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A Centrality Approach to Select Offloading Data
Aggregation Points in Vehicular Sensor Networks

Douglas Moura, Geymerson S. Ramos, Andre L. L. Aquino, and Antonio Loureiro

Abstract—This work proposes a centrality-based approach to
identify data offloading points in a VSN. The solution presents
a scheme to select vehicles used as aggregation points to collect
and aggregate other vehicles’ data before uploading it to pro-
cessing stations. We evaluate the proposed solution in a realistic
simulation scenario derived from data traffic containing more
than 700,000 individual car trips for 24 hours. We compare
our approach with both a reservation-based algorithm and the
optimal solution. Our results indicate an upload cost reduction
of 30.92% using the centrality-based algorithm and improving
the aggregation rate by up to 10.45% when considering the
centralized scenario.

Index Terms—Offloading, VANETs, Cellular networks, simu-
lation

I. INTRODUCTION

A Vehicular Ad Hoc Network (VANET) presents different
vehicles acting as mobile sensors [1], which allow monitoring
of urban environments, provide efficient traffic management,
and realize long-term urban planning [2]. A Vehicular Sensor
Network (VSN) is a fusion of a VANET and a Wireless Sensor
Network (WSN) without the power restrictions typically in
a sensor network. On the other hand, a VSN might have
powerful processing units, wireless communication, GPS re-
ceivers, and a plethora of sensing devices [3]. With a vehicular
sensor network, we can design more sophisticated applications
for road safety, traffic management, intelligent navigation,
pollution monitoring, urban surveillance, and forensic investi-
gations [4]. Some data can be used directly by applications.
However, artificial intelligence and machine learning bring
unprecedented opportunities to handle and analyze these data.
We can extract more information and build models of compli-
cated systems, such as citizen behaviors, to understand the city
comprehensively and even predict the dynamics of systems [5].

Many continuous monitoring applications require periodic
data uploading, creating significant traffic in the uplink chan-
nel. According to Cisco [6], monthly mobile data traffic pre-
dictions will reach 77 exabytes by 2022, an increase of more
than 165% compared with 2019, and 20% of IP traffic will be
from mobile devices. The fifth-generation network (5G) is the
technology to support this massive data growth, consolidate the
Internet of Things paradigm, and connect different wireless
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devices. Although this scenario favors new VANETs based
on cellular communication, the rapid traffic growth requires
reducing the overhead in the cellular network. Different
studies [4, 7] consider offloading mobile data to overcome
capacity and cost challenges. In this scenario, mobile data
offloading consists of transferring cellular traffic to alternative
networks to reduce the traffic load in the cellular network.
Some proposals transmit offloaded cellular data in an uplink
channel to complementary and low-cost networks, such as
Wi-Fi and IEEE 802.11p, or using a Device-to-Device (D2D)
protocol [8]. In addition to alternative infrastructure networks,
some vehicles can act as aggregation points. Local aggregation
techniques can combine sensory data from different sources,
eliminate redundancy, and reduce the number of transmissions.

This work focuses on periodic sensor data uploading for
analysis and remote processing. In this context, the sensing
application originates massive data and transmits it through a
cellular network, requiring strategies to save bandwidth and
prevent overload. We explore the structural network informa-
tion to perform the data offloading in a vehicle sensor network
and reduce the volume of sensor data uploaded in the cellular
network. Our main research question is: “How to select a
subset of vehicles to receive, aggregate, and forward sensor
data offloaded through D2D communication?”

D2D communication has emerged as a promising technol-
ogy to allow spatial frequency reuse of cellular networks. This
way, VSN can use the D2D communication to offload sensory
data with higher data rates, low latency, and low-energy
consumption through a direct link between nearby vehicles.
Our approach aims to use the minimum number of vehicles
transmitting in a cellular network and reduce the upload cost.
To determine this minimal number of vehicles, we model the
problem as a variation of the dominating set problem and
present a solution based on the closeness centrality measure [9]
to find a set of aggregation vehicles that minimize the uplink
traffic volume.

The main contribution of this work is the proposal of
a new heuristic to select aggregation points responsible for
performing data offloading in a centralized or decentralized
manner in a vehicular sensor network. Unlike previous re-
sults, our solution does not need to deploy a complementary
communication infrastructure or synchronized transmissions
between vehicles [4, 7, 10]. Our experiments consider differ-
ent evaluation metrics and offloading conditions. We use a
realistic scenario obtained from synthetic mobility traces. The
results significantly reduce bandwidth usage compared to the
traditional upload solution and another offloading approach.
Additionally, we observe that the centrality metric can improve
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the selection of aggregation points in terms of cluster stability,
even using multi-hop communication.

II. RELATED WORK

Mobile data traffic will expand very quickly in the next
years [6], calling for new solutions to the traffic overhead
problem in a scenario of a vehicular sensor network. In
addition to energy savings, data aggregation techniques can
significantly enhance network throughput in a VSN [11].
Moreover, packet transmissions in the cellular network can be
monetarily expensive and inefficient in satisfying mobile users’
demands [10]. In this case, devices may use additional network
infrastructure with a higher capacity to share collective interest
content in an ad-hoc way. However, some features of a
vehicular sensor network, such as a highly dynamic mobility
pattern, require specific approaches when dealing with these
issues.

In recent years, many proposals focused on offloading
techniques to reduce the load on cellular networks. However,
a fundamental problem in Multi-Access Edge Computing
(MEC) offloading is selecting where to perform the offloading.
In [12], the authors addressed this problem and proposed
two learning-based task offloading schemes for IoT devices
with energy harvesting. The results showed reduced energy
consumption, computation latency, and task drop rate. Al-
though their solution explores the offloading concept, they only
considered task offloading.

Kumar et al. [13] proposed a collaborative learning
automata-based routing for rescue operations using VSNs.
In their work, vehicles collaborate to share sensor data and
intelligently select the best route to reach the final destination.
Kumar et al. [14] used a learning-based clustering to determine
the cluster head based on the direction of mobility and density
of vehicles. Kumar et al. [15] formulated the problem of
reliable data forwarding as a Bayesian Coalition Game (BCG).
They proposed a new algorithm called Learning Automata-
based Contention Aware Data Forwarding (LACADF) for crit-
ical Vehicular Cloud (VCloud) applications. Similarly, Singh
et al. [16] used Ant Colony Optimization (ACO) to propose
a routing algorithm based on the random selection of source
and destination nodes. Although the studies mentioned above
present the feasibility of several techniques, their scope is
limited to routing and information sharing.

Studies about offloading to improve traffic downlinks
mainly focus on disseminating and downloading user content.
Mezghani et al. [17] presented an innovative seed selec-
tion scheme, SIEVE, to offload popular content from the
cellular network through the VANET network according to
user preferences. The simulation results showed that SIEVE
could achieve a higher coverage rate, around 89%, in a low-
density scenario. Dua et al. [18] considered game theory to
calculate the utility of the nearby vehicles and Wi-Fi access
points to act like players in a game and perform mobile data
offloading. Similarly, Mao et al. [8] proposed to increase the
communication capacity of a cellular network by using D2D
communication and high-capacity Wi-Fi networks, integrating
different devices in a heterogeneous network. Both studies

used Wi-Fi networks as an alternate way to disseminate data
to the recipient. Data offloading in a vehicular sensor network
have requirements that differ from downlink-based offloading.
The offload must be scalable and support a large-scale network
with millions of sensor vehicles generating massive data to
be uploaded. Also, the offload must be reliable and sensitive
data must be reported to the monitoring center without loss.
Previous solutions typically address delay-tolerant approaches,
while many VSN-based services require near real-time upload
as real-time traffic control.

From a different perspective, some studies consider mobile
data offloading focused on uplink data transfers, which is also
the central subject of this work. Stanica et al. [7] combined
data aggregation techniques with mobile data offloading to
reduce the number of transmissions in the cellular uplink. That
work proposed three distributed algorithms to allow massive
data offloading: Degree-Based (DB), Degree-Based with Con-
firmation (DB-C), and, finally, Reservation-Based (RB), which
presented the best results when a complete coverage of the
vehicles is required. The RB algorithm showed a system gain
of approximately 80% at peak hours, but the synchronization
requirements limit its usage. We compare the RB algorithm
with our solution once it presents a similar strategy and the
most promising results in the literature.

Some proposals use opportunistic communication to offload
delay-tolerant data [19]. A disadvantage of these approaches
is that content offloading will cause a longer delay than
direct transmission in cellular networks. When we consider
complementary network infrastructures, such as IEEE 802.11p
Roadside Units (RSUs) [4, 20] and Wi-Fi access points
to offload data [10], it is possible to achieve a significant
reduction of overload in the cellular network. However, the
opportunistic behavior of these approaches is only compatible
with some applications that require a fine granularity of the
data acquisition w.r.t. time and space.

Finally, some solutions use centrality metrics in VANETs
and data dissemination. Moura et al. [21] used the betweenness
centrality to identify the dissemination points. As in this work,
the authors used a centrality measure to identify nodes, which
due to their topological position in the network, are more
influential in the flow of information. Other studies explore
graph theory to extract structural properties from the network
and perform the offloading. Yan et al. [22] used graphs to
model vehicle connections’ probability. That work proposed
a space and time-constrained data offloading scheme using a
probability-based contact graph to describe near-term trans-
mission opportunities among vehicles. Their results showed
an increase of more than 70% in data offloading in a time-
space-constrained scenario.

Our work differs from the previous one since we do not
deploy complementary infrastructure to the cellular network
nor use a synchronization process during the transmissions.
Our solution can perform the offloading even in near real-time
sensing and operates decentralized. We identify other relevant
improvements (Section V) when we compare our approach
with the RB algorithm [7] mentioned above.
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III. OFFLOADING DATA AGGREGATION PROBLEM

The general data offloading process in a VSN is depicted
in Figure 1 and presents three main steps: (i) Data collection:
each vehicle acts as a mobile sensor and performs urban
sensing. The offloading of collected data occurs to some
neighboring vehicle (called aggregation point) through D2D
connections; (ii) Data aggregation: the data generated by
adjacent sensors are often redundant and highly correlated.
Therefore, reduction and data compression techniques may
eliminate redundancy and reduce the data load of a cellular
network [23]. We can use the aggregation operators (e.g.,
maximum, minimum, average) to combine data from several
sources into a single value. Determining the optimal aggre-
gation points is also an NP-Hard problem [24]. Thus, we
need to propose approximate algorithms to find the set of
aggregation points that minimize the cellular network cost;
(iii) Data delivery: the aggregation points upload the reduced
data to the monitoring center over the cellular network.

(a) Data collection (b) Data aggregation (c) Data delivery

Fig. 1. Mobile data offloading in vehicular sensor networks.

We focus on the Data aggregation step, precisely deter-
mining the aggregation points using a D2D communication
approach. We model the problem as an instance of the mini-
mum d-hop dominating set problem [24], an NP-hard problem.
Thus, we propose a heuristic algorithm to find an approximate
solution. Moreover, the heuristic can operate in a centralized
or decentralized manner and does not require synchronized
transmissions to determine the aggregation points. Besides, the
centrality measure allows the discovery of aggregation points
that minimize the distance for all vehicles in the neighborhood,
adapted according to traffic conditions.

In a VSN, the network topology changes periodically
according to traffic conditions; thus, the aggregation points
change continuously over time. We can model this dynamic
behavior as an instantaneous graph, where we can analyze
each sampled graph separately and determine the aggregation
points for each collection period. Let G(V,E) be an undirected
graph at a generic time instant, in which V = {v1, v2, ..., vn}
denotes the set of moving vehicles, and E represents the set
of edges. If ei,j = {vi, vj} ∈ E, then vi, vj ∈ V are adjacent,
neighbors, and within the transmission range each other.

The 1-hop neighborhood N1(vi) = {vj | ei,j ∈ E}
consists of the set of all direct neighbors of vi. That is, any
nearby vehicle is directly reachable via D2D communication.
Therefore, the d-hop neighborhood

Nd(vi) = {vj | dist(vi, vj) ≤ d} (1)

consists of all neighbors of vi separated by at most d-hops,
where dist(vi, vj) is the length of the shortest path between vi
and vj . The path length between two vertices is the number of
hops, i.e., the number of edges separating them. The discovery
of the neighborhood of a node is a crucial process for multi-
hop communication. Based on this concept, we propose a
heuristic to identify a set of vehicles, called aggregation points,
to collect, aggregate, and transmit the neighbors’ data through
the cellular uplink.

As stated before, we model the VSN aggregation points
problem as an instance of the minimum d-hop dominating set
problem, which can be formulated as follows:

Definition 3.1: (Problem). Is it possible to find a subset
S ⊆ V | ∀vj ∈ (V− S),∃vi ∈ S | 1 ≤ dist(vi, vj) ≤ d?

We are interested in finding the minimum d-hop dominating
set S ⊆ V such that every vehicle vj not in S has at least a
neighbor vi ∈ S separated by at most d-hops. Thus, we define
the decision variable

yi =

{
1, if vi ∈ S
0, otherwise

(2)

indicating whether a vehicle vi belongs to a d-hop dominating
set S. Let us introduce an auxiliary set Wi (i = 1, 2, ..., n).
Let Wi = {yj | vj ∈ Nd(vi)} be a set of decision variables
yj for each neighboring vehicle vj at most d-hops away from
a vehicle vi. To minimize the number of aggregation points,
we consider the objective function

Min
n∑

i=1

yi (3)

subject to

yi +
∑

yj∈Wi

yj ≥ 1 ∀ i ∈ {1, 2, . . . , n} (4)

yi ∈ {0, 1} ∀ i ∈ {1, 2, . . . , n} (5)

Note that in constraint (3), we want to minimize the number
of aggregation points in set S, where constraint (4) guarantees
that if vi ∈ V is not in S, then there is at least a neighbor
vj ∈ Nd(vi) contained in S; and constraint (5) states that yi
is a binary variable.

IV. APPROACHES TO DETERMINE OFFLOADING DATA
AGGREGATION POINTS

The high mobility of the vehicles imposes severe challenges
for data offloading, such as the constant fragmentation of
the network and highly dynamic topology. We can deploy
RSUs to solve connectivity problems, but deployment costs
are high. Other proposals use opportunistic communication to
offload delay-tolerant data. However, a disadvantage of these
approaches is that content offloading will cause a longer delay
than direct transmission in cellular networks.

Cellular systems provide high downlink and uplink rates
even in a high-mobility environment. Therefore, cellular net-
works are feasible communication technologies to deliver data
from moving vehicles. Each vehicle will transmit sensory data
through the cellular infrastructure in the traditional upload.
This approach enables data acquisition with low latency but
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with a significant increase in cellular traffic due to the typically
high frequency of the monitoring services. Thus, a more so-
phisticated solution, such as mobile data offloading, is required
to perform sensory data acquisition.

In the following, we will discuss some approaches to
offloading data aggregation points and present our solution,
a centrality-based algorithm. These approaches must allow
massive data offloading and support near real-time sensing.
More specifically, our solution must consider the following
restrictions: (i) the application originates a massive amount
of sensing data, (ii) a scenario without a complementary
infrastructure, (iii) an adaptive approach to lead with different
latency restrictions, and (iv) sensory data within close space-
time proximity has a significant correlation among them.

A. Optimal Solution

We model the selection of the offloading data aggregation
points as a domination problem [25] in which a subset of
vehicles will collect and aggregate data generated by direct
neighbor vehicles before uploading them through the cellular
network. In the previous section, we introduced an Integer
Linear Programming (ILP) formulation for a variant of the
dominating set problem, called the minimum d-hop dominating
set problem. The objective is to minimize the number of
aggregation points, where each node is at most d hops from a
node in the dominating set. We used the IBM ILOG CPLEX
Optimization [26] to solve it. CPLEX uses a branch-and-cut
procedure to build a search tree consisting of subproblems
to be processed. Then, each subproblem in the tree is solved
until no more active subproblems are available or exceed some
limit. This approach can provide an optimal solution, but it
is inefficient for large graphs with thousands or millions of
vertices [27]. Therefore, we propose approximative methods
to find an acceptable solution in polynomial running time [28].

B. Reservation-Based Algorithm

A well-known heuristic to determine offloading data ag-
gregation points is the RB algorithm [7]. A reservation-based
algorithm executes in a distributed manner in each vehicle
and selects aggregation points for data offloading. The RB
algorithm uses synchronized transmissions between vehicles to
determine the aggregation points. It follows three basic steps:
(i) at the beginning of each data collection process (reservation
phase), each vehicle randomly selects a time slot among the T
available ones and enters the contender state; (ii) a vehicle
in the contender state waits for the chosen time slot (back-off).
This vehicle will transmit a reservation message and enter the
dominator state; and (iii) a vehicle in a contender state
that has received a reservation message from some neighbor
cancels its back-off and changes its state to dominated state.
Only vehicles in the contender state transmits reservation
messages and become dominators; they form the subset
of vehicles that act as aggregation points. This solution’s
challenge is ensuring that every vehicle transmits in a dif-
ferent time slot in a real scenario. Furthermore, if a vehicle
receives multiple reservation messages simultaneously, it may
not decode them.

Algorithm 1 presents the steps of the RB algorithm. It
receives as input the T time slots available. Before the data
aggregation phase, each vehicle chooses a random time slot to
transmit and waits for a reservation message. If a vehicle in
the contender state receives a reservation message, it enters
the dominated state. In contrast, a vehicle changes its state
to dominator when it transmits a reservation message.

Algorithm 1 RB algorithm
Require: T

1: t← Choose the time among T available slots
2: state ← contender
3: while state = contender do state Wait for the chosen

transmission slot
4: if slot = t then state Transmit a reservation message
5: state ← dominator
6: break
7: if Received a reservation message then
8: state ← dominated

The RB is an approximation algorithm for the minimum
dominating set (MDS) problem, in which the group of domina-
tor vehicles represents the aggregation points. The dominated
vehicles offload their data to their dominator neighbors using
inter-vehicular communications. The solution results in 100%
coverage but does not guarantee the optimal solution for the
MDS. The number of vehicles and available time slots limit
the RB algorithm’s time complexity. The while loop (Lines
3-10) runs until the vehicle leaves the contender state. In
the worst case, the vehicle chooses the last slot to transmit
and has not received any reservation messages. Each vehicle
executes the RB with a time complexity of O(T ), resulting in
O(nT ).

C. Centrality-Based Algorithm

To improve the stability of the network and reduce the
data traffic, we propose a new heuristic based on closeness
centrality. General vehicular networks have structures and
characteristics studied through models and metrics based on
graph theory. The centrality aims to classify a vertex (vehicle
in our case) according to its relative position in the network.
We use a centrality metric to determine which vehicles play the
highest topological importance within that structure. Specifi-
cally, the closeness centrality of a node vi in the network is
the measure of centrality defined by

C(vi) =
1∑

vi 6=vj

dist(vi, vj)
. (6)

The distance dist(vi, vj) is the shortest path length between
vi and vj . The farness of vi is the sum of all distances from
vi to any vj , such that i 6= j. Hence, the closeness centrality
is the reciprocal of the farness.

The shortest path between two vertices (vehicles) in an
unweighted graph G is the minor sequence of edges connect-
ing the vertices. We can use Breadth-First Search (BFS) to
find the shortest paths in linear time complexity in the size
of the adjacency list representation of G. We scanned each
vertex’s adjacency list when we dequeued the vertex. Since
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the adjacency lists represent the edges of a graph, the sum of
the lengths of all adjacency lists is O(m). We calculate in each
vertex of the graph; thus, the overall process and worst-case
scenario require a time complexity of O(nm) to compute the
closeness centrality of a network with n vertices and m edges.
Our primary interest is not the centrality’s numerical value
but the node’s relative importance. This interest implies an
additional O(n log n) time cost to sort the vertices according
to their centrality measures. Here, we use BFS to find the
shortest paths between vehicles regarding the number of hops.
Moreover, the centrality-based algorithm allows other shortest-
path algorithms, such as Dijkstra’s algorithm, for weighted
graphs. This strategy is proper when using key link metrics
(e.g., latency, jitter, lifetime, and more) as vehicle communi-
cation costs.

Due to the changes in the network topology, we compute
the aggregation points periodically, which increases the exe-
cution costs. Although the algorithm is easily parallelizable
by running each vertex’s process in different threads, it is still
costly to run in large-scale networks, i.e., networks formed by
thousands or millions of nodes. We reduce the algorithm’s run
time by estimating the k-closeness centrality defined by

Ck(vi) =
1∑

vi 6=vj

dist(vi, vj)
,∀ 1 ≤ dist(vi, vj) ≤ k. (7)

The cutoff parameter k sets a depth threshold for the
search, which stops after reaching the k-th level. The centrality
calculation of vertex vi only considers the vertices separated
by at most k-hops. We can describe the time cost as the number
of enqueueing attempts during the BFS. Vehicular networks
are highly assortative, with a correlation between the degree of
a vehicle and the average degree of its one-hop neighbors [29].
For a regular λ-degree graph (i.e., a graph where the degree
of each vertex is λ), the cost to estimate Ck at each node is
1 + λ + λ2 + . . . + λk = O(λk), resulting in the final cost
O(nλk).

Based on these concepts, the main idea of our Centrality-
based algorithm (Algorithm 2) is to explore the topology
information from the network to choose the aggregation points
to aggregate data offloaded by neighboring vehicles. First,
the greedy algorithm calculates the k-closeness centrality for
each vehicle. Then, it selects those vehicles that, due to their
proximity to the others, have the potential to aggregate a
more significant amount of data. Finally, it will combine them
using some aggregation operator, such as the average function,
and transmit the resulting data on the cellular uplink. The
algorithm receives the graph G, representing the D2D com-
munication, the number of hops for multi-hop communication
(d), and the maximum path length (k) for centrality estimation.

Algorithm 2 performs the following steps:

• Line 1: creates the set S of aggregation points as an empty
set;

• Line 2: computes the closeness centrality for each vehicle
in G according to the cutoff k;

• Lines 3-5: removes from G the most central vertex and
adds it to set S, while there are vehicles in G;

• Lines 6-8: removes from G each vertex that is a d-hop

Algorithm 2 Centrality-based algorithm
Require: G, d, k

1: S ← ∅
2: Ck ← Compute Equation 7 ∀vi ∈ V
3: while V 6= ∅ do
4: Select vi ∈ V that maximizes Ck

5: S ← S ∪ {vi}
6: for each vj ∈ Nd(vi) do
7: if vj 6∈ S then
8: V← V \ {vj}
9: V← V \ {vi}

10: return S

neighbor from the vehicle selected in Line 4, which is
not in set S. This step ensures that aggregation points
will be separated from each other by at least d-hops;

• Line 10: returns S with the set of aggregation points when
the algorithm achieves the termination condition. When
the graph network is not connected, each isolated vehicle
is added in S and transmits its sensory data.

Figure 2 illustrates the steps to solve our problem for a
minimum one-hop dominating set, with closeness centrality set
to k = 3. As depicted in Figure 2(b), the closeness centrality
of vertex 4, which is equal to 0.125 (the highest value), only
considers the vertices highlighted in red. An aggregation point
collects and aggregates data from its d-hop neighbors. Here,
we select three vertices (4, 6, and 9) as aggregation points,
but we can find other solutions by adjusting the parameters.
In addition, more than one vi can maximize Ck. We deal with
this by choosing the first one.

1
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4

5

6
7
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9 10

(a) Network modeling.

1

2

3

4

5

6
7

8

9 10

(b) Centrality calculation.
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7
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(c) Aggregation points selection.

Fig. 2. Aggregation points selection based on k-closeness centrality.

The data aggregation process may consider multi-hop com-
munication. The proposed solution starts with local communi-
cation between each pair of vehicles to model the network
and extracts information from the graph. The execution of
the algorithm must precede each data delivery phase. This
approach leads to the following main advantages: (i) The
solution addresses single and multi-hop (with a different num-
ber of hops) communication to maximize cellular bandwidth
saving; (ii) we can adjust the calculation of centrality value
according to traffic conditions and application requirements;
(iii) the heuristic works separately at each base station, fa-
voring scalability and decentralized management. In the case
where all vehicles are isolated, each one will transmit its
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data individually, resulting in an upload cost equivalent to the
traditional approach; and (iv) vehicles operate asynchronously.
Thus, scenarios with a high density of vehicles do not offer
synchronization overhead.

The centrality-based algorithm does not guarantee the opti-
mal solution in all cases but provides approximate solutions in
polynomial time. In addition to the cost of O(nλk + n log n)
to discover vehicles with high centrality values, there is a cost
O(nλd) to find neighbors up to the d-th level. The algorithm’s
time complexity to solve the minimum d-hop dominating set
for a λ-regular graph is O(n(λd + λk + log n)).

Some vehicles chosen as aggregation points may be travel-
ing in opposite directions as the other vehicles in the dominat-
ing set, resulting in a short link period with the aggregation
points leaving the group of vehicles. Mobility information can
complement the centrality measure to increase communication
reliability and cluster stability. We will calculate the centrality
measure using Equation 7 in a new graph with edge con-
straints, where only paths formed by vehicles with the exact
direction will compose the network. This restriction ensures
that each community of nodes in the network will consist only
of vehicles traveling in the same direction. Let wi = P2 −P1

be the displacement vector of the vehicle vi, in which P2 is
the coordinates of the current position of vi and P1 is the
coordinates of the last position. The vector wi indicates the
distance and direction traveled by vi from P1 to P2. The angle
of rotation (θ) between wi and wj is given by:

θ = arccos
wi · wj

|wi||wj |
, (8)

where wi · wj is the dot product of two vectors and |wi|
and |wj | is the magnitude of wi and wj , respectively. The
vehicles vi and vj have different directions if θ exceeds a
threshold. The threshold can be between 0o and 180o because
the method returns the smallest angle between the vectors.
Then, 180o corresponds to the opposite direction. If θ ≤ 45o,
the two vehicles have the same direction (a value typically
used in the literature [30]). In this manner, two vehicles, vi
and vj , will be neighbors if they are in the same transmission
range and have the exact direction. We can calculate vehicle
directions by traversing the adjacency list at O(m).

D. Method for Parameter Selection

Finding an optimal choice of parameters is an essential
design issue. In numerical analysis, the researchers use widely
Nelder-Mead simplex algorithm to solve parameter estima-
tion problems [31]. It is a usual search method to optimize
an objective function in a p-dimensional space based on the
iterative update of a simplex with (p+1) points. The simplex
associates each point with a function value and sorts, in linear
time, according to these values. At each iteration, we use
reflection, expansion, or contraction to replace the worst point
with a better one. The updating executes in O(p) operations.
We repeat this process until to reach one of the stopping
criteria, e.g., the maximum number of iterations. We use the
Nelder-Mead method to find the values of the parameters that
maximize the aggregation rate function. The parameter d sets
the number of communication hops, whose maximum value

is maxi,j dist(vi, vj) ∀i, j = {1, ..., n}, i.e., the network
diameter. As we will see later, there is a trade-off between
the aggregation rate and the end-to-end delay. Therefore, we
must use typically small values for the number of hops to save
bandwidth and reduce latency. Usually, the maximum number
of hops between a source node and a destination is ten on
average [32]. In this manner, the centrality-based algorithm
uses this value as an upper boundary for the number of hops.

V. EVALUATION AND RESULTS

This section describes the performance evaluation of the
Centrality-based algorithm. We used a realistic represen-
tation of vehicular mobility to model D2D communication.
The evaluations consider simulation experiments to analyze
different performance metrics.

A. Scenarios

We consider two main scenarios: (i) Centralized: we use the
coverage of only one cellular cell with one server processing
and determine the aggregation points in our application. In
this case, we compare our algorithm’s performance against the
RB algorithm (proposed by Stanica et al. [7]), the optimal
solution, and the traditional upload. (ii) Decentralized: we
use the coverage of four cellular cells with decentralized
server processing and determine the aggregation points in our
application. We use the RB algorithm as the baseline.

Given its high simulation cost, we use a large-scale urban re-
gion with a simplified transmission model in the first scenario.
The second is a more realistic but smaller scenario, considering
a multi-cell infrastructure and a detailed LTE model. In both
scenarios, we use a dataset based on realistic traffic demand
in Cologne, Germany.

This dataset is available through the TAPASCologne project
[33], an Institute of Transportation Systems (ITS-DLR) ini-
tiative at the German Aerospace Center. We perform all
experiments in a computer with a Ubuntu 16.04 operating
system, Intel Core i5-7200U @2.50GHz processor, and 8 GB
of RAM.

We assume sensory data collected in close space-time
proximity has a significant correlation, such as temperature
measurements. Thus, we aggregate data with a simple local
aggregation model based on the average to avoid requiring
each vehicle’s data. Each aggregation point aggregates data
from its neighbors (including its data) and transmits a single
packet summarizing the collected data. The packets have a
fixed size of ε = 120 bytes. The number of packets (p)
changes over time according to the size of the dominating
set S, resulting in a total data volume of pε bytes uploaded in
each data delivery period (10 s).

We evaluate the Centrality-based algorithm with differ-
ent number of hops d = {1, 2, ..., 6} and closeness depth
k = {1, 2, ..., 6}. We fixed the number of time slots in the
RB algorithm T = 256, as defined in [7]. We perform ten
simulation runs for each parameter value and calculate the
average. The acceptable minimum number of simulations is
rounds = (100 z σ/µ)2 [34], where z = 1.96 is a critical value
for a 95% confidence level, and µ is the value required for a
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5% error margin. We obtain the sample standard deviation
(σ) from the five worst cases of 10 preliminary independent
simulations (with a unique seed for each one).

We apply two statistical tests to analyze the results: (i)
Shapiro-Wilk test [35] to check the normality of data dis-
tribution. The null hypothesis for the Shapiro-Wilk test is
that some populations have the samples normally distributed.
In contrast, if p-value < 0.05 for a significance level (α)
of 0.05, we reject the null hypothesis (not normal samples).
According to the test’s result for normality, the samples do
not follow a normal distribution, so we evaluated them with
(ii) the Wilcoxon signed-rank test [36] with a 95% confidence
level. It is a non-parametric paired test used with not normally
distributed data. We used the paired test to determine whether
the difference between the two dependent samples follows a
symmetric distribution around zero (i.e., samples selected from
populations with the same distribution).

B. Centralized scenario

In our centralized scenario evaluations, we use the complete
Cologne’s trace1, which covers 400 km2 through 24 hours
with a granularity of one second. We use more than 700,000
individual car trips and mobility traces to model vehicle-
to-vehicle communication (e.g., based on the IEEE 802.11p
standard or D2D communication). The connections between
vehicles follow the Unit Disk Graph (UDG) model, a simple
and popular model for wireless communication networks. In
this model, two nodes communicate if the distance between
them is most r, where r is the transmission radius equal
for all nodes. We assume all vehicles are homogeneous and
equipped with omnidirectional antennas with a transmission
range of 100 meters. We can not guarantee 100% coverage for
all vehicles in a real scenario, but we consider only a cellular
base station providing ubiquitous coverage to all vehicles.
With this simple scenario, we can simulate the aggregation
points selection in a centralized manner, in which each vehicle
has a cellular network interface to upload its sensory data. We
fixed the angle threshold as 45o, defined in [30]. So, when
the rotation angle between two vehicles is more than 45o, we
assumed these vehicles are not on the same road and have
different directions.

The metrics used for the performance evaluation in this
scenario are (i) Aggregation rate: the ratio between data
volume after aggregation and data volume before aggregation.
We used this metric to evaluate the gain of the offloading
scheme; (ii) Upload cost: the amount of sensory data uploaded
for each data delivery. The higher the aggregation rate, the
better the upload cost reduction; (iii) Computational cost: the
total number of edges examined to estimate the k-closeness
centrality. It shows the impact of the cutoff (k) parameter
value on the cost of running the algorithm; (iv) number of
edges: the total number of connections between the vehicles
in the network. We use this measure to analyze the impact
of vehicle directions on network connectivity; (v) number
of reelections: the average number of vehicle reelections as
an aggregation point. It measures the efficiency of selecting

1http://kolntrace.project.citi-lab.fr/

aggregation points where a low number of reelections suggests
that cluster structures are unstable to minor variations in the
network structure; (vi) number of notification messages: the
average number of notification messages sent from the base
station to the aggregation points. We used this metric to
evaluate the cost of forming the clusters during the aggregation
points selection process; and (vii) number of routing updates:
average number of updates in the routing table of vehicles. It
measures the cost of maintaining the cluster after updating the
aggregation point.

Figure 3 presents the aggregation rate’s Cumulative Dis-
tribution Function (CDF) for the centrality-based algorithm
with different parameter values. The CDF function shows that
the probability of aggregation rate is less than or equal to a
specific value. We observe that the number of hops (d) and
the maximum path length (k) affect the aggregation rate of
the data offloaded by vehicles. When k is significantly tiny
(i.e., k � maximum path size), the values obtained for the
centrality measure are underestimated compared to the actual
values. This underestimation occurs because the calculation of
closeness centrality considers only partial information about
the network topology. The results suggest that the aggregation
rate is better when k > d since the nearest neighbors hardly
provide more information to estimate a vertex’s centrality
measure. Therefore, we use k = 4 to analyze single (d = 1)
and multi-hop (d = 3) communications. This value provides
more accurate information to calculate the centrality of a
vehicle considering its k-neighborhood.

Figure 4 presents the aggregation rate results of the optimal
solution, RB algorithm, and the Centrality-based algorithm
in a single-hop communication. In addition, we also run the
centrality-based algorithm without vehicle directions informa-
tion. We can observe that both Centrality-based algorithms are
better than RB. Our algorithm minimizes the number of hops
between the aggregation points and their neighbors whenever
it is possible to cover all vehicles with a small number of
aggregation points. The optimal solution gives the minor ag-
gregation points set a minimum d-hop dominating set. The RB
algorithm constantly approximates the optimal solution when
the number of transmission slots tends to infinity. However,
in a real scenario, the number of transmission slots is limited,
resulting in sub-optimal performance of the RB algorithm [25].
This limitation is because a vehicle in the contender state
can receive more than one reservation message transmitted
at the same transmission slot, which can cause collisions. In
addition, this vehicle might not decode some messages and
enter the dominator state. The results also show a decrease
in the aggregation rate when we consider only vehicles in
the same direction during offloading. This behavior occurs
because an aggregation point cannot collect data from vehicles
in different directions. In the worst case, we will need more
aggregation points to ensure complete coverage of vehicles.

Next, we apply the One-Tailed version of the Wilcoxon
signed-rank test to compare the aggregation rates observed
in the algorithms based on centrality and reservation, which
reported p-values of 2.2e-16 (less than 0.05). We can reject
the null hypothesis in favor of the alternative one. Thus,
the test indicates that the centrality-based algorithm has a
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Fig. 3. Cumulative distribution function of the aggregation rate of the
centrality-based algorithm.
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better aggregation rate than the RB algorithm. Furthermore,
the reported results suggest that disregarding vehicle directions
does not invalidate the solution regarding aggregation rate.
Therefore, the centrality-based algorithm can run even when
vehicle directions information is not available. As we will see
in the next section, clusters are more stable than those formed
by the RB. In this case, the vehicles selected as aggregation
points often remain in the cluster and are reelected. We can
also see that the Centrality-based algorithms find an optimal
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Fig. 5. Aggregation rate obtained using a centrality-based algorithm compared
to the RB and optimal solutions (multi-hop communication).

solution for some instances.
We can explore growing neighborhoods by increasing the

number of hops. However, the network’s diameter limits the
benefit of multi-hop communication. Figure 5 presents the
aggregation rate results for d = 3. Again, the centrality
(no direction) approach performed better than the centrality
with direction. The direction constraint eliminates edges in
the graph and causes a slight reduction in the aggregation
rate. In this scenario, there was an average reduction of
2.16% in the number of edges. This behavior suggests that
a few vehicles move in different directions, resulting in an
average difference of 0.17%. Compared with single-hop com-
munication, the Centrality-based algorithm without direction
improves the aggregation rate by 8.27% at peak hours and
has nearly optimal performance. We keep the RB aggregation
rate in this figure, in which the centrality without direction,
when compared with the RB solution, achieves an aggregation
rate increase of up to 10.45%. The RB algorithm’s minimum
distance between aggregation points is two hops (best case).
However, the domination number of the network will limit the
number of aggregation points selected. The multi-hop commu-
nication can increase the distance between aggregation points,
where fewer aggregation points are needed to cover vehicles.
Moreover, the RB algorithm does not consider topological
information from the network and selects the aggregation
points according to randomly chosen time slots. As a result,
the sets of selected aggregation points tend to be larger than
those of the centrality-based algorithm.

Figure 6(a) presents the optimization results for the
Centrality-based algorithm using the Nelder-Mead method (see
Section IV-D) with a limit of 500 iterations. Most parameter
values k are between 6 and 28, with extreme values occurring
during peak hours. We analyze the computational cost based
on the number of edges examined during the closeness central-
ity estimation. A large k leads to a high cost in dense networks
with an expressive number of connections, which may need
to improve in applications with strict latency requirements.
On average, the centrality-based algorithm used six hops for
communication, with an increase during peak hours, when
the network becomes densely connected. Figure 6(b) shows
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Fig. 6. Computational cost and aggregation rate of parameter optimization
(Nelder-Mead method).

the aggregation rate after the parameters optimization. This
procedure brought a significant improvement to the Centrality-
based algorithm. First, however, we must recognize the high
cost entirely. This figure shows that the Centrality-based
algorithm (d = 3) achieved an aggregation rate close to the
one with optimized parameters, suggesting we can obtain a
satisfactory aggregation rate without an exhaustive search.

Figure 7 shows the traditional approach’s upload cost (no
offloading scheme), where each vehicle uploads its data. The
upload cost for each data delivery period is the sum of
all data sent by each vehicle in the scenario. In this case,
the upload cost is directly proportional to the number of
vehicles. To traditional upload, the cost is 167.50 kB/s at peak
hours, and after performing offloading with the Centrality-
based algorithm (no direction), 43.66 kB/s – a reduction of
73.93%. The upload cost is similar to the RB algorithm,
44.69 kB/s – a reduction of 73.31%. However, we obtained an
essential improvement over the RB algorithm. Upload’s cost
decreased from 43.66 kB/s to 30.16 kB/s after d = 3 hops,
which represents a reduction of 81.99% and 30.92% in the
upload cost compared with the traditional approach and the
RB algorithm, respectively.

In all cases, the upload cost is higher at peak hours,
where the results show the best aggregation rate and cost
reduction. The throughput in the D2D network is pε/10 bytes
per second, where p is the number of generated packets, and
10 is the collect interval. In both approaches, the bandwidth
consumption is higher when the number of nodes increases.

Simulation time (h)

U
pl

oa
d 

co
st

 (
kB

/s
)

4am 7am 11am 3pm 6pm 9pm

0

50

100

150

200 Traditional
RB

Centrality (d=1)
Centrality (d=3)

(a) Cost of upload.

Simulation time (h)
N

um
be

r 
of

 v
eh

ic
le

s 
(x

10
00

)

4am 7am 11am 3pm 6pm 9pm

0

5

10

15

(b) Number of vehicles.

Fig. 7. cost of upload in the traditional upload approach.

However, the RB Algorithm must transmit the reservation
messages, where all vehicles can choose the same time slot.
Therefore, in the worst case, we send p = n packets on
the D2D network, which occurs with a probability T 1−n. In
contrast, there is an overhead in the Centrality-based algorithm
to relay sensing data. Therefore, the generated traffic will
be higher when the multi-hop communication is enabled,
resulting in p = nd packets. With this increment, we save the
cellular uplink bandwidth, with an aggregation rate of 10.45%
compared to the RB algorithm. In the next section, we will
look at the decentralized scenario and the impact of multi-hop
communication.

Although the dataset presents a real scenario with different
road topologies, we need to evaluate the performance of
the proposed algorithm in a two-way roadway scenario. We
created a square area with dimension 15 km × 15 km, with
1.500 vehicles for 1.400 seconds. This scenario consists of
a two-way roadway, randomly generating routes by SUMO
random trips tool. We perform the aggregation points se-
lection using Centrality-based and RB algorithms. For this
experiment, we used the same parameters as in the previous
one. Figure 8(a) presents the aggregation rate analysis. When
we do not consider the direction of the vehicles, the Centrality-
based algorithm without direction performs better than the
RB algorithm. However, if we include the direction of the
vehicles as a constraint for the Centrality-based algorithm,
then the aggregation rate will be penalized. Figure 8(b) shows
the number of edges in the network during the simulation. We
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can observe that the directions impose severe constraints on the
network structure, resulting in decreased network connectivity.
Different of Cologne scenario, this scenario has approximately
half of the vehicles traveling in different directions, resulting
in many edge removals. In an exploratory study, we identify
that the average percentage of removed edges in the Cologne
scenario was 2.16% and in the two-way roadway scenario, was
48.22%. Consequently, many aggregation points are needed
to ensure complete network coverage, leading to an average
reduction of 13.37% in the aggregation rate. Although the
aggregation rate is lower, we see an increase in network
stability. This behavior is because a vehicle tends to remain
longer as an aggregation point when we calculate vehicle
directions. On average, an aggregation point was reelected
3.66 ± 0.27 times in the Centrality-based algorithm with
direction. When we do not consider the vehicles’ directions,
the average number of reelections was 0.87 ± 0.07 in the
Centrality-based algorithm without direction and 0.66 ± 0.05
in the RB algorithm.

Centrality-based algorithm offers a convenient solution for
reducing the cost of exchanging control messages. Figure
9(a) depicts the average and standard deviation of the num-
ber of notification messages sent when selecting aggregation
points. It generally sends a notification message every time
the establishment of an aggregation point. However, we can
minimize the number of transmissions by sending a notifi-
cation message only when a vehicle becomes or ceases to
be an aggregation point. When we consider the direction of
vehicles, the average number of notification messages was
18.65, with a range between 10 and 49 during the plateau.
While the approach without direction had an average of 27.68
notification messages, ranging from 19 to 54. Centrality with
direction brought an average reduction of 32.62% compared
to the no-direction approach. This result suggests that network
stability contributes to a reduction in the cost of selecting
aggregation points. In addition, Figure 9(b) shows the average
and standard deviation of the number of updates in the routing
table. Assume that all vehicles maintain a routing table with
up-to-date aggregation point information. This information is
propagated between neighboring vehicles whenever a new
aggregation point is selected. That is, no update occurs when
the aggregation point is re-elected. Again, there was a cost
reduction when considering the approach with direction. It
was possible to reduce the average number of updates in
the routing table by 45.39%. When we use the direction of
vehicles, the average number of routing updates is 32.70, with
a range between 17 and 95 during the plateau. While the
approach without direction had an average of 59.88 routing
updates, ranging from 45 to 144. These findings suggest
that the proposed algorithm effectively improves the cluster
management cost in the two-way roadway scenario.

Compared to the Centrality-based algorithm without di-
rection information, the approach with direction information
has an additional computational cost O(m) to compute the
direction of each vehicle and it also reduces the aggregation
rate due to the increase in the number of aggregation points.
Moreover, without a replacement of aggregation points, there
could be a vehicle overload with communication and process-

ing. However, note that prolonging the time of a vehicle acting
as an aggregation point improve network stability, reduces the
cost of selecting aggregation points, with fewer notification
messages transmitted, and decrease the cost of maintaining
clusters, requiring fewer updates to update the aggregation
point. Adopting a replacement of aggregation points can
contribute to better management of computational resources.
This behavior occurs because load distribution among different
aggregation points allows the use of processing capacity more
uniformly, preventing overload in some nodes and idleness
in others. However, evaluating the criteria for choosing the
aggregation point is important, as frequent changes increase
the cost of forming and maintaining the clusters.

C. Decentralized scenario

In the decentralized scenario, we chose a sub-map extracted
from the central region of Cologne2. This choice is due to
the high cost of the simulations. We used traffic traces from
7:00 am to 7:10 am, with around 323 vehicles distributed over
an area of 6.38 km2. We deployed four LTE Base Stations (BS)
at different locations to cover all vehicles in the scenario.

The evaluation is performed through simulations using the
SimuLTE v.1.0.1 [37] simulator, which implements a detailed
LTE stack model and simulates the LTE-Radio Access Net-
work data plane and Evolved Packet Core. SimuLTE is an
open-source project building on top of OMNeT++3, and it
can also work with the Veins framework [38], which allows
simulating the mapped trips from the TAPASCologne project
(performed by SUMO) and D2D communications in the vehic-
ular network environment. Table I summarizes the simulation
parameters.

TABLE I
SIMULATION PARAMETERS.

Parameters Values

Carrier Frequency 2 GHz
Bandwidth 5 MHz (25 RBs)
Collect Interval 5 s
Delivery Interval 10 s
Handover Enable
Power Transmission eNodeB: 46 mW / UE: 26 mW
Antenna Gain eNodeB: 18 dBi / UE: 0 dbi
Path Loss ITU-R, Urban Macro Cell model
Thermal Noise −104.5 dBm

Besides the aggregation rate and the number of reelections,
we used the following ones to evaluate this scenario: (i)
Cellular throughput: throughput of transmitted sensory data
in the cellular uplink channel. We used this metric to analyze
the size of the data reduction in the cellular uplink after data
offloading; (ii) D2D throughput: it is the data rate (bits/sec)
of the data packets delivered over D2D sidelinks toward all
aggregation points considered over the simulation time, i.e.,
the total number of bits successfully delivered to all the
aggregation points divided by the simulation time. We use this

2https://sumo.dlr.de/docs/Data/Scenarios/TAPASCologne.html
3https://omnetpp.org/
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Fig. 9. cost of selecting and maintaining the same aggregation point.

metric to analyze the average amount of traffic flowing from
one vehicle to its aggregation point in a given period; (iii)
End-to-end delay: average delay between a vehicle and the
aggregation point. This metric is vital because some sensing
applications need a near real-time delivery, but multi-hop
communication can generate a considerable delay; and (iv)

D2D Overhead: average amount of bytes transmitted over the
D2D network when sensing beacons and reservation messages.
We use this evaluation to analyze the extra bytes required for
data offloading.

Figure 10 shows the aggregate rate for each value of d and
k = 4. The single-hop communication scenario shows that the
baseline approach is better than the centrality-based algorithm.
In contrast with the RB, the centrality-based algorithm models
the aggregation capability at each base station so a vehicle
can only offload data to aggregation points in the same base
station. This strategy reduces the length of the shortest paths
in the network. Such behavior can fragment and compromise
vehicle connectivity in a sparse network like ours. As we will
see below, our algorithm has better cluster stability results than
the baseline approach.

From the multi-hop communication view, we improve the
aggregation rate by increasing the number of hops. For in-
stance, when d = 2, the centrality-based algorithm’s aggre-
gation rate was 64.78%, at best. This scenario represents an
8.78% increase if we compare it with the value d = 1. The
results show that the centrality-based is better than the RB after
300 s of simulation time. Although there is an increase in the
number of vehicles in the scenario, the average length of the
shortest paths is small, around 2.69±0.81 hops. Therefore, the
curves show similar performance in multi-hop communication.
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For d = 3 and d = 4, the centrality-based increased the
aggregation rate of 6.87% and 4.21% over the RB algorithm,
respectively. In all cases, we consider k = 4. According to
previous results, the aggregation rate is better when k > d.
Consequently, d = 4 presents a lower performance than d = 3.

Figure 11(a) shows the throughput in the cellular network.
We compute it with the data transmitted in the uplink of
the four base stations. The upload without an offloading
system reached a throughput of up to 13.23 kb/s. These results
show that offloading reduces up to 52.32% of the throughput
compared to traditional upload. Although the experiment does
not reproduce a scenario of intense overload on the cellular
network, the proposed solution can reduce the uplink overload,
as observed in the results. The application can also process the
data at the edge of the cellular network on a MEC platform. It
could also reduce the overload in the core network to facilitate
further access to data available for real-time or location-based
applications.

Figure 11(b) shows the D2D communication’s throughput.
In the case of D2D communications, neighbor discovery is an
essential service. We use the direct discovery method, where
each vehicle announces its presence through periodic signaling
messages (beacons) broadcast. Results show that the D2D
channel utilization is more significant in the centrality-based
algorithm due to signaling overhead and the multi-hop trans-
missions. Multi-hop communication can find even more minor
aggregation points, but several practical challenges involve
multi-hop communication. For example, we can overload the
complementary network without an efficient data collection
strategy. Although the applications can offload the data over
unlicensed frequency spectrums, such as Wi-Fi networks, there
is still a cost since a large amount of data could compromise
the capacity of the D2D communication channel. In contrast,
the RB algorithm may suffer synchronization overhead, but
this work did not examine it. A complete simulation could
analyze the synchronization in detail.

Figure 11(c) analyzes the impact of the number of hops on
the end-to-end delay. For example, if the aggregation point
is far, it receives the data with a high end-to-end delay. The
centrality-based algorithm uses closeness centrality to select
aggregation points that reduce the transmission time according
to the number of hops. Our study reveals that the proximity
relationship between vehicles can reduce the end-to-end delay
for local data aggregation. As a result, sensor data takes, on
average, 1.18 seconds (better than the baseline) to reach its
aggregation point via single-hop communication. There is a
trade-off between the aggregation rate and end-to-end delay.
Multi-hop communication can improve the aggregation rate,
increasing the end-to-end delay. This issue can degrade the
QoS performance of real-time applications, such as online
sensing applications.

Our analysis also reveals that the centrality-based algorithm
produces better stable clusters than the baseline. Figure 11(d)
shows stability results for both solutions. Stable clusters tend
to reelect the exact vehicle as an aggregation point. Periodic
changes in aggregation points can increase network overhead
due to the routing information. In contrast, the reelection
of aggregation points can minimize network traffic. Clusters
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Fig. 11. evaluation of data transfer in the decentralized scenario.
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Fig. 12. D2D Overhead versus the number of vehicles.

formed by the centrality-based algorithm are more stable than
those created by the RB algorithm in single and multi-hop
communication. We observe the reelection of aggregation
points by an average between 6 and 4 times, but there are
aggregation points reelected up to 43 times by the centrality-
based algorithm. The maximum number of reelections was 33
times for the RB algorithm.

The results show that the k-closeness centrality can reduce
the average path length between the aggregation points and
other vehicles. Therefore, nodes with higher centrality are
ideal for data collection with fewer rebroadcasts and latency.
Table II shows the results of a two-tailed Wilcoxon signed-rank
test, comparing mean values for each variable in the single-hop
communication of the centrality-based and the RB algorithm.
The results suggest that all pairs of samples have statistical
differences. The RB algorithm is better than the centrality-
based algorithm in aggregation rate but presents longer delays
and less stability. Nevertheless, we can solve the aggregation
rate problem by increasing the number of hops.

TABLE II
WILCOXON SIGNED-RANK TEST FOR PAIRED SAMPLES (TWO-TAILED).

Centrality - RB (Pseudo) Median Std. Deviation
Confidence interval (95%)

p-value
Lower Upper

Aggregation rate -4.685 2.595 -5.257 -4.139 1.073e-10
Cellular throughput 0.069 0.008 0.062 0.074 0.006
D2D throughput 0.027 0.001 0.026 0.027 0.002
Transmission delay -0.622 0.139 -0.739 -0.506 0.002
Number of re-elections 1.281 0.106 1.238 1.383 0.002

If we only consider the time range of the highest vehicle
density (after 300 seconds of the simulation), the paired test
(one-tailed) reports a p-value of 7.255e-05 when the number
of hops equals 2. This result suggests that the centrality-
based algorithm is statistically better than the baseline in
this specific scenario. However, there are limitations to our
approach. The algorithm performs poorly when the network
is highly fragmented, and the shortest paths must be better
defined. Besides, multi-hop communication generates con-
siderable overhead in the D2D network, so we must adjust
the parameters appropriately to find a trade-off between the
transmission cost on the sidelink and the aggregation rate.

Finally, we analyzed the impact of vehicular density on
overhead and delay in the D2D network. We use the SUMO
random trips tool to generate a set of random trips and show
the impact of the density of vehicles in the Cologne road
network (central area). We perform the network simulation
using SimuLTE v.1.0.1 simulator – we use the same simulation
parameters (see Table I). Five different setups were analyzed:
100, 200, 300, 400, and 500. Figure 12 presents the average
overhead in the D2D network communication in terms of the
transmitted beacon and reservation messages, together with
the standard deviation. The centrality-based algorithm suffers
from a higher overhead than the RB algorithm, where each
vehicle transmits periodic messages to keep the neighborhood
structure updated. However, there is no significant difference
between single-hop and multi-hop communication since it
sends only one-hop beacon messages. In the RB algorithm,
dominated vehicles do not transmit reservation messages.
Therefore, the overhead is proportional to the number of
transmitted reservation messages, which tends to decrease with
the number of aggregation points. As previously reported,
there is overhead due to synchronization in the RB algorithm.
However, we do not evaluate this aspect in this work.

In addition, Figure 13 presents the average end-to-end
delay and standard deviation. The centrality-based algorithm
performed better in terms of end-to-end delay. Again, there is a
longer delay when multi-hop communication is enabled. This
delay increases with the number of vehicles in the scenario
because more data flows in the D2D network, resulting in a
long time to process the packets. These results highlight how
the centrality measure can reduce the delay between sensor
vehicles and aggregation points. While the RB chooses the
aggregation points randomly, the centrality-based algorithm
chooses them based on their proximity to the other vehicles.
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Fig. 13. End-to-end delay versus the number of vehicles.

The decentralized scenario showed a more realistic evalu-
ation with four base stations distributed throughout the com-
munication area. We perform the aggregation point selection
at each base station in a decentralized manner according to
the local view of the system. Due to the high simulation
cost, we reduced the scenario for simulation, resulting in
a highly fragmented network. The results suggest that the
centrality-based algorithm could perform better in networks
with this topology. Therefore, we have included the centralized
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scenario that comprises a large-scale urban area with all
vehicles associated with the same base station. This scenario
simulated a dense and highly connected network, but because
of the high simulation cost, we do not use SimuLTE in this
case. Finally, we performed a high-level evaluation, analyzing
the multi-hop communication and the impact of the vehicle
directions. The results showed a significant gain in multi-hop
communication when the network is densely connected, while
vehicles’ direction contributes to the network’s fragmentation.

VI. CONCLUSION

In this work, we proposed an algorithm for selecting ag-
gregation points to perform data offloading in a vehicular
sensor network. The algorithm uses a centrality metric to find
the most compatible vehicles in a data offload scenario. The
proposed solution is a decentralized heuristic and does not
need an infrastructure complementary to the cellular network.
In addition, our heuristic does not require synchronized trans-
missions between vehicles and is scalable to support different
traffic conditions. The centrality metric only considers local
calculations, resulting in more stable clusters and minor end-
to-end delays. Results showed that we could use neighbor-
hoods of different sizes to estimate the centrality measure
adaptively, so it was possible to obtain a high aggregation
rate even in scenarios with high vehicular density, where we
reduced the diameter of the calculation. In future work, we will
consider a more robust evaluation with real urban monitoring
applications, in which we can explore different conditions of
data aggregation and QoS requirements.
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