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ABSTRACT
This article presents the design and analysis of a series-

parallel hybrid mechanism. The mechanism has two stages which
consist of a fixed base, an intermediate mobile platform and a
mobile end-effector. Each stage is connected by three tension
springs and a universal joint in the center. By correlating to a 3-
SPS-U architecture, the geometrical equations for the mechanism
are generated in the Euler space. To simplify the computations,
the Tilt & Torsion space is employed for the analysis of the mech-
anism. A stability analysis is carried out initially to identify the
optimum design parameters of the mechanism in the static mode.
By employing algebraic methods, the singularity analysis of the
mechanism is then carried out to generate the workspace and
identify the tilt limits of the hybrid mechanism. A mapping equa-
tion which demonstrates the relation between the Tilt & Torsion
angles and the Euler angles is then presented using the results
of singularity analysis and numerical simulations. The mecha-
nism under study is then proposed to be integrated on a piping
inspection robot for passing through elbows and T-sections.
Keywords: Series-parallel mechanism, Tilt & Torsion,
Tensegrity, Singularity analysis

1. INTRODUCTION
In many industrial applications, parallel robots also known

as Parallel Kinematics Machines (PKM) are advantageous over
serial robots. The main advantages of the PKM’s are their lower
mass/inertia properties, higher structural stiffness and better ac-
curacy [1, 2]. At the same time, these robots have some disad-
vantages such as a smaller workspace when compared to their
serial counterparts and poor manipulability in some regions of
the workspace [3]. For overcoming these problems, hybrid mech-
anisms which employ two or several parallel robots in series
have been developed and analyzed in recent years. These hybrid
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mechanisms can combine the advantages of both serial and par-
allel robots such as better accuracy like the parallel robot and a
larger workspace like the serial robot [4]. Some latest and in-
teresting applications of such hybrid mechanisms include: the
Hybrid YamaBot 10 with 7-DOF [5], the RH5 humanoid robot
[6], the cable-linkage serial-parallel palletizing robot (CSPR) [7],
the bio-inspired hybrid structure of Huang et al.[8] and the hy-
brid 3-RPS-3-SPR robot of Nayak et al. [9]. All these recent
researches have presented the advantages of combining serial and
parallel architectures for addressing many engineering problems.
In this article, we present a hybrid mechanism which comprises
two 3-SPS-U tensegrity mechanisms stacked one over the other
in series. As a part of a research project with AREVA, a rigid
bio-inspired piping inspection robot was designed and developed
at LS2N, France [10]. To make it flexible, a 3-SPS-U tensegrity
mechanism that consists of three tension springs and a universal
joint was introduced between each motor unit of the robot [11].
However, the tilt limits offered by this mechanism were around
±𝜋/6 radians which was significantly low [12]. To overcome
this issue, we propose a stacked architecture of the tensegrity
mechanism, which could potentially offer higher tilt limits when
compared to the single stage parallel mechanism.

The conventional method to study the singularities for the
tensegrity mechanism is carried out for the Euler angles of the
universal joint as proposed in [12]. With the stacked architecture,
four tilt angles must be taken into account for the analysis and
this becomes complicated through the algebraic method. How-
ever, there exists an alternate approach where the modified Euler
angles, more specifically known as the “Tilt & Torsion (T&T)”
angles could be employed, especially when there are spherical
joints [13]. The advantages of the T&T angles were proposed
by Bonev et al.[14] for the study of spatial parallel mechanisms
and it was also demonstrated that there exists a certain class of
parallel mechanisms with zero torsion, thereby referred to as the
Zero-torsion parallel mechanisms [15]. We employ these T&T
angles or the modified Euler angles to analyze the hybrid 3-SPS-
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U tensegrity mechanism. The advantage of this approach is that it
allows to analyze the entire architecture using a common azimuth
angle, thereby simplifying the computations. A mapping relation
is then demonstrated which permits to have a relation between
the T&T space and the Euler space of the mechanism and it is
validated through numerical simulations.

The outline of the article is as follows. In the following sec-
tion, the architecture of the hybrid mechanism and its geometrical
equations are presented in the Euler space and the T&T space.
Then, we present the stability analysis of the stacked model under
static modes. Followed by that, we present the singularity analy-
sis on the mechanism and the results of workspace obtained. The
subsequent section presents the mapping relation and numeri-
cal simulations of the mechanism. The article then ends with
conclusions and perspectives.

2. ARCHITECTURE OF THE MECHANISM
The hybrid tensegrity mechanism under study is represented

in Fig. 1a. The mechanism consists of three rigid platforms
and they are interconnected through three tension springs and a
universal joint in the center. In order to establish the geometric
equations, each stage of the mechanism is correlated to a parallel
manipulator of type 3-SPS-U [16]. Thus, we have a series-parallel
hybrid 3-SPS-U mechanism and this correlation is represented in
Fig. 1b. Here, S represents the spherical joint which refers to the
spring mounting points, P represents the actuated prismatic joint
which refers to the tension springs and U represents the universal
joint. The mechanism can work under passive modes without the
presence of external actuation as well as in active modes. In the
active modes, the mobile platforms are actuated through cables
that pass through each spring and this is accomplished with the
help of three external DC-motors.

2.1 Geometrical equations in the Euler space
The hybrid mechanism represented in Fig. 1a has a total of 4

degrees of freedom with each stage having 2 degrees of freedom
resulting from the Euler angles of the universal joint. In the Euler
space, we use the rotation angles [, 𝜙 for stage-1 and the angles
Z , 𝜓 for stage-2. These angles are represented in Fig. 1a. Also,
Fig. 1 represents the home-pose of the mechanism where these
tilt angles are equal to 0 radians. The fixed coordinate frame of
the base is represented by

∑︁
0 and the spring mounting points are

represented by 𝐵𝑖 (𝑖 = 1, 2, 3). These mounting points form
an imaginary equilateral triangle of the manipulator base whose
median is given by 𝑟𝑓 . The vector coordinates for the spring
mounting points of the fixed base are given by the equation:

b𝑖+1 =

[︃
𝑟𝑓 cos

(︃
2𝜋𝑖
3

)︃
, 𝑟𝑓 sin

(︃
2𝜋𝑖
3

)︃
,−𝑟𝑓 ℎ

]︃𝑇
, 𝑖 = 0, 1, 2 (1)

In Eqn. (1), ℎ is a constant which is essential to determine the
stability of the architecture under static modes. The moving coor-
dinate frame of the intermediate mobile platform is represented by∑︁

1 and the spring mounting points are given by 𝐶𝑖 (𝑖 = 1, 2, 3).
For estimating the vector coordinates, the 𝑋𝑌 Euler angles about
the axis 𝐴 of the universal joint are employed. The coordinates

are given by:

c𝑖+1 = E
[︃
𝑟𝑓 cos

(︃
2𝜋𝑖
3

)︃
, 𝑟𝑓 sin

(︃
2𝜋𝑖
3

)︃
, 𝑟𝑓 ℎ

]︃𝑇
, 𝑖 = 0, 1, 2 (2)

where E =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐𝜙 0 𝑠𝜙

𝑠[𝑠𝜙 𝑐[ −𝑠[𝑐𝜙
−𝑐[𝑠𝜙 𝑠[ 𝑐[𝑐𝜙

⎤⎥⎥⎥⎥⎥⎥⎦
In Eqn. (2), E represents the product of 𝑋𝑌 Euler rotation an-
gles about the axis 𝐴 and it comprises of the tilt angles [ and
𝜙. The spring mounting points of the mobile end-effector are
represented by 𝐷𝑖 (𝑖 = 1, 2, 3) with their coordinate frame given
by

∑︁
2. Similar to the intermediate mobile platform, the vector

coordinates can be estimated using the 𝑋𝑌 Euler angles about
the axis 𝐺 of the universal joint. However, this can only provide
the relation between the two mobile platforms in the local frame.
With reference to the fixed base, the vector coordinates of the
end-effector spring mounting points are given by:

d𝑖+1 = e + F c𝑖+1, 𝑖 = 0, 1, 2 (3)

where E =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑐𝜓 0 𝑠𝜓

𝑠Z 𝑠𝜓 𝑐Z −𝑠Z 𝑐𝜓
−𝑐Z 𝑠𝜓 𝑠Z 𝑐Z 𝑐𝜓

⎤⎥⎥⎥⎥⎥⎥⎦ and e = E
[︁
0, 0, 2ℎ𝑟𝑓

]︁𝑇
In Eqn. (3), F represents the product of 𝑋𝑌 Euler rotation an-
gles about the axis 𝐺 and it comprises of the tilt angles Z and
𝜓. The vector e is used to create the link between the fixed base
and the end-effector of the tensegrity mechanism. The Inverse
Kinematics Problem (IKP) is simpler to resolve for the architec-
ture. It involves calculating the distance between the base and the
intermediate platform and the distance between the intermediate
platform and the end-effector. The sum of each distance provides
the solution to the IKP from the base to the mobile end-effector.
The equations are given as follows:

𝑙𝑖 =

√︂
(𝑏𝑖𝑥 − 𝑐𝑖𝑥)2 + (𝑏𝑖𝑦 − 𝑐𝑖𝑦)2 + (𝑏𝑖𝑧 − 𝑐𝑖𝑧)2 (4)

𝑙𝑖+3 =

√︂
(𝑑𝑖𝑥 − 𝑐𝑖𝑥)2 + (𝑑𝑖𝑦 − 𝑐𝑖𝑦)2 + (𝑑𝑖𝑧 − 𝑐𝑖𝑧)2 (5)

𝐿𝑖 = 𝑙𝑖 + 𝑙𝑖+3 (6)

with 𝑖 = 1, 2, 3 in (4) , (5) & (6)

Eqn. (4) gives the IKP solution between the base and the interme-
diate mobile platform and Eqn. (5) gives the solutions between
the intermediate mobile platform and the end-effector. The solu-
tions to the IKP from the base to the mobile end-effector are given
by Eqn. (6). Lengths 𝑙1 to 𝑙3 represent the spring length between
the spring mounting points of the fixed base and the intermediate
mobile platform. Lengths 𝑙4 to 𝑙6 are the spring lengths between
the intermediate mobile platform and the end-effector. For given
input tilt angles, the IKP can be solved using Eqns. (4) to Eqns. (6)
in the Euler space.
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FIGURE 1: (A) THE ARCHITECTURE OF THE HYBRID TENSEGRITY MECHANISM, (B) THE CORRELATION OF THE MECHANISM TO A SERIES-
PARALLEL 3-SPS-U ARCHITECTURE, (C) THE 2D VIEW OF THE HYBRID MECHANISM

2.2 Geometrical equations in the Tilt & Torsion space

The singularity analysis of the single module tensegrity
mechanism was carried out using the Euler angles [ and 𝜙 in
[12]. The analysis involves considering both tilt angles in the
algebraic computation and this will become complex for the ar-
chitecture proposed in this article when four tilt angles are taken
into account. It must also be noted that we have an architecture
which has a correlation to spherical joints and there exists no
torsion on the universal joint. Thus, it is possible to analyze the
hybrid mechanism using the Tilt & Torsion angles presented by
Bonev et al.[13]. For the single-stage mechanism, under the ac-
tive modes cables were used to actuate the mobile platform. The
main focus of introducing the stacked model is to have higher
tilt angles when compared to the former architecture. Thus, the
actuation strategy will be performed in such a way that the mobile
end-effector is controlled directly through cables that pass from
the three motors near the fixed base. As there exists no torsion
about the universal joint, the tilt and azimuth angles will be suf-
ficient to analyze the architecture. The representation of the tilt
and azimuth angles on the hybrid mechanism is shown in Fig. 2.
In Fig. 2, 𝛽 represents the azimuth angle between the 𝑥1 axis
and the face of the 𝑧1 axis for stage-1. As the actuation strategy
involves controlling the mobile end-effector from the base, the
azimuth angle remains the same, which is given by 𝛽 between the
𝑥2 axis and the face of the 𝑧2 axis for stage-2. A rotation about
𝑀 leads to a shift of axis from 𝑥1𝑦1𝑧1 to 𝑥∗1𝑦

∗
1𝑧

∗
1 for stage-1. Here

the angles between 𝑧1 and 𝑧∗1 represent the tilt angle 𝛼. Similarly,
for the second stage, a rotation about 𝑁 leads to a shift of axis
from 𝑥2𝑦2𝑧2 to 𝑥∗2𝑦

∗
2𝑧

∗
2 and this provides the tilt angle 𝛿 between
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FIGURE 2: REPRESENTATION OF THE TILT AND AZIMUTH AN-
GLES ON THE TENSEGRITY MECHANISM

𝑧2 and 𝑧∗2. The resultant transformation matrix in the T&T space
for the tensegrity mechanism is thus given by the equation:

Ri = R𝑧 (𝛽)R𝑥 (𝑋𝑖)R𝑧 (−𝛽) 𝑖 = 1, 2 (7)
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where R =

⎡⎢⎢⎢⎢⎣
(𝑐𝑋𝑖

+ 𝑐2
𝛽
(1 − 𝑐𝑋𝑖

) −𝑐𝛽𝑠𝛽 (𝑐𝑋𝑖
− 1) 𝑠𝛽𝑠𝑋𝑖

−𝑐𝛽𝑠𝛽 (𝑐𝑋𝑖
− 1) 1 + (𝑐𝑋𝑖

− 1)𝑐2
𝛽

−𝑐𝛽𝑠𝑋𝑖

−𝑠𝛽𝑠𝑋𝑖
𝑐𝛽𝑠𝑋𝑖

𝑐𝑋𝑖

⎤⎥⎥⎥⎥⎦
for 𝑖 = 1 , 𝑋1 = 𝛼 & for 𝑖 = 2 , 𝑋2 = 𝛿

The vector coordinates for the fixed base remains which is given
in Eqn.(1). The vector coordinates of the intermediate platform
and the end-effector in the T&T space are given by:

c𝑖+1 = R1

[︃
𝑟𝑓 cos

(︃
2𝜋𝑖
3

)︃
, 𝑟𝑓 sin

(︃
2𝜋𝑖
3

)︃
, 𝑟𝑓 ℎ

]︃𝑇
, 𝑖 = 0, 1, 2 (8)

d𝑖+1 = R1
[︁
0, 0, 2ℎ𝑟𝑓

]︁𝑇 + R2c𝑖+1, 𝑖 = 0, 1, 2 (9)

The solutions to the IKP can then be estimated by calculating the
distance between the spring mounting points and these equations
are given by:

𝑙3𝑖+1 = −2 rf 2 (2 sin (𝛽) sin (𝑋𝑖) ℎ − (cos (𝛽))2 cos (𝑋𝑖) −
cos (𝑋𝑖) ℎ2 + (cos (𝛽))2 − ℎ2 + cos (𝑋𝑖) − 1) (10)

𝑙3𝑖+2 = 0.5 rf 2 (−2 sin (𝛽) cos (𝛽) cos (𝑋𝑖)
√

3 + 4 ℎ2 − cos (𝑋𝑖)
+ 4

√
3 cos (𝛽) sin (𝑋𝑖) ℎ + 4 sin (𝛽) sin (𝑋𝑖) ℎ + 2 (cos (𝛽))2

+ 2 cos (𝛽)
√

3 sin (𝛽) − 2 (cos (𝛽))2 cos (𝑋𝑖)
+ 4 cos (𝑋𝑖) ℎ2 + 1) (11)

𝑙3𝑖+3 = 0.5 rf 2 (2 sin (𝛽) cos (𝛽) cos (𝑋𝑖)
√

3 + 4 ℎ2 − cos (𝑋𝑖)
− 4

√
3 cos (𝛽) sin (𝑋𝑖) ℎ + 4 sin (𝛽) sin (𝑋𝑖) ℎ + 2 (cos (𝛽))2

− 2 cos (𝛽)
√

3 sin (𝛽) − 2 (cos (𝛽))2 cos (𝑋𝑖)
+ 4 cos (𝑋𝑖) ℎ2 + 1) (12)

where 𝑖 = 0, 1 & for 𝑖 = 0 , 𝑋0 = 𝛼 & for 𝑖 = 1 , 𝑋2 = 𝛿

In the T&T space, the mechanism can be analyzed using
two tilt angles and a common azimuth for the entire assembly
under the assumption that there exists no friction between each
module and the connecting elements. The T&T space will thus
be employed for further analysis of the mechanism.

3. STABILITY ANALYSIS OF THE MECHANISM
Based on the analysis presented in [11], we have incorporated

the inverse pendulum configuration stacked one over the other.
By nature, this configuration is unstable even in the absence of
applied forces. In this section, the stability analysis of the mecha-
nism is carried out by an optimization approach to determine the
design parameters of the mechanism. According to Lagrange,
the equation of motion for a moving system is given by [17]:

𝝉 =
d
d𝑡

(︃
𝜕𝑇

𝜕q̇

)︃
− 𝜕𝑇

𝜕q
+ 𝜕𝑈

𝜕q
where q = [𝛼, 𝛿, 𝛽]𝑇 (13)

In Eqn. (13), 𝑇 and 𝑈 represents the kinetic and potential
energies of the system. 𝝉 represents the generalized torques on the
system. As the stability analysis is carried out in the static mode,
the kinetic energy terms becomes zero in Eqn. (13). The potential
energy of the system is contributed by the tension springs and the
cables that control each platform. For this analysis, we consider
the magnitude of applied forces as 𝐹1 to 𝐹6 along each cable
and an identical tension spring of stiffness 𝑘 N/mm. Thus, the
potential energy equations for the system are given by:

𝑈𝑐𝑎𝑏𝑙𝑒 =

6∑︂
𝑖=1

𝐹𝑖 𝑙𝑖 𝑈𝑠𝑝𝑟𝑖𝑛𝑔 =

6∑︂
𝑖=1

1
2
𝑘𝑙2𝑖 (14)

𝑈𝑡𝑜𝑡 = 𝑈𝑐𝑎𝑏𝑙𝑒 +𝑈𝑠𝑝𝑟𝑖𝑛𝑔 (15)

We consider the springs to be massless and their zero free
lenghts are set to zero. The spring lengths 𝑙1 to 𝑙6 can be computed
using the Eqns. (10) to (12) for input tilt and azimuth angles.

3.1 Optimum design parameters
As we have a stacked model, it is essential to ensure that

the mechanism remains stable in the home-pose condition and
the presence of a pre-load. As the mechanism is proposed to be
integrated with the piping inspection robot studied in [10], the
value of 𝑟𝑓 is taken as 11 mm, which is in line with the flange
dimensions of the piping inspection robot. We assume a pre-
loading of 2 N along each i.e., 𝐹1 to 𝐹6 = 2 N. The tilt and azimuth
work in such a way that the mechanism is initially tilted along one
of the directions. Once the desired tilt is reached, the tilt angle
remains constant and the azimuth completes a revolution from 0
to 2𝜋 radians or vice-versa. During the tilt stage, the azimuth does
not influence the stability and we analyze the stability during the
tilt phases. The total potential energy is calculated under these
conditions and an equation is obtained which is a function of the
tilt angles 𝛼, 𝛿, the design parameter ℎ and the spring stiffness 𝑘 .
It is represented by:

𝑈𝑡𝑜𝑡 = 𝑓 (𝛼, 𝛿, 𝑘, ℎ)) at 𝛽 = 0 radian (16)

From Eqn. (16), we can observe that the total potential en-
ergy of the system has dependencies on the two tilt angles. For
analyzing the static stability, it is necessary to study the Hessian
matrix, also known as the mechanism stiffness. The determi-
nant of this matrix and the second-order derivative of the total
potential energy with respect to one of the tilt angles are then
calculated. The Hessian matrix and its determinant are given by:

H =

⎡⎢⎢⎢⎢⎣
𝜕2𝑈𝑡𝑜𝑡

𝜕𝛼2
𝜕2𝑈𝑡𝑜𝑡

𝜕𝛼𝜕𝛿

𝜕2𝑈𝑡𝑜𝑡

𝜕𝛼𝜕𝛿

𝜕2𝑈𝑡𝑜𝑡

𝜕𝛿2

⎤⎥⎥⎥⎥⎦ =
[︄

𝑓11 𝑓12

𝑓21 𝑓22

]︄
(17)

det(H) = 𝑓11 𝑓22 − 𝑓 2
12 (18)

For ensuring the stability of the architecture, the total po-
tential energy must be a relative minimum which occurs when
det(H) > 0 and 𝑓11 > 0. An optimization problem is solved
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at the home-pose condition where the tilt angles are zero. This
problem will help in identifying the remaining design parameters
ℎ and 𝑘 . Generally, optimization problems can be classified into
Deterministic and Heuristic approaches [18]. A deterministic ap-
proach using the function 𝑓 𝑚𝑖𝑛𝑐𝑜𝑛 is carried out in MATLAB.
The optimization problem is stated as:

Maximize: 𝑓11 (x)

subject to constraints: 𝑔1: det(H) ≥ 0 , 𝑔2: 𝑓11 (x) ≥ 0

where x = [ℎ, 𝑘]𝑇 , lb = [0.5, 0.5] & ub = [1, 4]

The objective function aims to maximize the second-order
derivative of the total potential energy for one of the tilt angles
and we consider 𝑓11. The inequality constraints 𝑔1 and 𝑔2 ensure
that the determinant of the Hessian given matrix and the objective
function remains positive throughout the optimization algorithm.
The lower bounds for ℎ and 𝑘 are set as 0.5 and 0.5 whereas
the upper bounds are set as 1 and 4. For ℎ, the value cannot
exceed 1 based on the earlier findings [10]. The equations of the
determinant value and the second-order derivative at the home-
pose are given by:

det(H) = 1089
4

(︂
22 ℎ2𝑘 + 2ℎ2 − 11 𝑘

)︂2
(19)

𝑓11 = −363 ℎ2𝑘 + 363
2

𝑘 − 33ℎ2 (20)

With the optimization problem being defined, the determin-
istic approach was carried out in MATLAB. From the results
of optimization, the values were found to be ℎ= 0.6761 and 𝑘=
2 N/mm. These are the optimum or the maximum values of ℎ and
𝑘 that ensure the static stability of the mechanism in the home-
pose. For ensuring safer operations and rounding the stiffness to
the standard size, the values are set at ℎ= 0.6 and 𝑘= 2 N/mm.
The total potential energy of the system is estimated for these
design parameters at the home-pose and the plot is represented
in Fig. 3. From Fig. 3, we can observe a relative minimum of the
total potential energy around the home-pose, thereby ensuring the
static stability of the mechanism. Thus, the design parameters ℎ=
0.6 and 𝑘 = 2 N/mm will be retained for further analysis of the
architecture.

4. ANALYSIS OF WORKSPACE FOR THE HYBRID
MECHANISM

With the optimum design parameters being determined
through stability analysis, the next step is to determine the feasi-
ble workspace of the tensegrity mechanism. This is carried out
by the singularity analysis of the architecture and this analysis
is important to determine the maximum tilt limits. Similar to
the single-stage model, the singularity analysis for the stacked
tensegrity mechanism is carried out using the well-known veloc-
ity model [19]:

At + B�̇� = 0 (21)
where t represents the angular velocity vector

and �̇� = [ ̇𝑙1, ̇𝑙2, ̇𝑙3, ̇𝑙4, ̇𝑙5, ̇𝑙6]𝑇 represents the joint velocity vector

FIGURE 3: PLOT OF THE TOTAL POTENTIAL ENERGY OF THE SYS-
TEM AT THE HOME-POSE AT h=0.6 AND k=2 N/MM

In Eqn. (21), A represents the direct-kinematics matrix or
forward Jacobian matrix and B represents the inverse-kinematics
matrix or inverse Jacobian matrix. The singularity analysis will
be carried out in the T&T space wherein the pose variables are
given by the angles 𝛼, 𝛽 and 𝛿. The articular variables are the
spring lengths 𝑙1 to 𝑙6. It has to be noted that the spring lengths
represented here are estimated by solving the IKP in the T&T
space.

For the hybrid mechanism under study, it can have three types
of singularities namely: Type-1, Type-2 and Type-3 [20]. The
Type-1 or serial singularities can occur when the determinant of
the matrix B becomes zero. This scenario occurs only when the
length of one of the six prismatic springs becomes zero, which
is not possible for the mechanism. Thus, there exist no serial
singularities for the mechanism. Type-2 singularities occur when
the determinant of the matrix A becomes zero and this will be
verified by differentiating the solutions of the IKP with respect
to the pose variables. The Type-3 singularities occur only when
there exist both serial and parallel singularities, which is once
again not possible for the mechanism. Based on the experiments
conducted on the tensegrity mechanism in [21], it was observed
that one or two of the prismatic springs reach their minimum
length at two specific positions referred to as:

• One spring pull: One of the spring pulls while the other two
springs pushes the mobile platform

• Two springs pull: Two of the springs pulls while the third
spring pushes the mobile platform

Also, these are the two positions where the mechanism reaches
the maximum tilt. Along the side 𝐵1, 𝐶1, 𝐷1, the one spring
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pull and two springs pull can be observed at azimuth angles of
𝛽= 0 radian and 𝛽=𝜋 radians. Thus, the singularity analysis can
be simplified by identifying the maximum tilt angles 𝛼 and 𝛿 at
these azimuth positions. The other positions of the one spring
and two springs pull can be observed at a phase difference of
2𝜋/3 radians. However, it is sufficient to analyze along one side
as the same results will be obtained along each side. It must be
noted that this simplification cannot be done if the mechanism is
analyzed in the Euler space as for each position of the mechanism,
all four tilt angles must be taken into account.

4.1 Singularity analysis using the CAD algorithm
With fixed values for the azimuth angle 𝛽, the hybrid mech-

anism now has two pose variables 𝛼, 𝛿 and six articular variables
(𝑙1 to 𝑙6). Based on these number of variables, we can observe
that the direct kinematics matrix A does not correspond to a 𝑛×𝑛

square matrix. Thus, we split the architecture into three sets
of hybrid 1-SPS-U architectures which comprise of length pairs
𝑙1 − 𝑙4, 𝑙2 − 𝑙5 and 𝑙3 − 𝑙6. The matrices are given by:

A𝑖−𝑖+3 =

[︄
𝜕𝑙𝑖
𝜕𝛼

𝜕𝑙𝑖
𝜕𝛿

𝜕𝑙𝑖+3
𝜕𝛼

𝜕𝑙𝑖+3
𝜕𝛿

]︄
, 𝑖 = 1, 2, 3 (22)

In Eqn. (22), 𝑙𝑖 represents the length of the 𝑖𝑡ℎ prismatic
spring which can be computed using the IKP Eqns. (10) to (12).
The direct kinematics matrix is then constructed for each length
pairs. The determinant equations are represented by D𝑝1, D𝑝2
and D𝑝3 for the length pairs 𝑙1− 𝑙4, 𝑙2− 𝑙5 and 𝑙3− 𝑙6 respectively.
Since the one spring and two springs pull configurations are
considered for analysis, two of the determinant equations appear
similar. For 𝛽 at 0 and 𝜋 radians, values of D𝑝2 and D𝑝3 are
identical. The determinant equations are given by:

D𝑝1 : (sin (𝛼) ℎ4 sin (𝛿) + 2 sin (𝛼) ℎ3 cos (𝛿) + sin (𝛿) sin (𝛼)
2𝑚 sin (𝛼) ℎ2 sin (𝛿) + 2𝑚 cos (𝛼) ℎ3 sin (𝛿) −
− 2𝑚 sin (𝛿) cos (𝛼) ℎ − 2𝑚 sin (𝛼) cos (𝛿) ℎ+
4 cos (𝛼) ℎ2 cos (𝛿)) = 0 (23)

D𝑝2 = D𝑝3 : (16 sin (𝛼) ℎ4 sin (𝛿) − 16𝑚 sin (𝛼) ℎ3 cos (𝛿)
− 8 sin (𝛼) ℎ2 sin (𝛿) − 16𝑚 cos (𝛼) ℎ3 sin (𝛿)
+ 16 cos (𝛼) ℎ2 cos (𝛿) + 4𝑚 sin (𝛿) cos (𝛼) ℎ
+ 4𝑚 sin (𝛼) cos (𝛿) ℎ + sin (𝛿) sin (𝛼)) = 0 (24)

where 𝑚 = 1 at 𝛽 = 0 & 𝑚 = −1 at 𝛽 = 𝜋 in (23) & (24)

For identifying the feasible workspaces of the architecture,
the SIROPA library of Maple is employed [22]. This library
is an efficient tool which is employed for the analysis of par-
allel robots and their singular configurations [23]. Using the
𝐶𝑟𝑒𝑎𝑡𝑒𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑜𝑟 function of SIROPA, the hybrid parallel
mechanism is constructed in Maple using the geometric equations
and IKP equations in the T&T space. For the singularity analysis,
we also set joint limits for each spring and they are set as 𝑙𝑚𝑖𝑛 =

7 mm and 𝑙𝑚𝑎𝑥 = 31 mm. The IKP equations of each spring are set
at these limits and a total of 12 equations (2 for each spring for each
limit) are generated using the 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 function of
SIROPA. The joint limits are essential to identify the singularity
boundaries for the mechanism and extract the feasible workspace.
Eqns. (23) to (24) are generated using the 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑆𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠
function of SIROPA and the values of ℎ and 𝑘 are set at 0.6 and
2 N/mm from the results of the optimization problem. The singu-
larity analysis is then carried out using the modified Cylindrical
Algebraic Decomposition (CAD) algorithm in Maple. In the
SIROPA library, the modified CAD algorithm is employed along
with the Groebner base elimination technique. The Groebner
base elimination technique is useful for the computation of a sub-
set of the workspace where the number of solutions changes and
this is referred to as the Discriminant Variety. In Maple, this
is possible using the 𝑅𝑜𝑜𝑡𝐹𝑖𝑛𝑑𝑖𝑛𝑔[𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐] function. The
function 𝐶𝑒𝑙𝑙𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑙𝑢𝑠 of SIROPA library combines
the CAD algorithm with the root finding parametric technique and
this function is used to identify solutions to the Direct Kinematic
Problems (DKP). For isolating the aspects around the home-pose,
the IKP equations are transformed into inequality equations for
the 𝐶𝑒𝑙𝑙𝐷𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑙𝑢𝑠 function [24].

4.2 Results of the singularity analysis
The CAD algorithm was executed for each azimuth angle

considered for the analysis. The results of the feasible workspace
obtained by the CAD algorithm are summarized below:

1. The first analysis was carried out at 𝛽= 0 radians. The
results obtained from this analysis is shown in Fig. 4a. The
magenta zone represents the cells where there exists one
solution to the DKP. The grey region indicate the zone where
there exists no solutions to the DKP. Around the home-pose,
the mechanism has tilt limits bounded by S : [𝑠1, 𝑠2] ∈
[−𝜋/3, 𝜋/6] radians. Here 𝑠1 and 𝑠2 refers to the minimum
and maximum extemities of the tilt angles 𝛼 and 𝛿. Beyond
the gray zones, there also exists some cells with solutions
to the DKP however these regions are not accessible for the
mechanism as it can lead to the architecture being locked in
singular configurations.

2. Followed by that, the second analysis was carried out with
𝛽 = 𝜋 radians and the results are represented in Fig. 4b.
The cyan region indicates the cells where there exists one
solution to the DKP whereas the grey region represent no
solutions. For this azimuth configuration, the minimum and
maximum extremities of the tilt angles around the home-
pose are bounded by T : [𝑡1, 𝑡2] ∈ [−𝜋/6, 𝜋/3] radians.

3. When a circular trajectory is performed using the mech-
anism, the azimuth angle can vary from 0 to 2𝜋 radians.
During this trajectory, the one-spring and two-spring pull
configurations could be observed for the mechanism. The
overall tilt limits for the mechanism can thus be obtained by
merging the solutions obtained from each analysis. The so-
lution obtained by merging the results of each analysis from
CAD is shown in Fig. 4c. The orange region represents the
singularity-free workspace of the hybrid mechanism. The
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FIGURE 4: RESULTS OBTAINED BY CAD ALGORITHM IN MAPLE WITH THE REPRESENTATION OF FEASIBLE AND NON-FEASIBLE SOLU-
TIONS: (A) AT β = 0 RADIANS (B) AT β = π RADIANS, (C) BY MERGING THE TWO INITIAL SOLUTIONS AND (D) BY ISOLATING THE ASPECTS
AROUND THE HOME-POSE FOR THE MECHANISM ALONG WITH THE JOINT LIMITS FOR EACH SPRING SET AT lmi n = 7 MM AND lmax =
31 MM

solutions to the IKP with the joint limits are also represented
by the blue and yellow lines for each prismatic spring.

4. In Fig. 4d, only the feasible solutions around the home-pose
are isolated. The singularity-free workspace for the hybrid

mechanism is thus defined by:

S ∩ T −→ U : [𝑢1, 𝑢2] ∈ [−𝜋/6, 𝜋/6] radians

Based on the findings, we can conclude that the limits for each
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tilt angle are given by: 𝛼 = 𝛿 = [−𝜋/6, 𝜋/6] radians. Thus,
the overall tilt limits for the stacked module are bounded by
±𝜋/3 radians.

5. MAPPING THE T&T SPACE TO EULER SPACE AND
ACTUATION STRATEGY

The CAD algorithm helped in identifying the tilt limits of
the mechanism. However, this was carried out in the T&T space.
The results obtained from the earlier analysis must be mapped for
the Euler angles of the universal joint. For performing a circular
trajectory in the Euler space, the mechanism is initially tilted
along one of the springs and then the circular path is initiated.
The governing relationships between the T&T space and the Euler
space are provided below in Table 1. As mentioned in the previous
sections, the actuation strategy is proposed to be carried out by
actuating the mobile end-effector through three DC-motors near
the fixed base. The corresponding relations for this actuation
strategy is provided in Table 1. It could be observed that once the
tilt is performed, the tilt angles in the Euler space are computed as
a function of the tilt and azimuth angles from the T&T space. For
the stage-1, the tilt angles [ and 𝜙 are computed with respect to
𝛼 and 𝛽 whereas for stage-2, the tilt angles Z and 𝜙 are computed
as functions of 𝛿 and 𝛽. Once the circular path is completed,
the mechanism is tilted back to its home-pose. The simulation
of the hybrid 3-SPS-U tensegrity mechanism can be found in the
link provided at the bottom of this page 1. From the numerical
simulations, we can observe the mapping relation between both
spaces. The corresponding solutions to the IKP could also be
observed at each position in the simulation and they are calculated
as a function of the tilt angles of their respective spaces. It
has to be noted that a common azimuth for the entire assembly
assuming that there exists no friction between each module and
the connecting elements. The experimental setup will then be
validated in the future and the actuation strategy will follow a
similar approach that was presented in [21]. An overview of the
experimental platform developed at LS2N, France is shown in
Fig. 5.

6. CONCLUSION
A series-parallel hybrid tensegrity mechanism was presented

and analyzed in this article. By correlating to a parallel manipu-
lator of type 3-SPS-U, the geometrical equations and the vector
coordinates of each platform were estimated. The Euler angles of
the universal joint helped in positioning the mobile platforms and
also in solving the IKP. Since the Euler space necessitates taking
into account all four tilt angles of the mechanism, the theory of
T&T was employed to analyze the mechanism. The T&T angles
reduced the complexity in analyzing the mechanism as a com-
mon azimuth was sufficient for each stage under the assumption
that there was no friction between each module. The stability
analysis was then carried out which helped in identifying the de-
sign parameters ℎ and spring stiffness 𝑘 . By taking into account
the Hessian matrix, an optimization approach was followed in
MATLAB to ensure the static stability of the mechanism at the

1Simulation of the mechanism in MATLAB (full screen recommended): 1x
Speed, 0.4x Speed

FIGURE 5: THE EXPERIMENTAL SETUP FOR THE CONTROL OF
THE HYBRID 3-SPS-U TENSEGRITY MECHANISM

home-pose. The singularity analysis was carried out in two steps
which involved fixing the azimuth angles at positions where one
or two prismatic springs reach their minimum length. With the
help of SIROPA library in Maple, the parallel singularities for
the mechanism were analyzed for the two azimuth positions us-
ing the CAD algorithm. By merging the solutions obtained for
each azimuth position, it was found that the maximum tilt limit
for each stage was around±𝜋/6 radians, thus leading to an overall
tilt limit of ±𝜋/3 radians for the mechanism. The relationship
between the T&T space and the Euler space was demonstrated
to validate the results of singularity analysis. A simulation was
also performed to demonstrate the relationship between these two
spaces.

Currently, experiments on the hybrid mechanism are being
carried out. An overview of the experimental setup was also
demonstrated. The simulation that was presented in this arti-
cle will be validated using the experimental platform. However,
the frictional forces will come into play due to the presence of
connecting elements between each module. Thus, a control law
will be implemented which takes into account the friction and
cable elasticity factors similar to the control strategy of a tenseg-
rity structure proposed by Fasquelle et al.[25]. Also, advanced
controllers such as the EtherCAT will be employed for the exper-
iments when compared to a simple BeagleBone black card that
was employed for the single-stage model in [21]. The EtherCAT
allows controlling several components at the same time from a
central unit. As the hybrid mechanism is proposed to be inte-
grated with the inspection robot presented in [10], the EtherCAT
can be useful in controlling each module of the robot assembly
from a central unit.
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TABLE 1: MAPPING RELATION BETWEEN THE T&T SPACE AND THE EULER SPACE

Movement type Tilt space Euler space
𝛼 (radians) 𝛿 (radians) 𝛽 (radians) [ (radians) 𝜙 (radians) Z (radians) 𝜓 (radians)

Initial tilt 0 → 𝜋/6 → 𝜋/6 0 0 0 → 𝜋/6 0 0 → 𝜋/6
Circular path 𝜋/6 𝜋/6 0 → 2𝜋 𝛼 sin(𝛽) 𝛼 cos(𝛽) 𝛿 sin(𝛽) 𝛿 cos(𝛽)

Return to home 𝜋/6 → 0 𝜋/6 → 0 0 0 𝜋/6 → 0 0 𝜋/6 → 0

NOMENCLATURE
PKM Parallel Kinematic Machines
T&T Tilt & Torsion
CAD Cylindrical Algebraic Decomposition
IKP Inverse Kinematic Problem
DKP Direct Kinematic Problem
b𝑖 Vector coordinates for base 𝐵𝑖

c𝑖 Vector coordinates of intermediate mobile platform 𝐶𝑖

d𝑖 Vector coordinates of end-effector 𝐷𝑖

𝑟𝑓 Distance of spring mounting point in 𝑚𝑚

𝑘 Stiffness of springs in 𝑁/𝑚𝑚

ℎ Design constant of the mechanism (no unit)
E Euler angle transformation matrix for stage-1
F Euler angle transformation matrix for stage-2
[, 𝜙 Euler rotation angles of stage-1
Z, 𝜓 Euler rotation angles of stage-2
𝑙𝑖 Length of 𝑖𝑡ℎ prismatic spring
R1 Tilt & Azimuth transformation matrix for stage-1
R2 Tilt & Azimuth transformation matrix for stage-1
𝛼 Tilt angle of stage-1 in T&T space
𝛿 Tilt angle of stage-2 in T&T space
𝛽 Azimuth angle of the mechanism
𝐹𝑖 Magnitude of the applied force along the 𝑖𝑡ℎ cable
H Hessian matrix
A Direct kinematics matrix
B Inverse kinematics matrix
D Determinant value of the direct kinematics matrix
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