΨ = (i /∇+mγ∗)Ψ = −λ∗Ψ. (2.16)

This problem can be solved by looking for complex eigenvectors to be decomposed into
their real and imaginary parts (under the Majorana conjugation). Hence, we are looking for
complex eigenfunctions Ψn ∈ C of D with real eigenvalues λn (n ∈ Z) [51, sec. 13.3]:4

DΨn = (i /∇+mγ∗)Ψn = λnΨn, λn ∈ R. (2.17)

The inner-product between two spinors ψ1 and ψ2 is defined as:

⟨ψ1|ψ2⟩ :=
1
2π

∫
d2x
√
g ψ1(x)†ψ2(x). (2.18)

4Note that we could work with real eigenmodes by inserting the matrix γ∗ on the r.h.s. . However, this
complicates all expressions since this matrix would appear in the definition of the inner-product, Green
functions, etc.
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Note that it vanishes for anti-commuting Majorana spinors (for example, in the Majorana
basis: ψ†ψ = ψtψ = 0); however, this is not a problem since the eigenmodes are commuting
and complex.5The eigenfunctions form a complete set and are taken to be orthonormal:6

⟨Ψm|Ψn⟩ = δmn. (2.19)

By computing the inner-product with an insertion of D, we can easily check that the
eigenvalues are real:

⟨Ψn|DΨn⟩ = λn

= ⟨DΨn|Ψn⟩ = λ∗n.
(2.20)

One can check that if λn is the eigenvalue associated to ψn, then −λn is the eigenvalue
of C−1Ψ∗

n for n ̸= 0:

D(C−1Ψ∗
n) = −λn (C−1Ψ∗

n). (2.21)

As a consequence, we define

∀n ∈ N∗ : Ψ−n := C−1Ψ∗
n, λ−n := −λn. (2.22)

The Majorana field is expanded on the modes Ψn as:

Ψ :=
∑
n≥0

(anΨn + a−nΨ−n), (2.23)

where the an are complex Grassmann variables and satisfy:

a−n = a†n. (2.24)

Note that in this decomposition the coefficients are taken to be Grassmann numbers while
the eigenfunctions are commuting functions. As a consequence, the normalization (2.19)
would be non-trivial even without inserting γ∗. The coefficient an can be recovered by taking
the inner-product with Ψn:

an = ⟨Ψn|Ψ⟩ . (2.25)

The Dirac conjugate is:

Ψ̄ =
∑
n≥0

(anΨt
nC + a−nΨt

−nC) =
∑
n≥0

(
anΨ̄−n + a−nΨ̄n

)
, (2.26)

5It would be necessary to add γ∗ in the definition of the inner-product if it also appears in the r.h.s. of the
eigenvalue equation. But, as pointed in the previous footnote, this makes all expressions much more complicated.
One particular problem is that D is not self-adjoint for this product, instead: ⟨ψ1|Dψ2⟩ = ⟨D̃ψ1|ψ2⟩, where
D̃ := γ∗Dγ∗.

6In fact, modes with λn = m (where m is the mass) are degenerate and generically not orthonormal, see
section 3.3. However, ignoring this subtlety does not change the computation in general and the fact that
zero-modes are not orthonormal will be taken care of when needed.
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using that Ψ̄ = Ψ̄c = ΨtC since (C−1)† = (C∗)† = Ct = C, and the second equality
follows from (2.22). Since Ψ̄ = Ψ†, one can also recover the expression (2.24) from the
coefficient of Ψ̄n.

Then, we can define real modes (under the Majorana conjugate) for n ≥ 0:

χn := 1√
2
(Ψn +Ψ−n), ϕn := − i√

2
(Ψn −Ψ−n), (2.27)

such that

χ∗
n = Cχn, ϕ∗n = Cϕn. (2.28)

These modes form two orthonormal sets:

⟨χm|χn⟩ = ⟨ϕm|ϕn⟩ = δmn, ⟨χm|ϕn⟩ = 0. (2.29)

It is then straightforward to check that these modes satisfy the equations:

Dχn = iλn ϕn, Dϕn = −iλn χn (2.30)

since

Dχn = 1√
2
D(Ψn +Ψ−n) =

λn√
2
γ∗(Ψn −Ψ−n) = iλn ϕn.

Squaring this equation gives:

D2χn = Λnχn, D2ϕn = Λnϕn, Λn := λ2
n. (2.31)

This also implies:

D2Ψn = ΛnΨn. (2.32)

This means that the (χn, ϕn) are eigenfunctions of the second-order (Laplace-type) kinetic
operators, but not of the Dirac operator. Note that it should be related to the decomposition
of a Majorana spinor into a Weyl spinor and its complex conjugate [52, sec. 3.4].

The eigenvalues are indexed by n ∈ N and sorted by ascending order:

0 < m2 ≤ Λ0 ≤ Λ1 ≤ · · · (2.33)

In particular, there is no zero-mode if m2 > 0 (section 3.3).
The Majorana field is expanded on the real modes as

Ψ =
∑
n≥0

(bnχn + cnϕn) (2.34)

where (bn, cn) are real Grassmann variables such that

an = 1√
2
(bn + icn), a†n = 1√

2
(bn − icn), (2.35)

and we have the relation

a†nan = i
2(bncn − cnbn) = i bncn. (2.36)

Let us stress that a†n and an anti-commute. Note also that the Dirac conjugate is

Ψ̄ =
∑
n≥0

(bnχtn + cnϕ
t
n)C. (2.37)

– 7 –
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2.2.2 Evaluation of the functional integral

We want to compute the generating functional with source η:

Z[η] :=
∫

dΨ exp
(
− S[Ψ] + i ⟨η̄|Ψ⟩

)
, (2.38)

where the action can be written in terms of the inner-product (2.18) as:

S[Ψ] = ⟨Ψ|D |Ψ⟩ . (2.39)

The source is decomposed as

η =
∑
n≥0

(unχn + vnϕn) =
∑
n≥0

(
snΨn + s−nΨ−n

)
, s−n = s†n, (2.40)

where
sn = 1√

2
(un + ivn), s†n = 1√

2
(un − ivn). (2.41)

We have the relation:

s†nsn = iunvn. (2.42)

We can evaluate the inner-product which appears in the path integral,

⟨Ψ|D |Ψ⟩ = 2i
∑
n

λnbncn = 2
∑
n

λna
†
nan. (2.43)

and also:

⟨η|Ψ⟩ =
∑
n≥0

(unbn + vncn) =
∑
n≥0

(sna†n + s†nan). (2.44)

The functional integral reads:

Z[η] =
∫ ∏

n≥0
dbndcn exp

−i∑
n≥0

[
λnbncn + unbn + vncn

] (2.45a)

=
∫ ∏

n≥0
danda†n exp

∑
n≥0

[
− λna†nan + i sna†n + i s†nan

] . (2.45b)

The next step consists in shifting the variables an:

ān = an +
i
λn

sn, ā†n = a†n −
i
λn

s†n (2.46)

such that

Z[η] = exp

∑
n≥0

1
λn

s†nsn

∫ ∏
n≥0

dāndā†n exp

−∑
n≥0

λnā
†
nān

 . (2.47)

The integral is a simple Gaussian integral of complex Grassmann variables:

Z[η] = exp

∑
n≥0

1
λn

s†nsn

 ∏
n≥0

λn. (2.48)
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Note that only half of the eigenvalues are included because we had to combine the real
functions into complex functions, which lifts the double degeneracy that one has with a Dirac
fermion. The product of the positive eigenvalues gives the square-root of the determinant:

∏
n≥0

λn =
√∏
n≥0

λ2
n =

( ∏
n∈Z

λ2
n

) 1
4
=
(
detD2)1/4 = det

(
−∆+ R

4 +m2
)1/4

. (2.49)

The first equality allows writing squares of eigenvalues, such that one can extend the range
to negative n after the second equality since λ−n = −λn. Using formal manipulations of
determinants, we can rewrite

√
detD2 = detD such that:∏

n≥0
λn =

√
detD =

√
det

(
i /∇+mγ∗

)
. (2.50)

Note that the fact that one can take the square-root without ambiguity (up to a sign) is
a consequence of the self-adjointness of the operator [53, p. 1470].

The Green function corresponds to

S(x, y) := ⟨x| 1
D
|y⟩ := ⟨x| 1

i /∇+mγ∗
|y⟩

=
∑
n∈Z

1
λn

Ψn(x)Ψn(y)† = i
∑
n≥0

1
λn

(
ϕ(x)χ(y)t − χ(x)ϕ(y)t

)
.

(2.51)

It follows from:

⟨x| 1
D
|y⟩ =

∑
n∈Z
⟨x| 1

D
|Ψn⟩ ⟨Ψn|y⟩ =

∑
n∈Z

1
λn
⟨x|Ψn⟩ ⟨Ψn|y⟩ . (2.52)

The Green function is antisymmetric and purely imaginary:

Sαβ(x, y) = −Sβα(y, x). (2.53)

In full similarity, we obtain the Green function of D2:

G(x, y) := ⟨x| 1
D2 |y⟩ =

∑
n∈Z

1
Λn

Ψn(x)Ψn(y)†. (2.54)

Note that S and G are 2-dimensional matrices in terms of Dirac indices. The trace over
Dirac indices is denoted by trD.

Finally, we have that

⟨η|S |η⟩ =
∑
n∈Z

1
λn

s†nsn = 2i
∑
n≥0

1
λn

unvn. (2.55)

As a conclusion, we find:

Z[η] = exp
(1
2 ⟨η|S |η⟩

)
det

(
−∆+ R

4 +m2
)1/4

. (2.56)

The factor of 1/2 arises because the Green function has a sum n ∈ Z, but the functional
integral gives only n ≥ 0 in the exponential.
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This gives the expression of the effective action

Seff := − lnZ[0] = −1
4 ln detD2 = −1

4 tr lnD2 = −1
4 tr ln

(
−∆+ R

4 +m2
)
. (2.57)

This determinant can be defined using the standard heat kernel and zeta function methods,
since D2 is an operator of Laplace type.

Let us pause to comment on the case where there are zero-modes (vanishing eigenvalues,
or massless fermion). In this case, Z[η] in (2.48) looks ill-defined because the first term
diverges and the product of eigenvalues vanishes. However, the eigenvalues λn = 0 do not
appear in the sum in ⟨Ψ|DΨ⟩ such that the product would be only over strictly positive
eigenvalues, n > 0. Similarly, (2.56) has instead det′D and S̃, the determinant and Green
functions without zero-modes. Moreover, the integrals over zero-modes would remain to
be done: since they are fermionic, it looks like the result would vanish. This is solved by
inserting zero-modes in the functional integral and carefully normalizing [53, 54].

3 Spectral analysis

In this section, we review some points of spectral analysis that will be used to compute the
gravitational action. In section 3.1, we define the spectral functions (Green’s function, heat
kernel and zeta functions) and recall some of their properties. Then, section 3.2 describes
how the objects are affected by a Weyl transformations. Finally, in section 3.3, we discuss
the zero-modes of the Dirac operator.

While it is possible to derive most formulas for both Green functions S(x, y) and G(x, y),
we will not need any formula for S(x, y) in our approach, and hence we focus on the Green
function G(x, y) of the operator D2.

We define the area of the surface with metric g as

A[g] =
∫

d2x
√
g. (3.1)

3.1 Spectral functions

From now on, we will denote collectively the spinors χn and ϕn by Ψn, since they are
associated to the same eigenvalue Λn = λ2

n of the operator D2 = −∆+ R/4 +m2. States
associated with the eigenvalue Λ0 = m2 are called zero-modes. Since both λ0 = ±m lead to
the same Λ0, we denote by N0 the number of such pairs, and write Ψ0,i the eigenstates with
λ0 = +m. We can also understand N0 as counting the number of complex spinors (under
Majorana conjugation), given (2.22), or the number of eigenmodes with positive (or negative)
chirality [55]. Indeed, [(i /∇)2, γ∗] = 0 such that it is possible to use a basis of zero-modes
with definite chirality γ∗Ψ0,i,± = ±Ψ0,i,±.

We will put a tilde on every quantity from which the contributions of the zero-modes have
been subtracted, and a subscript “(0)” when m = 0. In particular, Λn is related to Λ(0)

n by

Λn = Λ(0)
n +m2. (3.2)

This shows that there is no zero-mode when m2 ̸= 0.

– 10 –



J
H
E
P
0
1
(
2
0
2
4
)
0
6
8

Green’s function. The Green’s function for the operator D2 is given by (2.54)

D2G(x, y) = δ(x− y)
√
g

I2 ⇔ G(x, y) =
∑
n∈Z

Ψn(x)Ψn(y)†

Λn
, (3.3)

where I2 denotes the 2-dimensional identity. G and its hermitian conjugate G† are related by

G(y, x) = G(x, y)†. (3.4)

One can define the Green’s function without the zero-modes by

G̃(x, y) =
∑
n ̸=0

Ψn(x)Ψn(y)†

Λn
= G(x, y)− 1

m2 P (x, y), (3.5)

where
P (x, y) =

∑
i

Ψ0,i(x)Ψ†
0,i(y) (3.6)

is the projector on the zero-mode subspaces, with {ψi(x)} an orthonormal basis (see section 3.2
for a discussion of this point). It satisfies the following equation

D2G̃(x, y) = δ(x− y)
√
g

I2 − P (x, y), (3.7)

and it is orthogonal to the projector∫
d2z
√
g P (x, z)G̃(z, y) = 0. (3.8)

The last relation also implies

G̃(x, y) =
∫

d2z
√
g G̃(x, z)D2

zG̃(z, y) =
∫

d2z
√
g DzG̃(x, z)DzG̃(z, y). (3.9)

When x goes to y, the Green’s function presents the usual logarithmic singularity

Gsing = G̃sing = − 1
4π ln(ℓ(x, y)2) (3.10)

where ℓ(x, y) is the geodesic distance between x and y. A regularization of the Green’s
function at coincident points is then

GR(x) = lim
y→x

(
G(x, y) + 1

4π ln
(
µ2ℓ2(x, y)

))
, (3.11)

where µ is a mass scale needed for dimensional reasons.
The Green function G is ill-defined when Λ0 = m = 0 since it contains a sum over all

eigenmodes with coefficients containing Λ−1
n .
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Heat kernel. The heat kernel is defined to be the solution of( d
dt +D2

)
K(t, x, y) = 0, K(t, x, y) ∼

t→0

δ(x− y)
√
g

I2. (3.12)

In terms of eigenvectors and eigenvalues, this can be expressed as

K(t, x, y) =
∑
n∈Z

e−ΛntΨn(x)Ψn(y)†. (3.13)

One also defines the integrated heat kernel by

K(t) =
∫

d2x
√
g trDK(t, x, x) =

∑
n∈Z

e−Λnt. (3.14)

The corresponding quantities K̃(t) and K̃(t, x, y) are obtained by excluding the zero-modes
from the sum. In particular, if m = 0, one needs to work with these quantities.

For t > 0, we see from (3.13) that K(t, x, y) is given by a converging sum and is finite,
even as x → y. For t → 0 various divergences are recovered, in particular,∫ ∞

0
dtK(t, x, y) = G(x, y) (3.15)

exhibits the short-distance singularity of the Green’s function (3.10).
The behavior of K for small t is related to the asymptotics of the eigenvalues Λn and

eigenfunctions Ψn for large n, which in turn is related to the short-distance properties of the
Riemann surface. It is well-known that the small-t asymptotics is given in terms of local
expressions of the curvature and its derivatives, and that on a compact manifold without
boundaries one has

K(t, x, y) ∼
t→0

1
4πt e

−ℓ2(x,y)/4t∑
k≥0

tkak(x, y). (3.16)

The expansion coefficients can be computed recursively using normal coordinates around x

(since for small t, the exponential forces ℓ2 to be small). To compute the gravitational action,
we will only need the first ones at coinciding points, which for our operator D2 turn out to be

a0(x, x) = I2 (3.17a)

a1(x, x) =
(
−R12 −m

2
)
I2. (3.17b)

For small t, K is then given by

K(t) = A

2πt −
1

24π

∫
d2x
√
g R(x)− m2A

2π + o(t). (3.18)

Another useful relation is

K̃(t) = e−m2tK̃(0)(t) (3.19)

using (3.2).
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Zeta functions. The zeta function and its integrated version are defined by

ζ(s, x, y) =
∑
n

Ψn(x)Ψn(y)†

Λsn
, ζ(s) =

∫
d2x trD ζ(s, x, x) =

∑
n

1
Λsn

. (3.20)

They are related to the heat kernel by a Laplace transform

ζ(s, x, y) = 1
Γ(s)

∫ +∞

0
dt ts−1K(t, x, y), ζ(s) = 1

Γ(s)

∫ +∞

0
dt ts−1K(t). (3.21)

Plugging (3.18) into (3.21) enables one to compute ζ(0):

ζ(0) = − 1
24π

∫
d2x
√
g R(x)− m2A

2π = − 1
24π

∫
d2x
√
g R(x)− m2A

2π (3.22)

In the same way, one shows that the zeta function has a pole for s = 1 with residue
a0(x,x)

4π = I2
4π . Then, using the relation

ζ̃(0, x, x) = ζ(0, x, x)− P (x, x), (3.23)

we obtain

ζ̃(0) = ζ(0)−N0. (3.24)

The zeta function can be used to define a regularized version of the Green’s function
at coincident points:

Gζ(x) = lim
s→1

(
µ2s−2ζreg(s, x, x)

)
, ζreg(s, x, x) = ζ(s, x, x)− µ2−2s I2

4π(s− 1) , (3.25)

and the same for ζ̃ and G̃ζ where Gζ and G̃ζ are related by

Gζ(x) = G̃ζ(x) +
1
m2 P (x, x). (3.26)

GR and Gζ only differ by a constant [56]:

Gζ(x) = GR(x) + α. (3.27)

Finally, we will use the zeta function to provide a regularized definition of the logarithm
of the determinant of the operator D2. Let consider

Seff[g] = − lnZm[g] = −
1
4
∑
n ̸=0

ln Λn
µ̂2 , (3.28)

where the energy scale µ̂ has been introduced to ensure that the argument of the logarithm
is dimensionless. The infinite sum is regularized through an analytic continuation such that:∑

n ̸=0
ln λn
µ2 = −ζ ′(0)− ln µ̂2ζ(0), (3.29)

and then

Seff = 1
4ζ

′(0) + 1
4 ln µ̂2ζ(0). (3.30)
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3.2 Weyl transformations

A Weyl transformation corresponds to a rescaling of the metric

g −→ e2ωg. (3.31)

It can be used to reach the conformal gauge

g = e2σ(x)ĝ, (3.32)

where ĝ is a fixed metric and σ is the Liouville field. If the latter is small, one finds

δg = 2δσ(x)ĝ. (3.33)

The metric in which the Green functions, heat kernel and zeta functions are defined
is indicated by an index, for example Kg(t) and Kĝ(t). In the case of a functional, it is
given in a bracket. Finally, differential operators receive a hat, for example ∇̂µ is expressed
in the metric ĝ.

Using the variation of (3.3) under an infinitesimal Weyl transformation and the expression
for δD2 given in (A.26), we see that, at first order in δσ, δG is a solution of

D2δG(x, y) = −2m2δσ(x)G(x, y) + ∂νδσ(x)γµν∇µG(x, y) +
1
2∆(δσ(x))G(x, y). (3.34)

The solution is obtained by convolution with G:

δG(x, y) =− 2m2
∫

d2z
√
g G(x, z)δσ(z)G(z, y) +

∫
d2z
√
g G(x, z)∂νδσ(z)γµν∇µG(z, y)

+ 1
2

∫
d2z
√
g G(x, z)∆(δσ(z))G(z, y).

(3.35)
We can simplify this expression as follows (writing G(x, y) as Gxy for concision):

δGxy = −
∫

d2z
√
g Gxz

(
2m2 δσz − (∂µz δσz)∇zµ+(/∂zδσz) /∇z −

1
2∆zδσz

)
Gzy

= −
∫

d2z
√
g δσz

[
2m2GxzGzy +✭✭✭✭✭✭✭✭✭

Gxz
←−
∇zµ∇zµGzy +Gxz∆zGzy

−Gxz
←−
/∇z /∇zGzy −Gxz /∇

2
zGzy −

1
2 Gxz

←−
∆zGzy

−✭✭✭✭✭✭✭✭
Gxz
←−
∇zµ∇µz Gzy −

1
2 Gxz∆zGzy

]
= −

∫
d2z
√
g δσz

[
m2GxzGzy +

1
2 GxzD

2
zGzy +

1
2 Gxz

←−
D2
zGzy −Gxz

←−
/∇z /∇zGzy

]
= −

∫
d2z
√
g δσz

[
m2GxzGzy +

1
2 Gxz

δzy√
g
+ 1

2
δxz√
g
Gzy −Gxz

←−
/∇z /∇zGzy

]
,

where we used γµν = γµγν − gµν to get the first equality, integrated by part the derivatives
acting on δσz for the second equality, and wrote ∆ and /∇2 in terms of D2 for the third
equality. We defined

←−
/∇z and other similar symbols such that its derivatives act on the
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object closest on its left, with gamma matrices staying where the symbol sits. Finally, we
can use the Green equation (3.3) to get:

δG(x, y) =− 1
2
(
δσ(x) + δσ(y)

)
G(x, y)−m2

∫
d2z
√
g δσ(z)G(x, z)G(z, y)

+
∫

d2z
√
g δσ(z)G(x, z)

←−
/∇z /∇zG(z, y).

(3.36)

Using the fact that

δℓ2(x, y) = ℓ2(x, y)(δσ(x) + δσ(y)) +O(ℓ4(x, y))
=⇒ lim

y→x
δ ln(µ2ℓ2(x, y)) = 2δσ(x), (3.37)

one can compute the variation of the regularized Green functions

δGζ(x) = δGR(x) = δ lim
y→x

(
G(x, y) + 1

4π ln
(
µ2ℓ2(x, y)

))
. (3.38)

The zero-modes transform under a Weyl transformation. Given the transformation
law (A.22) of the Dirac operator, it follows directly that if Ψ0 is a zero-mode of /∇, then

Ψ̂0 = eσ/2Ψ0 (3.39)

is a zero-mode of /̂∇. A first consequence is that a Weyl transformation does not change
the number of zero-modes N0.

This, together with the fact that the integration is over a different space, implies that
the zero-modes in the ĝ metric will not be orthonormal even if the zero-modes in the metric
g formed an orthonormal basis [53].7As a consequence, the projector (3.6) on the zero-modes
must be modified. For this, reason, we introduce the normalization matrix

κij [g] =
∫

d2x
√
g trD Ψ0,i(x)†Ψ0,j(x). (3.40)

Then the projector onto the zero-modes becomes

Pg(x, y) =
∑
i,j

Ψ0,i(x)κij [g]Ψ†
0,j(y), (3.41)

where κij denotes the inverse of κij . The trace of the projector counts the number of zero-modes∫
d2x
√
g trD Pg(x, x) = N0 (3.42)

since∫
d2x
√
g trD Pg(x, x) =

∑
i,j

∫
d2x
√
g trD Ψ0,i(x)κij [g]Ψ†

0,j(y) = κij [g]κij [g] = δii . (3.43)

7The scalar field ϕ provides a simple example. Since the scalar Laplacian is Weyl invariant in two dimensions,
the zero-mode is also invariant and ϕ0 = ϕ̂0. However, if ϕ0 = 1/

√
A is normalized in the first metric, it

is not in the second metric and κ[ĝ] =
∫

d2x
√
ĝ ϕ2

0 = Â/A. It would have been possible to start with the
non-normalized zero-mode ϕ0 = 1, such that κ[g] = A and κ[ĝ] = Â. This motivates the introduction of the
normalization in the projection operator: its absence in [31] was not important because there was a single
zero-mode which expression is known, and thus the variation in the normalization could be tracked by hand.
The situation is much more complicated for a Majorana field.
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The following relation will be useful:

δ ln detκ =
∫

d2x
√
g δσ(x) trD Pg(x, x), (3.44)

which follows from

δ tr ln κ = trκ−1δκ = κij
∫

d2x
√
g δσ trD Ψ0,i(x)Ψ0,j(x)†. (3.45)

3.3 Spin structure and zero-modes of the Dirac operator

In this section, we discuss the zero-modes of the massless operator −∆+ R
4 , which are also

the zero-modes of /∇, in terms of the spin structure.

Sphere. On the sphere, we can take for g the round metric, which has R > 0 constant. As
−∆ is a positive operator, we see that −∆+ R

4 cannot have any zero-mode and hence

N0 = 0, Pg(x, y) = 0. (3.46)

Torus. On the torus, we can use the flat metric g = δ. Then, a zero-mode satisfies

/∂Ψ0 = 0 (3.47)

and the only solutions are the two constant spinors

Ψ0 = 1√
A

(
1
0

)
, Ψ′

0 = 1√
A

(
0
1

)
, (3.48)

where A := A[δ] is the area of the torus. The solution survives only for the odd spin structure,
which has periodic boundary conditions in both directions. If at least one boundary has
anti-periodic conditions, then there is no solution.

As a consequence, there is one (complex) zero-mode for the odd spin structure, and
no zero-mode for the three even spin structures:

N0 = 0 (even structures), N0 = 1 (odd structure). (3.49)

We immediately derive the normalization matrix and projector:

Pg(x, y) =
1
A

(
1 0
0 1

)
, κ[g] =

(
1 0
0 1

)
, (3.50)

such that

−1
2 ln det κ[g]

κ[ĝ] = ln A
Â
. (3.51)

Higher-genus. For a genus g ≥ 2, there is generically one (resp. no) zero-mode when the
spin structure is odd (resp. even). However, there can be up to g zero-modes [55]. Zero-modes
can be computed by taking ĝ to be the metric such that R̂ = −1 or to be the canonical metric.
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4 Gravitational action

Since it is complicated to evaluate the effective action (3.30) directly, it is simpler to consider
the gravitational action (2.8)

Sgrav[ĝ, g] =
1
4(ζ

′
g(0) + lnµ2ζg(0))−

1
4(ζ

′
ĝ(0) + lnµ2ζĝ(0)). (4.1)

To simplify further the computation, one can consider an infinitesimal difference such that

δSgrav[g] =
1
4(δζ

′
g(0) + lnµ2δζg(0)). (4.2)

Finally, it is natural to consider both metrics to be related by a Weyl transformation
g = e2σ(x)ĝ, or its infinitesimal version g = 2δσ(x)ĝ. The gravitational action will be
recovered at the end by integrating over δσ.

4.1 Variation of the zeta function

To compute the gravitational action, we need δζ(0) and δζ ′(0). The variation of the zeta
function is given by

δζ(s) = −s
∑
n

δΛn
Λs+1
n

. (4.3)

As there is no zero-mode contribution to this equation, we can work with the function ζ̃

instead of ζ:

δζ(s) = δζ̃(s). (4.4)

Doing this, we do not have to distinguish between the massive and the massless case.
The variation of the non-zero eigenvalues Λn can be obtained through usual pertur-

bation theory:

δΛn = ⟨Ψn|δD2|Ψn⟩

= −2(Λn −m2)⟨Ψn|δσ|Ψn⟩ − ⟨Ψn|∂ν(δσ)γµν∇µ|Ψn⟩ −
1
2⟨Ψn|∆(δσ)|Ψn⟩,

(4.5)

where we used (A.26). However, the first eigenvalue Λ0 = m2 does not change: δΛ0 = 0.
We then get

δζ̃(s) = 2s
∑
n ̸=0

∫
d2x
√
g δσ(x)Ψn(x)†Ψn(x)

Λsn

− 2m2s
∑
n ̸=0

∫
d2x
√
g δσ(x)Ψn(x)†Ψn(x)

Λs+1
n

+ s
∑
n ̸=0

∫
d2x
√
g
∂ν(δσ)Ψn(x)†γµν∇µΨn(x)

Λs+1
n

+ s

2
∑
n ̸=0

∫
d2x
√
g∆(δσ)Ψn(x)†Ψn(x)

Λs+1
n

(4.6)

=: 2s I1 − 2m2s I2 + s I3 +
s

2 I4. (4.7)
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One can show that

I1 =
∫

d2x
√
g δσ(x) trD ζ̃(s, x, x), (4.8a)

I2 =
∫

d2x
√
g δσ(x) trD ζ̃(s+ 1, x, x), (4.8b)

I3 = −1
2

∫
d2x
√
g δσ(x) trD(∆ζ̃(s+ 1, x, x)), (4.8c)

I4 =
∫

d2x
√
g δσ trD(∆ζ̃(s+ 1, x, x)). (4.8d)

We define the Laplacian acting on the zeta function below, see (4.14). The first two expressions
are immediate consequences of the definition (3.20) of the zeta function. Moreover, I4 follows
directly from an integration by parts, and only I3 is non-trivial.

The first step is to rewrite the derivative acting on δσ as a covariant derivative, and
then integrate by parts:

I3 =
∑
n ̸=0

1
Λs+1
n

∫
d2x
√
g δσ

(
Ψn(x)†

←−
∇νγ

µν∇µΨn(x) + Ψn(x)†γµν∇ν∇µΨn(x)
)

=
∑
n ̸=0

1
Λs+1
n

∫
d2x
√
g δσ

(
Ψn(x)†

←−
/∇ /∇Ψn(x) + Ψn(x)†

←−
∇µ∇µΨn(x)

− R

4 Ψn(x)†Ψn(x)
)
.

(4.9)

The second equality follows using γµν = γµγν − gµν and (A.14). We will now compute the
first term, before turning our attention to the second and third terms together.

We notice that, for n ̸= 0, /∇Ψn is also an eigenvector of D2 associated with the
eigenvalue Λn and normalized such that∫

d2x
√
g ( /∇Ψn)† /∇Ψn = −

∫
d2x
√
gΨ†

n /∇
2Ψn = Λ(0)

n = Λn −m2. (4.10)

As the heat kernel is uniquely defined by (3.12), (3.21) implies that the zeta function is also
uniquely defined and does not depend on the basis of eigenvectors. Then, one has

ζ̃(s, x, y) =
∑
n ̸=0

/∇Ψn(x)
(
/∇Ψn(y)

)†
Λ(0)
n Λsn

=
∑
n ̸=0

/∇Ψn(x)
(
/∇Ψn(y)

)†
Λsn(Λn −m2) . (4.11)

Since Λn = Λ(0)
n +m2, we have Λn ≥ m2 for all n ̸= 0, and we can expand the denominator

as a series:

ζ̃(s, x, y) =
∑
n ̸=0

/∇Ψn(x)
(
/∇Ψn(y)

)†
Λs+1
n

∑
k≥0

(
m2

Λn

)k
=
∑
n ̸=0
k≥0

/∇Ψn(x)
(
/∇Ψn(y)

)†
Λs+1+k
n

m2k. (4.12)

The term k = 0 corresponds to the first term in (4.9). We also see that shifting s by 1
and multiplying by m2 gives the same sum, but with a different initial value. This suggests
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computing:

ζ̃(s, x, y)−m2ζ̃(s+ 1, x, y)

=
∑
n ̸=0
k≥0

/∇Ψn(x)
(
/∇Ψn(y)

)†
Λs+1+k
n

m2k −
∑
n ̸=0
k≥0

/∇Ψn(x)
(
/∇Ψn(y)

)†
Λs+2+k
n

m2k+2

=
∑
n ̸=0

/∇Ψn(x)
(
/∇Ψn(y)

)†
Λs+1
n

.

(4.13)

Next, we need to evaluate the other terms in (4.9). We expect the second term to be
related to ∆ζ̃, since we obtain it by distributing one derivative on each spinor inside ζ̃:

trD∆ζ̃(s, x, x) = trD∇µ∇µζ̃(s+ 1, x, x) = trD∇µ∇µ
∑
n ̸=0

Ψn(x)Ψn(x)†

Λsn

= trD
∑
n ̸=0

1
Λsn

((
∆Ψn(x)

)
Ψn(x)† +Ψn(x)Ψn(x)†

←−
∆ + 2∇µΨn(x)

)
Ψn(x)†

←−
∇µ
)

= trD
∑
n ̸=0

1
Λsn

((
∆Ψn(x)

)
Ψn(x)† +Ψn(x)

(
∆Ψn(x)

)† + 2∇µΨn(x)
)(
∇µΨn(x)

)†)
.

(4.14)

In the last line, all covariant derivatives and Laplacians act on spinors. Note that there
is no ambiguity on the location of the matrices thanks to the presence of the trace. We
can then replace ∆ using (2.12), before combining with the third term from (4.9) in R and
acting with D2 on the eigenstates:

2 trD
∑
n ̸=0

∇µΨn(x)
)(
∇µΨn(x)

)†
Λsn

= trD∆ζ̃(s, x, x) + 2 trD ζ̃(s− 1, x, x)

− 2
(
R

4 +m2
)
trD ζ̃(s, x, x).

(4.15)

Putting all the pieces together with s → s+ 1 gives the expression for I3 in (4.8).
Note that I3 + I4/2 = 0, such that the total variation of the zeta function is:

δζ̃(s) = 2s
∫

d2x
√
g δσ(x) trD ζ̃(s, x, x)− 2m2s

∫
d2x
√
g δσ(x) trD ζ̃(s+ 1, x, x) (4.16)

while its derivative is

δζ̃ ′(s) = 2s
∫

d2x
√
g δσ(x) trD ζ̃ ′(s, x, x) + 2

∫
d2x
√
g δσ(x) trD ζ̃(s, x, x)

− 2m2
(
s

∫
d2x
√
g δσ(x) trD ζ̃ ′(s+ 1, x, x) +

∫
d2x
√
g δσ(x) trD ζ̃(s+ 1, x, x)

)
.

(4.17)

To compute the variation of the gravitational action, one needs the value of δζ̃ and
δζ̃ ′ at s = 0. They are given by

δζ̃(0) = −2m2 lim
s→0

s

∫
d2x
√
g δσ(x) trD ζ̃(s+ 1, x, x) = −m

2

π

∫
d2x
√
g δσ(x) (4.18)
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and

δζ̃ ′(0) = 2
∫

d2x
√
g δσ(x) trD ζ̃(0, x, x)

− 2m2 lim
s→0

[(
1 + s

d
ds

)∫
d2x
√
g δσ(x) trD ζ̃(s+ 1, x, x)

]
. (4.19)

We recover the same formula as in [31] for the case of the massive scalar field.
In the massive case, to compute the first term in (4.19), we use the fact that

ζ̃(0, x, x) = ζ(0, x, x)− P (x, x) = a1(x, x)
4π − P (x, x) (4.20)

such that∫
d2x
√
g δσ trD ζ̃(0, x, x) =−

1
24π

∫
d2x
√
g δσ(x)R(x)−

∫
d2x
√
g δσ(x) trD P (x, x)

− m2

2π

∫
d2x
√
g δσ(x).

(4.21)
To compute the second term, we recognize ζreg from (3.25):

lim
s→0

[(
1 + s

d
ds

)∫
d2x
√
g δσ(x) trD ζ̃(s+ 1, x, x)

]
=
∫

d2x
√
g δσ ζ̃reg(1, x, x). (4.22)

Putting the pieces together, we find that

δζ ′(0) =− 1
12π

∫
d2x
√
g δσ(x)R(x)− 2

∫
d2x
√
g δσ(x) trD P (x, x)

− m2

π

∫
d2x
√
g δσ(x)− 2m2

∫
d2x
√
g δσ(x) trD ζ̃reg(1, x, x).

(4.23)

The first term is recognized to be the variation of the Liouville action

δSL = 1
4π

∫
d2x
√
g δσ(x)R(x). (4.24)

The second term corresponds to the variation of the zero-mode normalization matrix (3.44).
If there is a single constant zero-mode, like for the flat torus (3.50), this term is related
to the variation of the area:∫

d2x
√
g δσ(x) trD P (x, x) = δ ln detκ = −2δA

A
. (4.25)

The third term contains is related to the variation of the Mabuchi action [23]:

δSM ∝
∫

d2x
√
g δσ + · · · (4.26)

The infinitesimal variation of the gravitational action is

δSgrav =− 1
12 δSL −

1
2 δ ln detκ

− m2

2

∫
d2x
√
g δσ(x) trD

(
ζ̃reg(1, x, x) +

lnµ2

4π + 1
4π

)
.

(4.27)
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We can express this in terms of the regularized Green’s function by noting that

ζ̃reg(1, x, x) +
lnµ2

4π = G̃ζ(x) (4.28)

so that

δSgrav = − 1
12 δSL −

1
2 δ ln detκ−

m2

2

∫
d2x
√
g δσ(x) trD

(
G̃ζ(x) +

1
4π

)
(4.29a)

= − 1
12 δSL −

m2

2

∫
d2x
√
g δσ(x) trD

(
Gζ(x) +

1
4π

)
. (4.29b)

Now we want to express δSgrav as the variation of some functional. For this, we note that∫
d2x
√
g δσ trDGζ(x) =

1
2 δ
(∫

d2x
√
g trDGζ(x)

)
− 1

2

∫
d2x
√
g trD δGζ(x). (4.30)

Using (3.35) and (3.38), computations similar to the previous steps lead to∫
d2x
√
g trD δGζ(x) = −2m2

∫
d2x
√
g δσ(x) trD ζ(2, x, x) +

1
2π

∫
d2x
√
g δσ(x). (4.31)

This gives:

δSgrav = − 1
12 δSL −

m2

4 δ

(∫
d2x
√
g trDGζ(x)

)
− m4

2

∫
d2x
√
g δσ(x) trD ζ(2, x, x). (4.32)

To go further, we show that

m4
∫

d2x
√
g δσ(x) trD ζ(2, x, x) =

1
4

∫ ∞

0
dt e

m2t −m2t− 1
t

δK̃(t)

+
∫

d2x
√
g δσ(x) trD P (x, x)

(4.33)

in appendix D. Reporting in (4.32), we get

δSgrav =− 1
12 δSL −

1
2 δ ln detκ−

m2

4 δ

(∫
d2x
√
g trDGζ(x)

)
− 1

8 δ
(∫ ∞

0

dt
t

(
em2t −m2t− 1

)
K̃(t)

)
.

(4.34)

Because (4.34) is a total variation, it can be integrated:

Sgrav[ĝ, g] =−
1
12 SL[ĝ, g]−

1
2 ln det κ[g]

κ[ĝ]

− m2

4

∫
d2x trD

(√
g Gg,ζ(x)−

√
ĝ Gĝ,ζ(x)

)
− 1

8

∫ ∞

0

dt
t

(
em2t −m2t− 1

) (
K̃g(t)− K̃ĝ(t)

)
.

(4.35)

A last simplification can be achieved by noting that the difference between G and G̃ is the
same constant, proportional to the number of zero-modes, using (3.5) and (3.42). This, it
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cancels and one can replace G by G̃

Sgrav[ĝ, g] =−
1
12 SL[ĝ, g]−

1
2 ln det κ[g]

κ[ĝ]

− m2

4

∫
d2x trD

(√
g G̃g,ζ(x)−

√
ĝ G̃ĝ,ζ(x)

)
− 1

8

∫ ∞

0

dt
t

(
em2t −m2t− 1

) (
K̃g(t)− K̃ĝ(t)

)
.

(4.36)

The first two terms, which would be the only ones in the massless case, arise from the
conformal anomaly and agree with the standard result, giving the Liouville action for a
CFT with central charge c = 1/2 [53].

Note that ln detκ[g]/κ[ĝ] can be rewritten as a determinant inside the path integral:
it takes into account the redefinition of the modes that would become zero-modes in the
massless limit. To make contact with the scalar field computation of [31], this expression
gives the correct factor ln(A/Â) using any choice of normalization (see footnote 7). When
there is a single constant zero-mode, such as for the flat torus (3.50), we get:

−1
2 ln det κ[g]

κ[ĝ] = ln A
Â
. (4.37)

The expression (4.36) coincides with the result for the scalar field from [31] up to factors
±1/2. One can guess that the different signs come from the statistics of the fermion, and the
factor 1/2 from the central charge. Studying new models would be useful for checking this last
guess. Moreover, it would be very interesting to interpret these facts in view of supersymmetry.

4.2 Small mass expansion

The goal of this section is to study the small mass expansion of (4.36).
First, one notes that∫ ∞

0

dt
t

(
em2t −m2t− 1

)
K(t) = O(m4). (4.38)

Then, because of the factor m2 in front of G̃ζ , it is sufficient to consider the limit m→ 0 of G̃,
which is well-defined since we removed the zero-modes. As a consequence, the action (4.36)
reduces to

Sgrav[ĝ, g] =−
1
12 SL[ĝ, g]−

1
2 ln det κ[g]

κ[ĝ]

− m2

4

∫
d2x trD

(√
g G

(0)
g,ζ(x)−

√
ĝ G

(0)
ĝ,ζ(x)

)
+O(m4).

(4.39)

The symbol O(m4) is omitted from now on. It can be useful to work directly with the variation

δSgrav = − 1
12 δSL −

1
2 δ ln detκ−

m2

4 δ

(∫
d2x
√
g trD G̃(0)

ζ (x)
)

(4.40a)

= − 1
12 δSL −

1
2 δ ln detκ−

m2

2

∫
d2x
√
g δσ(x) trD

(
G̃

(0)
ζ (x) + 1

4π

)
(4.40b)

= − 1
12 δSL −

m2

2

∫
d2x
√
g δσ(x) trD

(
G

(0)
ζ (x) + 1

4π

)
. (4.40c)
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If we directly follow the scalar case, then one can introduce the averaged integrated
Green function

ΨG[g] =
1
A

∫
d2x
√
g trDG(0)

g,ζ(x). (4.41)

In this case, the above expression becomes

Sgrav[ĝ, g] = −
1
12SL[ĝ, g]−

1
2 ln det κ[g]

κ[ĝ]−
m2A

4 (ΨG[g]−ΨG[ĝ])+
m2

4 (A− Â)ΨG[ĝ]. (4.42)

The last term is independent of g and contributes to the cosmological constant. The second
term becomes the usual lnA/Â when there is a single constant zero-mode, see (3.50).

Note that the variation of the last term in (4.40) can also be integrated directly to σe2σ,
which shows that the O(m2) term should contain the Mabuchi action [23, 41]:

SM [ĝ, σ] = 4
A

∫
d2x

√
ĝ σe2σ + · · · (4.43)

Note that the coefficient is −m2A/16π, to be compared with a factor +m2A/16π for a scalar
field [23, 41]. As noted above, this may be related to supersymmetry.

We refrain from providing explicit formulas for (4.42) in terms of the ĝ-dependent Green
functions, since they are not particularly insightful. However, we highlight the procedure to
compute the finite variation of ΨG[g]. From (4.41), we see that we need the finite variation
of the regularized Green function Gg,ζ(x), which can be obtained from the variation of the
Green function G(x, y). The latter can be found from the finite transformation of the Green
function S̃(0)(x, y) using [57, eq. (3.32)]:

S̃(0)
g,xy = e−

ϕx
2 S̃

(0)
ĝ,xye

−ϕy
2 +

∫
d2w
√
g

∫
d2z
√
g Pg,xwe−

ϕw
2 S̃

(0)
ĝ,wze

−ϕz
2 Pg,zy

−
∫

d2z
√
g Pg,xze−

ϕz
2 S̃

(0)
ĝ,zye

−ϕy
2 −

∫
d2z
√
g e−

ϕx
2 S̃

(0)
ĝ,xze

−ϕz
2 Pg,zy

(4.44)

(to simplify the notations, we write the coordinate dependence as a subscript). This is because
the Green function must be orthogonal to the zero-modes, so we need S ∼ (1− Pĝ)Σ(1− Pĝ),
where Σ = e−(σ(x)+σ(y))/2Sĝ since the Dirac operator transforms covariantly under Weyl
transformations. This generalizes the formula found in [58–62] for the massless scalar. The
projector (3.41) can be written in terms of the ĝ zero-modes as:

Pg(x, y) = e−
σ(x)

2 −σ(y)
2
∑
i,j

Ψ̂0,i(x)κij [g]Ψ̂†
0,j(y), (4.45)

but there is no simple formula in terms of Pĝ because of the presence of κ[g].
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A Formulas and conventions

Greek indices refer to the curved frame and Latin indices (a, b, etc.) to the local flat frame.
Explicit indices are denoted by letters in the first case, µ = (t, x), and numbers in the second
case, a = 0, 1. We globally follow the conventions of [49, 52].

The metric of the two-dimensional compact curved manifold with Euclidean metric gµν ,
where µ = 0, 1. Zweibeine eµa are introduced to convert curved indices to local indices:

δab = eµae
ν
b gµν = diag(1, 1). (A.1)

The antisymmetric Levi-Civita symbol ϵab is normalized as

ϵ01 = ϵ01 = 1. (A.2)

Complex coordinates are defined by

z = x0 + ix1, z̄ = x0 − ix1 (A.3)

such that

ds2 = dzdz̄, gzz = gz̄z̄ = 0, gzz̄ =
1
2 . (A.4)

The derivatives with respect to the complex coordinates are:

∂ := ∂z =
1
2(∂0 − i∂1), ∂̄ := ∂z̄ =

1
2(∂0 + i∂1). (A.5)

The integration measure is

d2z = 2d2x, d2z := dzdz̄, d2x := dx0dx1. (A.6)

A.1 Covariant derivatives

The covariant derivative is denoted by

∇µ := ∂µ + Γµ, (A.7)

where Γµ is the connection which contains a combination of the Levi-Civita Γ ρ
µν and spin

ω b
µa connections depending on the object it acts on. The Laplacian is defined by

∆ := gµν∇µ∇ν . (A.8)

The covariant derivative of a fermion reads

∇µΨ =
(
∂µ +

1
4 ωµabγ

ab
)
Ψ =

(
∂µ −

i
4 ωµγ∗

)
Ψ, (A.9)

where γ∗ is defined in (B.5) and:

ωµ := ωµabϵ
ab. (A.10)
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The covariant derivative of gamma matrices vanishes:

∇µγν = 0. (A.11)

The square of the Dirac operator /∇ is:

/∇2 = ∆− R

4 , (A.12)

where the spinorial Laplacian is

∆Ψ = gµν
[(
∂µ +

1
4ωµabγ

ab
)
∇νΨ− Γρµν∇ρΨ

]
. (A.13)

We have used:

γµν [∇µ,∇ν ] = −
R

2 . (A.14)

The Dirac operator together with a mass term is denoted by

D := i /∇+mγ∗. (A.15)

The square of this operator reads

D2 = −∆+ R

4 +m2, (A.16)

which follows from γ2
∗ = 1 and [γµ, γ∗] = 0. Due to the additional γ∗ in the mass term,

and contrary to the usual case, it is not necessary to conjugate the D operator by γ∗ in
order to obtain the r.h.s. .

A.2 Conformal variations

The conformal variation of the metric reads

gµν = e2σ ĝµν , (A.17)

which implies:

eaµ = eσ êaµ. (A.18)

Then, the affine et spin connections transform as:

Γµνρ = Γ̂µνρ + δµν ∂ρσ + δµρ∂νσ − ĝνρ ∂µσ, (A.19)
ωµab = ω̂µab + êµa ê

ν
b ∂νσ − êµb êνa ∂νσ. (A.20)

This gives the expression for the covariant derivative for a spinor:

∇µΨ = ∇̂µΨ+ 1
2 êµa ê

ν
b ∂νσ γ

abΨ, (A.21)

such that

/∇ = e−σ
(
/̂∇+ 1

2 ∂µσγ̂
µ
)
. (A.22)
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The transformation of the spinor Laplacian ∆ is:

∆ = e−2σ
(
∆̂ + ∂νσ γ̂

µν ∇̂µ −
1
4 ∂µσ ∂

µσ

)
. (A.23)

Finally, from the transformation of the Ricci scalar

R = e−2σ(R̂− 2 ∆̂σ
)
, (A.24)

we find:

/∇2 = e−2σ
(
−∆̂ + 1

4 R̂− ∂νσ γ̂
µν ∇̂µ +

1
4 ∂µσ ∂

µσ − 1
2 ∆̂σ

)
. (A.25)

From the last formula, we can deduce the infinitesimal variation of the operator D2:

δD2 = −2 δσ
(
−∆+ R

4

)
− ∂ν(δσ) γµν∇µ −

1
2 ∆(δσ). (A.26)

B Two-dimensional spinors

This appendix summarizes the main properties of spinors and gamma matrices. For general
references, the reader is referred to [49, app. 7.5, 8.5], [52, chap. 2, 3], [63], [51, sec. 13.2].
In this appendix, we will work with local indices.

B.1 Clifford algebra and gamma matrices

The two-dimensional identity is denoted by

I2 =
(
1 0
0 1

)
, (B.1)

or with 1 when no confusion is possible.
The SO(2) Clifford algebra is generated by the two gamma matrices γa satisfying the

anticommutation relation

{γa, γb} = 2δab. (B.2)

Both matrices are taken to be unitary, and as a consequence Hermitian

(γa)† = γa. (B.3)

The last element of the algebra corresponds to the antisymmetric product

γab = 1
2 [γa, γb] = −i ϵabγ∗, (B.4)

which is proportional to the chirality matrix

γ∗ = i γ0γ1 = i
2 ϵabγ

ab. (B.5)

It corresponds to the generator of the SO(2) group

Mab = i
2 γ

ab = ϵabγ∗. (B.6)
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The chirality matrix is Hermitian, unitary and anticommutes will other gamma matrices

γ2
∗ = 1, (γ∗)† = γ∗, {γ∗, γa} = 0. (B.7)

Some useful identities are

γaγbγa = 0 (B.8a)
γaγb = ηab − i εabγ∗ (B.8b)
γabγbc = δac (B.8c)
γ∗γ

a = εabγb (B.8d)
[γab, γc] = 2εabεcdγd. (B.8e)

B.2 Dirac and Majorana spinors

A Dirac spinor Ψ is a 2-dimensional complex vector with anticommuting components that
forms a reducible representation of the Clifford algebra. Such a spinor transforms under
a Lorentz transformation as

δΨ = −1
4 λabM

abΨ = −λ4 γ∗Ψ, λ := λabϵ
ab. (B.9)

The Dirac conjugation corresponds to Hermitian conjugation

Ψ̄ = Ψ†. (B.10)

This object transforms as

δΨ̄ = λ

4 Ψ̄γ∗ (B.11)

such that Ψ̄Ψ is a scalar.
Introducing the charge conjugation matrix C such that

(γµ)∗ = CγµC−1, (γµ)t = CγµC−1, (B.12)

the charge conjugated spinor and its Dirac conjugate (giving the Majorana conjugate) are
defined by

Ψc = C−1Ψ∗, Ψ̄c = ΨtC. (B.13)

Both spinors transform respectively as Ψ and Ψ̄. Note that C is unitary and symmetric.
From a Dirac spinor, one can obtain two different irreducible representations: a Weyl (or

chiral) spinor or a Majorana (or real) spinor. The latter is given by the reality condition

Ψc = Ψ =⇒ Ψ∗ = CΨ. (B.14)

This implies in particular that the Dirac and Majorana conjugations coincide. A Weyl spinor
is obtained from a Dirac spinor by projecting it on its positive or negative chirality

Ψ = P±Ψ, P± = 1
2(1± γ∗). (B.15)

One should note that it is not possible to have Majorana-Weyl fermion in Euclidean signature
(contrary to what happens in Lorentz signature).

Given two Majorana spinors Ψ1 and Ψ2, the Majorana flip relations read [51]

Ψ̄1Ψ2 = −Ψ̄2Ψ1, Ψ̄1γµΨ2 = −Ψ̄2γµΨ1, Ψ̄1γ∗Ψ2 = Ψ̄2γ∗Ψ1. (B.16)
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B.3 Gamma matrix representations

B.3.1 Majorana basis

In the Majorana representation, the Dirac matrices read

γ0 = σ1 =
(
0 1
1 0

)
, γ1 = σ3 =

(
1 0
0 −1

)
, γ∗ = σ2 =

(
0 −i
i 0

)
, (B.17)

which implies that the charge conjugation is the identity

C = 1. (B.18)

In this basis, a Majorana spinor has real components

Ψ =
(
ψ1
ψ2

)
, ψ∗

1 = ψ1, ψ∗
2 = ψ2, (B.19)

The scalar bilinears are

Ψ̄Ψ = (ψ1)2 + (ψ2)2 = 0, Ψ̄γ∗Ψ = −2iψ1ψ2, (B.20)

while the kinetic operator reads

i γµ∂µ = i
(
∂1 ∂0
∂0 −∂1

)
. (B.21)

B.3.2 Weyl basis

In the Majorana representation, the Dirac matrices read

Γ0 = σ2 =
(
0 −i
i 0

)
, Γ1 = σ1 =

(
0 1
1 0

)
, Γ∗ = σ3 =

(
1 0
0 −1

)
, (B.22)

which implies that the charge conjugation is:

C = Γ1. (B.23)

In this basis, a Majorana spinor has complex components conjugated to each other

Ψ =
(
ψ̄

ψ

)
, ψ∗ = ψ̄, ψ̄∗ = ψ. (B.24)

The relation with the Weyl components is

ψ = 1√
2
(ψ1 + iψ2), ψ̄ = 1√

2
(ψ1 − iψ2). (B.25)

The scalar bilinears are

Ψ̄Ψ = ψψ̄ + ψ̄ψ = 0, Ψ̄γ∗Ψ = 2ψψ̄, (B.26)

while the kinetic operator reads

i γµ∂µ =
(

0 ∂̄

−∂ 0

)
. (B.27)
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C DDK ansatz

In their seminal papers [6, 7], David, Distler and Kawai (DDK) addressed two questions
of importance: the rewriting of the functional integral in terms of a free-field measure
for the Liouville mode8 and the gravitational dressing of matter operator. The latter has
been used to provide an ansatz for the action associated to a CFT deformed by primary
operators coupled to gravity or on a curved background (see [8, 39, 40, 64–75] for a selection
of references). In practice, the ansatz is found by performing a conformal deformation of
the gravitational action of the CFT with the additional constraint that these deformations
have a conformal weight equal to one.

The first point received strong supports by explicit computations [33–35] and indirect
approaches showing the consistency of the theory with a free-field measure [17, 20, 36–38].
However, the validity of the second is more questionable. We will discuss this and set it
in the context of this paper in appendix C.2 after giving a general review of the DDK
ansatz in appendix C.1.

C.1 Review of the DDK ansatz

The matter theory is described by the action Scft of a CFT deformed by primary operators

Sm[g, ψ] = Scft[g, ψ] + Sp[g, ψ], (C.1a)

Sp[g, ψ] =
∑
i

λi
∫

d2x
√
gOi(ψ), (C.1b)

where ψ denotes collectively the fields, λi the coupling constants, and Oi(ψ) is a set of
primary operators9 with conformal weight hi and built from the fields ψ. To simplify the
discussion, we consider only spinless fields such that the conformal dimension is 2hi. Hence,
a Weyl transformation acts as

g = e2ω ĝ, Oi = e−2hiω Ôi. (C.2)

The action Scft is conformally invariant on flat space g = δ, and we assume it invariant under
Weyl transformations (see [80] for a discussion of this topic). On the other hand, the action
Sp is not invariant if hi ̸= 1 for at least one operator. The trace of the energy-momentum
tensor for the perturbation is

T (p) = 4π
∑
i

λiOi (C.3)

(in the absence of explicit metric dependence in the operators Oi) and displays the breaking
of the conformal invariance by the deformations.

8It would be particularly interesting to extend this analysis to the case of non-conformal matter, in
particular for the case of the Liouville-Mabuchi gravity. We are grateful to E. D’Hoker for discussions on this
topic.

9While the operator Oi can depend explicitly on the metric there is also an implicit metric dependence which
is due to the regularization needed to remove self-contraction. This is discussed for example in [35, 76, 77], [78,
sec. 3.6], [79] for the case of the scalar field.
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The DDK ansatz proposes the total action in the conformal gauge to be given by

SDDK[g, σ, ψ] = Q2 SL[ĝ, σ] + Scft[ĝ, ψ] + S
(p)
DDK[ĝ, σ, ψ], (C.4a)

S
(p)
DDK[ĝ, σ, ψ] =

∑
i

λi
∫

d2x
√
ĝ e2aiQσÔi(ψ). (C.4b)

We recall that Q is related to the central charge by 6Q2 = 26− cm (26 arises from the ghost
contribution). The ai are chosen such that each term has a conformal weight 1 and is thus
invariant under the Weyl transformation

ĝ = e2ω ĝ′, σ = σ′ − ω, Ôi = e−2hiω Ôi, (C.5)

which leads to the condition

ai(Q− ai) + hi = 1 (C.6)

(the a2
i term comes from the regularization of the exponential). The solution is

ai =
Q

2 −

√
Q2

4 + hi − 1 (C.7)

where the sign is found by matching to the semi-classical solution Q → ∞

ai ∼
1
Q
(1− hi). (C.8)

The multiplication of the matter primary by a Liouville primary is called gravitational dressing.
A derivation of (C.4) has been suggested in [72, sec. 3]. Starting from the matter

partition function

Zm[g] =
∫
Dψ e−Scft[g,ψ]−Sp[g,ψ] = Zcft[g]

〈
exp

(
−λ

∫
d2σ
√
gO

)〉
g,cft

, (C.9)

where Zcft[g] arises from the normalization of the correlation function, the exponential can
be expanded perturbatively in the coupling constant

Zm[g]
Zcft[g]

=
∞∑
n=0

(−λ)n

n!

∫
⟨O(x1) · · · O(xn)⟩g,cft

n∏
i=1

√
g(xi) d2xi. (C.10)

Since the correlation functions are computed in the CFT, one can use the relations (C.2)
in order to express the quantities in the conformal gauge

Zm[g]
Zcft[g]

=
∞∑
n=0

(−λ)n

n!

∫
⟨Ô(x1) · · · Ô(xn)⟩ĝ,cft

n∏
i=1

e2(1−hi)σ(xi)
√
ĝ(xi) d2xi. (C.11)

The expansion can be resummed

Zm[g]
Zcft[g]

= 1
Zcft[ĝ]

∫
dĝψ e−Scft[ĝ,ψ]−S(p)

DDK[ĝ,σ,ψ]. (C.12)
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Finally, (C.4) is recovered by using the relation

ln Zcft[g]
Zcft[ĝ]

= Q2 SL[ĝ, σ]. (C.13)

The semi-classical result can be recovered by a direct computation with the action

Sp[g, ψ] =
∑
i

λi
∫

d2x
√
gOi =

∑
i

λi
∫

d2x
√
ĝ e2(1−hi)σÔi = S

(p)
DDK[ĝ, σ, ψ]. (C.14)

Note that this does not follow from a direct integration of the quantum expectation value
of the trace (C.3)

⟨T (p)⟩g = 4π
∑
i

λi⟨Oi⟩g ∼ 4π
∑
i

λiOi,cl (C.15)

because one finds an additional factor of (1 − hi)−1.

C.2 Discussion

As mentioned in the introduction of this section, arguments showing that it is not clear
whether the DDK ansatz of the gravitational action for a deformed CFT is valid can already
be found in the existing literature or derived from elementary facts:

1. The action S
(p)
DDK[g, σ, ψ] is not a Wess-Zumino action since it depends on both the

matter fields and the Liouville mode. This means that the ansatz does not fit directly
inside the conformal gauge formalism despite the appearance.

To be more explicit, compare the DDK ansatz (C.4) with the conformal gauge ac-
tion (2.10) where the gravitational action would be of the form

Sgrav[ĝ, σ] = Q2SL[ĝ, σ] + S(p)
grav[ĝ, σ]. (C.16)

The discrepancy between SDDK and Scg can be summarised by the fact that the non-
conformal contribution to the gravitational S(p)

grav and matter Sp actions have been
replaced by a single term S

(p)
DDK.

Moreover, the definition of Q2 in (C.4) contains the central charge of the ghosts and
of every matter sector, which means that the different CFT sectors are not decoupled
anymore. The conformal gauge action (2.10) does not show any sign of such coupling.

2. From the previous point, it follows that the DDK action cannot be recovered by
integrating the trace anomaly or by computing the ratio of the partition functions in
two different metrics.

3. The ansatz was proposed by requiring the total action to be conformally invariant
term by term (whereas the validity of the conformal gauge approach asks only for the
invariance of the total action). In the DDK approach, this translates into the fact that
the gravitationally dressed deformations should be exactly marginal operators. However,
this is generically not the case beyond the leading order in the coupling [39, 40, 81–85].
This can be understood from the fact that the presence of the operators inside the
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action modifies the renormalization conditions and thus one cannot expect a tree-level
condition to hold beyond the semi-classical level. This indicates that the DDK ansatz,
beyond the first order approximation, should be supplemented with an infinite number
of terms [83]. This may lead to a well-defined gravitational action, but computing
the higher-order corrections is a formidable task and not more easy than a direct
computation of the gravitational action in the conformal gauge (in particular for weights
far from 1).

Let us illustrate this at the second order. Given the OPE coefficients Ckij

Vi(x)Vj(y) ∼ Ckij |x− y|
2(hk−hi−hj)Vk(y) (C.17)

the beta functions for operators with hi ∼ 1 and for vanishing cosmological constant are

βi = (∆j
i − 2 δji )λ

j + π Cijk λ
jλk +O(λ3) (C.18)

where ∆j
i is the normalization of the two-point function (the O(λ3) term has been

computed in [83, 84]). One can add a term

S
(p,2)
DDK = π

Q(1 + 4ak)
Ckijλ

iλj
∫

d2√ĝ σ e2akQσÔk(ψ) (C.19)

to ensure that the beta functions vanish at quadratic order (in practice this implies
that ∆j

i becomes coupling-dependent). Note that, without this additional term, the
vanishing of the beta functions at O(λ) is obtained thanks to the gravitational dressing.

4. The derivation from [72] presented in the previous section may yield an incorrect result
because of the formal manipulations in the functional integral. There are three possible
sources of errors: 1) the correlation functions have logarithmic singularities [40, p. 4]
which are not regularized, 2) the functional integral and infinite sum are exchanged
(twice), 3) the infinite series (with divergent terms) is directly resummed. A rigorous
computation would require to regularize the correlation functions, for example by
introducing a connection on the CFT space [86–89].

Since the massive Majorana theory is a CFT with c = 1/2 deformed by a primary operator

Scft =
1
4π

∫
d2x
√
g Ψ̄i /∇Ψ, Sp[g, ψ] =

m

4π

∫
d2x
√
g Ψ̄γ∗Ψ, (C.20)

the current paper provides an explicit example to test the DDK ansatz. The conformal
weights of the holomorphic and anti-holomorphic components are respectively (h, h̄) = (1/2, 0)
and (h, h̄) = (0, 1/2), such that the weight of the energy Ψ̄γ∗Ψ is (h, h̄) = (1/2, 1/2). Then,
the DDK ansatz gives

SDDK[g, σ, ψ] = −Q2 SL[ĝ, σ] + Scft[ĝ, ψ] + S
(p)
DDK[ĝ, σ, ψ],

S
(p)
DDK[ĝ, σ, ψ] =

m

4π

∫
d2x
√
g e2aQσΨ̄γ∗Ψ,

(C.21)

We do not provide the Q2 and a because their values are model dependent (for example, if one
adds other matter sectors). This action looks different from (4.36), which we obtained by the
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rigorous heat kernel method. In particular, the DDK action (C.4b) is linear in the coupling
constant while the gravitational action for the massive fermion is not. The action (4.36) is
by construction consistent with the conformal gauge, see (2.10) and none of the points listed
in the list applies to it. According to (4.39), the first-order correction will be proportional
to m2 instead of m for the DDK ansatz.

This can be summarized by saying that a deformation of the matter CFT does not seem
to be equivalent to a deformation of the Liouville plus matter CFT, at least beyond the
semi-classical approximation.10 A possible explanation is that symmetries are not sufficient
to determine the form of the action when locality is lost, which is certainly the case in a
theory of gravity with massive matter (for example, the Mabuchi action is non-local when
expressed in terms of the Liouville field).

It would be interesting to establish our result using CFT methods, for example by
performing the computations from [72] using the tools from [86–89].

Finally, note that these problems might just be apparent and result from a “bad”
parametrization of the action and functional integrals. This would amount to prove that

∫
DσDψ e−Scft[ĝ,ψ]−S(p)

DDK[ĝ,σ,ψ] =
∫
DσDψ e−Scft[ĝ,ψ]−Sp[ĝ,ψ]−S(p)

grav[ĝ,ψ]. (C.22)

It is also possible that such a relation would hold only after incorporating all the corrections
to the DDK action needed to make the beta functions vanish. While establishing directly
this identity might be difficult, one may also prove it either by showing that the correlation
functions computed from both sides satisfy the same Ward identities, or by computing
numerically the correlation functions and showing that they agree.

Different interpretations can be given to the DDK ansatz, which is reflected by its various
uses in the literature. The previous discussion applies only when it is used to postulate an
action for a deformed CFT coupled to gravity. These comments do not apply when the DDK
action is used by itself as a model (for example of a statistical system); instances of such
approaches (even if there is a confusion with the previous case) include [6, 65, 71, 72, 74, 90].
It should be clear that this approach gives up the link with gravity and study the action
and the associated functional integral just for themselves: as a consequence, any constraint
originating from gravity can be relaxed (in particular the Wess-Zumino form and the marginal
scaling conditions) and our comments do not apply. The fact that it defines a well-defined
statistical system can also be motivated from the mapping to matrix models [73, 74], [39,
sec. 4]. Similarly, the gravitational dressing of operators in correlation functions such as

〈∏
i

e2aiQσ(xi)Oi(xi)
〉

(C.23)

do not pose any problems since the scaling dimensions are not modified in this case (for
a discussion see [7, 23, 34, 91, 92]).

10See also [75, pp. 19–20] for related discussions.
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D Proof of various identities

The goal of this section is to express
∫
d2x
√
g δσ(x) trD ζ(2, x, x) in terms of the heat kernel,

i.e. to prove (4.33). The variation of K(t) is given by

δK(t) = δK̃(t) = −t
∑
n ̸=0

e−ΛntδΛn

= −2t
( d
dt +m2

)∫
d2x
√
g δσ(x) trD K̃(t, x, x)

− t
∑
n ̸=0

e−Λnt
∫

d2x
√
gΨ†

n(x)∂ν(δσ)γµν∇µΨn(x)

− t

2

∫
d2x
√
g∆(δσ(x)) trD K̃(t, x, x). (D.1)

To compute the second term, we introduce the generalized heat kernel

K(s, t, x, y) =
∑
n

e−ΛntΨn(x)Ψn(y)
Λsn

. (D.2)

In particular

K(0, t, x, y) = K(t, x, y). (D.3)

We can then redo the computations we have done for the variation of the zeta function. For
instance, the computation of I3 in (4.8) can be generalized as

∑
n ̸=0

e−Λnt
∫

d2x
√
g
∂ν(δσ)Ψ†

n(x)γµν∇µΨn(x)
Λs+1
n

= −1
2

∫
d2x
√
g δσ(x) trD(∆K̃(s+ 1, t, x, x)).

(D.4)
Taking s = −1, we find that

∑
n ̸=0

e−Λnt
∫

d2x
√
g ∂ν(δσ)Ψ†

n(x)γµν∇µΨn(x) = −
1
2

∫
d2x
√
g δσ(x) trD(∆K̃(t, x, x)). (D.5)

We then have

δK(t) = −2t
( d
dt +m2

)∫
d2x
√
g δσ(x) trD K̃(t, x, x). (D.6)

Note that the differential equations satisfied by K and K(0) imply that

K(t, x, y) = e−m2tK(0)(t, x, y). (D.7)

The eigenfunctions expansions show that the same is true between K̃ and K̃(0), which implies

δK(t) = −2te−m2t d
dt

∫
d2x
√
g δσ(x) trD K̃(0)(t, x, x). (D.8)
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We then have∫ ∞

0
dt e

m2t −m2t− 1
t

δK̃(t) = −2
[∫

d2x
√
g δσ trD K̃(0)(t, x, x)

]+∞

0

+ 2
∫ +∞

0
dt (m2t+ 1)

(
m2 + d

dt

)∫
d2x
√
g δσ trD K̃(t, x, x)

= −2
∫

d2x
√
g δσ trD

[
K̃(0)(t, x, x)− K̃(t, x, x)

]+∞

0

+ 2m2
∫

dt
∫

d2x
√
g δσ trD K̃(t, x, x)

+ 2m2
∫

dt t d
dt

∫
d2x
√
g δσ trD K̃(t, x, x)

+ 2m4
∫

dt t
∫

d2x
√
g δσ trD K̃(t, x, x)

= 4m4
∫

d2x
√
g δσ(x) trD ζ̃(2, x, x)

= 4m4
∫

d2x
√
g δσ(x) trD ζ(2, x, x)

− 4
∫

d2x
√
g δσ(x)

∑
i

Ψ†
0,i(x)Ψ0,i(x). (D.9)
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