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In this note, we solve the Gauss image problem given two Borel measures on the unit sphere, one of which is absolutely continuous with respect to the uniform measure.

Introduction

In this note, we consider the Gauss image problem. Namely, given two (sub)-measures λ and µ on S m , does there exist a convex body K ⊂ R m+1 with the origin in its interior such that, viewed as a function on the Lebesgue σ-algebra, [START_REF] Aleksandr | Convex polyhedra[END_REF] Remark 1.3. For a closed spherically convex subset ω S m , the set ω * can also be dened by the equality S m \ ω * = ω π/2 , see for instance [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF]. Aleksandrov's condition can thus be rephrased as µ(ω) < λ(ω π/2 ).

Note that Aleksandrov's condition prevents the measure µ from being supported on a closed hemisphere.

The fact that Aleksandrov's condition implies [START_REF] Shiri | A Rockafellar-type theorem for non-traditional costs[END_REF] was proved in [4, Proposition 3.5]. Moreover, the weak Alexandrov condition is the sharp condition for the Gauss image problem: Remark 1.4. Let K ⊂ R m+1 be a compact convex set with the origin in its interior then the angle between a point in the boundary of K and an outward normal vector to K at that point is uniformly bounded above by a constant π/2 -α < π/2. In other terms, (2) is a necessary condition for the Gauss image problem [START_REF] Aleksandr | Convex polyhedra[END_REF] to have a solution, see [START_REF] Bertrand | Prescribing the Gauss curvature of convex bodies in hyperbolic space[END_REF] for more details.

On the contrary, Aleksandrov's condition is not necessary when the support of λ is not the whole sphere [START_REF] Semenov | The Gauss image problem with weak Aleksandrov condition[END_REF].

The main result of this note is the following theorem.

Theorem 1.5. Let λ and µ be two probability measures on the unit sphere S m and assume that λ is absolutely continuous with respect to the uniform measure and µ is not concentrated on a closed hemisphere. Then the Gauss image problem for λ and µ admits a solution provided that λ and µ satisfy the weak Aleksandrov condition. Assume there are two convex bodies K, L ⊂ R m+1 with the origin in their interiors and solutions to [START_REF] Aleksandr | Convex polyhedra[END_REF]. Then, the following holds for any Borel set ω

(3) λ((G k • - → ρ K (ω))∆ (G L • - → ρ L (ω))) = 0,
where A∆B is the symmetric dierence of the sets A and B. Remark 1.6. We are currently not interested in submeasures so we don't know whether our proof can be adapted to this larger framework. Moreover, to our knowledge, the interesting examples are all measures.

The second statement (3) is a result of uniqueness for multivalued map up to a λ-negligible set.

In late 2022, V. Semenov put on Arxiv a paper in which he solves the Gauss image problem for λ an absolutely continuous measure and µ a measure with nite support (which corresponds to the case where the underlying convex body is a convex polyhedron) [START_REF] Semenov | The Gauss image problem with weak Aleksandrov condition[END_REF]. The uniqueness property stated in Theorem 1.5 is also proved by another method in [START_REF] Semenov | The uniqueness of the Gauss image measure[END_REF]; our proof is shorter. Our proofs are not based on the aformentioned articles, instead our approach can be seen as a generalisation of the method introduced in our earlier work [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF].

Building on (3), Semenov proves the following corollary.

Corollary 1.7 ([14]). Under the assumptions of Theorem 1.5, the solution to the Gauss image problem is uniquely determined up to dilation on each rectiable path connected component of supp λ.

One could expect the solution of the Gauss image problem to be uniquely determined on each connected component of supp λ; this question is related to ne properties of compact Euclidean sets supporting an absolutely continuous measure and might depend on the dimension of the space. To our knowledge, this is an open question.

Compared to our earlier work [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF], the main new ingredient is a new method to construct a Kantorovitch potential, a classical object in the theory of optimal mass transport that happens to dene a convex body when the cost function is chosen properly. This construction seems to be the rst one where no connectedness of the support of the measure is required (actually what really matters in the previous works is the fact that all the elements of the support are contained in the same equivalence class relative to a relation dened in terms of the cost function: we remove this restriction), compare to [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF][START_REF] Bertrand | The optimal mass transport problem for relativistic costs[END_REF][START_REF] Bertrand | Kantorovich potentials and continuity of total cost for relativistic cost functions[END_REF][START_REF] Shiri | A Rockafellar-type theorem for non-traditional costs[END_REF]. This improved construction is expected to be useful in other contexts.

In the next section, we recall some classical notions in convex geometry and introduce related notation. The third part provides a quick introduction to optimal mass transport together with explanations regarding the connections between the Gauss image problem and optimal mass transport. In Section 4, we introduce some suitable discretisations of the measures involved before studying combinatorial properties of graphs related to these discretisations. Finally, in the last part we construct the Kantorovitch potential then prove (3); these properties complete the proof of our main theorem.

Preliminaries

We assume the reader is familiar with basic results in convex geometry, we refer to the textbooks [START_REF] Rockafellar | Convex analysis[END_REF][START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF] for a detailed introduction. We denote by C(S m ) the set of continuous functions dened on S m while we write C + (S m ) for the set of positive continuous functions. To a function ρ ∈ C + (S m ) corresponds a star-shaped compact set D with respect to the origin. The set D is dened by the property that its boundary ∂D is biLipschitz homeomorphic to S m through the radial map

- → ρ := S m -→ ∂D x -→ ρ(x) x
The function ρ is called the radial function of The support function of D ∈ E is the function h D : R m+1 -→ (0, +∞) dened by

h D (n) = max{ x, n ; x ∈ D} = max{ρ D (x) x, n ; x ∈ S m } (4) 
We recall the denition of the polar set D • of D as

D • = {n ∈ R m+1 ; ∀x ∈ D, n, x ≤ 1} = {n ∈ R m+1 ; ∀x ∈ S m , ρ D (x) n, x ≤ 1}.
By denition of the polar transform

D •• := (D • ) • always contain D.
Moreover, the equality D •• = D holds if and only if D is a compact convex set that contains the origin in its interior. In particular, if we let K 0 be the set of compact convex sets with the origin 0 ∈ R m+1 in their interior, the polar transform is an involution from K 0 to itself. We shall simply call convex body an element of K 0 . Moreover, the inclusion D •• ⊃ D can be rephrased as ρ D •• ≥ ρ D and the last equality holds as functions i D is a convex body.

For K ∈ K 0 , let ε > 0 be such that the open Euclidean ball of radius ε centered at the origin is contained in K. Then, for n, x ∈ S m such that h K (n) = ρ K (x) n, x , we infer (5)

n, x = h K (n) ρ K (x) > ε max ρ K =: ε > 0
and thus (2) holds for any closed set where α = 1/2(π/2 -arccos(ε )).

Another important connection between the polar transform of D ∈ E and the radial and support functions is given by the relation

ρ D • = 1 h D .
It can be used to rephrase the equality ρ D •• = ρ D in terms of ρ D and h D only:

(6)

ρ D (x) = ρ D •• (x) = 1 h D • (x) = 1 sup n∈S m x,n h D (n) = inf n∈S m ; x,n >0 h D (n) x, n .
The expression of ρ D in terms of h D is somehow similar without being identical to (4). Oliker's change of functions [START_REF] Oliker | Embedding S n into R n+1 with given integral Gauss curvature and optimal mass transport on S n[END_REF] allows one to recover a symmetrical and additive expression of the new functions.

Denition 2.1 (Oliker's change of functions). For

D ∈ E, set ϕ(n) = -ln(h D (n)) and ψ(x) = ln(ρ D (x)).
Then D is a convex body if and only if [START_REF] Bertrand | The optimal mass transport problem for relativistic costs[END_REF] 

ϕ(n) = min c(n, x) -ψ(x) ψ(x) = min c(n, x) -ϕ(n),
where the function c : S m × S m -→ [0, +∞] is dened by c(n, x) = -ln n, x if n, x > 0 and +∞ otherwise.

This follows from simple computations that can be found in [START_REF] Oliker | Embedding S n into R n+1 with given integral Gauss curvature and optimal mass transport on S n[END_REF][START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF]. The above relations between ϕ and ψ are very classical in the theory of optimal mass transport. These links between the Gauss image problem and optimal mass transport are to be described in the next part.

Optimal mass transport

In this part, we briey describe the optimal mass transport problem on S m and introduce related notation. For more on the subject, we refer to [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]. This problem involves two Lebesgue probability measures µ, λ on S m , and a cost function c : S m × S m → R + ∪ {+∞}. We also need to introduce the set of transport plans Γ(λ, µ), namely the set of probability measures π ∈ P(S m ×S m ) such that for any Lebesgue set A ⊂ S m (8)

λ(A) = π(A × S m ) and µ(A) = π(S m × A). Let us recall the cost function c we consider (9) c(n, x) = -log n, x = -log cos d(n, x) if d(n, x) < π/2
+∞ otherwise, where d(n, x) stands for the spherical distance between n and x.

The cost function c satises a standard set of assumptions in the eld with the noticeable exception that it is not real-valued. Therefore, some standard results do not apply to c. We gather the easy-to-prove properties of the cost function in the lemma below. The mass transport problem consists in studying [START_REF] Oliker | Embedding S n into R n+1 with given integral Gauss curvature and optimal mass transport on S n[END_REF] 

inf π∈Γ(λ,µ) ˆSm ×S m c(n, x) dπ(n, x).
It is customary in the eld to assume that the mass transport problem is well-posed, namely that the inmum in ( 10) is nite. The well-posedness of the problem is not an immediate consequence of the weak Aleksandrov condition and requires to be proved. The scheme of proof of the wellposedness is identical to that in our paper [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF], indeed only the weak Aleksandrov condition is required in that part. Details are given in the appendix.

Equipped with the topology induced by the weak convergence of probability measures, the set Γ(λ, µ) is a compact set as a consequence of the Banach-Alaoglu theorem. Therefore by combining this compactness property together with the continuity of the cost function, we infer the existence of minimizers in the problem above whenever the inmum is nite. These minimizers are called optimal transport plans.

In order to tackle the Gauss image problem we shall focus our attention on a dual problem to the mass transport problem introduced by Kantorovitch.

Let us dene A as the set of pairs (ϕ, ψ) of Lipschitz functions dened on S m that satisfy [START_REF] Rockafellar | Convex analysis[END_REF] ϕ(n) + ψ(x) ≤ c(n, x) for all x, n ∈ S m . Kantorovitch's variational problem consists in studying ( 12)

sup (ϕ,ψ)∈A ˆSm ϕ(n)dλ(n) + ˆSm ψ(x)dµ(x) .
It is easy to see that the quantity above is always smaller or equal to [START_REF] Oliker | Embedding S n into R n+1 with given integral Gauss curvature and optimal mass transport on S n[END_REF]. Indeed, given (ϕ, ψ) ∈ A and π ∈ Γ(λ, µ), we have [START_REF] Semenov | The Gauss image problem with weak Aleksandrov condition[END_REF] 

ˆSm ϕ(n) dλ(n)+ ˆSm ψ(x) dµ(x) = ˆSm ×S m (ϕ(n)+ψ(x)) dπ(n, x) ≤ ˆSm ×S m c(n, x) dπ(n, x).
It can be proved that (10) = ( 12) whenever the cost function is continuous and nonnegative; this type of result is called Kantorovitch's duality. However, solution to Kantorovitch's dual problem may not exist for the cost (9) because this function is not real-valued. We refer to [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] for more on this.

Our main goal is to prove the existence of a solution to the dual problem under the hypotheses of Theorem 1.5. In order to explain our method, let us rst recall the denition of the c-transform of a function f ∈ C(S m ) (the c-transform is well-dened whenever f is bounded above):

f c (n) := inf x∈S m c(n, x) -f (x).
Since the cost function is symmetric, the same denition applies to functions of the variable n.

Given that the functional

(ϕ, ψ) -→ ˆSm ϕ(n) dλ(n) + ˆSm ψ(x) dµ(x)
is nondecreasing with respect to each variable, and the constraint [START_REF] Rockafellar | Convex analysis[END_REF], it is not surprising to seek for maximisers of Kantorovitch's problem among pairs of functions of the form (ϕ, ϕ c ) where ϕ cc := (ϕ c ) c coincides with the function ϕ. Such a function ϕ is called a Kantorovitch potential, besides h(n) := e -ϕ(n) and ρ(x) := e ϕ c (x) satisfy ( 6) and thus determine a unique convex body.

Given a Kantorovitch potential ϕ, the c-subdierential of ϕ, whose denition is recalled below, is a useful set in connection with the mass transport problem:

∂ c ϕ := {(n, x) ∈ S m × S m ; ϕ(n) + ϕ c (x) = c(n, x)}. (14) 
The c-subdierential of a function is a particular instance of a c-cyclical monotone set S ⊂ S m × S m whose denition is (15

) 1≤i≤k c(n i+1 , x i ) ≥ 1≤i≤k c(n i , x i ),
where k is any positive integer,

(n 1 , x 1 ), • • • , (n k , x k ) ∈ S are

arbitrary, and

n k+1 = n 1 .
This condition is equivalent to optimality for mass transport problem involving nitely supported measures. More in general, the support of an optimal transport plan in our set-up has to be a c-cyclically monotone set. We refer to [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]Chapter 5] for the proof of this property and more.

Our main result regarding Kantorovitch's dual problem is Theorem 3.2. Let λ and µ two probability measures on S m satisfying the weak Aleksandrov condition (1.2). Assume that λ is absolutely continuous while the support of µ is not contained in a closed hemisphere. Then, denoting by π o an optimal plan in Γ(λ, µ), there exist a Kantorovitch potential ϕ such that [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] supp

π o ∩ {c < +∞} ⊂ ∂ c ϕ.
An easy consequence of this result -if we discard for now the question of the regularity of ϕ and ϕ c -is that equality holds in [START_REF] Semenov | The Gauss image problem with weak Aleksandrov condition[END_REF]:

ˆSm ϕ(n) dλ(n) + ˆSm ϕ c (x) dµ(x) = ˆSm ×S m (ϕ(n) + ϕ c (x)) dπ o (n, x) (16) = ˆSm ×S m c(n, x) dπ o (n, x).
The above equality forces the measure µ to be the Gauss image measure of the underlying convex body K ∈ K 0 determined by the pair (ϕ, ϕ c ). Indeed, using Oliker's change of functions (ϕ, ϕ c ) ↔ (ρ K , h K ), one infer the equality

∂ c ϕ = {(n, x); h K (n) = ρ K (x) n, x } = {(n, x); n ∈ G K • - → ρ K (x)}.
For the sake of completeness, we reproduce the short proof of the fact that µ is the Gauss image of K relative to λ [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF].

For any Borel set U ⊂ S m , it holds

µ(U ) = π o (S m × U ) = π o (S m × U ∩ {(n, x) ∈ (S m ) 2 ; ϕ(n) + ϕ c (x) = c(n, x)}) = π o (S m × U ∩ {(n, x) ∈ (S m ) 2 ; n ∈ G K ( - → ρ K (x))}) = π o (G K • - → ρ K (U ) × U ∩ {(n, x); n ∈ G K ( - → ρ K (x))}) = π o (G K • - → ρ K (U ) × S m ∩ {(n, x); n ∈ G K ( - → ρ K (x))}) = π o (G K • - → ρ K (U ) × S m ) = λ(G K • - → ρ K (U ))
where to get the equality in line 6 we use:

G K • - → ρ K (U ) × U c ∩ {(n, x) ∈ (S m ) 2 ; n ∈ G K ( - → ρ K (x)))} ⊂ {(n, x) ∈ (S m ) 2 ; ∃ x = x, n ∈ G K ( - → ρ K (x)) ∩ G K ( - → ρ K (x ))} which yields π o (G K • - → ρ K (U ) × U c ∩ {(n, x) ∈ (S m ) 2 ; n ∈ G K ( - → ρ K (x)))}) ≤ λ({n ∈ S m ; ∃ x = x, n ∈ G K ( - → ρ K (x)) ∩ G K ( - → ρ K (x ))}) = 0,
where the last equality hods since λ is absolutely continuous with respect to the uniform measure σ and the corresponding result for σ is classical, see for instance [3, Lemma 5.2].

To sumarize, we have seen that the rst statement in Theorem 1.5 is a rather straightforward consequence of Theorem 3.2. In the rest of the paper, we shall rst prove that the mass transport problem is well-posed then buil a Kantorovitch potential as stated in Theorem 3.2. Our approach consists in discretising several probability measures at a scale compatible with the weak Aleksandrov condition.

In the next part we introduce suitable discretisations of the involved measures based on a partition of the sphere into Borel sets of small diameters. We then use this construction rst to single out a transport plan with nite cost thus proving the mass transport problem is well-posed. Second, we study a graph induced by the discretised measures before proving Theorem 3.2 by constructing a suitable Kantorovitch potential in Section 5. Our approach is a generalisation of methods introduced in [START_REF] Bertrand | The optimal mass transport problem for relativistic costs[END_REF][START_REF] Bertrand | Kantorovich potentials and continuity of total cost for relativistic cost functions[END_REF]. Finally, we prove the second statement in Theorem 1.5.

Discretisation of the measures

We rst recall a basic covering lemma and then draw some consequences of this construction Lemma 4.1. Let θ be a nite Borel measure on the unit sphere S m endowed with the spherical distance d. For any κ > 0, there exists a nite partition (P i ) 1≤i≤K of S m (depending on κ) such that for all i, the interior • P i of P i is nonempty, diam(P i ) < κ and θ(∂P i ) = 0. If we also assume that θ is absolutely continuous with respect to the uniform measure on S m , we can further require θ(P i ) to be a rational number.

A very closed result is proved in the appendix of [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF]. In the same paper, and building on the above covering lemma, it is shown that if the uniform probability measure and µ are Aleksandrov related then there exists a plan π α ∈ Γ(λ, µ) and M > 0 such that c ≤ M < +∞ everywhere on the support of π α . As noticed in [4, Remark 4.9], the same proof applies to λ and µ as well; moreover the proof precisely requires the weak Aleksandrov condition to hold. We refer to the appendix for a proof of the above lemma and the following theorem. Theorem 4.2. Let λ and µ be two probability measures on S m satisfying the weak Aleksandrov condition [START_REF] Shiri | A Rockafellar-type theorem for non-traditional costs[END_REF]. Assume that λ is absolutely continuous while the support of µ is not contained in a closed hemisphere. Then there exists a transport plan

π α ∈ Γ(λ, µ) such that supp π α ⊂ {(n, x) ∈ S m × S m ; n, x ≥ cos(π/2 -α)}.
In particular, ˆc dπ α < +∞.

Corollary 4.3. Under the above assumptions the optimal mass transport problem for the measures λ and µ relative to the cost function c has a solution. Let us denote by π o an optimal transport plan.

Proof. This is a very standard consequence of the continuity of the cost function and the compactness of Γ(λ, µ), see for instance [START_REF] Villani | Topics in optimal transportation[END_REF] for a proof.

With those tools at our disposal, we can now dene a graph involving the transport plans π α and π o .

Coverings of supp µ and supp ν

According to Lemma 4.1 applied to supp µ and supp ν, there exist two nite collections of Borel subsets of S m with nonempty interiors (P i ) 1≤i≤l and (Q j ) 1≤j≤p such that (17)

λ(P i ) > 0, µ(Q j ) > 0, λ(∂P i ) = µ(∂Q j ) = 0, Diam (P i ), Diam (Q j ) < α/8, for all i ∈ {1, • • • , l}, j ∈ {1, • • • , p}.
We also x (18) z i a point in

• P i ∩ supp µ and w j a point in • Q j ∩ supp ν.
We then introduce the discretised measures λ d and µ d relative to the above covers as follows:

λ d := 1≤i≤l λ(P i ) δ zi and µ d := 1≤j≤p µ(Q j ) δ wj .
We proceed similarly for transport plans. We dene the following discrete plans

π d o := i,j π o (P i × Q j ) δ (zi,wj ) and π α,d := i,j π α (P i × Q j ) δ (zi,wj ) .

Graph structure on the product covering

Let us now dene the following nite graph

G := {(P i , Q j ); π o (P i × Q j ) > 0} ⊂ {(P i , Q j ); 1 ≤ i ≤ l, 1 ≤ j ≤ p}.
For simplicity, we shall sometimes write (i, j) ∈ G instead of

(P i , Q j ) ∈ G.
The graph G is equipped with the following set of primal oriented edges

E = {{(i, j), (u, v)}; π α (P u × Q j ) > 0}.
We call length of a path in (G, E) the number of edges it uses. Remark 4.4. The graph G has many edges since, given {(i, j), (u, v)} ∈ E, we get that {(o, j), (u, s)} ∈ E for any o, s, such that (o, j) ∈ G and (u, s) ∈ G.

We are interested in the cycles of G, namely the nite collections (i 1 , j 1 ), • • • , (i q , j q ) ∈ G where q is an arbitray positive integer, and such that {{(i s , j s ), (i s+1 , j s+1 )}} ∈ E for all s ∈ {1, • • • , q} (where (i 1 , j 1 ) = (i q+1 , j q+1 )).

Lemma 4.5. Each edge e ∈ E belongs to a least one cycle (i 1 , j 1 ), • • • , (i q , j q ) ∈ G, say e = {(i 1 , j 1 ), (i 2 , j 2 )}. Moreover, one can assume that the vertices of the cycle are all distinct. Remark 4.6. Since any vertex of G belongs to an edge, the above lemma also implies that any vertex of G belongs to a cycle. Proof. By denition of an edge, π α (P i2 × Q j1 ) > 0 and π o (P i2 × Q j2 ) > 0. We have the following alternative, either π α ((R n \ P i1 ) × Q j2 ) = 0 (which implies that (i 1 , j 1 ), (i 2 , j 2 ) is a cycle) or we can repeat the argument with {(i 2 , j 2 ), (i 3 , j 3 )} = e since there exists P i3 = P i1 such that π α (P i3 × Q j2 ) > 0 combined with the fact that π o ∈ Γ(µ, ν) implies the existence of Q j3 such that (P i3 , Q j3 ) ∈ G. In each case, after nitely many steps we obtain a cycle; however we cannot infer that e belongs to it. Thus, let us further study the graph (G, E). Let (i 1 , j 1 ), • • • , (i k , j k ) ∈ G be an arbitrary cycle made of distinct points and 2 , after repeating the construction at most lp + (lp) 2 times, we get an empty reduced graph. This precisely means that any edge of graph G belongs to a cycle.

m := min min 1≤u≤k {π o (P iu × Q ju )} , min 1≤u≤k {π α (P iu+1 × Q ju )} > 0. Consider π d 1 = π d o - k u=1 m δ (zi u ,wj u ) and π α,d 1 = π α,d - k u=1 m δ (zi u+1 ,wj u ) ,
G 1 + E 1 ≤ G + E -1. Since G + E ≤ lp + (lp)
We call bunch of cycles related to (P 0 , Q 0 ), and denote by B (P0,Q0) , the set of vertices of G sharing a cycle with (P 0 , Q 0 ) ∈ G, namely the set of vertices (P, Q) such that there exist a cycle C y (depending on (P, Q)) with (P, Q) and (P 0 , Q 0 ) belong to C y . The set of bunches of cycles induces a partition of the graph G, and, in general, more than one bunch of cycles is needed to cover G.

Being in the same bunch of cycles induces an equivalence relation on G. In the next denition, we enlarge the set of edges to be able to connect more vertices at the price of breaking the symmetry of the previous relation.

We now equipped G with an enlarged set of oriented edges E dened by

(19) E = {{(i, j), (u, v)}; d(z u , w j ) < π/2 -α/4}.
Remark 4.7. The fact that supp π α is made of pairs of points at distance at most π/2 -α together with the upper bound on the diameter of the (P i )'s and (Q ) j's readily imply the inclusion: E ⊂ E .

Chains between points and connected subgraph

Let us start with a weak notion of connectedness.

Denition 4.8 (κ-chainable space). Let κ > 0 and (X, d) be a metric space. An ordered set It is an easy exercise to show that a connected space is κ-connected for any κ > 0. For us, the main adavantage of this notion is given by the following simple lemma. Lemma 4.9. Let (X, d) be a compact metric space and κ > 0. Then X can be decomposed into nitely many κ-chain connected components.

{x 1 , • • • , x p } in X such that d(x i , x i+1 ) < κ for any i = 1, • • • , p -1 is
Proof. Each κ-chain connected component is both an open and a closed subset of X. Thus, the compactness of X implies the existence of a nite subcover.

In what follows, we set (20)

κ = α/4.
In the rest of this part, we let C be a κ-chain connected component of supp ν. We also dene the subgraph (21)

G C := {(P, Q) ∈ G; Q ∩ C = ∅}
equipped with the set of edges coming from E . Remark 4.10. Of course, there are a priori edges in E connecting points not in G C . In the rest of the paper when we consider a path in E connecting two points in G C we do not intend to restrict to edges in E connecting points in G C , on the contrary any edge in E can be part of such a path.

Our aim is now to prove Proposition 4.11. The graph (G C , E ) is connected, meaning that any two points of G C can be connected by a path in E . We can further assume the path length is at most G.

Proof. Given

(P, Q), ( P , Q) ∈ G such that Q ∩ C = ∅ and Q ∩ C = ∅ let us show there exists a path in E from (P, Q) to P , Q). We x x ∈ Q ∩ C and x ∈ Q ∩ C. By denition of C, there exists a κ- chain {x 1 , • • • , x k } from x = x 1 to x = x k . Since the chain is made of points in supp ν, there exists maps σ (resp. θ) from {1, • • • , k} to {1, • • • , p} (resp. {1, • • • , l}) such that x i ∈ Q σ(i) . Moreover, there exists P θ(i) such that (P θ(i) , Q σ(i) ) ∈ G C (since x i ∈ C by construction) for i = 2, • • • , k -1.
Thanks to Lemma 4.5, there exists a cycle c made of edges in E going through ( P , Q). Let us denote by {( P , Q), ( P , Q)} the edge issuing from ( P , Q) in this cycle. We denote by ( z, w) the pair of representative points of ( P , Q). The triangle inequality then gives

d( z, w σ(p-1) ) ≤ d( z, a) + d(a, b) + d(b, x) + d( x, x p-1 ) + d(x p-1 , w σ(p-1) ) < α/8 + π/2 -α + α/8 + α/4 + α/8 < π/2 -α/4,
where (a, b) ∈ supp π α ∩ ( P × Q). The previous estimate precisely means that

{(P θ(p-1) , Q σ(p-1) ), ( P , Q)} ∈ E .
Therefore, (P θ(p-1) , Q σ(p-1) ) is connected to ( P , Q) by following part of the cyle c introduced above. The thesis then follows by a nite induction. The last property follows from the fact that without loss of generality one can assume the path contains no cycle.

Building a Kantorovitch potential

In this part, building on the results from Section 4, we prove the existence of the Kantorovitch potential needed to solve the Gauss image problem. Our proof is based on a Rockafellar-Ruschëndorf formula. Let us recall the result we shall prove: Theorem 5.1. Let λ and µ two probability measures on S m satisfying the weak Aleksandrov condition (1.2) and assume that λ is absolutely continuous while the support of µ is not contained in a closed hemisphere. Then, denoting by π o an optimal plan in Γ(λ, µ), there exist a Kantorovitch potential ϕ such that supp

π o ∩ {c < +∞} ⊂ ∂ c ϕ.
We rst prove auxiliary results. As recalled above, the support of any optimal plan relative to c is c-cyclically monotone [START_REF] Villani | Topics in optimal transportation[END_REF]. The set

Γ := supp (π o ) ∩ {c < +∞} is then c-cyclically monotone as a subset of the support of π o .
According to the results in Section 3,

ˆc dπ o < +∞ whenever π o ∈ Γ opt (σ, µ). Therefore, π o ({c < +∞}) = 1 and Γ is a set of full π o -measure.
5.1. κ-chains and c-path boundedness. Denition 5.2. 1 A pair (n, x) ∈ Γ is said to be c-path connected to ( n, x) ∈ Γ if there exists

an ordered set γ := {(n 1 , x 1 ) • • • , (n k , x k )} in Γ, called a c-path, such that d(n i+1 , x i ) < π/2 for i = 1, • • • k -1, (n, x) = (n 1 , x 1 ) and ( n, x) = (n k , x k ). The cost c(γ) of γ is said to be nite if c(γ) := k-1 i=1 c(n i+1 , x i ) -c(n i , x i ) ∈ R.
When c(γ) ∈ R we call γ a bounded c-path from (n, x) to ( n, x).

Note that the cost of an arbitrary c-path (in Γ) is in R∪{+∞}. In the next proposition, building upon our study of the graph (G, E ) and its subgraphs, we get properties on c-path boundedness. Recall that κ = α/4. Proposition 5.3. Let C be a κ-chain connected component of supp ν. Then for any (n, x), ( n, x) ∈ Γ such that x, x ∈ C, the pair (n, x) is c-path connected to ( n, x). More precisely, there exists a positive constant C(α) such that for any (n, x), ( n, x) as above there exists a c-path γ from (n, x) to ( n, x) whose cost satises c(γ) ≤ C(α). Proof. We set (P, Q) ∈ G and ( P , Q) ∈ G such that (n, x) ∈ P × Q and ( n, x) ∈ P × Q. According to Proposition 4.11, we infer the existence of an ordered set

{(P i1 , Q j1 ), • • • , (P i k , Q j k )} ∈ G connecting (P, Q) to ( P , Q) through edges of E .
We denote by (z is , w js ) for s = 1, • • • , k the associated pairs of representative points. We claim that the path

γ = {(n, x), (z i2 , w j2 ), • • • , (z i k-1 , w j k-1 ), ( n, x)}
has nite cost. Indeed, by denition of E , we have d(z is+1 , w js ) < π/2 -α/4 while

d(z i2 , x) ≤ d(z i2 , w j1 ) + d(w j1 , x) < π/2 -α/4 + α/8 = π/2 -α/8,
and the same inequality holds for d( n, w j k-1 ). As a consequence, we get

(22) c(γ) ≤ c(z i2 , x) + k-2 s=2 c(z is+1 , w js ) + c( n, w j k-1 ) ≤ G • C(π/2 -α/8) < +∞,
where C(β) = -ln(cos β), and the proof is complete. The next step consists in building a well-behaved function ψ whose c-transform is the potential ϕ we need to prove our main result. For that purpose, we introduce some extra notation. In what follows, we denote by p x : S m × S m -→ S m the canonical projection on the x-variable. For each κ-chain connected component C i of supp ν such that C i ∩ p x (Γ) = ∅, we x a pair (n (i) , x (i) ) ∈ Γ such that x (i) ∈ C i . Using these κ-chain connected components, we can decompose p x (Γ) as follows (23)

p x (Γ) = i∈I C i ∩ p x (Γ).
Recall that I is a nite set. With a slight abuse of notation, we shal call

C i ∩ p x (Γ) a κ-chain connected component of p x (Γ).
The denition of ψ depends on the κ-chain connected components of p x (Γ). Namely, ψ ≡ -∞ out of p x (Γ) while the denition of ψ depends on the decomposition (23). We rst dene the function ψ Ci on C i ∩ p x (Γ) by the formula (24)

ψ Ci (x) := sup n,γ;(n,x)∈Γ -c(γ) + c(n, x),
where γ is a (bounded) c-path from (n (i) , x (i) ) to (n, x) ∈ Γ. We have seen in the previous proposition that a bounded c-path exists yet the function ψ Ci could be innite at some points. However we have ψ Ci > -∞ on C i ∩ p x (Γ). In the next lemma, we prove that ψ Ci is bounded from above.

Lemma 5.5. There exists a positive constant C = C(α) such that

ψ Ci ≤ C(α)
on the κ-chain connected component C i of supp ν. Moreover, ψ Ci is real-valued on C i ∩ p x (Γ).

Remark 5.6. The constant C(α) does not depend on C i .

Proof. Let x ∈ C i ∩ p x (Γ) and n such that (n, x) ∈ Γ. According to Proposition 5.3, we can x a bounded c path γ x from (n, x) to the representative pair (n (i) , x (i) ) of C i . Note that by denition of the cost, c(γ x ) does not depend on n. Let γ be an arbitrary c-path from (n (i) , x (i) ) to (n, x).

We then estimate

-c(γ) -c(γ x ) = k r=1 c(n r , x r ) -c(n r+1 , x r ) ≤ 0,
where there exists s between 1 and k such that γ = {(n 1 , x 1 ), • • • , (n s , x s )} and γ x = {(n s , x s ), • • • , (n k+1 , x k+1 )}. By concatenating the two paths, we get a cycle (in the sense of optimal mass transport); the c-cyclical monotonicity of Γ (see [START_REF] Villani | Topics in optimal transportation[END_REF]) then implies the last inequality. Using again that (n s , x s ) = (n, x) we infer

-c(γ) + c(n, x) ≤ c(n s+1 , x) + k r=s+1 c(n r+1 , x r ) -c(n r , x r ) ≤ k r=s c(n i+1 , x i ) ≤ C(α) < +∞,
thanks to (22). The second statement has been explained prior to the statement.

In order to dene ψ, we rst need to connect, when possible, distinct κ-chain connected components. Given i = j ∈ I, let us x γ ij a bounded c-path from the representative pair (n (i) , x (i) ) to (n (j) , x (j) ) and denote by c ij := c(γ ij ) the associated cost. When such a path does not exist, we set c ij := +∞; by convention we dene c ii = 0 for any i ∈ I. We can now dene the function ψ as follows:

(25)

ψ(x) = -∞ if x / ∈ p x (Γ) max i∈I -c ij + ψ Cj (x) if x ∈ C j ∩ p x (Γ)
By denition of the c ij 's and according to Lemma 5.5, there exists a positive constant C = C(α) such that ψ > -∞ on p x (Γ) and ψ ≤ C(α) < +∞. Recall that by assumption, the measure µ gives mass to any open hemisphere B(x, π/2) thus p x (Γ) ∩ B(x, π/2) = ∅ for any x ∈ S m (otherwise supp µ = p x (Γ) ⊂ B(-x, π/2) hence a contradiction). Therefore one can invoke the following proposition from [5, Proposition B.3]: Proposition 5.7. Let ψ : S m -→ R ∪ {-∞} be a function bounded from above such that

∀u ∈ S m , B(u, π/2) ∩ {ψ > -∞} = ∅.
Then ψ c is real-valued and Lipschitz regular on S m , moreover its Lipschitz constant only depends on upper bounds on ψ and ψ c . We nally set (26)

ϕ := ψ c .
Thus ϕ is real-valued and Lipschitz regular. Consequently ϕ c and ϕ cc share the same properties. Finally, it is a classical result (see for instance [START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]) that ϕ cc = ψ ccc = ψ c = ϕ. In other terms, the function ϕ is a Kantorovitch potential. In order to complete the proof of Theorem 5.1, we are left with proving the following result. Proof. Let (n, x) ∈ Γ. By denition of the c-transform, we are done if we can prove

c(n, x) -ϕ(n) ≤ c(n, x) -ϕ(n), for all n ∈ S m . This inequality is equivalent to (27) ϕ(n) ≤ ϕ(n) + c(n, x) -c(n, x),
for all n ∈ S m . For convenience we set S := {(n (i) , x (i) ), i ∈ I} the collection of representative pairs of the κ-chain connected components C i ∩ p x (Γ) i∈I .

By combining

ϕ(n) = inf x∈S m c(n, x) -ψ(x)
together with the expression for x ∈ C j ∩ p x (Γ) (we can discard the other points since ϕ is realvalued according to the previous proposition):

ψ(x) = sup i∈I,k∈N sup (ns,xs)∈Γ k , (n0,x0)=(n (i) ,x (i) ),x k =x -c ij + k-1 s=0 c(n s , x s ) -c(n s+1 , x s ) + c(n k , x),
where j is dened by x ∈ C j , and there is no second term in the right hand side when k = 0.

Recall that c ii = 0 and c ij = +∞ if there is no bounded c-path from (n (i) , x (i) ) to (n (j) , x (j) ). Therefore, one can discard these i's in the above denition since for i = j and x ∈ C j ∩ p x (Γ), For (n 0 , x 0 ) for which c ij is nite (and i = j), the expression in the RHS above can be written as c( γ) where γ is the concatenation of the c-path γ ij together with the c-path from (n 0 , x 0 ) to (n, x) described in the formula. Consequently, for n = n if we further add to γ above the c-path {(n, x), (n, x)}, one easily get the expected formula (27) by considering a minimizing sequence of c-paths relative to ϕ(n).

ψ Cj (x) ∈ R.
5.2. On a rst order uniqueness of the solution. In this part, we prove: Theorem 5.9. Let λ and µ two probability measures on S m , and assume that λ is absolutely continuous. Assume there are two convex bodies K, L ∈ K 0 solutions to [START_REF] Aleksandr | Convex polyhedra[END_REF]. Then, the maps Remark 5.10. Recall that for a convex in K 0 , the fact that the origin belongs to the interior of the convex body prevents the angle between a direction x and a normal vector n ∈ G • - → ρ (x) from being too close to π/2. In other terms, the measures λ and µ must satisfy the weak Aleksandrov condition for a suciently small α > 0. Consequently, as proved in Theorem 4.2, the mass transport problem relative to µ, λ and the cost c is well-posed. We keep the notation π o for the optimal plan.

Proof. Observe that a solution (ρ, h) ∈ {(ρ K , h K ), (ρ L , h L )} to the Gauss image problem becomes, after applying Oliker's change of functions, a solution to the Kantorovitch problem; we denote by (ϕ K , ψ K ) and (ϕ L , ψ L ) these solutions. Indeed, given a convex body K ∈ K 0 , up to a Lebesgue negligible set N K , for all n ∈ S m \ N K there exists a unique x ∈ S m such that n ∈ G K ( - → ρ K (x)).

Besides if we denote by T K (n) such a x then it is known that T K is continuous on S m \ N K [START_REF] Rockafellar | Convex analysis[END_REF]. Thus for any Borel set ω ⊂ S m ,

µ(ω) = λ(G K • - → ρ K (ω)) = λ(T -1 K (ω)),
in other terms the pushforward of λ through T K is µ. This property is denoted by

T K λ = µ.
Reasoning as in the proof of Theorem 3.2, we get for (ϕ K , ψ K ):

ˆSm ×S m c(n, x) d(Id, T K ) λ(n) = ˆSm c(n, T K (n)) dλ(n) = ˆSm ϕ K (n) + ψ K (T K (n)) dλ(n) = ˆSm ϕ K (n) dλ(n) + ˆK ψ K (T K (n)) dλ(n) = ˆSm ϕ K (n) dλ(n) + ˆK ψ K (x) dµ(x).
Therefore (ϕ K , ψ K ) is a solution to the dual problem (and (Id, T K ) λ is an optimal plan). The same properties hold for the convex body L and the corresponding objects.

Consequently, (28)

Γ = supp π o ∩ {c < +∞} ⊂ ∂ c ϕ K ∩ ∂ c ϕ L .
Recall that π o (Γ) = 1 since the mass transport problem is well-posed. Besides, for ω a Borel set in S m , observe that

∂ c ϕ K ∩ (S m × ω) = {(n, x); n ∈ G K • - → ρ K (x), x ∈ ω},

Lemma 3 . 1 .

 31 The cost function c : S m × S m -→ R + ∪ {+∞} dened in (9) is a continuous map. Moreover, restricted to the open set {c < +∞}, the function c is a strictly convex and increasing smooth function of the spherical distance. Consequently, for (n, x) in any xed open set Ω such that Ω ⊂ {c < +∞}, the function (n, x) → c(n, x) is a Lipschitz dierentiable function on Ω.

Remark 5 . 4 .

 54 The above proposition is a generalisation of [6, Lemma 5.5].

Lemma 5 . 8 .

 58 Under the assumptions of Theorem 5.1, the following inequality holds Γ ⊂ ∂ c ϕ.

  Consequently, we can write the function ϕ in a similar fashion as ψ, namelyϕ(n) = inf i∈I,k∈N inf (ns,xs)∈Γ k , (n0,x0)=(n (i) ,x (i) ),n k+1 =n c ij + k s=0 c(n s+1 , x s ) -c(n s , x s ).

G

  k • -→ ρ K and G L • - → ρ L coincide λ-a.e.as multivalued maps, namely for any Borel setω λ((G k • -→ ρ K (ω))∆ (G L • -→ ρ L (ω))) = 0.

  (where stands for the cardinal of a set). Now dene the reduced graph G 1 similarly to what we did for G but using π d 1 and π α,d

note that π d 1 and π α,d 1 have the same marginals. Moreover, by denition of m, supp π d 1 + supp π α,d 1 ≤ supp π d o + supp π α,d -1 1 instead of π d o and π α,d . By construction, G 1 ⊂ G, E 1 ⊂ E, and, as explained above, we have

  said to be a κ-chain (of length p) from x 1 to x p . The relation x ∼ κ y i there exists a nite chain from x to y induces an equivalence relation on X. By analogy, we call κ-chain connected component an equivalence class of ∼

κ

.

 

This denition diers from the one in[START_REF] Shiri | A Rockafellar-type theorem for non-traditional costs[END_REF] 
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and the same property holds for L instead of K. Now, according to (28)

Finally

Since K and L are solutions to the Gauss image problem, equality actually holds in the above inequality:

and the result is proved.

Appendix

In this appendix, we rst prove the following result which is a minor adaptation of the appendix of [START_REF] Bertrand | Prescription of Gauss curvature using optimal mass transport[END_REF]. Lemma 5.11. Let θ be a Borel probability measure on the unit sphere S m endowed with the spherical distance d. For any κ > 0, there exists a nite partition (P i ) 1≤i≤K of S m (depending on κ) such that for all i, the interior

If we also assume that θ is absolutely continuous with respect to the uniform measure on S m , we can further require θ(P i ) to be a rational number.

Proof. The proof is by induction on the dimension m. Let us recall the expression of the spherical distance d in spherical coordinates say (t, u) where t ∈ [0, π] and u ∈ S m-1 :

(29) cos d((t, u), (s, v)) = cos s cos t + sin s sin t cos d(u, v), where d(u, v) is the spherical distance between u and v in S m-1 . We also set p t (resp p u ) the projections associated to these coordinates on (0, π) × S m-1 .

For m = 1, x a number α 1 > 0. Then, partition S 1 into nitely many left-open, right-closed segments (I j ) 1≤j≤K1 whose length l(I j ) satises l(I j ) < α 1 ; up to slightly moving the intervals -since the condition on the diameter is open-we can further require that θ(∂I j ) = 0 since θ has at most countably many atoms. When θ is absolutely continuous, again one can slightly move the boundary of the intervals to make sure that θ(

is the open ball with radius π -R K2 and center -N . We require that the (R i )'s satisfy:

Since the atoms of the measures (p t ) (θ) correspond to the radius r ∈ (0, π) for which the sphere S(N, r) := {u ∈ S m ; d(u, N ) = r} has positive θ-mass, we can further choose the radii R i 's so that θ(S(N, R i )) = 0 for i ∈ {1, • • • , K 2 }. Similarly, we can assume that θ(C i ) ∈ Q when θ is absolutely continuous. Now, applying the case m = 1 to each measure ((p u ) (θ C i )) 1≤i≤K2 ), we get a partition (P s ) 1≤s≤K of S 2 (namely whose elements are of the form (C i ∩ (p u ) -1 (I i j )) i,j , where

. The (P s )'s have nonempty interiors by construction. In addition to that, we recall that the measures ((p u ) (θ C i )) 1≤i≤K2 ) on S 1 are absolutely continuous with respect to the uniform measure on S 1 whenever θ is so. Using that

; we can further assume θ(P s ) ∈ Q whenever θ is a.c.. Finally, the expression of the spherical distance (29) implies that the diameter of any P s is smaller than κ provided α 1 and α 2 are chosen suciently small. The higher dimensional case easily follows from the arguments used for m = 2.

Building on the previous lemma, we can prove the mass transport problem [START_REF] Oliker | Embedding S n into R n+1 with given integral Gauss curvature and optimal mass transport on S n[END_REF] is well-posed. The proof is a straightforward adaptation of [4, Proof of Theorem 4.1].

Theorem 5.12. Let λ and µ be two probability measures on S m satisfying the assumptions of Theorem 5.1. There exists a plan

Proof. According to the weak Alexsandrov condition, there exists a number α > 0 such that (30)

for any closed set F contained in a closed hemisphere [START_REF] Shiri | A Rockafellar-type theorem for non-traditional costs[END_REF]. The rst step of the proof is to show that we can approximate µ by a nitely supported measure that still satises the above condition up to sligthly decreasing α. To this end, we rst approximate µ by (µ * ρ ε ) ε<α/4 , ρ ε being a family of standard radial molliers on S m . We x such an ε and set µ = µ * ρ ε ; by denition, µ is absolutely continuous with respect to the uniform measure and satises (30) with 7α 4 instead of 2α. The next step is to use a t partition for µ as in Lemma 5.11: there exists a nite partition

made of Borel sets with nonempty interiors such that (31) diam(U i ) < α/4 and µ(U i ) ∈ Q. For each U i , choose x i ∈ U i and set

By assumption on the diameter of U i , µ e satises for all closed set F contained in a closed hemisphere:

(32)

and the proof of the rst step is complete. According to (31), µ e can be rewritten (up to repeating some the x i 's)

. The next step is to show the existence of π e ∈ Γ(λ, µ e ) such that ˆSm ×S m c(n, x) dπ e (n, x) ≤ -ln (sin (α)) .

To this aim, we now apply Lemma 5.11 to the measure λ which is absolutely continuous with respect to the uniform measure. The same argument as the one applied to µ leads to the existence of M and a partition (V s ) r s=1 of S m which satises (31). We rst decompose λ as follows

where λ s = 1 λ(Vs) λ V s . Using that λ(V s ) ∈ Q we can proceed as we did for µ e and, repeating some of the λ s 's if necessary, rewrite this equality as

where

Note that the above equlity implies for any

Now, up to replacing M and M by the product M M and repeating the ( x i )'s and the ( V j )'s, we can assume that M = M . Thus we have a collection of sets

Finally, we claim that the set-valued map

satises the assumptions of the Marriage lemma. Indeed, consider I a subset of {1, • • • , M }.

Thanks to (32), we have

Now, by assumption on the V s 's, we get

Therefore

and the assumptions of the Marriage lemma are satised. Consequently, there exists a one-to-one map f : {1, • • • , M } -→ { V i ; i ∈ {1, • • • , M }} such that for all i, f (i) ⊂ B( x i , π/2 -α). This fact clearly entails that the plan which maps the mass 1/M located at x i uniformly on f (i) is a plan π e in Γ(λ, µ e ) such that (33) π e (n, x) ∈ (S m ) 2 ; d(n, x) ≤ π/2 -α = 1.

Note that the bound does not depend on M nor on ε. Therefore, by letting ε go to 0, we can construct by the same method a sequence of empirical measures which converges to µ, all of whose elements satisfy (33). Then using the Banach-Alaoglu theorem, we can extract a subsequence of plans which converges to an element of Γ(λ, µ) that satises (33).