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The logarithmic Schrödinger equation with spatial
white noise on the full space

Quentin CHAULEUR and Antoine MOUZARD

Abstract

We solve the Schrödinger equation with logarithmic nonlinearity and multiplicative spa-
tial white noise on Rd with d ≤ 2. Because of the nonlinearity, the regularity structures and
the paracontrolled calculus can not be used. To solve the equation, we rely on an exponential
transform that has proven useful in the context of other singular SPDEs.

Keywords – Logarithmic Schrödinger equation; Multiplicative white noise; Global well-posedness.

1 – Introduction

We consider the logarithmic Schrödinger equation with spatial white noise

i∂tu = ∆u+ uξ + λu log |u|2 (SlogNLS)

on Rd with initial data u0 and ξ the spatial white noise. We work in dimension d ≤ 2, both
in the focusing case λ > 0 and the defocusing case λ < 0. Since the introduction of regularity
structures [15] and paracontrolled calculus [13], a large class of singular stochastic PDEs have
been studied. While the first theories originally dealt with parabolic PDEs, these methods
were adapted in order to solve dispersive singular PDEs such as the polynomial nonlinear
Schrödinger equation with [14, 19, 20, 26]. This approach relies on a construction of the
Anderson Hamiltonian

H = ∆ + ξ

as a self-adjoint operator which allows the resolution of linear and nonlinear associated
evolution PDEs such as the Schrödinger equation. In particular, [20] obtained Strichartz
inequalities on compact surfaces which allow the resolution of the cubic NLS equation with
initial data in the energy space of H. Another approach was used by Debussche and Weber
[9] on T2, see also [8, 25, 24, 7] for more general results on T2 and R2. They consider an
exponential transform first used for the Parabolic Anderson Model (PAM) equation on R2

by Hairer and Labbé [16] with the new variable v = eXu where X is a random field solution
to

∆X = ξ.

In particular, this allows the resolution of different singular stochastic PDEs without regu-
larity structures and paracontrolled calculus. This transformation was also used for example
for constructive Quantum Field Theory [17, 2] or the Anderson form [18] with the additional
use of regularity structures. While the resolution of parabolic singular SPDEs relies on the
regularizing properties of the heat semigroup, one uses the Hamiltonian structure of the
equation and its conservative quantities in the dispersive case. In particular, this requires
well-prepared initial data depending on the noise.

In this work, we solve the logarithmic Schrödinger equation on R2 with spatial white
noise using the exponential transform. In particular, the nonlinearity is not Lipschitz which
prevents from using any generalized Taylor expansion or paracontrolled expansion. Note
that in the context of nonlinear Schrödinger equations, the logarithmic nonlinearity can be
seen as the formal limit p → 1 of NLS equation with polynomial nonlinearities of the form
λ|u|p−1u, see the recent survey [3, Section 7] for a better understanding of this point of
view. From this perspective, this work can be considered as a natural continuation of the
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articles [8, 20, 25, 24, 7] where the authors successively increased the range of admissible
nonlinearity powers p > 1, using more and more involved tools from dispersive theory such as
Strichartz estimates or modified energies techniques. In the deterministic logarithmic setting
[3, 4], Strichartz inequalities or even more involved dispersive properties has not yet shown
to be useful, and one has to rely only on the Hamiltonian structure of the equation alongside
particular algebraic properties of the nonlinearity. Hopefully, the exponential transform
from [16] interacts well with the logarithmic nonlinearity of (SlogNLS). In fact, with the
new variable v = eXu, the equation rewrites formally as

i∂tv = ∆v − 2∇X · ∇v + |∇X|2v − 2λXv + λv log |v|2

which is better behaved since the roughest term ξ is canceled. In two dimensions, the Hölder
regularity of the noise is −1 − κ for any κ > 0 hence ∇X is a distribution and we have
to replace |∇X|2 by a Wick product :|∇X|2: as for the polynomial equation, this is the
renormalization procedure. Then one can almost surely solve this equation for initial data
v0 = eXu0 ∈ H2. The strategy is to consider a regularization ξε of the noise and the equation

i∂tvε = ∆vε − 2∇Xε · ∇vε + :|∇Xε|2:vε − 2λXεvε + λvε log |vε|2

with ∆Xε = ξε. A suitable H2 bound for this solution has eventually to be obtained in
order to recover a solution in the limit ε to 0. In unbounded space, there is an additional
difficulty due to the fact that the noise does not decrease at infinity. In fact, the noise ξ has a
sub-polynomial growth at infinity and only belongs to weighted Hölder spaces. A solution is
to suppose some decrease for the initial data v0 ∈ H2

µ0
and to propagate this to the solution,

as done in [8, 7]. Note that in the case of the logarithmic Schrödinger equation, working
with weighted initial data is natural as it already appears in the deterministic equation,
see the work of Carles and Gallagher [4]. To the best of our knowledge, this is the first
pathwise resolution of a singular SPDE with a nonlinearity that is not locally Lipschitz, see
for example [21] where Perkowski and Rosati construct martingale solutions to an equation
of this type.

For the regularized equation, one still has to deal with the logarithmic nonlinearity and
the growth of the potential on R2. Indeed, the noise ξ belongs to C−1−κloc for any κ > 0 however
it does not decrease at infinity since its law is invariant by translation. The regularized noise
ξε = ξ ∗ ρε is a centered Gaussian field with covariance

E
[
ξε(x)ξε(y)

]
=

∫
R2

ρε(x− z)ρε(y − z)dz

and one can prove that ξε converges to ξ in a weighted Hölder space. The idea is to introduce
a new parameter δ > 0 which acts as a regularization of the nonlinearity with vε,δ the solution
to

i∂tvε,δ = ∆vε,δ − 2∇Xε · ∇vε,δ + :|∇Xε|2:vε,δ − 2λXεvε,δ + λvε,δ log
(
δ + |vε,δ|2

)
which has a unique global solution for v0 ∈ H2, see for example [6]. Adapting the method
from Carles and Gallagher [4], we are able to recover a unique solution in the limit δ to 0.

In this work, we solve (SlogNLS) on Rd with d ≤ 2. In one dimension, this stochastic PDE
is not singular and one can obtain a unique global solution for initial data u0 ∈ L2

µ0
∩H1. A

natural question is the propagation of the regularity, in general in terms of Sobolev spaces. In
the presence of white noise, the irregularity of the noise prevents the propagation of classical
regularity, however one can still study the propagation of Sobolev spaces associated with
the Anderson Hamiltonian. We prove using the exponential transform that one can almost
propagate e−XH2 with X the random field solution to ∆X = ξ. In two dimensions, this is a
singular stochastic PDE and we use the exponential transform to get global well-posedness
for initial data u0 ∈ e−XH2

µ0
. Our work applies to the same equation on Td as no dispersive

effects are used throughout the proofs, we focus on the unbounded case which is harder since
one has to deal with weighted functional spaces.

In Section 2, we recall the needed tools from harmonic analysis with the Paley-Littlewood
decomposition, weighted Besov spaces, product rule and duality. In Section 3, we give the
needed stochastic bounds on the random fields and the renormalization of the equation with

2



the Wick product. In Section 4, we solve the equation for a deterministic regular potential
with a possible growth at infinity. In Section 5, we solve (SlogNLS) on R and prove the
propagation of regularity for initial data in the space e−XH2. Finally, we solve (SlogNLS)
on R2 using the exponential transform in Section 6.

2 – Functional spaces

Since the law of the white noise is invariant by translation, it does not decay at infinity.
To deal with this, we work in weighted Lebesgue and Besov spaces. For any µ ∈ R and
p ∈ [1,∞], we consider

‖u‖Lpµ(Rd) =
(∫

Rd
〈x〉µ|f(x)|pdx

) 1
p

with 〈x〉 =
√

1 + |x|2. An important tool is the Paley-Littlewood decomposition

u =
∑
n≥0

∆nu

where (
∆nu

)
(x) := 2d(n−1)

∫
Rd
χ
(
2n−1(x− y)

)
u(y)dy

with χ ∈ S(Rd) and supp χ̂ ⊂ { 12 ≤ |z| ≤ 2} for n ≥ 1 and(
∆0u

)
(x) :=

∫
Rd
χ0(x− y)u(y)dy

with χ0 ∈ S(Rd) and supp χ̂0 ⊂ {|z| ≤ 1}. Most of the following definitions and properties
can be found in [10, Section 4]. See also [8] and references therein, in particular the book [1].

Definition 2.1. Let µ, α ∈ R and p, q ∈ [1,∞). The weighted Besov space Bαp,q,µ is the set of
distribution u ∈ S ′(Rd) such that

‖u‖Bαp,q,µ :=
(∑
n≥0

2αnq‖∆nu‖qLpµ(Rd)
) 1
q

<∞.

For p = q = 2, one recovers the usual weighted Sobolev spaces Hαµ = Bα2,2,µ with

‖u‖Hαµ(Rd) = ‖(F−1〈·〉αF )u‖L2
µ(Rd).

We also denote the case p = q =∞ as Cαµ = Bα∞,∞,µ which corresponds to the usual weighted
Hölder spaces for α ∈ R+\N. Moreover, there exist constants C1, C2 > 0 depending on the
spaces parameters such that

C1‖〈·〉µu‖Bαp,q,0 ≤ ‖u‖Bαp,q,µ ≤ C2‖〈·〉µu‖Bαp,q,0 ,

and Bαp,q,0 corresponds to the usual Besov spaces hence weighted Besov spaces satisfy the
following embeddings.

Lemma 2.2. Let p1, p2, q1, q2 ∈ [1,∞] and µ, µ′ ∈ R such that p1 ≤ p2, q1 ≤ q2 and µ1 ≥ µ2.
For all α ∈ R, one has the Besov embeddings

Bαp1,q1,µ1
(Rd) ⊂ B

α−d
(

1
p1
− 1
p2

)
p2,q2,µ2 (Rd).

as well as the Sobolev embeddings

∀α ≥ d

2
− d

p
, Hαµ(Rd) ⊂ Lpµ(Rd)

for p ∈ [2,∞]. Finally, the embedding

Hα1
µ1

(Rd) ↪→ Hα2
µ2

(Rd)

is compact for α1 > α2 and µ1 > µ2.
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The following lemma is a useful interpolation estimate that we shall use in the following,
and which can be found in [22, Theorem 3.8].

Lemma 2.3. Let p0, p1, q0, q1 ∈ [1,∞] and α0, α1, µ0, µ1 ∈ R and p, q, α, µ such that

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
,

and
α = (1− θ)α0 + θα1, µ = (1− θ)µ0 + θµ1

for θ ∈ [0, 1]. Then there exists C > 0 such that

‖u‖Bαp,q,µ(Rd) ≤ C‖u‖
1−θ
Bα0
p0,q0,µ0

(Rd)‖u‖
θ
Bα1
p1,q1,µ1

(Rd).

In particular, we have
‖u‖Hαµ ≤ C‖u‖

1−θ
Hα0
µ0

‖u‖θHα1
µ1
.

In general, one can only multiply a distribution by a test function. The following lemma
gives a product rule in weighted Besov space, as a generalisation of Young condition, see [23,
Section 2.8.2].

Lemma 2.4. Let α1, α2 ∈ R such that α1 + α2 > 0. Let µ1, µ2 ∈ R with µ = µ1 + µ2 and
p1, p2 ∈ [1,∞] with 1

p = 1
p1

+ 1
p2
. Then for any κ > 0, there exists a constant C > 0 such

that
‖uv‖Bα−κp,p,µ(Rd) ≤ C‖u‖Bα1

p1,p1,µ1
(Rd)‖v‖Bα2

p2,p2,µ2
(Rd)

where α = min(α1, α2).

As we will control energy associated to dispersive PDEs, the following duality result from
in weighted Besov spaces from [23, Theorem 2.11.2] will be useful.

Lemma 2.5. Let α, µ ∈ R and p, q ∈ [1,∞]. Then there exists a constant C > 0 such that∣∣∣ ∫
Rd
u(x)v(x)dx

∣∣∣ ≤ C‖u‖Bαp,q,µ(Rd)‖v‖B−αp′,q′,−µ(Rd),
where 1

p + 1
p′ = 1 and 1

q + 1
q′ = 1 for any u, v ∈ S(Rd).

In order to solve the logarithmic Schrödinger equation with an unbounded potential, we
will also need the following inequality in weighted Lebesgue spaces.

Lemma 2.6. Let m ∈ N∗, η > 0 and µ, µ0 ∈ R such that 0 ≤ µ < µ0. If η < 2(µ0−µ)
d
2+µ0

, then
there exists a constant C > 0 such that∫

Rd
〈x〉2µ|u(x)|2

∣∣log |u(x)|2
∣∣m dx ≤ C‖u‖

dη
2µ0

+ 2µ
µ0

L2
µ0

‖u‖
2−η− dη

2µ0
− 2µ
µ0

L2 + ‖u‖2+η
L2+η

2µ
2+η

.

Moreover, there exists a constant C ′ > 0 such that

‖u‖2+η
L2+η

2µ
2+η

≤ C ′min
(
‖u‖

dη
2

H1
4µ
dη

‖u‖2+η−
dη
2

L2 , ‖u‖
dη
2

H1‖u‖
2+η− dη2
L2

2µ

2+η− dη
2

)
.

In particular, this gives∫
Rd
|u(x)|2

∣∣log |u(x)|2
∣∣m dx ≤ C‖u‖

dη
2µ0

L2
µ0

‖u‖
2−η− dη

2µ0

L2 + C‖u‖
dη
2

H1‖u‖
2+η− dη2
L2 .
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Proof : For any m ∈ N∗ and η > 0, there exists a constant C > 0 such that

| log y|m ≤ Cyη + Cy−η

for y > 0 thus∫
Rd
〈x〉2µ|u(x)|2

∣∣log |u(x)|2
∣∣m dx ≤ C

∫
Rd
〈x〉2µ|u(x)|2−ηdx+ C

∫
Rd
〈x〉2µ|u(x)|2+ηdx.

For the first term, let R > 0 and write∫
Rd
〈x〉2µ|u(x)|2−ηdx =

∫
|x|≤R

〈x〉2µ|u(x)|2−ηdx+

∫
|x|>R

〈x〉2µ|u(x)|2−ηdx

following for example [5, Lemma 6.2]. For p = 2
2−η ∈ (1,∞) and p′ = 2

η such that 1
p + 1

p′ = 1,
Hölder inequality gives∫

Rd
〈x〉2µ|u(x)|2−ηdx ≤

(∫
|x|≤R

〈x〉2µp
′
dx
) 1
p′
(∫
|x|≤R

|u(x)|(2−η)pdx
) 1
p

+
(∫
|x|>R

〈x〉(2µ−α)p
′
dx
) 1
p′
(∫
|x|>R

〈x〉αp|u(x)|(2−η)pdx
) 1
p

≤
(∫
|x|≤R

〈x〉2µp
′
dx
) η

2
(∫
|x|≤R

|u(x)|2dx
) 2−η

2

+
(∫
|x|>R

〈x〉(2µ−α)p
′
dx
) η

2
(∫
|x|>R

〈x〉αp|u(x)|2dx
) 2−η

2

with α > 0 such that (2µ− α)p′ < −d. This gives the condition

α >
ηd

2
+ 2µ

hence we can take α = 2µ0

p = (2− η)µ0 for η small enough to get∫
Rd
〈x〉2µ|u(x)|2−ηdx ≤ C ′R2µ+ dη

2

(∫
Rd
|u(x)|2dx

) 2−η
2

+ C ′R2µ−(2−η)µ0+
dη
2

(∫
Rd
〈x〉2µ0 |u(x)|2dx

) 2−η
2

for a constant C ′ = C ′(η, µ, d) > 0. Optimizing this bound in R > 0 gives

R =

(
‖u‖L2

µ0

‖u‖L2

) 1
µ0

and we get ∫
Rd
〈x〉2µ|u(x)|2−ηdx ≤ 2C ′‖u‖

2µ
µ0

+ dη
2µ0

L2
µ0

‖u‖
2−η− 2µ

µ0
− dη

2µ0

L2 ,

which concludes that∫
Rd
〈x〉2µ|u(x)|2

∣∣log |u(x)|2
∣∣m dx ≤ 2CC ′‖u‖

2µ
µ0

+ dη
2µ0

L2
µ0

‖u‖
2−η− 2µ

µ0
− dη

2µ0

L2 + C‖u‖2+η
L2+η

2µ
2+η

.

The condition η small enough is explicit and given by (2− η)µ0 >
ηd
2 + 2µ, that is

η <
2(µ0 − µ)
d
2 + µ0

.

Lemma 2.2 gives
‖u‖L2+η

2µ
2+η

≤ C‖u‖
H
d
2
− d

2+η
2µ
2+η
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with C = C(η, µ) > 0 and Lemma 2.3 gives

‖u‖
H

ηd
2(2+η)
2µ
2+η

≤ C ′‖u‖1−θL2 ‖u‖θHαθµθ

for θ ∈ [0, 1] with C ′ = C ′(η, θ, µ) > 0 and

αθ =
ηd

2θ(2 + η)
and µθ =

2µ

θ(2 + η)
.

Hence taking θ = dη
2(2+η) yields

‖u‖2+η
L2+η

2µ
2+η

≤ C ′′‖u‖2+η−
dη
2

L2 ‖u‖
dη
2

H1
4µ
dη

.

Following the same path, one also gets

‖u‖2+η
L2+η

2µ
2+η

≤ C ′′‖u‖
dη
2

H1‖u‖
2+η− dη2
L2

2µ

2+η− dη
2

which completes the proof.

�

3 – Stochastic bounds and renormalization

In this section, we give the bounds on random fields needed to solve (SlogNLS) on R and R2.
In particular, we perform the renormalization probabilistic step with the definition of the
Wick square :|∇X|2: on R2. The noise ξ is the Gaussian random distribution such that
E
[
〈ξ, ϕ〉

]
= 0 and

E
[
〈ξ, ϕ〉〈ξ, ψ〉

]
= 〈ϕ,ψ〉L2(Rd)

for any ϕ,ψ ∈ S(Rd). The covariance can also be written formally as

E
[
ξ(x)ξ(y)

]
= δ0(x− y).

The following proposition gives the regularity of the noise. We give its proof to give a flavor
of the arguments but refer to [8] for the proofs of all the finer stochastic bounds needed
throughout the analysis.

Proposition 3.1. For any α < −d2 and µ > 0, we have

ξ ∈ Cα−µ(Rd)

almost surely.

Proof : Since the noise is Gaussian, we have

E
[
〈ξ, ϕ〉p

]
≤ (p− 1)

p
2E
[
〈ξ, ϕ〉2

] p
2

for any test function ϕ, this is usually refered to as Gaussian hypercontractivity. In order to
use this, we estimate the Besov norm Bγp,p,−µ for p large and use the embedding

Bγp,p,−µ(Rd) ↪→ Bγ−
d
p

∞,∞,−µ(Rd).

Denoting Kn = 2d(n−1)χ(2n−1·) as in the definitions of the Besov spaces in Section 2, we
have

E
[
‖∆nξ‖pLp−µ(Rd)

]
=

∫
Rd

E
[
〈ξ,Kn(x− ·)〉p

]
〈x〉−pµdx

≤ (p− 1)
p
2

∫
Rd

E
[
〈ξ,Kn(x− ·)〉2

] p
2 〈x〉−pµdx

≤ (p− 1)
p
2 ‖Kn‖pL2(Rd)

∫
Rd
〈x〉−pµdx

6



using that ξ is an isometry from L2(Rd) to L2(Ω). This is finite as long as pµ > d and we
have

‖Kn‖2L2(Rd) = 22d(n−1)‖K(2n−1·)‖2L2(Rd) = 2d(n−1)‖K‖2L2(Rd).

We get

E
[
‖∆nξ‖pLp−µ

]
≤ (p− 1)

p
2 2p(n−1)

d
2 ‖K‖2L2(Rd)

∫
Rd
〈x〉−pµdx

hence for any γ < −d2 , there exists a constant C = C(γ) > 0 such that

E
[
2npγ‖∆nξ‖pLp−µ

]
≤ C2

1
2pn(γ+

d
2 ).

For p large enough, this is a convergent series thus

E
[
‖ξ‖Cα−µ

]
<∞

for any α < −d2 and µ > 0, which completes the proof since a random variable in L1(Ω) is
finite almost surely.

�

Let G ∈ C∞(R2\{0}) such that supp G ⊂ B(0, 1) and that G coincide with the Green
function of the Laplacian on a small ball around 0. Then X := G ∗ ξ is a solution to

∆X = ξ + ϕ ∗ ξ

with a suitable function ϕ ∈ C∞c (R2). Consider a regularization of the noise ξε = ξ ∗ ρε
with ρε(·) = ε−2ρ(ε−1·) and ρ a smooth positive function such that

∫
R2 ρ(x)dx = 1. Then ξε

converges to ξ as ε goes to 0 in C−
d
2−κ

−µ and one can consider Xε := G ∗ ξε which converges
to X as ε goes to 0 in C2− d2−κ. In one dimension, ∇X is a function hence the square |∇X|2
is well-defined. In two dimensions, ∇X is only a distribution hence the square |∇X|2 is
ill-defined and the family of functions |∇Xε|2 diverges as ε goes to 0. This divergence is
described by the Wick square as stated in the following proposition.

Proposition 3.2. There exists a distribution :|∇X|2: ∈ C−κ−µ(R2) for any κ > 0 such that

:|∇X|2: = lim
ε→0

(
|∇Xε|2 − E

[
|∇Xε|2

])
in C−κ−µ(R2). Moreover, the mean E

[
|∇Xε|2

]
diverges as log(ε).

In order to solve our equation, we will need the following bounds proved in [8], see Lemmas
2.7, 2.8 and 2.10. In particular, not only X has sub-polynomial growth but also eX and e−X
which will be crucial to our results. Similar bounds can be obtained on the line without the
renormalization procedure, we do not give the details since it is similar.

Lemma 3.3. For any µ > 0, α ∈ (0, 1), β ∈ R and a ∈ R, we have

‖Xε‖Cα−µ(R2) + ‖:∇X2
ε :‖Cα−1

−µ (R2) + ‖eaXε‖Cα−µ(R2) + ‖ϕ ∗ ξε‖Cβ−µ(R2) ≤ C

with C > 0 a random constant bounded in Lp for any p ∈ [1,∞).

Lemma 3.4. For any µ ∈ (0, 1) and p ∈ (2/µ,∞), we have

‖∇Xε‖2Lp−µ(R2) + ‖:∇X2
ε :‖Lp−µ(R2) ≤ C| log ε|

with C > 0 a random constant bounded in Lp for any p ∈ [1,∞).

Lemma 3.5. For any µ > 0, α ∈ (0, 1) and κ ∈ (0, 1− α), we have

‖Xε −X‖2Cα−µ(R2) + ‖:∇X2
ε :− :∇X2:‖Cα−1

−µ (R2) ≤ Cε
κ

with C > 0 a random constant bounded in Lp for any p ∈ [1,∞).
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4 – The deterministic equation

In this section, we consider the deterministic logarithmic Schrödinger equation

i∂tu = ∆u+ V u+ λu log |u|2 (logNLS)

with initial data u0 ∈ L2
µ0

(Rd) ∩ H1(Rd) and a potential V ∈ C∞(Rd) which has sub-
polynomial growth at infinity, namely

V ∈ L∞−µ(Rd)

for all µ > 0 and d ≥ 1. Two main problems prevent the use of classical arguments in order
to get global well-posedness, the fact that the logarithmic nonlinearity is not Lipschitz at
the origin and the growth of the potential V at infinity. In order to solve the equation,
we work in weighted Besov spaces with a space truncation of V and a regularization of the
logarithmic nonlinearity. This gives a global solution that passes to the limit with respect to
the two parameters which allows to recover a solution to (logNLS).

Proposition 4.1. Let 0 < µ0 ≤ 1
2 and u0 ∈ L2

µ0
∩ H1. There exists a unique solution u ∈

C(R;L2
µ0
∩ H1) to (logNLS) with initial data u0. If moreover u0 ∈ H2, then u ∈ C(R;L2

µ0
∩

H2).

Proof : Let χ ∈ C∞0 (Rd) a smooth positive compactly supported function such that supp χ ⊂
B(0, 2) and χ ≡ 1 on B(0, 1). Denote

χn(x) := χ
(
n−1x

)
and Vn := χnV

for n ≥ 1. Let δ > 0 and consider the regularized logarithmic Schrödinger equation

i∂tu
δ
n = ∆uδn + Vnu

δ
n + λuδn log

(
δ + |uδn|2

)
with initial data uδn(0) = u0. As this equation is L2-subcritical for any dimension and
contains only bounded and smooth terms, there exists a unique solution uδn ∈ C(R,H1) for
u0 ∈ H1, see for example [6, Theorem 3.4.1]. The two conserved quantities are the mass

M(uδn) =

∫
Rd
|uδn(x)|2dx

and the energy

Eδ,n(uδn) =

∫
Rd
|∇uδn(x)|2dx−

∫
Rd
Vn(x)|uδn(x)|2dx−λ

∫
Rd

(δ+ |uδn(x)|2) log
(
δ+ |uδn(x)|2

)
dx.

We first obtain an uniform bound in H1 with respect to δ. Differentiating the equation gives

i∂t∇uδn = ∆∇uδn + Vn∇uδn + uδn∇Vn + λ∇uδn log
(
δ + |uδn|2

)
+ 2λRe

(
uδn∇uδn

) uδn
δ + |uδn|2

which after taking the imaginary part of the scalar product with ∇uδn gives

1

2

d

dt
‖∇uδn(t)‖2L2 ≤ |λ|

∫
Rd

|uδn(x)|2

δ + |uδn(x)|2
|∇uδn(x)|2dx+

∣∣∣ ∫
Rd

Im
(
∇Vn(x)uδn(x)∇uδn(x)

)
dx
∣∣∣

≤
(
|λ|+ ‖∇Vn‖L∞‖uδn(t)‖2L2

)
‖∇uδn(t)‖2L2

≤
(
|λ|+ ‖∇Vn‖L∞‖u0‖2L2

)
‖∇uδn(t)‖2L2

using the conservation of mass. Gronwall Lemma then yields the bound

sup
t∈I
‖∇uδn(t)‖2L2 ≤ e2|I|

(
|λ|+‖∇Vn‖L∞‖u0‖2L2

)
‖∇u0‖2L2
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for any finite interval I ⊂ R, which is uniform in δ > 0 but may diverge in n ≥ 1. We now
obtain a bound in L2

µ0
for u. We have

1

2

d

dt
‖uδn(t)‖2L2

µ0
= µ0

∫
Rd

Im
(x · ∇uδn(x)

〈x〉2−2µ0
uδn(x)

)
dx

≤ µ0‖uδn(t)‖L2‖∇uδn(t)‖L2
2µ0−1

≤ µ0‖u0‖L2‖uδn(t)‖H1

since 2µ0 ≤ 1 and using the mass conservation. This gives

sup
t∈I
‖uδn(t)‖2L2

µ0
≤ ‖u0‖2L2

µ0
+ 2|I|µ0‖u0‖L2 sup

t∈I
‖uδn(t)‖H1

for any finite interval I ⊂ R hence a bound of uδn(t) in L2
µ0

uniform in δ > 0 with the previous
bound in H1. We now need to take the limit δ to 0 for the approximating sequence (uδn)δ in
order to recover a weak solution un. This follows closely the compactness arguments from
the seminal paper of Ginibre and Velo [12], we give its main ingredients as this strategy will
be used throughout this paper. From the uniform bounds in H1 and L2

µ0
, we infer that up

to extraction, not relabeled for reader’s convenience,

uδn ⇀ un in C(I,H1 ∩ L2
µ0

)

and ‖un‖C(I,H1∩L2
µ0

) ≤ C‖u0‖H1∩L2
µ0

where C = C(n, |I|, ‖u0‖L2) > 0. From Lemma 2.6,
we also get that uδn log(|uδn|2 + δ) is uniformly bounded in C(I, L2) so that

uδn log(|uδn|2 + δ) ⇀ F in C(I, L2)

and ‖F‖C(I,L2) ≤ C‖u0‖H1∩L2
µ0

for some F ∈ C(I, L2), again up to extraction. From the
compact embedding H1 ∩ L2

µ0
↪→ L1 and by passing to the limit δ to 0 into the weak

formulation of the regularized equation, we get

i∂tun = ∆un + Vnun + λF

in the sense of distributions since Vn ∈ C∞. It only remains to show that F = un log(|un|2)
which is the technical part of this compactness method. We have

‖u(t2)− u(t1)‖2L2 =

∫ t2

t1

2 Re
〈
u(t)− u(t1), ∂tu(t)

〉
dt

≤ 4|t2 − t1|‖u‖C(I,H1)|‖∂tu‖C(I,H−1)

which gives a uniform bound in C 1
2 (I, L2) hence uniform equicontinuity. Restricting our

attention to a compact K ⊂ Rd, we also naturally get a uniform bound in C
(
I,H1(K)

)
. The

compactness of the embedding H1(K) ↪→ L2(K) ensures that the set
{
uδn(t)

∣∣ δ ∈ (0, 1)
}
is

relatively compact in L2(K). Up to extraction, one gets convergence in C
(
I,H1(K)

)
from

Arzelà-Ascoli’s Theorem, see for example Ginibre’s lecture notes [11, Lemma 7.7]. Since we
already know that (uδn)δ converges weakly to un in C

(
I, L2(K)

)
, we have

uδn → un in C
(
I, L2(K)

)
for all finite I ⊂ R, hence un ∈ C

(
R, L2(K)

)
and un(0) = u0. Finally, up to extraction,

uδn(t, x)→ un(t, x) for almost every (t, x) ∈ R×K, therefore

uδn(t, x) log(|uδn(t, x)|2 + δ)→ un(t, x) log |un(t, x)|2.

As we also have weak convergence towards F and the compact K is arbitrary, we infer that

F (t, x) = un(t, x) log |un(t, x)|2

for almost all (t, x) ∈ R× Rd, which ensures that un is indeed a solution to

i∂tun = ∆un + Vnun + λun log |un|2
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with conserved mass and conserved energy

En(un) =

∫
Rd
|∇un(x)|2dx−

∫
Rd
Vn(x)|un(x)|2dx− λ

∫
Rd
|un(x)|2 log |un(x)|2dx.

It only remains to pass to the limit n to +∞. For the potential, we have∣∣∣ ∫
Rd
Vn(x)|un(t, x)|2dx

∣∣∣ ≤ ‖V ‖L∞−µ0 ‖un(t)‖2L2
µ0

which gives with the previous bound

sup
t∈I

∣∣∣ ∫
Rd
Vn(x)|un(t, x)|2dx

∣∣∣ ≤ ‖V ‖L∞−µ0 ‖u0‖2L2
µ0

+ 2|I|µ0‖V ‖L∞−µ0‖u0‖L2 sup
t∈I
‖uδn(t)‖H1

since 2µ0 ≤ 1. For the logarithmic term, we have∣∣∣ ∫
Rd
|un(t, x)|2 log |un(t, x)|2dx

∣∣∣ ≤ C‖un(t)‖
dη
2µ0

L2
µ0

‖u0‖
2−η− dη

2µ0

L2 + C‖un(t)‖
dη
2

H1‖u0‖
2−η− dη2
L2

for any η > 0 small enough using Lemma 2.6 with µ = 0 and the conservation of mass. With
the previous bound on ‖un(t)‖L2

µ0
, we get

sup
t∈I

∣∣∣ ∫
Rd
|un(t, x)|2 log |un(t, x)|2dx

∣∣∣ ≤ A1 +A2|I|
dη
2µ0 sup

t∈I
‖un(t)‖

dη
4µ0

H1 +A3 sup
t∈I
‖un(t)‖

dη
2

H1

with A1, A2, A3 > 0 constant depending on d, η and ‖u0‖L2
µ0
. Using the conservation of

energy, we get

sup
t∈I

∣∣∣ ∫
Rd
|∇un(t, x)|2dx

∣∣∣ ≤ ∣∣En(u0)
∣∣+ ‖V ‖L∞−µ0‖u0‖

2
L2
µ0

+ 4|I|µ0‖V ‖L∞−µ0‖u0‖L2 sup
t∈I
‖uδn(t)‖H1

+A1 +A2|I|
dη
2µ0 sup

t∈I
‖un(t)‖

dη
4µ0

H1 +A3 sup
t∈I
‖un(t)‖

dη
2

H1

which, for η ≤ 4µ0

d , gives

sup
t∈I
‖∇un(t)‖2L2 ≤ A+B sup

t∈I
‖un(t)‖H1

with constant A,B > 0 depending on d, µ0, I, ‖u0‖L2
µ0

and E(u0). This yields

sup
n≥1

sup
t∈I
‖∇un(t)‖2L2 <∞

and allows to pass to the limit in n to +∞ in H1 using Arzelà-Ascoli’s Theorem as before
and complete the proof of the existence. The uniqueness follows from the inequality∣∣∣ Im (z log |z|2 − z′ log |z′|2

)
(z − z′)

∣∣∣ ≤ 4|z − z′|2 (?)

for all z, z′ ∈ C, see for example [6, Lemma 9.3.5]. Indeed, for u1, u2 two solutions, v = u1−u2
satisfies

i∂tv = ∆v + V v + λ
(
u1 log |u1|2 − u2 log |u2|2

)
hence

1

2

d

dt
‖v(t)‖2L2 ≤ |λ|

∫
Rd

∣∣∣ Im (u1(x) log |u1(x)|2 − u2(x) log |u2(x)|2
)(
u1(x)− u2(x)

)∣∣∣dx
≤ 4|λ|‖v(t)‖2L2

which gives v = 0 using Gronwall Lemma.

For u0 ∈ H2, again the usual theory gives a solution uδn ∈ C(R,H2) to the truncated and
regularized equation. The time derivative vδn := ∂tu

δ
n satisfies

i∂tv
δ
n = ∆vδn + Vnv

δ
n + λvδn log

(
δ + |uδn|2

)
+ 2λRe

(
uδnv

δ
n

) uδn
δ + |uδn|2
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with initial data vδn(0) = ∂tu
δ
n(0) = ∆u0 + Vnu0 + λu0 log

(
δ + |u0|2

)
. Following the same

path as before gives

1

2

d

dt
‖vδn(t)‖2L2 ≤ |λ|

∣∣∣ ∫
Rd

Re
(
uδn(t, x)vδn(t, x)

) Im
(
uδn(t, x)vδn(t, x)

)
δ + |uδn(t, x)|2

dx
∣∣∣

≤ |λ|‖vδn(t)‖2L2

hence Gronwall lemma gives

‖vδn(t)‖2L2 ≤ e2|λt|‖∆u0 + Vnu0 + λu0 log
(
δ + |u0|2)‖2L2

using the expression for vδn(0). Since u0 ∈ L2
µ0
∩H2, we have

‖∆u0 + Vnu0‖L2 <∞

hence we only have to deal with the logarithmic term. It follows from the same proof as for
Proposition 2.6 with

|u0|2 log(δ + |u0|2) ≤ C(|u0|2+η + |u0|2−η)

with η > 0 arbitrary small and C > 0 a constant independent of δ ∈ (0, 1). In the end, we
get

sup
n≥1

sup
δ>0

sup
t∈I
‖vδn(t)‖2L2 <∞

and, with a similar bound on the potential and logarithmic term, the equation gives

sup
n≥1

sup
δ>0

sup
t∈I
‖uδn(t)‖H2 <∞

which completes the proof.

�

Remark : Note that H1
µ ( L2

µ∩H1 for µ > 0 since u ∈ H1
µ is equivalent to x 7→ 〈x〉µu(x) ∈

H1 thus
‖〈x〉µ−1u(x) + 〈x〉µ∇u(x)‖L2 <∞

which is a priori not true for u ∈ L2
µ ∩H1. However for any γ, µ ∈ R, Lemma 2.3 gives

‖u‖Hγθ
(1−θ)µ

≤ C‖u‖1−θL2
µ
‖u‖θHγ

with C > 0 a constant and θ ∈ (0, 1). In particular, the previous result implies

u ∈ C(R,Hθ(1−θ)µ0
) and u ∈ C(R,H2θ

(1−θ)µ0
)

for any θ ∈ (0, 1) respectively for u0 ∈ Lµ0 ∩H1 and u0 ∈ Lµ0 ∩H2. This will be used often
in the following.

5 – Stochastic equation on the line

The stochastic logarithmic Schrödinger equation

i∂tu = ∆u+ ξu+ λu log |u|2 (SlogNLS)

on R has two conservation laws, namely the mass conservation

M(u) =

∫
R
|u(x)|2dx

and the energy conservation

E(u) =

∫
R
|∇u(x)|2dx− λ

∫
R
|u(x)|2 log |u(x)|2dx−

∫
R
|u(x)|2ξ(x)dx.
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Since the noise is a distribution, the last term in the energy has to be interpreted as a
distribution bracket which is well-defined for smooth enough u. In one dimension, ξ ∈ C−

1
2−κ

−µ

for any κ, µ > 0 hence the bracket is well-defined for u ∈ H
1
2+κ

′

µ′ with µ < µ′ and κ < κ′. In
particular, the energy is well-defined for any u ∈ H1

µ0
with µ0 > 0. Because of the irregularity

of the noise, one can not hope to propagate arbitrary smoothness for the initial data, we
prove the following theorem. Recall that the random field X introduced before satisfies the
equation

∆X = ξ + ϕ ∗ ξ

with ϕ ∈ C∞c a smooth compactly supported function and that X, eX , e−X ∈ C−
3
2−κ

−µ for any
µ, κ > 0.

Theorem 5.1. Let 0 < µ0 ≤ 1
2 and u0 ∈ L2

µ0
(R) ∩ H1(R). There exists a unique solution

u ∈ C
(
R, L2

µ0
(R) ∩ H1(R)

)
to (SlogNLS) with initial data u0. If moreover u0 ∈ e−XH2

µ0
,

then u ∈ C
(
R, e−XH2θ

(1−θ)µ
)
for any µ < µ0 and θ ∈ (0, 1). In particular, the solution belongs

to C
(
R,Hγ

(1− γ2 )µ
)
for any µ < µ0 and γ < 3

2 .

Proof : From Proposition 4.1, there exists a global solution uε ∈ C(R, L2
µ0
∩H1) to

i∂tuε = ∆uε + ξεuε + λuε log |uε|2

with initial data u0 ∈ L2
µ0
∩H1 with conserved mass and regularized energy

Eε(uε) =

∫
R
|∇uε(x)|2dx−

∫
R
|uε(x)|2ξε(x)dx− λ

∫
R
|uε(x)|2 log |uε(x)|2dx.

For ε small enough, we have∫
R
|∇uε(t, x)|2dx ≤ 2|E(u0)|+

∣∣∣λ ∫
R
|uε(t, x)|2 log |uε(t, x)|2dx

∣∣∣+
∣∣∣ ∫

R
|uε(t, x)|2ξε(x)dx

∣∣∣
with |E(u0)| < ∞ since u0 ∈ L2

µ0
∩ H1 ⊂ Hθ(1−θ)µ0

for any θ ∈ (0, 1). For the logarithmic
term, the proof of Proposition 4.1 gives

sup
t∈I

∣∣∣ ∫
Rd
|uε(t, x)|2 log

(
|uε(t, x)|2

)
dx
∣∣∣ ≤ A1 +A2|I|

η
2µ0 sup

t∈I
‖uε(t)‖

η
4µ0

H1 +A3 sup
t∈I
‖uε(t)‖

η
2

H1

with A1, A2, A3 > 0 constant depending on η, µ0, ‖u0‖L2
µ0

and ‖u0‖H1 for any finite interval
I ⊂ R. For the noise term, we have∣∣∣∣∫

R
ξε(x)|uε(t, x)|2dx

∣∣∣∣ ≤ C‖ξε‖C− 1
2
−κ

−2µ

‖uε(t)uε(t)‖
B

1
2
+κ

1,1,2µ

≤ C‖ξ‖
C
− 1

2
−κ

−2µ

‖uε(t)‖2
H

1
2
+2κ

µ

. C ′‖ξ‖
C
− 1

2
−κ

−2µ

‖uε(t)‖1−4κL2
µ

1
2
−2κ

‖uε(t)‖1+4κ
H1

for κ, µ > 0 using Lemma 2.4 and Lemma 2.3 with C ′ > 0 a constant depending on µ and
κ. Again following the proof of Proposition 4.1, we have

sup
t∈I
‖uε(t)‖2L2

µ0
≤ ‖u0‖2L2

µ0
+ 2|I|µ0‖u0‖L2 sup

t∈I
‖uε(t)‖H1

hence for µ = µ0( 1
2 − 2κ), we get

sup
t∈I

∣∣∣∣∫
R
ξε(x)|uε(t, x)|2dx

∣∣∣∣ ≤ C sup
t∈I

(
‖uε(t)‖1+4κ

H1 + |I| 12−2κ‖uε(t)‖
3
2+2κ

H1

)
with C > 0 a constant depending on µ0, κ and ‖u0‖L2

µ0
. Thus the conservation of energy

gives

sup
t∈I

∫
R
|∇uε(t, x)|2dx ≤ 2|E(u0)|+ C sup

t∈I

(
‖uε(t)‖1+4κ

H1 + |I| 12−2κ‖uε(t)‖
3
2+2κ

H1

)
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which for 3
2 + 2κ < 2 gives

sup
ε>0

sup
t∈I
‖uε(t)‖H1 <∞.

This bound gives the existence of a solution using Arzelà-Ascoli’s Theorem as before, the
noise part being well controlled since ξ ∈ C−

1
2−κ

−µ and that the solution is controlled in
L2
µ0
∩ H1. The proof of uniqueness is the same as in the deterministic case of Proposition

4.1.

For the propagation of regularity, the usual path is to suppose higher Sobolev regularity
for the initial data and prove that it is conserved for positive time. Because of the roughness
of the noise ξ, this does not hold anymore. However, one can consider initial data in the
Sobolev space associated to the Anderson Hamiltonian. Consider the new variable

v := eXu

where X is a solution to
∆X = ξ + ϕ ∗ ξ

with ϕ ∈ C∞c (R) is a smooth compactly supported function introduced before. It satisfies
the equation

i∂tv = ∆v − 2∇X · ∇v − 2λXv + v(|∇X|2 − ϕ ∗ ξ) + λv log |v|2

with initial data v0 = eXu0. While this equation seems more complicated, it is better
behaved since the roughest term is canceled. With our previous result, one gets global
existence and uniqueness for initial data v0 ∈ eX(L2

µ0
∩ H1) with v ∈ C

(
R, eX(L2

µ0
∩ H1)

)
.

Since eX , e−X ∈ C
3
2−κ
−µ for any µ, κ > 0, we have

eX(L2
µ0
∩H1) ⊂ Hθ(1−θ)µ

for any µ < µ0 and θ ∈ (0, 1) as well as

H1
µ0
⊂ eX(L2

µ ∩H1)

for any µ < µ0. For v0 ∈ H1
µ0
, we then have e−Xv0 ∈ L2

µ ∩ H1 for µ < µ0 thus the
previous result implies the existence of a global solution v ∈ C(R,Hθ(1−θ)µ) for any µ < µ0

and θ ∈ (0, 1). Using Kato’s trick, we now prove the propagation of regularity for v0 ∈ H2
µ0
.

Let w := ∂tv which formally satisfies the equation

i∂tw = ∆w − 2∇X · ∇w − 2λXw + w(|∇X|2 − ϕ ∗ ξ) + λw log |v|2 + 2λRe(vw)
v

|v|2

with initial data

w(0) = (∂tv)(0) = ∆v0 − 2∇X · ∇v0 − 2λXv0 + v0(|∇X|2 − ϕ ∗ ξ) + λv0 log |v0|2.

Of course, we point out that the term 2λRe(vw)v/|v|2 might be singular, and one has to
perform the same kind of regularization procedure with saturating constant δ > 0 as in the
proof of Proposition 4.1 and then to pass to the limit δ → 0 thanks to uniform estimates. As
it follows the exact same path as we did before, we omit the details here. Since X ∈ C

3
2−κ
−µ for

any µ, κ > 0 and v0 ∈ H2
µ0
, we get that e−Xw(0) ∈ L2, which is exactly where it is important

that we have canceled the roughest term ξ, and we can then follow the usual path. Using
the equation at the level of u, Kato’s trick gives

‖e−Xw(t)‖2L2 ≤ e4|λt|‖e−Xw(0)‖2L2

thus
‖w(t)‖2L2

−µ
≤ e4|λt|‖eX‖L∞−µ‖e

−Xw(0)‖2L2

for any µ > 0. Using the equation on v, we get

‖∆v(t)‖L2
−µ
≤ ‖i∂tv + 2∇X · ∇v + 2λXv − v(|∇X|2 − ϕ ∗ ξ) + λv log |v|2‖L2

−µ

≤ e2|λt|‖eX‖
1
2

L∞−µ
‖e−Xw(0)‖2L2 + 2C‖∇X‖L∞−µ‖∇v‖L2

2µ
+ 2C|λ|‖X‖L∞−µ‖v‖L2

2µ

+ C‖|∇X|2 − ϕ ∗ ξ‖L∞−µ‖v‖L2
2µ

+ C‖v‖
η

2µ0

L2
µ0

‖v‖
2−η− η

2µ0

L2 + ‖v‖
η
2

H1‖v‖
2+η− η2
L2
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with a parameter η > 0 hence v ∈ C
(
R,H2

−µ
)
for any µ > 0 small enough. Using that

L2
µ ∩H2

−µ′ ↪→ H2θ
(1−θ)µ−θµ′

for any θ ∈ (0, 1) and µ′ > 0, this proves that v ∈ C
(
R,H2θ

(1−θ)µ
)
for any θ ∈ (0, 1) and µ < µ0.

In particular, this proves that the condition u0 ∈ e−XH2
µ0

implies u ∈ C
(
R, e−XH2θ

(1−θ)µ
)
for

any θ ∈ (0, 1) and µ < µ0 which completes the proof.

�

6 – Stochastic equation on the plane

In two dimensions, the noise is even more irregular and the equation becomes singular in the
sense of ill-defined product. Indeed, assuming that one can construct a solution in H1

µ0
, the

equation
i∂tu = ∆u+ uξ + λu log |u|2

contains an ill-defined product since ξ ∈ C−1−κ−µ (R2) for any µ, κ > 0. As illustrated with
the equation in one dimension, it is not expected that regularity higher than β + 2 with
β being the regularity on the noise can be propagated for the solution. As done in the
context of dispersive singular SPDE by Debussche and Weber [9], a way out is to consider
the exponential transformation, as done in the previous section, that is v = eXu with

∆X = ξ + ϕ ∗ ξ

for a function ϕ ∈ C∞c (R2). Then v formally satisfies the equation

i∂tv = ∆v − 2∇X · ∇v + v(|∇X|2 − ϕ ∗ ξ)− 2λXv + λv log |v|2

with initial data v0 = eXu0. This equation is still singular since in two dimensions, we have
X ∈ C1−κ−µ hence ∇X is a distribution and the square |∇X|2 is ill-defined. This is however
a better behaved equation since the roughest term is canceled and the singular product is
independant of the unknown v as it concerns only X. For a regularization of the noise ξε,
the divergence of the singular term |∇Xε|2 is well known with the Wick product

:|∇X|2: = lim
ε→0

(
|∇Xε|2 − E

[
|∇Xε|2

])
in the space C−κ−µ(R2) for any µ, κ > 0. In particular, the mean cε := E

[
|∇Xε|2

]
diverges as

a logarithm of ε. Hence one can hope to prove that the solution vε of the modified equation

i∂tvε = ∆vε − 2∇Xε · ∇vε + vε(|∇Xε|2 − cε − ϕ ∗ ξε)− 2λXεvε + λvε log |vε|2

converges as ε goes to 0 to the solution of

i∂tv = ∆v − 2∇X · ∇v + v(:|∇X|2:− ϕ ∗ ξ)− 2λXv + λv log |v|2 (mSlogNLS)

with initial data v0 ∈ H2
µ0
. The initial unknown uε satisfies the equation

i∂tuε = ∆uε + uε(ξε − cε) + λuε log |uε|2

with initial data uε(0) = e−Xεv0 and has conserved mass and conserved energy∫
R2

|∇uε(x)|2dx−
∫
R2

|uε(x)|2(ξε(x)− cε)dx− λ
∫
R2

|uε(x)|2 log |uε(x)|2dx.

In the new variable v, this gives the modified energy

Eε(vε) =

∫
R2

|∇vε(x)|2e−2Xε(x)dx−
∫
R2

|vε(x)|2(|∇Xε|2 − cε − ϕ ∗ ξε)e−2Xε(x)dx

− λ
∫
R2

|vε(x)|2 log |vε(x)|2e−2Xε(x)dx+ 2λ

∫
R2

|vε(x)|2Xε(x)e−2Xε(x)dx

14



and modified mass
Mε(vε) =

∫
R2

|vε(x)|2e−2Xε(x)dx.

While this seems more complicated, this converges to the modified energy E(v) and mass
M(v), well-defined for v ∈ H2

µ0
. Given a solution vε which converges to a solution v of

(mSlogNLS), we can interprete u = e−Xv as a solution of the renormalized equation of
(SlogNLS) and limit of uε = e−Xεvε in a suitable weighted space.

Theorem 6.1. Let v0 ∈ H2
µ0

(R2) with 0 < µ0 ≤ 1
3 . There exists a unique solution v ∈

C
(
R,H2θ

(1−θ)µ(R2)
)
of equation (mSlogNLS) for any µ < µ0 and θ ∈ (0, 1).

Proof : Since v0 ∈ H2
µ0
, we have e−Xεv0 ∈ L2

µ ∩ H2 for any µ < µ0. From Proposition 4.1,
there exists a global solution uε ∈ C(R, L2

µ ∩H2) with µ < µ0 to

i∂tuε = ∆uε + (ξε − cε)uε + λuε log |uε|2

with initial data e−Xεv0 with conserved mass M and regularized energy∫
R
|∇uε(x)|2dx−

∫
R
|uε(x)|2(ξε(x)− cε)dx− λ

∫
R
|uε(x)|2 log |uε(x)|2dx.

This implies that vε ∈ C
(
R,H2θ

(1−θ)µ
)
for any θ ∈ (0, 1) with conserved modified mass

Mε(vε) =

∫
R2

|vε(x)|2e−2Xε(x)dx

and modified energy

Eε(vε) =

∫
R2

|∇vε(x)|2e−2Xε(x)dx−
∫
R2

|vε(x)|2
(
|∇Xε(x)|2 + (ϕ ∗ ξε)(x)− cε

)
e−2Xε(x)dx

+ 2λ

∫
R2

|vε(x)|2Xε(x)e−2Xε(x)dx− λ
∫
R2

|vε(x)|2 log |vε(x)|2e−2Xε(x)dx.

For µ ∈ R, we have

1

2

d

dt
‖vεe−Xε‖2L2

µ
=

∫
R2

〈x〉2µ Re
(
∂tvε(t, x)vε(t, x)

)
e−2Xε(x)dx

=

∫
R2

〈x〉2µ Im
((

∆vε(t, x)− 2∇Xε(x) · ∇vε(t, x)
)
vε(t, x)

)
e−2Xε(x)dx

= −
∫
R2

∇(〈x〉2µ) · ∇vε(t, x)vε(t, x)e−2Xε(x)dx

≤ 2|µ|
∫
R2

〈x〉2µ−1|∇vε(t, x)vε(t, x)|e−2Xε(x)dx

≤ 2|µ|‖vε(t)e−Xε‖L2‖∇vε(t)‖L2
2µ−1

≤ 2|µ|‖v0e−Xε‖L2‖vε(t)‖H1
2µ−1

using the conservation of the modified mass. This gives

sup
t∈I
‖vε(t)e−Xε‖2L2

µ
≤ ‖v0e−Xε‖2L2

µ
+ 4|I||µ|‖v0e−Xε‖L2 sup

t∈I
‖vε(t)‖H1

2µ−1

for any finite interval I ⊂ R hence

sup
t∈I
‖vε(t)‖2L2

µ′
≤ ‖eXε‖2L∞

µ′−µ
sup
t∈I
‖vε(t)e−Xε‖2L2

µ

≤ ‖eXε‖2L∞
µ′−µ
‖v0e−Xε‖L2

µ
+ 4|I|µ‖eXε‖2L∞

µ′−µ
‖v0e−Xε‖L2 sup

t∈I
‖vε(t)‖H1

2µ−1

for any 0 < µ′ < µ < µ0. We now prove that vε(t) is bounded in H1
−µ uniformly with respect

to t ∈ R and ε > 0 using this bound and the conservation of the modified energy. Indeed,
we have∫
R2

|∇vε(t, x)|2e−2Xε(x)dx = Eε(v0) +

∫
R2

|vε(t, x)|2
(
|∇Xε(x)|2 + (ϕ ∗ ξε)(x)− cε

)
e−2Xε(x)dx

− 2λ

∫
R2

|vε(t, x)|2Xε(x)e−2Xε(x)dx+ λ

∫
R2

|vε(t, x)|2 log |vε(t, x)|2e−2Xε(x)dx
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and Eε(v0) ≤ 2|E(v0)| for ε small enough. For the first two terms, we have∣∣∣ ∫
R2

|vε(t, x)|2
(
|∇Xε(x)|2+(ϕ ∗ ξε)(x)− cε

)
e−2Xε(x)dx

∣∣∣
≤ ‖|∇Xε(x)|2 + (ϕ ∗ ξε)(x)− cε‖C−κ−2µ

‖vε(t)vε(t)‖Bκ1,1,2µ
≤ 2‖:|∇X|2:‖C−κ−2µ

‖vε(t)‖2H2κ
µ

≤ 2‖:|∇X|2:‖C−κ−2µ
‖vε(t)‖1−2κL2

2µ
1−2κ

‖vε(t)‖2κH1
− µ

2κ

and ∣∣∣ ∫
R2

|vε(t, x)|2Xε(x)e−2Xε(x)dx
∣∣∣ ≤ ‖Xεe

−2Xε‖L∞−µ‖vε(t)‖L2
µ

for any µ, κ > 0. For the logarithmic term, we have∣∣∣ ∫
R2

|vε(t, x)|2 log |vε(t, x)|2e−2Xε(x)dx
∣∣∣ ≤ ‖e−2Xε‖L∞−µ ∫

R2

〈x〉2µ|vε(t, x)|2 log |vε(t, x)|2dx

≤ C‖e−2Xε‖L∞−µ‖vε(t)‖
η
µ0

+ 2µ
µ0

L2
µ0

‖vε(t)‖
2−η− η

µ0
− 2µ
µ0

L2 + C‖e−2Xε‖L∞−µ‖vε(t)‖
2+η

L2+η
2µ
2+η

using Lemma 2.6 with µ < µ0 and η > 0 small enough. Using

‖∇vε(t)‖2L2
−µ
≤ ‖eXε‖2L∞−µ‖∇vε(t)e

−Xε‖2L2

for any µ > 0, we get in the end

sup
t∈I
‖∇vε(t)‖2L2

−µ
≤ A+B sup

t∈I
‖vε(t)‖βH1

2µ−1

with β < 2 and A,B > 0 constants depending on the noise and v0 hence

sup
ε>0

sup
t∈I
‖vε(t)‖H1

−µ
<∞

for µ ≤ 1
3 to ensure 2µ− 1 ≤ −µ. This gives

sup
ε>0

sup
t∈I
‖vε(t)‖L2

µ0
<∞

since µ0 ≤ 1
3 and interpolation yields

sup
ε>0

sup
t∈I
‖vε(t)‖Hθ

(1−θ)µ
<∞

for any θ ∈ (0, 1) and µ < µ0. For the H2 bound, we use again Kato’s trick with wε = ∂tvε.
Using the equation at the level of ∂tuε, we have

‖e−Xεwε(t)‖2L2 ≤ e4|λt|‖e−Xεwε(0)‖2L2

while the equation on vε gives

wε(0) = ∆v0 − 2∇Xε · ∇v0 + (|∇Xε|2 + ϕ ∗ ξε − cε)v0 + λv0 log |v0|2.

As ε goes to 0, wε(0) converges to a distribution in H−κµ for any µ < µ0 and κ > 0 since
v0 ∈ H2

µ0
. Thus ‖e−Xεwε(0)‖L2 diverges as ε goes to 0 due to local irregularity. Note that

on the torus, it is enough to use Gagliargo-Nirenberg inequality since ∇Xε and :|∇Xε|2:
diverges as log(ε) in L4(T2), see [9]. Following [8], we use instead

‖∇Xε‖2Lp−µ(R2) + ‖:|∇Xε|2:‖Lp−µ(R2) ≤ C| log ε|

for µ ∈ (0, 1) and p > 2
µ . For

1
2 = 1

p + 1
q , Hölder inequality gives

‖∇Xε · ∇v0‖L2
µ

+ ‖:|∇Xε|2:v0‖L2
µ
≤ C‖∇Xε‖Lp−µ‖∇v0‖Lq2µ + ‖:|∇Xε|2:‖Lp−µ‖v0‖Lq2µ
≤ C ′| log ε|

(
‖∇v0‖

H
1− 2

q
2µ

+ ‖v0‖
H

1− 2
q

2µ

)
≤ C ′| log ε|‖v0‖H2

µ0
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for 2µ ≤ µ0. Using Lemma 2.6, we get

‖wε(0)‖L2
µ
≤ C| log(ε)|‖v0‖H2

µ0

thus

‖wε(t)‖L2
−µ
≤ ‖eXε‖L∞−µ‖e

−Xεwε(t)‖2L2

≤ C| log(ε)|e4|λt|‖eXε‖L∞−µ‖e
−Xε‖L∞−µ‖v0‖H2

µ0

for any µ ∈ (0, 1). Using the equation on v and similar bounds, this gives

‖vε(t)‖H2
−µ
≤ C| log ε|β

for some β > 0 and random positive constant C > 0 independant of ε ∈ (0, 1). As announced
before, this H2

−µ bound is not uniform with respect to ε so we can not conclude directly by
compactness arguments. Instead, as performed in [9], we are going to show that the sequence
(vε)ε is a Cauchy sequence in L2

µ with a polynomial rate in ε, hence we will recover a limit
in H2θ

(1−θ)µ by interpolation between L2
µ and H2

−µ, taking advantage of the fact that the
divergence in H2

−µ is only logarithmic in ε and can therefore be absorb by a polynomial
decrease in ε. Let’s denote ε2 > ε1 > 0 and r = vε1 − vε2 , which satisfies

i∂tr = ∆r − 2∇r · ∇Xε1 + r(:|∇Xε1 |2:− ϕ ∗ ξε1)− 2λXε1r + 2∇vε2 · ∇(Xε1 −Xε2)

+ vε2(:|∇Xε1 |2:− :|∇Xε2 |2:− ϕ ∗ ξε1 + ϕ ∗ ξε2) + 2λvε2(Xε1 −Xε2)

+ λ(vε1 log |vε1 |2 − vε2 log |vε2 |2)

with r(0) = 0. Multiplying the equation by r, integrating over R2 and taking the imaginary
part, we get

1

2

d

dt

(∫
R2

|r(t, x)|2e−2Xε1 (x)dx
)

= Im

∫
R2

2∇vε2(t, x) · ∇(Xε1 −Xε2)(x)r(t, x)e−2Xε1 (x)dx

+ Im

∫
R2

vε2(t, x)
(
:|∇Xε1 |2:− :|∇Xε2 |2:− ϕ ∗ ξε1 + ϕ ∗ ξε2

)
(x)r(t, x)e−2Xε1 (x)dx

+ λ Im

∫
R2

(
2vε2(t, x)(Xε1 −Xε2)(x) + (vε1 log |vε1 |2 − vε2 log |vε2 |2)(t, x)

)
r(t, x)e−2Xε1 (x)dx.

Using Lemma 3.5 alongside the previous bounds, this gives∣∣∣ ∫
R2

∇vε2(t, x) · ∇(Xε1 −Xε2)(x)r(t, x)e−2Xε1 (x)dx
∣∣∣

≤ ‖∇Xε1 −∇Xε2‖C−
1
2
+κ

−µ′
‖∇vε2re−2Xε1 ‖B

1
2
−κ

1,1,µ′

≤ Cεκ2‖∇vε2‖H
1
2
−κ

2
µ′
2

‖r‖
H

1
2 µ′
‖e−2Xε1‖

C
1
2

−µ
′
2

≤ Cεκ2‖vε2‖H
3
2
µ′
2

(
‖vε1‖CTH

1
2
µ′

+ ‖vε2‖CTH
1
2
µ′

)
≤ Cεκ2 | log ε2|

3
2 e3|λ|t‖v0‖αH2

µ0

and∣∣∣ ∫
R2

vε2(t, x)(:|∇Xε1 |2:− :|∇Xε2 |2:− ϕ ∗ ξε1 + ϕ ∗ ξε2)(x)r(t, x)e−2Xε1 (x)dx
∣∣∣

≤ ‖:|∇Xε1 |2:− :|∇Xε2 |2:− ϕ ∗ ξε1 + ϕ ∗ ξε2‖C−
1
2
+κ

−µ′
‖∇vε2re−2Xε1‖B

1
2
−κ

1,1,µ′

≤ Cεκ2‖vε2‖H
1
2
µ′
2

‖r‖
H

1
2
µ′

≤ Cεκ2‖v0‖α
′

H1
µ0
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as soon as κ ∈
(
0, 12
)
, µ′ < µ0

2 and constants α, α′ > 0. The linear term is handle the same
way and we make use of the inequality (?) for the logarithmic part to get∣∣∣ ∫

R2

Im
(
(vε1 log |vε1 |2 − vε2 log |vε2 |2)(vε1 − vε2)

)
(t, x)e−2Xε1 (x)dx

∣∣∣
≤ 4

∫
R2

|r(t, x)|2e−2Xε1 (x)dx.

Gathering these bounds, Gronwall lemma thus yields

‖vε1 − vε2‖C(I;L2
−µ)
≤ Cεκ/22 | log ε2|

3
2 e4|λ||I|‖v0‖βH2

µ0

for I ⊂ R and some numeric constant β > 0. By interpolation we then infer that

‖vε1 − vε2‖CTHγµ ≤ 2‖vε1 − vε2‖
1− γ

γ′

CTL2
−µ2
‖vε2‖

γ
γ′

Hγ
′
µ1

with γ′ ∈ (1, 2), γ < γ′, µ1 < (1− γ/2)µ0 and µ = −µ2 + γ
γ′ (µ1 + µ2) which leads to

‖vε1 − vε2‖C(I,Hγµ) ≤ Cε
κ
2

(
1− γ

γ′

)
2 | log ε2|

3
4

(
1− γ

γ′

)
‖v0‖a(γ,γ

′)
H2
µ0

where a(γ, γ′) > 0, so (vε)ε is well a Cauchy sequence in C
(
I,Hγµ(R2)

)
by comparative

growth, and so there exists a limit function v ∈ C
(
I,Hγµ(R2)

)
solution of the limit equation

with initial data v0.

It now remains to show the pathwise uniqueness. Let v1 and v2 be two solutions of
(mSlogNLS) with paths in C

(
I,Hγµ(R2)

)
with same initial data v0 ∈ H2

µ0
(R2). We set

r = v1 − v2, which satisfies the equation

i∂tr = ∆r − 2∇r · ∇X + r(:|∇X|2:− ϕ ∗ ξ)− 2λXr + λ(v1 log |v1|2 − v2 log |v2|2),

leading to the standard estimate

1

2

d

dt

∫
R2

|r(t, x)|2e−2X(x)dx = λ Im

∫
R2

(
v1 log |v1|2 − v2 log |v2|2

)
(t, x)r(t, x)e−2X(x)dx

≤ 4|λ|
∫
R2

|r(t, x)|2e−2X(x)dx

using equation (?). By Gronwall lemma, we get that∫
R2

|r(t, x)|2e−2X(x)dx ≤ e8|λ|t
∫
R2

|r(0, x)|2e−2X(x)dx

hence r = 0 since r(0) = 0 and this completes the proof.
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