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Abstract

The article deals with the 3D stationary Stokes system under traction bound-
ary conditions, in interior and exterior domains. In the interior domain case, we
obtain solutions with W 2,p-regular velocity and W 1,p-regular pressure globally in
the domain, under suitable assumptions on the data. In the exterior domain case
we construct two solutions, both of them W 2,p-W 1,p-regular in any vicinity of the
boundary, with p ∈ (1,∞) determined by the assumptions on the data. In addi-
tion the velocity is Ls-integrable near infinity, for some s > 3, provided that the
right-hand side of the Stokes system is Lp-integrable near infinity for some p < 3/2.
Moreover the velocity part of one of these solutions satisfies a zero flux condition
on the boundary, whereas the pressure part of the other one is Ls-integrable near
infinity, for some s > 3/2. There are also two uniqueness classes, one related to a
zero flux condition for the velocity, the other one to decay of the pressure at infinity.
This result confirms a conjecture by T. Hishida (University of Nagoya).
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1 Introduction.

We consider the Stokes system

−∆v +∇ϱ = f, div v = 0 (1.1)

in a bounded domain Ω ⊂ R3 and in the exterior domain Ω
c
:= R3\Ω, where the boundary

∂Ω is connected and of class C2. System (1.1) is supplemented by traction conditions (also
called Neumann boundary conditions)

3∑
k=1

(∂jvk + ∂kvj − δjk ϱ)n
(Ω)
k = b on ∂Ω for 1 ≤ j ≤ 3, (1.2)

where n(Ω) denotes the outward unit normal to Ω. The functions f (volume force) and
b (force orthogonal to the surface) are given, and u (velocity) and π (pressure) are the
unknowns of problem (1.1), (1.2). Boundary conditions as in (1.2) arise, for example,
in incompressible elastostatics and in free boundary value problems for incompressible
viscous fluids.
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If the Stokes system (1.1) in Ω or Ω
c
is supplemented by Dirichlet boundary conditions,

then u and π are respectively W 2,p- and W 1,p-regular up to the boundary (”W 2,p-W 1,p-
regularity”), provided the data satisfy suitable assumptions. In the case of the interior
domain Ω, this is well known since the beginning of the 1960s, due to the pioneering
work of Cattabriga [3] and Ladyzhenskaya [19]. These two authors chose quite different
methods in their work. Cattabriga reduced his results to the half-space case, in which
a solution to (1.1), (1.2) may be constructed in a rather explicit form. Ladyzhenskaya
used the method of integral equations, that is, reduction of a boundary value problem
to an integral equation on the boundary. In the monograph [13], Cattabriga’s method is
used to obtain a large range of Lp-estimates for interior and exterior Stokes flows under
Dirichlet boundary conditions. Reference [8] derives some of these estimates for exterior
Stokes flows by applying Ladyzhenskaya’s approach.

As concerns the Stokes system (1.1) under traction condition (1.2), an L2-theory, derived
by Giaquinta, Modica [14], is available in literature; see [14, Theorem II.1.2]. Classical
solutions were constructed by Starita, Tartaglione [23], via the method of integral equa-
tions. In addition these authors estimated the maximum modulus of the traction field in
the direction of the normal to the boundary ([23, inequality (5.2)].) Moreover problem
(1.1), (1.2) is of a type considered by Agmon, Douglis, Nirenberg [2]. But the parameters
associated with this problem in [2] are such that [2, Theorem 10.5], the main result in
[2] on Lp-regularity and Lp-estimates, can be applied to solutions of (1.1), (1.2) only if
they are W 2,p-W 1,p-regular, in Ω in the interior domain case and in a neighbourhood of
∂Ω else. This is the same situation as in the Dirichlet case ([24, p. 23-24]). As far as we
know, existence of solutions to (1.1), (1.2) with this level of regularity and corresponding
estimates have not been established in previous literature if p ̸= 2.

Our aim here is to fill this gap. Following [19] and [23], we will use the method of integral
equations. It yields solutions to (1.1), (1.2) in the interior domain Ω and the exterior
domain Ω

c
, as well as an integral representation of each of these solutions. These repre-

sentations contain a single layer potential involving a fundamental solution of (1.1) and a
”layer function” which solves a certain integral equation on ∂Ω. The key step and main
difficulty of our approach consists in estimating theW 2−1/p, p-norm of the Dirichlet bound-
ary data of this single layer potential against the W 1−1/p, p-norm of its traction boundary
data. In this way we are able to reduce W 2,p-W 1,p-estimates of solutions to (1.1), (1.2),
in Ω and in Ω

c
, to W 2,p-W 1,p-estimates of solutions to (1.1) in bounded domains, with

Dirichlet conditions instead of (1.2); see the proof of Theorem 6.1 (exterior domain case)
and Theorem 6.3 (interior domain case). The Dirichlet-to-Neumann estimate mentioned
above is stated in Corollary 5.1, which is a consequence of Theorem 5.1 and 5.2. These two
theorems provide the technical base of Corollary 5.1. Their proof requires considerable
effort. Section 2 to 4 serve to set up a suitable framework and state auxiliary results. In
Section 6, exploiting Corollary 5.1, we present our theory on existence and regularity, and
in Section 7 we use some elements from this theory in order to prove uniqueness results.

It is well known that solutions to (1.1), (1.2) in the interior domain Ω are unique only up
to a rigid motion; see [22, p. 351], [23, Theorem 3.2, 4.1] in the case of classical solutions,
and Theorem 7.2 below for W 2,p-W 1,p-regular solutions. Concerning the exterior domain
case, uniqueness of solutions to (1.1), (1.2) in Lp-spaces requires of course that the velocity
vanishes at infinity in some way or other. But it was suggested by T. Hishida [16] that
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in addition it is necessary for the velocity to have zero flux on ∂Ω, or for the pressure
to tend to zero near infinity. As far as we know, up to now uniqueness was proved only
under the second assumption (decay of the pressure), and only for classical solutions;
compare [23, Theorem 2.1]. Zero flux of the velocity on ∂Ω as uniqueness criterion seems
not to have been discussed in existing literature. We will consider uniqueness under each
of these assumptions, as proposed by Hishida; see Theorem 7.1 and Lemma 7.1, with the
latter reference showing that nonuniqueness arises although b = 0, f ∈ C∞

0 (R3)3 and the
velocity decays as O(|x|−1) for |x| → ∞.

The two types of solutions relevant with respect to uniqueness are taken into account in
our theory on existence, too. In fact, we construct a solution with velocity part satisfying
a zero flux condition on ∂Ω, and another one with pressure part tending to zero at infinity,
under the assumption that f ∈ Lp(Ω

c
)3 for some p ∈ (1, 3/2). The second type of solution

is well known [23, Theorem 5.1], [25, p. 358], whereas the first does not seem to be have
been mentioned in literature, at least not explicitly, although it is easy to construct. In
some situations these two solutions coincide. Otherwise the difference of their velocity
parts is nonconstant. Our proof of regularity works for both kinds of solutions because
their difference, up to a constant as concerns the pressure, is given by a double layer
potential which is W 2,p-W 1,p-regular near ∂Ω according to [19]. For more details we refer
to Theorem 6.2 (case f = 0) and 6.5 (case of nonvanishing f). We summarize the main
points from these two theorems in

Theorem 1.1 Let p ∈ (1, 3/2), f ∈ Lp(Ω
c
)3 and b ∈ W 1−1/p, p(∂Ω)3. Then there is a pair

(v, ϱ) ∈ W 2,p
loc (Ω

c)3 ×W 1,p
loc (Ω

c) satisfying (1.1), (1.2), as well as the zero flux condition∫
∂Ω
v · n(Ω) dox = 0 and the inequality

∥v∥(1/p−2/3)−1 + ∥∂lv∥(1/p−1/3)−1 + ∥ϱ+ c∥(1/p−1/3)−1 + ∥∂m∂lv∥p + ∥∂lϱ∥p (1.3)

≤ C (∥f∥p + ∥b∥1−1/p, p) (1 ≤ l,m ≤ 3),

for some c ∈ R (which is of course uniquely determined). Suppose in addition that q ∈
(1, 3), f ∈ Lq(Ω

c
)3 and b ∈ W 1−1/q, q(∂Ω)3. Then (v, ϱ) ∈ W 2,q

loc (Ω
c)3 ×W 1,q

loc (Ω
c) and

∥∂lv∥(1/q−1/3)−1 + ∥ϱ+ c∥(1/q−1/3)−1 + ∥∂m∂lv∥q + ∥∂lϱ∥q ≤ C (∥f∥q + ∥b∥1−1/q, q), (1.4)

for l, m as above. Further suppose in addition that r ∈ (1,∞), f ∈ Lr(Ω
c
)3, b ∈

W 1−1/r, r(∂Ω)3 and R ∈ (0,∞) with Ω ⊂ BR. Then (v, ϱ) ∈ W 2,r
loc (Ω

c)3 ×W 1,r
loc (Ω

c) and

∥∂m∂lv∥r + ∥∂lϱ∥r ≤ C (∥f∥r + ∥f |Bc
2R∥q + ∥b∥1−1/r, r) (1.5)

for l, m as before. The constants C in these estimates do not depend on f or b. Of course,
inequality (1.4) is already included in (1.3) if q < 3/2. A similar remark is valid for (1.5)
with respect to (1.4) if r ∈ [3/2, 3), and concerning (1.3) if r ∈ (1, 3/2).

Moreover there is a pair (v, ϱ) ∈ W 2,p
loc (Ω

c)3×W 1,p
loc (Ω

c) such that the preceding statements
remain valid with v, ϱ in the role of v and ϱ, respectively, except that

∫
∂Ω
v · n(Ω) dox ̸= 0

in general and the constant c in (1.3) and (1.4) vanishes.

If f = 0, the assumption p < 3/2 may be dropped (hence inequality (1.4) and (1.5) become
special cases of (1.3) and therefore are no longer relevant).
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Our existence results in the interior domain case are stated in Corollary 6.4.

The principal difficulties inherent in our approach already arise if f = 0. Once this case
is settled (Theorem 6.2 (exterior domain), 6.3 (interior domain)), the transition to non-
vanishing f may be achieved in an obvious way: The Stokes system (1.1) is solved in
the whole space R3, with the zero extension of f to R3 as right-hand side (Theorem 6.4).
Then problem (1.1), (1.2) is solved with f = 0 and with the traction boundary data of
the whole space solution added to the right-hand side of (1.2) (”boundary correction”).
The sum of the two solutions yields the flow field which is looked for; see Theorem 6.5
(exterior domain), and Corollary 6.4 (interior domain). Since solving problem (1.1) in
R3 is not linked to traction boundary conditions (1.2), the case f ̸= 0 is not our main
interest here. We deal with it only for completeness and because for the proof of our
uniqueness results in Section 7, we need solutions to (1.1), (1.2) with f ∈ C∞

0 (Ω
c
)3. It

is thus sufficient for our purposes to assume that f ∈ Lp(Ω
c
)3 for some p ∈ (1, 3/2).

Then a whole space solution is conveniently given by a volume potential, which is rather
easy to handle. Actually the condition p < 3/2 may be removed by an approximation
argument as in [13, p. 242-243]. All this is not an issue when the interior domain is
considered, because if f ∈ Lp(Ω)3 for whatever p ∈ (1,∞), we always have f ∈ Lq(Ω)3

for any q ∈ [1, p], of course.

Pointwise decay estimates of our solutions to (1.1), (1.2) in Ω
c
are provided by Corollary

6.3 under the assumption that f has bounded support. These estimates allow to determine
Lp-estimates of exterior flows in more detail: We may distinguish regularity properties
outside large balls from those valid in neighbourhoods of ∂Ω (Corollary 6.3, Theorem
6.2). Concerning the strange term ∥f |Bc

2R∥q in (1.5), we think that in the case r ≥ 3,
an estimate of the form ∥∂m∂lu∥r + ∥∂lπ∥r ≤ C (∥f∥r + ∥b∥1−1/r, r) cannot hold for all

functions f ∈ Lr(Ω
c
)3 with the same constant C, even if b = 0. This is indicated by a

similar situation in the Dirichlet case; see [5, Theorem 1.3] and [13, (V.4.46)].

We will use the fact, stated in Theorem 4.5, that the traction field of the Stokes double
layer potential associated with ∂Ω is continuous on any line through ∂Ω, provided this
line is orthogonal to ∂Ω and the layer function of the potential is sufficiently smooth. In
the context of the Laplace equation, this result is sometimes called (”Lyapunov-Tauber
theorem”). Its version in Theorem 4.5 is frequently applied in analysis and numerics
(boundary element method) of incompressible flows, but what is available as proof is not
completely satisfying, as explained in the comment following Theorem 4.5. Therefore we
find it worthwhile to present a proof; see Appendix.

We will rely on [19] with respect to a number of auxiliary results on the integral operators
appearing in our proofs. However, we will not refer to [19] directly. Instead we will draw
on results from [9], where the pertinent sections from [19] are worked out in detail.

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, the length α1 + ...+ αn

of a multi-index α ∈ Nn
0 , as well as the Borel measure of a measurable subset A of R3.

For R ∈ (0,∞), x ∈ R3, put BR(x) := {y ∈ R3 : |x − y| < R}. In the case x = 0, we
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write BR instead of BR(0). An open ball in R2 with radius R > 0 and centered in ϱ ∈ R2

is denoted by B2
R(ϱ).

The set Ω ⊂ R3 introduced in Section 1 will be kept fixed throughout. Recall that Ω is
open and bounded, with connected C2-boundary, and that n(Ω) denotes the outward unit
normal to Ω. We put ΩR := BR\Ω.
For n ∈ N, I ⊂ Rn, let χI stand for the characteristic function of I in Rn. If A ⊂ R3, we
denote by Ac the complement R3\A of A in R3. Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3 (unit
vector in R3). If A is some nonempty set and γ : A 7→ Rn a function for some n ∈ N, we
set |γ|∞ := sup{|γ(x)| : x ∈ A}.
Let a ∈ (0, 1). For any B ⊂ R3, we write Ca(B) for the set of all Hölder continuous
functions on B, that is, ψ ∈ Ca(B) iff ψ : B 7→ R with

|ψ|a := |ψ|∞ + sup{|ψ(x)− ψ(y)| |x− y|−a : x, y ∈ B, x ̸= y} <∞.

If B ⊂ R3 is open, the space C1,a(B) is to consist of all functions ψ ∈ C1(B) with |ψ|∞ <
∞ and |∂lψ|a <∞ for 1 ≤ l ≤ 3. We further define C1,a(∂Ω) := {ψ|∂Ω : ψ ∈ C1,a(R3)}.
Let p ∈ [1,∞), m ∈ N. For A ⊂ R3 open, the notation ∥ ∥p stands for the norm of
the Lebesgue space Lp(A), and ∥ ∥m,p for the usual norm of the Sobolev space Wm,p(A)
of order m and exponent p. If A ⊂ R3 has a bounded C2-boundary, the Sobolev space
W r,p(∂A) with r ∈ (0, 2) is to be defined as in [12, Section 6.8.6].

If A and B are vector spaces and T : A 7→ B is a linear operator, we write ker T for the
kernel of T and ran T for the range of T .

Numerical constants are denoted by C, and constants depending exclusively on parameters
γ1, ..., γn ∈ [0,∞), for some n ∈ N, take the form C(γ1, ..., γn). In most cases it is not
possible and of no interest to list all such parameters. Then we use the symbol C for
constant whose dependencies – or more importantly, their non-dependency – on certain
parameters should be clear from context, or are pointed out in the text.

In the following theorem, we reproduce the Calderon-Zygmund inequality for odd kernels.
This well known estimate is restated here because we will need some details on how the
upper bound given by this inequality relates to the structure of the kernel.

Theorem 2.1 Let n ∈ N and K : Rn 7→ R a function with K(z) = |z|−nK(|z|−1 z) and
K(−z) = −K(z) for z ∈ Rn\{0}. Put Λ := K|∂B1 and suppose that Λ ∈ L1(∂B1).

Let p ∈ (1,∞). Then
∫
{y∈Rn : |y−x|≥ϵ} |K(x − y) f(y)| dy < ∞ for x ∈ Rn, ϵ ∈ (0,∞) and

f ∈ Lp(Rn). Define (Kϵ ∗ f)(x) :=
∫
{y∈Rn : |y−x|≥ϵ}K(x− y) f(y) dy for x, ϵ, f as before.

Then ∥Kϵ ∗ f∥p ≤ C(p, n) ∥Λ∥1 ∥f∥p for ϵ ∈ (0,∞) and f ∈ Lp(Rn).

Proof: [21, p.89, Theorem 2 a) ]. □

We state a lemma which is convenient to handle weakly singular integral operators.

Lemma 2.1 Let n ∈ N, A, B ⊂ Rn nonempty, λ et ν measures on σ-algebras over A and
B, respectively. Further assume that the function K : A×B 7→ [0,∞) is measurable and
the upper bounds A1 := sup{

∫
B
K(x, y) dν(y) : x ∈ A} and A2 := sup{

∫
A
K(x, y) dλ(x) :

y ∈ B} are finite.
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Then, for p ∈ [1,∞) and ϕ : B 7→ R measurable with
∫
B
|ϕ|p dν < ∞, the integral∫

∂Ω
K(x, y) |ϕ(y)| doy is finite for λ-a. e. x ∈ A, and(∫

A

(∫
B

K(x, y) |ϕ(y)| dν(y)
)p

dλ(x)
)1/p

≤ A
1/p′

1 A
1/p
2

(∫
B

|ϕ|p dν
)1/p

. (2.1)

The preceding assumptions hold true if, for example, n = 3, A = B = ∂Ω, λ and ν
are the usual surface measure on ∂Ω, and if there are numbers c0, κ ∈ (0,∞) such that
K(x, y) ≤ c0 |x− y|−2+κ for x, y ∈ Ω, x ̸= y.

These assumptions are also valid if n ∈ {2, 3}, A, B ⊂ Rn open, bounded and nonempty,
λ and ν the usual Borel measure on A and B respectively, and if K(ϱ, η) ≤ c0 |ϱ− η|−n+κ

for ϱ ∈ A, η ∈ B, ϱ ̸= η, with c0 and κ given as before.

Proof: Inequality (2.1) is a simple application of Hölder’s inequality and Fubini’s theo-
rem, as used in [21, p. 7] in the case of convolution kernels. The first claim of the lemma
follows from (2.1). □

In Theorem 2.2 and Lemma 2.2 to 2.4 below, we state some properties of weakly singular
integral operators on Lp-spaces. In the case of Theorem 2.2, we give a proof for the
reader’s convenience because we do not know a precise reference.

Theorem 2.2 Let J ⊂ R2 be open, bounded and convex, and L : J×J 7→ R a measurable
function with L( · , η) ∈ C1(J\{η}) for η ∈ J. Suppose there is c0 > 0 with |∂αϱL(ϱ, η)| ≤
c0 |ϱ− η|−1−|α| for ϱ, η ∈ J with ϱ ̸= η, α ∈ N2

0 with |α| ≤ 1.

Let p ∈ (1,∞) and define L(ψ)(ϱ) :=
∫
J
L(ϱ, η)ψ(η) dη for ψ ∈ Lp(J), ϱ ∈ J ; see Lemma

2.1. Then L(ψ) ∈ W 1−1/p,p(J) and ∥L(ψ)∥1−1/p, p ≤ C ∥ψ∥p for ψ as before.

Proof: Let ϱ, ϱ′, η ∈ J with η /∈ {ϱ, ϱ′}. If |ϱ−η| ≤ 2 |ϱ−ϱ′|, we have |ϱ′−η| < 3 |ϱ−ϱ′|,
so

|L(ϱ, η)− L(ϱ′, η)| ≤ c0 (|ϱ− η|−1 + |ϱ′ − η|−1) ≤ 3 c0 (|ϱ− η|−2 + |ϱ′ − η|−2) |ϱ− ϱ′|.

In the case |ϱ− η| ≥ 2 |ϱ− ϱ′|, we get for ϑ ∈ [0, 1] that |ϱ + ϑ (ϱ′ − ϱ)− η| ≥ |ϱ− η|/2.
Thus, using the equation |L(ϱ, η) − L(ϱ′, η)| = |

∫ 1

0
(∇L)

(
ϱ + ϑ (ϱ′ − ϱ), η

)
dϑ · (ϱ − ϱ′)|,

we get in any case that∣∣∣L(ϱ, η)− L(ϱ′, η)
∣∣∣ ≤ C(c0) (|ϱ− η|−2 + |ϱ′ − η|−2) |ϱ− ϱ′| for ϱ, ϱ′, η ∈ J (2.2)

with η /∈ {ϱ, ϱ′}. Let r ∈ (1, 2), ϱ, ϱ′ ∈ J , and put Jϱ,ϱ′ := {η ∈ J : |ϱ − η| ≤
2 |ϱ − ϱ′|}. By splitting the set J into the parts Jϱ,ϱ′ and J\Jϱ,ϱ′ , it may be shown that
the inequality

∫
J
|L(ϱ, η)− L(ϱ′, η)|r dη ≤ C |ϱ− ϱ′|−r+2 holds, where the estimate of the

integral over J\Jϱ,ϱ′ is based on (2.2). Note that |ϱ′ − η| ≥ |ϱ − ϱ′| for η ∈ J\Jϱ,ϱ′ . Put
ϵ := min{1/(2 p′), 1/(4 p)}. Then 1 + ϵ p′ < 2. Let ψ ∈ Lp(J). By Hölder’s inequality, the
splitting 1 = 1/p′ + ϵ+ 1/p− ϵ and the previous estimate with r = 1 + ϵ p′,

|L(ψ)(ϱ)− L(ψ)(ϱ′)|p ≤ C (|ϱ− ϱ′|1−ϵ p′)p/p
′
∫
J

|L(ϱ, η)− L(ϱ′, η)|1−ϵ p |ψ(η)|p dη

for ϱ, ϱ′ ∈ J. Set A(ϱ, ϱ′) := |L(ψ)(ϱ)− L(ψ)(ϱ′)|p |ϱ− ϱ′|−p−1. It follows that

A(ϱ, ϱ′) ≤ C |ϱ− ϱ′|−2−ϵ p

∫
J

|L(ϱ, η)− L(ϱ′, η)|1−ϵ p |ψ(η)|p dη.
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We integrate both sides of the preceding inequality with respect to ϱ ∈ J and ϱ′ ∈ J , then
apply (2.2) and change the order of integration. In this way we arrive at the estimate∫
J

∫
J
A(ϱ, ϱ′) dϱ dϱ′ ≤ C (B1 +B2), where

B1 :=

∫
J

∫
J

∫
J

|ϱ− η|−2 (1−ϵ p) |ϱ− ϱ′|−1−2 ϵ p dϱ dϱ′ |ψ(η)|p dη.

and where termB2 is to be defined in the same way asB1, except that the difference |ϱ−η|
is replaced by |ϱ′ − η|, and the order of integration with respect to ϱ and ϱ′ is exchanged.
Now we use that −2 (1−ϵ p) and −1−2 ϵ p belong to (−2, 0), and −2 (1−ϵ p) −1−2 ϵ p =
−3 < −2. Thus we get that

∫
J
|ϱ− η|−2 (1−ϵ p) |ϱ− ϱ′|−1−2 ϵ p dϱ ≤ C |ϱ′ − η|−1 for ϱ′, η ∈ J

with ϱ′ ̸= η, as follows by splitting J into four sets according to four cases, three of them
given by the inequalities |ϱ− η| ≤ |ϱ′ − η|/2, |ϱ− ϱ′| ≤ |ϱ′ − η|/2, |ϱ− η| ≥ 2 |ϱ′ − η|, and
the fourth consisting of the requirement that none of the three preceding conditions holds;
compare [11, Lemma 1.4.2]. It follows that B1 ≤ C ∥ψ∥pp. An analogous argument yields
that B2 ≤ C ∥ψ∥pp. Therefore the theorem follows from the estimate

∫
J

∫
J
A(ϱ, ϱ′) dϱ dϱ′ ≤

C (B1 +B2) shown above, and from Lemma 2.1. □

Lemma 2.2 Let L : ∂Ω × ∂Ω 7→ R be measurable. Suppose there is c0 ∈ (0,∞) with
|L(x, y)| ≤ c0 |x− y|−1 for x, y ∈ ∂Ω, x ̸= y. Let p ∈ (1,∞). We may define an operator
L : Lp(∂Ω) 7→ Lp(∂Ω) by setting L(ϕ)(x) :=

∫
∂Ω
L(x, y)ϕ(y) doy for ϕ ∈ Lp(∂Ω), x ∈ ∂Ω;

see Lemma 2.1.

Then L : Lp(∂Ω) 7→ Lp(∂Ω) is linear, bounded and compact.

Proof: Obviously L is linear. The boundedness of L holds according to Lemma 2.1.
As for compactness, we remark that for any ϵ ∈ (0,∞), the operator Lp,ϵ : Lp(∂Ω) 7→
Lp(∂Ω), Lp,ϵ(ϕ)(x) :=

∫
∂Ω
χ(ϵ,∞)(|x − y|)L(x, y)ϕ(y) doy

(
x ∈ ∂Ω, ϕ ∈ Lp(∂Ω)

)
is

compact ([17, p. 275, Theorem 11.6]). On the other hand,

sup{
∫
∂Ω

χ(0,ϵ)(|x− y|) |x− y|−1 doy : x ∈ ∂Ω} → 0 (ϵ ↓ 0),

so it follows by Lemma 2.1 that Lϵ converges to L with respect to the operator norm of
the space of linear bounded operators from Lp(∂Ω) into Lp(∂Ω). As a consequence, L is
compact as well. □

Lemma 2.3 Let L ∈ C1(R3\{0}) and c0 ∈ (0,∞) such that |∂αL(z)| ≤ c0 |z|−1−|α| for
z ∈ R3\{0}, α ∈ N3

0, |α| ≤ 1. Let ϕ ∈ C0(∂Ω) and put A(ϕ)(x) :=
∫
∂Ω
L(x − y)ϕ(y) doy

for x ∈ R3. Then A(ϕ) ∈ Ca(R3) for a ∈ [0, 1).

Proof: [9, Lemma 6.1]. □

Lemma 2.4 Let p ∈ (1,∞), a ∈
(
0, 2/(3 p)

)
, R ∈ (0,∞) with Ω ⊂ BR. Then(∫

BR

(∫
∂Ω

|x− y|−2 |ϕ(y)| doy
)(1/p−a/2)−1

dox

)1/p−a/2

≤ C(p, a, R) ∥ϕ∥p for Lp(∂Ω).

Proof: See [7, Lemma 3.2]. □

We will use the fact that a function v defined in a 3D exterior domain and whose gradient
is Lq-integrable for some q ∈ (1, 3) takes a constant boundary value at infinity:
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Theorem 2.3 Let U ⊂ R3 be open and bounded, with Lipschitz boundary. Let q ∈ (1, 3).
Then for any v ∈ W 1,1

loc (U
c
) with ∇v ∈ Lq(U

c
)3, there is τ(v) ∈ R with v + τ(v) ∈

L(1/q−1/3)−1
(U

c
). There is c0 > 0 such that ∥v + τ(v)∥(1/q−1/3)−1 ≤ c0 ∥∇v∥q for such

functions v. In addition, if a function v of this kind belongs to Ls(U
c
) for some s ∈ (1,∞),

then the constant τ(v) vanishes.

Proof: See [13, Theorem II.6.1], except as concerns the criterion for the equation τ(v) = 0,
which is treated in [6, Lemma 2.4]. □

If U is an open, bounded set in Rn with some regularity of the boundary, the trace of a
function v ∈ C∞(U) is, of course, the restriction of v to ∂U , by the definition of the trace.
Several times we will use a slight generalization of this fact, as stated in

Lemma 2.5 Let n ∈ N, U ⊂ Rn with C1-boundary, v ∈ C0(U) with v|U ∈ W 1,1(U).
Then the trace of v|U on ∂Ω coincides with v|∂U.

Proof: The extension operator from [1, 4.26] yields a function ṽ ∈ C0
0(Rn) ∩W 1,1(Rn)

with ṽ|U = v. The lemma then follows via a sequence (ṽn) in C∞
0 (Rn) constructed by

means of Friedrich’s mollifier and converging to ṽ in W 1,1(Rn) and pointwise uniformly
in x ∈ Rn. □

We end this section by recalling some properties of solutions to either the Poisson equation
or the Stokes system.

Lemma 2.6 Let U ⊂ R3 be open and bounded, with C2-boundary. Let n(U) denote the
outward unit normal to U . Suppose that u ∈ C1(U)3 ∩W 2,1(U)3 ∩ C2(U)3, π ∈ C0(U) ∩
W 1,1(U) ∩ C1(U), ũ ∈ C0(U)3 ∩W 1,1(U)3 ∩ C1(U)3. Alternatively, let p ∈ (1,∞), u ∈
W 2,p(U)3, π ∈ W 1,p(U), ũ ∈ W 1,p′(U)3. Then∫

U

(∆u−∇π +∇divu) · ũ dx+ (1/2)

∫
U

3∑
j,k=1

(∂juk + ∂kuj) (∂jũk + ∂kũj) dx

=

∫
∂U

3∑
j,k=1

n
(U)
k (∂kuj + ∂juk − δjk π) ũj dox +

∫
U

π div ũ dx.

Proof: Apply the Divergence theorem. For functions u, π and ũ given as in the first case
considered in the lemma, this is possible according to the reasoning in [9, Lemma 3.1]. In
the second case, the functions under consideration are such that applying the Divergence
theorem in a suitable way is possible due the density of C∞-functions in Sobolev spaces.
□

The ensuing lemma deals with the Poisson equation with data in certain Sobolev and Lp-
spaces, respectively. The lemma states that in such a situation, unsurprisingly, a classical
solution belongs to a Sobolev space corresponding to the regularity of the data.

Lemma 2.7 Let U ⊂ R3 be open and bounded, with C2-boundary. Let r ∈ (3/2, ∞), γ ∈
W 2−1/r, r(∂U), g ∈ Lr(U), w ∈ C0(U) with w|U ∈ C2(U), ∆(w|U) = g and w|∂U = γ.

Then w|U ∈ W 2,r(U) and w|∂U = γ in the trace sense.

8



Proof: This theorem is a special case of [7, Lemma 3.4], which, in turn, is based on the
W 2,q-theory of the Poisson equation and on the maximum principle. Also see Lemma 2.5.
□

We state a result onW 2,p-resularity of solutions to the Stokes system in bounded domains
under Dirichlet boundary conditions:

Theorem 2.4 Let U ⊂ R3 be a bounded domain with C2-boundary. Let p ∈ (1,∞), f ∈
Lp(U)3, b ∈ W 2−1/p, p(U)3 with

∫
∂U
b · n(U) dox = 0, where n(U) denotes the outward unit

normal to U .

Then there are functions u ∈ W 2,p(U)3, π ∈ W 1,p(U) such that −∆u+∇π = f, div u =
0, u|∂U = b,

∫
U
π dx = 0. Moreover there is c0 > 0 such that for f, b, u and π as before,

the estimate ∥u∥2,p + ∥π∥1,p ≤ c0 (∥f∥p + ∥b∥2−1/p, p) holds.

Proof: [13, Theorem IV.6.1]. □

In the ensuing theorem, we present a uniqueness result for Lp-weak solutions to the Stokes
system in bounded domains, under Dirichlet boundary conditions:

Theorem 2.5 Let U, p, n(U) be given as in Theorem 2.4. Assume that u ∈ W 1,p(U)3, π ∈
Lp(U) such that

∫
U
(∇u · ∇φ + π div φ) dx = 0 for φ ∈ C∞

0 (U)3. Further suppose that
div u = 0, u|∂U = 0. Then u = 0.

Proof: [13, Lemma IV.6.2].

Finally we mention a technical result on the difference of two solutions to (1.1) in Ω
c
,

concerning Lq-integrability of the gradient of the pressure near infinity.

Theorem 2.6 For j ∈ {1, 2}, let pj, rj ∈ (1,∞), u(j) ∈ W
2,pj
loc (Ω

c
)3, π(j) ∈ W

1,pj
loc (Ω

c
)

with ∇π(j)|Bc
R ∈ Lrj(Bc

R)
3 for some R ∈ (0,∞) with Ω ⊂ BR. Further suppose there are

numbers q1, q2 ∈ (1,∞) such that u(j)|Bc
R ∈ Lqj(Bc

R)
3 for j ∈ {1, 2}.

Put u := u(1) − u(2), π := π(1) − π(2), and suppose that the pair (u, π) solves (1.1) with
f = 0. Abbreviate r := {p1, p2, r1, r2}. Then ∇π|Bc

R+1 ∈ Ls(Bc
R+1)

3 for s ∈ (1, r].

Proof: We refer to the proof of [5, (3.4)], only adding that due a misprint, there is
a reference to [5, (1.5)] instead of [5, (1.3)] in that proof. Note that π|Bc

R is a slowly
increasing function ([26, p. 150])in view of [13, (II.6.19) and (II.6.24)]. This latter fact is
relevant on [5, p. 1524 above]. □

3 Some results on local charts of ∂Ω.

Since the crucial point of our theory is a W 2−1/p, p-estimate on ∂Ω of a certain boundary
potential (Theorem 5.2), precise informations on the local charts we will use are essential
for what follows. These informations are specified in this section. We choose a description
of the boundary as introduced in [12, p. 304-306].

Lemma 3.1 There are numbers k(Ω) ∈ N, α(Ω) ∈ (0,∞), and for any t ∈ {1, ..., k(Ω)}
a function at ∈ C2

(
[−α(Ω), α(Ω)]2

)
with |∇at(ϱ)| < 1/4 (ϱ ∈ ∆1), an orthonormal
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matrix Dt ∈ R3×3 and a vector Ct ∈ R3 such that the following properties hold:

Put ∆σ :=
(
−σ α(Ω), σ α(Ω)

)2
for σ ∈ (0, 1],

γt(η) := Dt ·
(
η, at(η)

)
+ Ct (η ∈ ∆1), Λt,σ := {γt(η) : η ∈ ∆σ},

Ut,σ := {Dt ·
(
η, at(η) + s

)
: η ∈ ∆σ, s ∈

(
−σ α(Ω), σ α(Ω)

)
}

for σ, t as before. Then there is a constant c0 ∈ (0,∞) such that

c−1
0 ∥f∥1 ≤

k(Ω)∑
t=1

∥f ◦ γt|∆1/4∥1 ≤ c0 ∥f∥1 for f ∈ L1(∂Ω). (3.1)

The function γt : ∆1 7→ Λt,1 is bijective, continuous and with continuous inverse, the
set Ut,σ is open in R3, and Λt,σ = Ut,σ ∩ ∂Ω for t ∈ {1, ..., k(Ω)}, σ ∈ (0, 1]. Moreover
dist(∂Ω\Λt,σ2

, Λt,σ1
) > 0 for t as before and σ1, σ2 ∈ (0, 1] with σ1 < σ2.

Define Jt(η) :=
(
1 +

∑2
j=1 ∂jat(η)

2
)1/2

for η ∈ ∆1, t as before. Then for such t and

for functions F : Λt,1 7→ C, the relation F ∈ L1(Λt,1) holds iff (F ◦ γt) Jt ∈ L1(∆1). In
addition ∫

Λt,1

F dox =

∫
∆1

(F ◦ γt)(η) Jt(η) dη for F ∈ L1(Λt,1). (3.2)

Proof: All the statements of the lemma are standard results (see [12, Lemma 6.3.9, Def-
inition 6.3.10, Theorem 6.3.12], with additional details in [9, Section 2]), except perhaps
the claim that the local charts γt may be chosen in such a way that |∇at|∞ < 1/4 for
1 ≤ t ≤ k(Ω). In order to satisfy this condition, the boundary ∂Ω has to be split into
sufficiently small parts. Details of this procedure are rather technical but straightforward.
□

Lemma 3.2 There are constants δ(Ω), D ∈ (0,∞) such that

x+ κn(Ω)(x) ∈ Ω
c
, x− κn(Ω)(x) ∈ Ω, (3.3)

|x+ κn(Ω)(x)− x′ − κ′ n(Ω)(x′)| ≥ D (|x− x′|+ |κ− κ′|), (3.4)

for x, x′ ∈ ∂Ω, κ, κ′ ∈ [−δ(Ω), δ(Ω)]. In addition

|(x− x′) · n(Ω)(x)| ≤ C |x− x′|2 for x, x′ ∈ ∂Ω, (3.5)

with C independent of x and x′. For δ ∈
(
0, δ(Ω)

]
, put

Uδ := {x ∈ R3 : dist(x,Ω) < D δ/2}, U−δ := {x ∈ R3 : dist(x,Ωc) < D δ/2}.

Note that the sets Uδ and U−δ are open in R3 and Ω ⊂ Uδ, Ω
c ⊂ U−δ, for δ as before. The

estimates

|x−
(
y + δ n(Ω)(y)

)
| ≥ D δ/2, |x′ −

(
y − δ n(Ω)(y)

)
| ≥ D δ/2 (3.6)

hold for δ as before, y ∈ ∂Ω, x ∈ Uδ and x′ ∈ U−δ.

Proof: See [9, (2.24), (2.22)] for (3.3), (3.5), respectively, [7, Lemma 2.1] for (3.4), and
the proof of [7, Lemma 5.3] for the properties of Uδ and U−δ. □
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4 Simple and double layer potentials related to the

Stokes system or the Poisson equation.

The solutions to (1.1), (1.2) we will consider are given by a sum of simple layer, double
layer and volume potentials. The first two types of potentials are introduced and studied
in this section. We begin by defining some kernel functions, among them a fundamental
solution to (1.1). Put

N(z) := (4 π |z|)−1, Ejk(z) := (8 π |z|)−1 (δjk + zj zk |z|−2), E := (Ejk)1≤j,k≤3, (4.1)

Sjkl := −δjk ∂lN− ∂kEjl − ∂jEkl for z ∈ R3\{0}, 1 ≤ j, k, l ≤ 3. (4.2)

The matrix-valued function E = (Ejk)1≤j,k≤3 is the velocity part of a fundamental solution
to the Stokes system (1.1), with its associated pressure part given by −∇N.

The next lemma is an obvious consequence of (4.1) and (4.2). In that lemma, as in similar
situations below, the restrictions on |α| (order of differentiation) may of course be dropped
if the constants may depend on |α|. We will not need this fact, instead limiting the range
of |α|.

Lemma 4.1 The relations Ejk, Sjkl, N ∈ C∞(R3\{0}) and

−∆Ejk − ∂j∂kN = 0,
3∑

µ=1

∂µEjµ = 0, ∆N = 0 (4.3)

hold for 1 ≤ j, k, l ≤ 3. In addition

|∂αEjk(z)|+ |∂αN(z)| ≤ C |z|−1−|α|, (4.4)

for j, k as before, z ∈ R3\{0}, α ∈ N3
0 with |α| ≤ 3. Moreover, for j, k, l, z as before,

Sjkl(z) = 3/(4 π) zj zk zl |z|−5, −∆Sjkl + 2 ∂j∂k∂lN = 0,
3∑

ν=1

∂νSjkν = 0. (4.5)

In the following lemma we introduce a simple layer potential associated with the Stokes
system (1.1).

Lemma 4.2 Let ϕ ∈ L1(∂Ω). For x ∈ R3\∂Ω, put

V (ϕ)(x) :=

∫
∂Ω

E(x− y) · ϕ(y) doy, Q(ϕ)(x) :=

∫
∂Ω

(−∇N)(x− y) · ϕ(y) doy.

The integral
∫
∂Ω

|E(x− y) · ϕ(y)| doy is finite for a. e. x ∈ ∂Ω. In particular, for x ∈ ∂Ω,
the term V (ϕ)(x) may be defined in the same way as for x ∈ R3\∂Ω.
The functions V (ϕ)j|R3\∂Ω and Q(ϕ) belong to C∞(R3\∂Ω), for 1 ≤ j ≤ 3, with
∂αxV (ϕ)(x) =

∫
∂Ω
(∂αE)(x − y) · ϕ(y) doy for x ∈ R3\∂Ω, α ∈ N3

0, and with an analo-
gous formula being valid for Q(ϕ).

The pair
(
V (ϕ)|R3\∂Ω, Q(ϕ)|R3\∂Ω

)
satisfies the Stokes system (1.1) with f = 0.

If ϕ ∈ C0(∂Ω)3, then V (ϕ) ∈ Ca(R3)3 for a ∈ [0, 1).
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Note that Q(ϕ) is not defined on ∂Ω because its kernel is singular with respect to integrals
on ∂Ω.

Proof of Lemma 4.2: The term V (ϕ)(x) is well defined also for x ∈ ∂Ω according
to Lemma 2.1. The claims related to the differential properties in R3\∂Ω follow from
Lebesgue’s theorem and Lemma 4.1. The statement on Hölder continuity of V (ϕ) in R3

if ϕ is continuous is a consequence of (4.4) and Lemma 2.3. □

Corollary 4.1 Let p ∈ (1,∞) and R ∈ (0,∞) with ΩR ⊂ BR. Then, if r ∈ [1, 3 p/2), the
estimate

∥V (ϕ)|BR\∂Ω∥1,r + ∥Q(ϕ)|BR\∂Ω∥r ≤ C ∥ϕ∥p for ϕ ∈ Lp(∂Ω)3. (4.6)

is valid. In particular V (ϕ)|Ω ∈ W 1,r(Ω)3, V (ϕ)|ΩR ∈ W 1,r(ΩR)
3 for r, ϕ as above, and

V (ϕ)|Ω and V (ϕ)|ΩR have a trace on ∂Ω. Moreover

∥V (ϕ)|∂Ω∥p ≤ C ∥ϕ∥p for ϕ ∈ Lp(∂Ω)3, (4.7)

with V (ϕ)|∂Ω as defined in Lemma 4.2. The preceding constants C are independent of ϕ.

Proof: Let ϕ ∈ Lp(∂Ω)3. The constants C in this proof are independent of ϕ. Take
r ∈ (p, 3 p/2). Then we obtain from Lemma 2.4 with a = 2 (1/p− 1/r) that

∥∂m(V (ϕ)|BR\∂Ω)∥r + ∥Q(ϕ)|BR\∂Ω∥r ≤ C ∥ϕ∥p (1 ≤ m ≤ 3).

It follows that even if r ∈ [1, 3 p/2), the preceding inequality remains valid. Since for
x, y ∈ BR with x ̸= y, we have |x − y|−1 ≤ 2R |x − y|−2, the same argument implies
that if r ∈ [1, 3 p/2), the estimate ∥V (ϕ)|BR\∂Ω∥r ≤ C ∥ϕ∥p holds. This proves (4.6). As
concerns inequality (4.7), we refer to Lemma 2.1. □

We turn to the question of how to approximate V (ϕ)|Ω and V (ϕ)|Ωc
by functions which

are C∞ in open sets somewhat larger than Ω and Ωc, respectively.

Lemma 4.3 Recall the parameter δ(Ω) and the sets Uδ and U−δ for δ ∈
(
0, δ(Ω)

]
intro-

duced in Lemma 3.2. Further recall that Uδ and U−δ are open sets in R3 with Ω ⊂ Uδ, Ω
c ⊂

U−δ, for δ as before. Let ϕ ∈ L1(∂Ω)3 and define V (δ)(ϕ) : Uδ 7→ C3, Q(δ)(ϕ) : Uδ 7→ C by
setting

V (δ)(ϕ)(x) :=

∫
∂Ω

E
(
x− [y + δ n(Ω)(y)]

)
· ϕ(y) doy,

Q(δ)(ϕ)(x) :=

∫
∂Ω

−(∇N)
(
x− [y + δ n(Ω)(y)]

)
· ϕ(y) doy

for x ∈ Uδ, δ ∈
(
0, δ(Ω)

]
. In addition, we introduce the functions V (−δ)(ϕ) : U−δ 7→

C3, Q(δ) : U−δ 7→ C by replacing Uδ with U−δ and the term y + δ n(Ω) with y − δ n(Ω) in
the respective definitions of V (δ)(ϕ) and Q(δ)(ϕ).

Then V (±δ)(ϕ)j, Q
(±δ)(ϕ) belong to C∞(U±δ) for 1 ≤ j ≤ 3 and for δ as above. Any

derivative of these functions commutes with the integration over ∂Ω appearing in their
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definition. The pair
(
V (±δ)(ϕ), Q(±δ)(ϕ)

)
is a solution of (1.1) in U±δ with f = 0. In

addition

V (δ)(ϕ)(x) → V (ϕ)(x) for x ∈ Ω, V (−δ)(ϕ)(x) → V (ϕ)(x) if δ ↓ 0, for x ∈ Ω
c
. (4.8)

Suppose that p ∈ (1,∞), ϕ ∈ Lp(∂Ω)3, R ∈ (0,∞) with Ω ⊂ BR. Then∫
ΩR

|∂αx
(
V (−δ)(ϕ)− V (ϕ)

)
(x)|p dox → 0, (4.9)∫

Ω

|∂αx
(
V (δ)(ϕ)− V (ϕ)

)
(x)|p dox → 0 if δ ↓ 0, for α ∈ N3

0 with |α| ≤ 1. (4.10)

If ϕ ∈ C0(∂Ω)3, then for x ∈ ∂Ω, 1 ≤ j ≤ 3,

V (±δ)(ϕ)(x) → V (ϕ)(x), (4.11)

3∑
k=1

n
(Ω)
k (x)

(
∂jV

(±δ)(ϕ)k + ∂kV
(±δ)(ϕ)j − δjkQ

(±δ)(ϕ)
)
(x) (4.12)

→ (1/2)
(
±ϕ+ T∗(ϕ)

)
j
(x) (1 ≤ j ≤ 3),

for δ ↓ 0, uniformly in x ∈ ∂Ω. Moreover, for ϕ ∈ C0(∂Ω)3, x ∈ ∂Ω, δ ∈
(
0, δ(Ω)

]
,

|∂l
(
V (ϕ)|R3\∂Ω

)(
x± δ n(Ω)(x)

)
− ∂lV

(∓δ)(ϕ)(x)| ≤ C |ϕ|∞δ1/2. (4.13)

The function V (ϕ)|∂Ω as defined in Lemma 4.2 and the trace of V (ϕ)|Ω and V (ϕ)|ΩR on
∂Ω (see Corollary 4.1) coincide.

Proof: We only consider V (−δ)(ϕ) and Q(−δ)(ϕ). If −δ is replaced by δ, an analogous
reasoning is valid.

The differential properties of V (−δ)(ϕ) and Q(−δ)(ϕ) are a consequence of (3.6), the relation
Ejk, N ∈ C∞(R3\{0}) for 1 ≤ j, k ≤ 3, the equations satisfied by E and N (see Lemma
4.1) and Lebesgue’s theorem.

Let x ∈ Ω
c
. For y ∈ ∂Ω, δ ∈

(
0, δ(Ω)

]
, the relation |x− [y− δ n(Ω)(y)]| ≥ D δ/2 holds by

(3.6). Since E ∈ C∞(R3\{0})3×3, we may conclude that the claim on V (−δ)(ϕ) in (4.8)
follows from Lebesgue’s theorem. For the proof of (4.9) and (4.10), we refer to the proof
of [7, Lemma 5.4],

Concerning the proof of respectively (4.11) and (4.12), we refer to [9, Lemma 6.3] and [9,
(6.20), (4.72)], respectively, as concerns V (−δ)(ϕ). When V (δ)(ϕ) is considered, the relevant
references are [9, (6.10)] and [9, (6.19), (4.71)]. Inequality (4.13) is a consequence of (3.4);
see the proof of [7, Corollary 5.3] or [9, (6.21), (6.22)].

We finally note that because of Lemma 2.1, inequality (3.4) and Lebesgue’s theorem, the
relation ∥V (±δ)(ϕ) − V (ϕ)|∂Ω∥p → 0 (δ ↓ 0) holds. The last claim of Lemma 4.3 follows
from this, (4.9), (4.10), and C∞-regularity of V (±δ)(ϕ) on U±. □

Next we introduce double layer potentials related to the Stokes system.
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Lemma 4.4 Let ϕ ∈ L1(∂Ω)3. Then for x ∈ R3\∂Ω, l ∈ {1, 2, 3}, put

W (ϕ)l(x) :=

∫
∂Ω

−
3∑

j,k=1

Sjkl(x− y)ϕj(y)n
(Ω)
k (y) doy,

Π(ϕ)(x) :=

∫
∂Ω

(−2)
3∑

j,k=1

(∂j∂kN)(x− y)ϕj(y)n
(Ω)
k (y) doy.

Then W (ϕ)l and Π(ϕ) belong to C∞(R3\∂Ω) for 1 ≤ l ≤ 3, and any derivative of these
functions commutes with the integration over ∂Ω appearing in their definition. Moreover
the pair

(
W (ϕ), Π(ϕ)

)
solves (1.1) with f = 0. (The functions Sjkl and N were introduced

in (4.2) and (4.1), respectively.)

Proof: Lebesgue’s theorem and the relation Ejk, N ∈ C∞(R3\{0}) for 1 ≤ j, k ≤ 3 yield
the lemma except its last claim, which follows from (4.5). □

Lemma 4.5 Let R ∈ (0,∞) with Ω ⊂ BR, and put δ := dist(Ω, Bc
R). Then

|∂αV (ϕ)(x)| ≤ C(δ, R) ∥ϕ∥1 |x|−1−|α|, |∂αW (ϕ)(x)| ≤ C(δ, R) ∥ϕ∥1 |x|−2−|α| (4.14)

|∂αQ(ϕ)(x)| ≤ C(δ, R) ∥ϕ∥1 |x|−2−|α|, |∂αΠ(ϕ)(x)| ≤ C(δ, R) ∥ϕ∥1 |x|−3−|α| (4.15)

for ϕ ∈ L1(∂Ω)3, x ∈ Bc
R, α ∈ N3

0 with |α| ≤ 2. Consequently, if r1 ∈ (1,∞), r2 ∈
(3/2, ∞), r3 ∈ (3,∞), then for 1 ≤ l,m ≤ 3, ϕ ∈ L1(∂Ω)3,

∥∂m∂lV (ϕ)|Bc
R∥r1 + ∥∂mQ(ϕ)|Bc

R∥r1 + ∥∂mW (ϕ)|Bc
R∥r1 (4.16)

+∥Π(ϕ)|Bc
R∥r1 + ∥∂mΠ(ϕ)|Bc

R∥r1 ≤ C(δ, R, r1) ∥ϕ∥1,

∥W (ϕ)|Bc
R∥r2 + ∥∂mV (ϕ)|(BR)

c∥r2 + ∥Q(ϕ)|Bc
R∥r2 ≤ C(δ, R, r2) ∥ϕ∥1, (4.17)

∥V (ϕ)|Bc
R∥r3 ≤ C(δ, R, r3) ∥ϕ∥1. (4.18)

Proof: Obviously δ > 0. Let y ∈ ∂Ω\{0} and put z := |y|−1Ry. Then |y| + |z − y| ≤
|z| = R, and |z − y| ≥ δ, so |y| ≤ R− δ. Hence for x ∈ Bc

R we get

|x− y| ≥ (δ/R) |x|+ (1− δ/R) |x| − |y| ≥ (δ/R) |x|+R− δ − |y| ≥ (δ/R) |x|.

Now the lemma follows from (4.4). □

We introduce two integral operators, denoted by T and T∗ and defined by double layer
potentials, which map the space Lp(∂Ω)3 into itself, for any p ∈ (1,∞). These operators
are closely linked with the boundary values ofW (ϕ)|Ω andW (ϕ)|Ωc

, which do not coincide
except if ϕ = 0 (Theorem 4.4).

Lemma 4.6 The inequality |
∑3

k=1 Sjkl(x− y)n
(Ω)
k (x)| ≤ C |x− y|−1 holds for x, y ∈ ∂Ω

with x ̸= y, 1 ≤ j, l ≤ 3. The preceding estimate remains valid if the term n
(Ω)
k (x) is

replaced by n
(Ω)
k (y).
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If ϕ ∈ L1(∂Ω)3, 1 ≤ j ≤ 3, we may define

T∗(ϕ)j(x) := (−2)

∫
∂Ω

3∑
k,l=1

Sjkl(x− y)n
(Ω)
k (x)ϕl(y) doy

for x ∈ ∂Ω. Let p ∈ (1,∞). For ϕ ∈ Lp(∂Ω)3, the relation T∗(ϕ) ∈ Lp(∂Ω)3 is valid, and
the operator T ∗

p : Lp(∂Ω)3 7→ Lp(∂Ω)3, T ∗
p (ϕ) := T∗(ϕ)

(
ϕ ∈ Lp(∂Ω)3

)
is linear, bounded

and compact.

Define the function T(ϕ) by replacing the term n
(Ω)
k (x) by −n(Ω)

k (y) in the definition of
T∗(ϕ). An operator Tp may be associated with T in the same way as T ∗

p is associated with
T∗. Then equally Tp : L

p(∂Ω)3 7→ Lp(∂Ω)3 is linear, bounded and compact.

Let Ip : L
p(∂Ω)3 7→ Lp(∂Ω)3 denote the identity mapping of Lp(∂Ω)3. Then the operators

±Ip + Tp and ±Ip + T ∗
p are Fredholm with index zero.

For q ∈ (1,∞), the operator T ∗
q is dual to Tq′ .

Proof: For the estimate of |
∑3

k=1 Sjkl(x− y)n
(Ω)
k (x)| stated in the lemma see (3.5) and

the first equation in (4.5). In the case that the term n
(Ω)
k (x) is replaced by −n(Ω)

k (y), the
same references may be used.

Lemma 2.1 yields that T∗(ϕ) and T(ϕ) are well defined for ϕ ∈ L1(∂Ω)3, and T∗(ϕ), T(ϕ) ∈
Lp(∂Ω)3 if ϕ ∈ Lp(∂Ω)3. Moreover it follows from Lemma 2.2 that T ∗

p and Tp are linear,
bounded and compact. The general theory of Fredholm operators now implies that ±Ip+
Tp and ±Ip + T ∗

p are Fredholm with index zero. The last statement of the lemma is a
consequence of Fubini’s theorem. □

Theorem 4.1 Let p ∈ (1,∞). If a ∈ [0, 1) and ψ ∈ Lp(∂Ω)3 with ±ψ + T(ψ) ∈ Ca(∂Ω)3

or ±ψ+T∗(ψ) ∈ Ca(∂Ω)3, then ψ ∈ Ca(∂Ω)3. In particular ker(±Ip+Tp) = ker(±Iq+Tq)
and ker(±Ip + T ∗

p ) = ker(±Iq + T ∗
q ) for q ∈ (1,∞).

If ϕ ∈ Ca(∂Ω)3 for some a ∈ (0, 1) and ±ϕ + T(ϕ) ∈ Ca(∂Ω)3 ∩W 2−1/p, p(∂Ω)3, then ϕ
belongs to W 2−1/p, p(∂Ω)3 and the inequality ∥ϕ∥2−1/p, p ≤ C (∥ ± ϕ+ T(ϕ)∥2−1/p, p + ∥ϕ∥p)
holds, with C independent of ϕ.

If p > 3 and ϕ ∈ Lp(∂Ω)3 such that ±ϕ+T(ϕ) ∈ W 2−1/p, p(∂Ω)3, then ϕ ∈ W 2−1/p, p(∂Ω)3,
and there is a ∈ (0, 1) with ϕ ∈ C1,a(∂Ω)3.

Proof: For the first statement of this theorem see [9, Lemma 5.4]. For the second we
refer to[9, Lemma 7.8]. As concerns the third, a direct proof of the relation ϕ ∈ C1,a(∂Ω)3

for some a ∈ (0, 1) may be found in [23]; see [23, Lemma 3.1]. In view of the Lp-estimates
available here, we may obtain this result in a a shorter way.

In fact, suppose that p > 3, and take ϕ as in the third claim of the theorem. Put
b := ϕ+T(ϕ). Then by a trace theorem and an extension theorem, there is B ∈ W 2,p

0 (R3)3

with B|∂Ω = b. Since p > 3, a Sobolev inequality implies there is a ∈ (0, 1) such that
B ∈ C1,α(R3)3, so b ∈ C1,α(∂Ω)3. Thus ϕ ∈ Ca(∂Ω)3 by the first statement of Theorem
4.1, hence ϕ ∈ W 2−1/p, p(∂Ω)3 by the second claim. Now the same argument as used above
for b provides that ϕ ∈ C1,α(∂Ω)3. The same reasoning is valid if ϕ is replaced by −ϕ in
the preceding definition of b. □
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Theorem 4.2 Define

ϕ(j)(x) := (δjk)1≤k≤3, ϕ(4)(x) := (x3, 0,−x1), ϕ(5)(x) := (x2,−x1, 0),

ϕ(6)(x) := (0, x3,−x2) for 1 ≤ j ≤ 3, x ∈ R3 (”rigid motions”).

Then for any domain U ⊂ R3, the space

L(U) := {v ∈ C1(U)3 : ∂jvk + ∂kvj = 0 for 1 ≤ j, k ≤ 3}

is spanned by the family (ϕ(1)|U, ..., ϕ(6)|U) and thus has dimension 6.

Let p ∈ (1,∞). Then with the notation of Lemma 4.6, ker(−Ip + T ∗
p ) = {k n(Ω) : k ∈ R}

and ker(Ip + Tp) = span
{
ϕ(j)|∂Ω : j ∈ {1, ..., 6}

}
. Moreover dimker(Ip + T ∗

p ) = 6 and
dimker(−Ip + Tp) = 1. In addition ker(±Ip + T ∗

p ) possesses a topological complement

E
(±)
p in Lp(∂Ω)3. For ϕ ∈ E

(±)
p , the estimate ∥ϕ∥p ≤ C ∥(±ϕ+ T ∗

p )(ϕ)∥p holds.

Let b ∈ Lp(∂Ω)3. Then
∫
∂Ω
b · ϕ(j) dox = 0 for 1 ≤ j ≤ 6 iff there is a function ϕ ∈ E

(+)
p

with (1/2)
(
ϕ+ T∗(ϕ)

)
= b. This function is uniquely determined and will be denoted by

F
(+)
p (b).

Fix a function ψ(0) ∈ ker(−Ip′ + Tp′)\{0}. (In view of Theorem 4.1, this function ψ(0)

belongs to ker(−Ir+Tr) for any r ∈ (1,∞).) Again let b ∈ Lp(∂Ω)3. Then
∫
∂Ω
b·ψ(0) dox =

0 iff there is a function ϕ ∈ E
(−)
p with (1/2)

(
−ϕ+T∗(ϕ)

)
= b. This function is uniquely

determinded, too, and will be denoted by F
(−)
p (b).

Suppose that q, r ∈ (1,∞) and b ∈ Lq(∂Ω)3∩Lr(∂Ω)3 with
∫
∂Ω
b·ϕ(j) dox = 0 for 1 ≤ j ≤ 6.

Then F
(+)
q (b) = F

(+)
r (b). Similarly F

(−)
q (b) = F

(−)
r (b) if b ∈ Lq(∂Ω)3 ∩ Lr(∂Ω)3 with∫

∂Ω
b ·ψ(0) dox = 0. Therefore we will write F (±)(b) instead of F

(±)
p (b) if b ∈ ran(±Ip+Tp).

Proof: Concerning the claims about L(U) we refer to [9, Satz 6.1]. By [9, Lemma
6.5] the space span

{
ϕ(j)|∂Ω : j ∈ {1, ..., 6}

}
has dimension 6. The equations for

ker(−Ip + T ∗
p ) and ker(Ip + Tp) hold according to [9, Lemma 6.7, 6.5, 6.10]. We re-

call that for q ∈ (1,∞), a ∈ {−1, 1}, the operator aIq′ +Tq′ is dual to aIq+T ∗
q , and these

operators are Fredholm with index zero (Lemma 4.6). Therefore the remaining claims
in Theorem 4.2, except the last one, follow by the closed range theorem, Riesz’ repre-
sentation theorem in Lp-spaces, the open mapping theorem and standard results about
topological complements. The last claim of the theorem follows from Theorem 4.1. □

Lemma 4.7 Put M := (
∫
∂Ω
ϕ(j) ·ϕ(k) dox)1≤j,k≤3 and M̃ := (

∫
Ω
ϕ(j) ·ϕ(k) dx)1≤j,k≤3, where

ϕ(1), ..., ϕ(6) were introduced in Theorem 4.2. Then the matrices M and M̃ are invertible.

Proof: The functions ϕ(1)|∂Ω, ..., ϕ(6)|∂Ω are linearly independent ([9, Lemma 6.5]).
Let α ∈ R6 with M · α = 0. Then

∑6
j=1 αj

∑6
k=1

∫
∂Ω
ϕ(j) · ϕ(k) dox αk = 0, that is,∫

∂Ω
|
∑6

l=1 αl ϕ
(l)|2 dox = 0, so

∑6
l=1 αl ϕ

(l) = 0, and finally α = 0. This means that M

is invertible. The functions ϕ(1)|Ω, ..., ϕ(6)|Ω are linearly independent as well (Theorem

4.2). Thus the same argument as for M yields that M̃ is invertible, too. □

Lemma 4.8 Let p ∈ (1,∞), b ∈ W 1−1/p, p(∂Ω)3 with
∫
∂Ω
ϕ(j) · b dox = 0 for 1 ≤ j ≤ 6.

Then there exists a sequence (bn) in C
0(∂Ω)3 such that for n ∈ N, the function bn belongs
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to Ca(∂Ω)3 for a ∈ (0, 1), hence bn ∈ W 1−1/r, r(∂Ω)3 for r ∈ (1,∞),
∫
∂Ω
ϕ(j) · bn dox = 0

for 1 ≤ j ≤ 6, and such that ∥b− bn∥1−1/p, p → 0.

Suppose that
∫
∂Ω
ψ(0) · b dox = 0, where ψ(0) was introduced in Theorem 4.2. Then there is

a sequence (bn) in C0(∂Ω)3 with the same properties as before, except that the condition∫
∂Ω
ϕ(j) · bn dox = 0 (1 ≤ j ≤ 6, n ∈ N) is replaced by

∫
∂Ω
ψ(0) · bn dox = 0 (n ∈ N).

Proof: Since b ∈ W 1−1/p, p(∂Ω)3, there is B ∈ W 1,p(Ω)3 with B|∂Ω = b.We may choose a
sequence (Bn) in C

∞
0 (R3)3 with ∥Bn−B∥1,p → 0, and thus ∥Bn−b∥1−1/p, p → 0. Obviously

b̃n := Bn|∂Ω ∈ Ca(∂Ω)3 for n ∈ N, a ∈ (0, 1).

Let n ∈ N and set cn := M−1 · (
∫
∂Ω
b̃n · ϕ(j) dox)1≤j≤6, with the matrix M introduced in

Lemma 4.7. Then
∫
∂Ω
b̃n·ϕ(j) dox =

∑6
k=1

∫
∂Ω
ϕ(j)·ϕ(k) dox cn,k for 1 ≤ j ≤ 6. Thus, putting

bn := b̃n −
∑6

k=1 cn,k ϕ
(k), we obtain a function bn belonging to Ca(∂Ω)3 for a ∈ (0, 1) and

verifying the relation
∫
∂Ω
ϕ(j) · bn dox = 0 for 1 ≤ j ≤ 6. Since ∥b̃n − b∥1−1/p, p → 0 and∫

∂Ω
b̃n ·ϕ(j) dox =

∫
∂Ω
(b̃n−b) ·ϕ(j) dox for 1 ≤ j ≤ 6, n ∈ N by our assumptions on b, hence

|cn| ≤ C ∥b̃n − b∥p with C independent of n, we get in addition that ∥bn − b∥1−1/p, p → 0.

The second part of the lemma may be proved in the same way as the first, but the
reasoning is somewhat simpler because no matrix is involved. Note that by Theorem 4.1,
we have ψ(0) ∈ Ca(∂Ω)3 for a ∈ (0, 1). □

We present ”jump relations” for the single layer potential.

Theorem 4.3 Recall the parameter δ(Ω) from Lemma 3.2. Let ψ ∈ C0(∂Ω)3 and put
U := V (ψ)|R3\∂Ω, Π := Q(ψ), where V (ψ) and Q(ψ) were introduced in Lemma 4.2.
Then

3∑
k=1

n
(Ω)
k (x) (∂jUk + ∂kUj − δjk Π)

(
x± ϵ n(Ω)(x)

)
→ (1/2)

(
∓ψ + T∗(ψ)

)
j
(x) (4.19)

for ϵ→ 0, ϵ ∈
(
0, δ(Ω)

]
, uniformly with respect to x ∈ ∂Ω, 1 ≤ j ≤ 3.

Proof: The relation in (4.19) holds according to [9, Lemma 4.8]. Note that the definition
of T∗(ψ) in [9] (see [9, Definition 4.2 and 5.1]) coincides with ours in Lemma 4.6. This
follows from (4.5). □

The first part of the ensuing theorem states a jump relation for the double layer potential
W (ϕ) because the continuous extension ofW (ϕ)|Ωc

to Ωc and the corresponding extension
of W (ϕ)|Ω to Ω do not coincide if ϕ ̸= 0.

Theorem 4.4 Let ϕ ∈ C0(∂Ω)3. Recall that W (ϕ) ∈ C∞(R3\∂Ω)3 (Lemma 4.4). Then
the function W (ϕ)|Ωc

admits a continuous extension to Ωc, denoted by Wex(ϕ) and given
by Wex(ϕ)|∂Ω = (−1/2)

(
ϕ+ T(ϕ)

)
. Similarly the function W (ϕ)|Ω admits a continuous

extension to Ω, denoted by Win(ϕ) and given by Win(ϕ)|∂Ω = (−1/2)
(
−ϕ+ T(ϕ)

)
.

Let p ∈ (3,∞), ϕ ∈ Lp(∂Ω)3 such that ±ϕ+T(ϕ) ∈ W 2−1/p, p(∂Ω)3 (hence ϕ ∈ C1,a(∂Ω)3

for some a ∈ (0, 1), and ϕ ∈ W 2−1/p, p(∂Ω)3; see Theorem 4.1). Take R ∈ (0,∞) with
Ω ⊂ BR. Then W (ϕ)|U ∈ W 2,p(U)3, Π(ϕ)|U ∈ W 1,p(U) for U ∈ {Ω, ΩR}, Win(ϕ) ∈
C1(Ω)3 and Wex(ϕ) ∈ C1(Ωc)3. The functions Π(ϕ)|Ω and Π(ϕ)|Ωc

may be continuously
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extended to Ω and Ωc, respectively. These extensions are denoted by Πin(ϕ) and Πex(ϕ),
respectively.

Proof: For the first part of Theorem 4.4 we refer to [9, Theorem 4.1].

Suppose that p > 3 and ϕ satisfies the conditions stated in the second part of the theorem.
Then [9, Lemma 7.15] yields that Π(ϕ)|U ∈ W 1,p(U)3 for U ∈ {Ω, ΩR}. Since p > 3, we
may refer to a Sobolev inequality, obtaining that Π(ϕ)|U may be continuously extended
to U. Since Π(ϕ)|Ωc ∈ C∞(Ω

c
) (Lemma 4.4), this means in particular that Π(ϕ)|Ωc

may be continuously extended to Ωc. By the first part of Theorem 4.4 and because of
the assumptions on ϕ in the second, we have Win(ϕ)|∂Ω, Wex(ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 ∩
C0(∂Ω)3. On the other hand, since W (ϕ)|Ωc ∈ C∞(Ω

c
)3 and Ω ⊂ BR, it is obvious that

W (ϕ)|∂BR ∈ W 2−1/p, p(∂BR)
3. But Wex(ϕ)|Ω

c
= W (ϕ)|Ωc

by the definition of Wex(ϕ) in
the theorem, soWex(ϕ)|∂ΩR ∈ W 2−1/p, p(∂ΩR)

3∩C0(∂ΩR)
3. Recall that ∆W (ϕ) = ∇Π(ϕ)

(Lemma 4.4) and Π(ϕ)|U ∈ W 1,p(U) for U ∈ {Ω, ΩR} (see above). Further note that
Win(ϕ)|Ω = W (ϕ)|Ω by the definition of Win(ϕ) in the theorem.

Altogether we see that Lemma 2.7 may be applied; it yields that W (ϕ)|U ∈ W 2,p(U)3 for
U ∈ {Ω, ΩR}. Due to the assumption p > 3 and a Sobolev inequality, it follows that the
function W (ϕ)|U may be extended to a C1-function in U, for U as before, so Win(ϕ) ∈
C1(Ω)3 and Wex(ϕ)|ΩR ∈ C1(ΩR)

3. Again using that Wex(ϕ)|Ω
c
= W (ϕ)|Ωc ∈ C∞(Ω

c
)3,

we obtain that Wex(ϕ) ∈ C1(Ωc)3. □

The next theorem states that for a function ϕ with suitable regularity, the traction bound-
ary data of the double layer potential in Ω coincides with the corresponding data of this
potential in Ω

c
.

Theorem 4.5 Recall the parameter δ(Ω) introduced in Lemma 3.2. Let a ∈ (0, 1), ϕ ∈
C1,a(∂Ω)3, x ∈ ∂Ω, j ∈ {1, 2, 3}. Define the function F : [−δ(Ω), δ(Ω)]\{0} 7→ C by

F (δ) :=
3∑

k=1

n
(Ω)
k (x)

(
∂jW (ϕ)k + ∂kW (ϕ)j − δjk Π(ϕ)

)(
x+ δ n(Ω)(x)

)
for δ ∈ [−δ(Ω), δ(Ω)]\{0}. Then the limits limδ↓0 F (δ) and limδ↓0 F (δ) exist and coincide.

This result is frequently used in analysis and numerics (boundary element method) of
incompressible flows; see [25, Proposition 3.31] for example. A proof is due to Faxén [10,
§ 11], but this proof is rather long (10 pages) and in parts somewhat vague. An analogous
result for the Laplace double layer potential is shown in a precise way by Hackbusch [15,
Section 8.5.2]. More general elliptic equations (but not systems) are treated by Miranda
[20, Theorem II.15.V]. Kupradze [18, §VI.9, Theorem 10] shows a somewhat weaker result
for the double layer potential associated with the Lamé system. In this situation a proof
of Theorem 4.5 should be of interest. In the Appendix we give a such a proof. Although
still rather long, is much shorter and more precise than Faxen’s. In addition the estimates
in Lemma 3.2 allow us to avoid the use of local coordinates.

The next lemma indicates how for a given function b ∈ C0(∂Ω)3, a function ψ ∈ C0(∂Ω)
may be chosen so that the Dirichlet boundary data of V (b)|Ω and W (ψ)|Ω coincide. The
same question is answered for the boundary values of V (b)|Ωc

and W (ψ)|Ωc
.
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Lemma 4.9 Let ϕ, b ∈ C0(∂Ω)3 with (1/2)
(
∓ϕ + T∗(ϕ)

)
= b. Then V (ϕ) ∈ Cκ(R3)3

for κ ∈ [0, 1) and

(1/2)
[
∓V (ϕ)|∂Ω + T

(
V (ϕ)|∂Ω

) ]
= V (b)|∂Ω.

Note that the term (1/2)
[
−V (ϕ)|∂Ω+T

(
V (ϕ)|∂Ω

) ]
coincides with the Dirichlet bound-

ary data of −W
(
V (ϕ)|∂Ω

)
|Ω, and the function (1/2)

[
V (ϕ)|∂Ω + T

(
V (ϕ)|∂Ω

) ]
with

those of −W
(
V (ϕ)|∂Ω

)
|Ωc

(Theorem 4.4).

Proof: We consider the case (1/2)
(
−ϕ + T∗(ϕ)

)
= b. If (1/2)

(
ϕ + T∗(ϕ)

)
= b, an

analogous reasoning is valid.

The relation V (λ)(ϕ)|∂Ω ∈ Cκ(∂Ω)3 for κ ∈ [0, 1) holds according to Lemma 4.2.

Recall the parameter δ(Ω) > 0, as well as the set U−δ for δ ∈
(
0, δ(Ω)

]
from Lemma

3.2. Put V (−δ) := V (−δ)(ϕ), Q(−δ) := Q(−δ)(ϕ). These functions were introduced in
Lemma 4.3. Note that the set U−δ ⊂ R3 is open and Ωc ⊂ U−δ (Lemma 3.2), V (−δ) ∈
C∞(U−δ)

3, Q(−δ) ∈ C∞(U−δ), and and the pair (V (−δ), Q(−δ)) satisfies (1.1) in U−δ with
f = 0, for δ ∈

(
0, δ(Ω)

]
(Lemma 4.3).

Take l ∈ {1, 2, 3}, x ∈ Ω
c
and δ ∈

(
0, δ(Ω)

]
. Let R ∈ (0,∞) such that {x} ∪ Ω ⊂ BR/2.

We write n(ΩR) for the outward unit normal to ΩR, that is, n(ΩR)(z) = −n(Ω)(z) for
z ∈ ∂Ω, nΩR(z) = R−1 z for z ∈ ∂BR. Then it follows by a standard representation
formula for solutions to (1.1) (see [9, (3.6)] for example) that

V
(−δ)
l (x) =

∫
∂ΩR

3∑
j,k=1

(
Ejl(x− z) (∂kV

(−δ)
j + ∂jṼ

(−δ)
k − δjkQ

(−δ))(z) (4.20)

−Sjkl(x− z)V
(−δ)
j (z)

)
n
(ΩR)
k (z) doz

for 1 ≤ l ≤ 3, x ∈ ΩR. Note that V
(−δ) is continuous, so the restriction ”a. e.” on x ∈ ΩR

in [9, (3.6)] may be dropped.

Since {x}∪Ω ⊂ BR/2, and because y− δ n(Ω)(y) ∈ Ω for y ∈ ∂Ω (Lemma 3.2), we find for
z ∈ ∂BR, y ∈ ∂Ω that |z −

(
y− δ n(Ω)(y)

)
| ≥ R/2 and |x− z| ≥ R/2. As a consequence,

with (4.4), for z ∈ ∂BR, α ∈ N3
0 with |α| ≤ 1, 1 ≤ j, l, k ≤ 3,

|∂αV (−δ)(z)| ≤ CR−1−|α|, |Q(−δ)(z)| ≤ CR−2, |∂αz
(
Ejl(x− z)

)
| ≤ CR−1−|α|,

|(∂lN)(x− z)|+ |Sjkl(x− z)| ≤ CR−2.

Thus, by letting R tend to infinity in (4.20), the integral over ∂BR implicitly present in
that equation tends to zero. Hence the integral over ∂ΩR becomes an integral over ∂Ω,
with n(ΩR) replaced by −n(Ω). Next we use (4.8), (4.11), (4.12) in order to let δ tend to
zero. In this way we get that

V (ϕ)l(x) =

∫
∂Ω

( 3∑
j=1

−Ejl(x− z) (1/2)
(
−ϕ+ T∗(ϕ)

)
j
(z) (4.21)

+
3∑

j,k=1

Sjkl(x− z)V (ϕ)j(z)n
(Ω)
k (z)

)
doz.
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We recall that (1/2)
(
−ϕ + T∗(ϕ)

)
= b. Abbreviate w := V (ϕ)|∂Ω, and note that w ∈

C0(∂Ω)3; see at the beginning of this proof. We may then rewrite (4.21) as

V (ϕ)l(x) = −V (b)l(x)−W (w)l(x), (4.22)

with W (w) defined in Lemma 4.4. This is true for any x ∈ Ω
c
. Since w ∈ C0(∂Ω)3,

Theorem 4.4 yields that the function W (w) may be extended continuously to Ωc. This
extension was denoted by Wex(w); see Theorem 4.4. By that theorem, we know that
Wex(w)(z) = (−1/2)

(
w + T(w)

)
(z) for z ∈ ∂Ω. Take x0 ∈ ∂Ω. Thus we may conclude

that W (w)(x) → (−1/2)
(
w + T(w)

)
(x0) for x → x0, x ∈ Ω

c
. On the other hand, since

b, ϕ ∈ C0(∂Ω)3, we know from Lemma 4.2 that V (b), V (ϕ) ∈ C0(R3)3. Thus, by letting x
tend to x0 in Ω

c
, we get from (4.22) that V (ϕ)l(x0) = −V (b)l(x0)+(1/2)

(
w+T(w)

)
l
(x0).

But V (ϕ)(x0) = w(x0) by the definition of w, so we finally arrive at the equation 0 =
−V (b)l(x0) + (1/2)

(
−w + T(w)

)
l
(x0). □

5 W 2−1/p, p-regularity of V (ϕ)|∂Ω.

In this section, we address the key element of our theory, that is, the fact that V (ϕ)|∂Ω ∈
W 2−1/p, p(∂Ω)3 if ϕ ∈ W 1−1/p, p(∂Ω)3. The proof of this relation constitutes the main
difficulty we have to put up with, and is split into the proofs of the next two theorems.
The result in the first – Theorem 5.1 – amounts to an W 1,p-estimate of V (ϕ)|∂Ω against
the Lp-norm of ϕ. (The function V (ϕ) was introduced in Lemma 4.2.)

Theorem 5.1 Fix numbers k(Ω) ∈ N, α(Ω) ∈ (0,∞), sets ∆κ, Ut,κ, Λt,κ and functions
at, γt for κ ∈ (0, 1], 1 ≤ t ≤ k(Ω) as specified in Lemma 3.1.

Let t ∈ {1, ..., k(Ω)}. For f : ∆1 7→ C3, define Zt(f) : ∂Ω 7→ C3 as the zero extension of
f ◦ (γt)−1 : Λt,1 7→ C3 to ∂Ω. Fix a function Ψt ∈ C∞

0 (Ut, 3/4) with Ψt|Ut, 1/2 = 1.

Let p ∈ (1,∞). Then, for f ∈ Lp(∆1)
3 , the function Ψt Zt(f) belongs to Lp(∂Ω)3, the

function V
(
Ψt Zt(f)

)
◦ γt is in W 1,p(∆t)

3, and

∥V
(
Ψt Zt(f)

)
◦ γt∥1,p ≤ C ∥f∥p. (5.1)

Proof: Recall that at ∈ C2(∆1), |∇at|∞ < 1/4, and there is an orthonormal matrix
Dt ∈ R3×3 and a vector Ct ∈ R3 with γt(η) = Dt ·

(
η, at(η)

)
+Ct for η ∈ ∆t; see Lemma

3.1. We have Ψt ∈ C∞
0 (Ut, 3/4) by the choice of Ψt in the theorem, so Ψt ◦ γt ∈ C2

0(∆3/4)
by the definition of Ut, 3/4 and γt in Lemma 3.1. In addition we will use the function Jt
(surface element) introduced in Lemma 3.1, as well as the parameter δ(Ω), which was
fixed in Lemma 3.2. Let σ0 ∈ (0,∞) be so small that B2

σ0
(ϱ) ⊂ ∆1 for ϱ ∈ ∆3/4. We

introduce some additional notation. For ϱ, η ∈ ∆1, η̃ ∈ R2, δ ∈
[
0, δ(Ω)

]
, put

Γ(ϱ, η, δ) := Γt(ϱ, η, δ) := γt(ϱ)− γt(η)− δ (n(Ω) ◦ γt)(η),

Γ(ϱ, η, δ) := Γt(ϱ, η, δ) := γt(ϱ)− δ (n(Ω) ◦ γt)(ϱ)− γt(η),

Γ̃(ϱ, η̃) := Γ̃t(ϱ, η̃) := Dt ·
(
ϱ− η̃, ∇at(ϱ) · (ϱ− η̃)

)
,

E := (Ψt ◦ γt) Jt.
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Let f ∈ C1(∆1)
3 ∩ Lp(∆1)

3, j ∈ {1, 2, 3} and ν ∈ {1, 2}. Since Ψt ◦ γt ∈ C2
0(∆3/4), we

have E ∈ C1
0(∆3/4)

3, so E f ∈ C1
0(∆3/4)

3. In particular E f considered as a function with

domain R2 belongs to Cκ(R2)3 for any κ ∈ [0, 1), and to Lp(R2)3, and we may define

F (f)(ϱ, η) := E(η) f(η)− E(ϱ) f(ϱ) for ϱ, η ∈ R2.

In addition (γt)
−1 : Λt,1 7→ ∆1 is continuous (Lemma 3.1), so Ψt Zt(f) ∈ C0(∂Ω)3 and

supp
(
Ψt Zt(f)

)
⊂ Λt, 3/4. Note that

(
Ψt Zt(f)

)
◦γt = (Ψt◦γt) f, so due to equation (3.2),

∥ΨtZt(f)∥p = ∥|(Ψt ◦ γt) f |p Jt∥1 ≤ C ∥f∥p, (5.2)

with C independent of f . We consider the function V (δ)
(
ΨtZt(f)

)
introduced in Lemma

4.3. According to that reference, this function is C∞ in an open set Uδ containing Ω as a
subset, and

∂lV
(δ)
(
ΨtZt(f)

)
j
(x) =

∫
∂Ω

3∑
k=1

(∂lEjk)(x− [y + δ n(Ω)(y)])
(
ΨtZt(f)

)
k
(y) doy (5.3)

for δ ∈
(
0, δ(Ω)

]
, x ∈ Uδ, 1 ≤ l ≤ 3, with (Ejk)1≤j,k≤3 introduced in (4.1). Thus

V (δ)
(
Ψt Zt(f)

)
j
◦ γt is a C1-function, and we get with (3.2) and (5.3) that

∂ν
[
V (δ)

(
ΨtZt(f)

)
j
◦ γt

]
(ϱ)

=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

)
fk(η)E(η) dη =

4∑
µ=1

F (µ)(ϱ, δ),

for ϱ ∈ ∆1, δ ∈
(
0, δ(Ω)

]
, with

F (1)(ϱ, δ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, δ)

)
− (∂lEjk)

(
Γ(ϱ, η, δ)

))
fk(η)E(η) dη,

F (2)(ϱ, δ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

)
F(f)(ϱ, η)k dη,

F (3)(ϱ, δ) :=
3∑

k,l=1

fk(ϱ) Jt(ϱ)

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

)
(
∂νγt(ϱ)l (Ψt ◦ γt)(ϱ)− ∂νγt(η)l (Ψt ◦ γt)(η)

)
dη,

F (4)(ϱ, δ) :=
3∑

k=1

fk(ϱ) Jt(ϱ)

∫
∆1

Ejk

(
Γ(ϱ, η, δ)

)
∂ν(Ψt ◦ γt)(η)

)
dη.

The form chosen for the definition of F (4)(ϱ, δ) arises after a partial integration with
respect to η ∈ ∆1, which is possible due to (3.6). Let ζ ∈ C∞

0 (∆1). Since Ψt Zt(f) ∈
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C0(∂Ω)3, as mentioned above, we may deduce from the uniform convergence in (4.11)
that∫

∆1

∂νζ(ϱ)
[
V (δ)

(
ΨtZt(f)

)
j
◦ γt

]
(ϱ) dϱ→

∫
∆1

∂νζ(ϱ)
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) dϱ

for δ ↓ 0. Also because Ψt Zt(f) ∈ C0(∂Ω)3, we may refer to (4.13) and (3.2) to obtain
that the integral

∫
∆1
ζ(ϱ)F (1)(ϱ, δ) dϱ tends to zero for δ ↓ 0. As explained above, E f ∈

C1
0(∆3/4)

3, so

|F(f)(ϱ, η)| ≤ C |ϱ− η| for ϱ, η ∈ ∆1. (5.4)

Here and until further notice, constants C are independent of ϱ, η ∈ ∆1 and (not relevant
in the case of (5.4)) δ ∈ [0, δ(Ω)]. By (4.4) and (3.4), we have |(∂lEjk)

(
Γ(ϱ, η, δ)

)
| ≤

C |ϱ− η|−2, hence

|(∂lEjk)
(
Γ(ϱ, η, δ)

)
F(f)(ϱ, η)k| ≤ C |ϱ− η|−1 (5.5)

for ϱ, η ∈ ∆1 with ϱ ̸= η, 1 ≤ k, l ≤ 3, δ ∈
[
0, δ(Ω)

]
.We thus see by Lebesgue’s theorem

that also for δ = 0, a function F (2)( · , δ) : ∆1 7→ R may be defined in the same way as in
the case δ ̸= 0. It further follows that F (2)( · , δ) is integrable for δ ∈ [0, δ(Ω)] and∫

∆1

ζ(ϱ)F (2)(ϱ, δ) dϱ→
∫
∆1

ζ(ϱ)F (2)(ϱ, 0) dϱ (δ ↓ 0).

Since γt belongs to C2(∆1)
3 and has bounded derivatives, and because of (3.4) and the

relation Ψt ◦ γt ∈ C2
0(∆3/4), we have

|(∂lEjk)
(
Γ(ϱ, η, δ)

) (
∂νγt(ϱ)l (Ψt ◦ γt)(ϱ)− ∂νγt(η)l (Ψt ◦ γt)(η)

)
| ≤ C |ϱ− η|−1, (5.6)

|Ejk

(
Γ(ϱ, η, δ)

)
∂ν(Ψt ◦ γt)(ϱ)| ≤ C |ϱ− η|−1

for ϱ, η ∈ ∆1 with ϱ ̸= η, 1 ≤ k, l ≤ 3, δ ∈
[
0, δ(Ω)

]
. As a consequence, as in the case of

F (2)( · , δ), the function F (µ)( · , δ) : ∆1 7→ R for µ ∈ {3, 4} may be defined as above also
for δ = 0. In addition the function F (µ)( · , δ) is integrable for any δ ∈ [0, δ(Ω)], and∫

∆1

ζ(ϱ)F (µ)(ϱ, δ) dϱ→
∫
∆1

ζ(ϱ)F (µ)(ϱ, 0) dϱ (δ ↓ 0).

Altogether we may conclude that the weak derivative ∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
exists and

∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) =

4∑
µ=2

F (µ)(ϱ, 0) for ϱ ∈ ∆1. (5.7)

We are going to transform F (2)( · , 0). Recall the term Γ̃(ϱ, η) introduced at the beginning
of this proof. We have

|Γ(ϱ, η, 0)− Γ̃(ϱ, η)| = |at(ϱ)− at(η)−∇at(ϱ) · (ϱ− η)| ≤ C|ϱ− η|2,
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and |Γ̃(ϱ, η) + ϑ
(
Γ(ϱ, η, 0)− Γ̃(ϱ, η)

)
| ≥ |ϱ− η| for ϑ ∈ [0, 1], ϱ, η ∈ ∆1, so with (4.4),

|(∂lEjk)
(
Γ(ϱ, η, 0)

)
− (∂lEjk)

(
Γ̃(ϱ, η)

)
| ≤ C |ϱ− η|−1 (5.8)

for ϱ, η ∈ ∆1, ϱ ̸= η, and for 1 ≤ k, l ≤ 3. Since E f ∈ C1
0(∆3/4)

3, we may thus define

G(1)(ϱ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, 0)

)
− (∂lEjk)

(
Γ̃(ϱ, η)

))
fk(η)E(η) dη,

G(2)(ϱ) := −
3∑

k,l=1

∂νγt(ϱ)l fk(ϱ)E(ϱ)

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, 0)

)
− (∂lEjk)

(
Γ̃(ϱ, η)

))
dη

for ϱ ∈ ∆1. Inequality (5.5) holds with Γ(ϱ, η, δ) replaced by Γ̃(ϱ, η), so we may further
define

G(3)(ϱ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
B2

σ0
(ϱ)

(∂lEjk)
(
Γ̃(ϱ, η)

)
F(f)(ϱ, η)k dη (5.9)

for ϱ ∈ ∆1. Since

sup{|(∂lEjk)
(
Γ̃(ϱ, η)

)
| : ϱ, η ∈ ∆1, |ϱ− η| ≥ σ0, 1 ≤ k, l ≤ 3} <∞, (5.10)

we may set

G(4)(ϱ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1\B2

σ0
(ϱ)

(∂lEjk)
(
Γ̃(ϱ, η)

)
fk(η)E(η) dη,

G(5)(ϱ) := −
3∑

k,l=1

∂νγt(ϱ)l fk(ϱ)E(ϱ)

∫
∆1\B2

σ0
(ϱ)

(∂lEjk)
(
Γ̃(ϱ, η)

)
dη

for ϱ ∈ ∆1. Then

F (2)(ϱ, 0) =
5∑

µ=1

G(µ)(ϱ) for ϱ ∈ ∆1. (5.11)

Concerning this equation, note that the domain of integration B2
σ0
(ϱ) in the definition of

G(3)(ϱ) may be replaced by ∆1 ∩B2
σ0
(ϱ), because Et f ∈ C1

0(∆3/4)
3 and due to the choice

of σ0 at the beginning of this proof. In view of (5.7) and (5.11), let us estimate the terms
G(µ)(ϱ) for µ ∈ {1, ..., 5}, as well as F (3)(ϱ, 0) and F (4)(ϱ, 0). The function G(3) is by far
the most difficult to handle since it hides a singular integral. Following [4, (2.1)] (where
the term (ϱ − η)s1 (ϱ − η)2 ν−s

2 is lacking), we write G(3) as a series. To this end we recall
that |∇at(ϱ)| ≤ 1/4 (ϱ ∈ ∆1) by the specifications on at in Lemma 3.1. As a consequence
|∇at(ϱ) · (ϱ− η)|/|ϱ− η| ≤ 1/4 < 1/2 for ϱ, η ∈ ∆1 with ϱ ̸= η. (The upper bound 1/2 is
sufficient here.) Hence for τ ∈ N, ϱ, η ∈ ∆1 with ϱ ̸= η,

|Γ̃(ϱ, η)|−τ = |ϱ− η|−τ
(
1 +

(
∇at(ϱ) · (ϱ− η)

)2
/|ϱ− η|2

)−τ/2

(5.12)

=
∞∑

m=0

(
−τ/2
m

) 2m∑
n=0

(
2m

n

)
∂1at(ϱ)

n ∂2at(ϱ)
2m−n (ϱ− η)n1 (ϱ− η)2m−n

2 |ϱ− η|−τ−2m.

23



On the other hand by the definition in (4.1)

(∂lEjk)(z) = (−δjk zl + δjl zk + δkl zj) |z|−3 − 3 zj zk zl |z|−5 (5.13)

for 1 ≤ k, l ≤ 3, z ∈ R3\{0}. We combine (5.12) and (5.13). To this end we put

A(ϱ) := Dt ·

 1 0

0 1

∂1at(ϱ) ∂2at(ϱ)

 for ϱ ∈ ∆1,

with Dt introduced in Lemma 3.1. Then Γ̃(ϱ, η) = A(ϱ) · (ϱ− η) (ϱ, η ∈ ∆t). Put

Z(ϱ)klr := −δjk A(ϱ)lr + δjl A(ϱ)kr + δkl A(ϱ)jr,

Z̃(ϱ)klα := −3A(ϱ)j α1 A(ϱ)k α2 A(ϱ)l α3(ϱ)

for k, l ∈ {1, 2, 3}, r ∈ {1, 2}, α ∈ {1, 2}3, ϱ ∈ ∆t. Then we get from (5.13) that

(∂lEjk)
(
Γ̃(ϱ, η)

)
(5.14)

=
2∑

r=1

Z(ϱ)klr (ϱ− η)r |Γ̃(ϱ, η)|−3 +
∑

α∈{1, 2}3
Z̃(ϱ)klα

3∏
s=1

(ϱ− η)αs |Γ̃(ϱ, η)|−5

for k, l, ϱ as before, and for η ∈ R2 with ϱ ̸= η. Further put

B(m,n, r, κ) := κr κ
n
1 κ

2m−n
2 |κ|−3−2m, B̃(m,n, α, κ) :=

3∏
s=1

καs κ
n
1 κ

2m−n
2 |κ|−5−2m

for r, α as above, m ∈ N, n ∈ {0, ..., 2m}, κ ∈ R2\{0},

W(m,n, ϱ) :=

(
−3/2

m

)(
2m

n

)
∂1at(ϱ)

n ∂2at(ϱ)
2m−n,

W̃(m,n, ϱ) :=

(
−5/2

m

)(
2m

n

)
∂1at(ϱ)

n ∂2at(ϱ)
2m−n,

for m, n as before and ϱ ∈ ∆t. Then by (5.9), (5.12) and (5.14), it follows that G(3)(ϱ) =
G(3,1)(ϱ) +G(3,2)(ϱ), with

G(3,1)(ϱ) (5.15)

=
3∑

k,l=1

2∑
r=1

∂νγt(ϱ)l Z(ϱ)klr

∫
B2

σ0
(ϱ)

∞∑
m=0

2m∑
n=0

W(m,n, ϱ)B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη,

G(3,2)(ϱ)

=
3∑

k,l=1

∑
α∈{1, 2}3

∂νγt(ϱ)lZ̃(ϱ)klα

∫
B2

σ0
(ϱ)

∞∑
m=0

2m∑
n=0

W̃(m,n, ϱ) B̃(m,n, α, ϱ− η)F(f)(ϱ, η)k dη
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for ϱ ∈ ∆1. Since |∇at(ϱ)| ≤ 1/4, we obtain with (5.4) that

∣∣∣ 2m∑
n=0

W(m,n, ϱ)B(m,n, r, ϱ− η)F(f)(ϱ, η)k

∣∣∣ (5.16)

≤
∣∣∣(−3/2

m

)∣∣∣ (1/4)2m 2m∑
n=0

(
2m

n

)
|ϱ− η|−2 |F(f)(ϱ, η)k| ≤ C

∣∣∣(−3/2

m

)∣∣∣ (1/2)2m |ϱ− η|−1

for m ∈ N, 1 ≤ k ≤ 3, 1 ≤ r ≤ 2, ϱ, η ∈ ∆1 with ϱ ̸= η, where C is independent not only
of ϱ and η, but also of m. We thus see that the integral in the definition of G(3,1)(ϱ) may
be moved inside the sum with respect to m ∈ N. In this way we arrive at the integral∫
B2

σ0
(ϱ)

B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη for m, k, r as before and for 0 ≤ n ≤ 2m, ϱ ∈ ∆1.

Since |B(m,n, r, ϱ − η)F(f)(ϱ, η)k| ≤ C |ϱ − η|−1 for m, k, r, ϱ, η as in (5.16) and for
0 ≤ n ≤ 2m, as again follows from (5.4), we obtain∫

B2
σ0(ϱ)

\B2
σ(ϱ)

B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη (5.17)

→
∫
B2

σ0
(ϱ)

B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη (σ ↓ 0), uniformly in ϱ ∈ ∆1.

But
∫
B2

σ0
(ϱ)\B2

σ(ϱ)
B(m,n, r, ϱ − η) dη = 0 for ϱ ∈ R2, σ ∈ (0, σ0), m, k, r, n as before,

so we see that the term F(f)(ϱ, η)k may be replaced by fk(η)E(η) in the integral on the
left-hand side of (5.17). Thus with (5.15) and (5.17), we finally arrive at the equation

G(3,1)(ϱ) =
3∑

k,l=1

2∑
r=1

∂νγt(ϱ)l Z(ϱ)klr (5.18)

∞∑
m=0

2m∑
n=0

W(m,n, ϱ) lim
σ↓0

∫
B2

σ0
(ϱ)\Bσ(ϱ)

B(m,n, r, ϱ− η) fk(η)E(η) dη,

for ϱ ∈ ∆1, with the limit of the integral over B2
σ0
\Bσ for σ ↓ 0 being uniform with respect

to such ϱ. An analogous reasoning yields that

G(3,2)(ϱ) =
3∑

k,l=1

∑
α∈{1, 2}3

∂νγt(ϱ)l Z̃(ϱ)klα (5.19)

∞∑
m=0

2m∑
n=0

W̃(m,n, ϱ) lim
σ↓0

∫
B2

σ0
(ϱ)\Bσ(ϱ)

B̃(m,n, α, ϱ− η) fk(η)E(η) dη

for ϱ as before, where the limit of the integral in this equation is again uniform with
respect to ϱ ∈ ∆1. We note that

∫
∂B2

1
|B(m,n, r, κ)| doκ ≤

∫
∂B2

1
|κ|−2 doκ = 2 π for m ∈

N, n ∈ {0, ..., 2m}, r ∈ {1, 2}, and
∑∞

m=0

∑2m
n=0 |W(m,n, ϱ)| ≤

∑∞
m=0

∣∣∣(−3/2
m

)∣∣∣ (1/2)2m
for ϱ ∈ ∆1; compare (5.16). As explained in the passage preceding (5.2), we have E f ∈
Lp(R2)3. At this point, due to the uniform convergence of the integral in (5.18), we may
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refer to Theorem 2.1 to deduce from (5.18) that ∥G(3,1)∥p ≤ C ∥E f∥p ≤ C ∥f∥p. Here and
in the rest of this proof, C stands for constants independent of f , and also of ϱ ∈ ∆1 if
such a variable ϱ is involved. In an analogous way as equation (5.18) leads to the previous
estimate of G(3,1), it may be deduced from equation (5.19) that ∥G(3,2)∥p ≤ C ∥f∥p, so we
finally obtain that ∥G(3)∥p ≤ C ∥f∥p.
All the other relevant functions may be estimated in a rather straightforward way. By
(5.6) we see that the absolute value of the integral in the definition of F (3)(m, 0) and
F (4)( · , 0) is bounded uniformly in ϱ ∈ ∆1. It follows that ∥F (µ)( · , 0)∥p ≤ C ∥f∥p for
µ ∈ {3, 4}. An analogous argument, based on (5.8) and (5.10), respectively, instead of
(5.6), yields that ∥G(µ)∥p ≤ C ∥f∥p for µ ∈ {2, 5}. As for G(4), we may use (5.10) to obtain

|G(4)(ϱ)| ≤ C

∫
∆1\Bσ0 (ϱ)

|f(η)| |E(η)| dη ≤ C ∥f∥1 ≤ C ∥f∥p.

for ϱ ∈ ∆1, so that ∥G(4)∥p ≤ C ∥f∥p. Concerning G(1), inequality (5.8) provides that
|G(1)(ϱ)| ≤ C

∫
∆1

|ϱ−η|−1 |f(η)| |E(η)| dη for ϱ ∈ ∆1, so that ∥G(1)∥p ≤ C ∥f∥p by Lemma
2.1.

At this point it follows from the representations in (5.7), (5.11) and the previous estimates
of the terms ∥F (3)( · , 0)∥p, ∥F (4)( · , 0)∥p and ∥G(µ)∥p for µ ∈ {1, ..., 5} that

∥∂ν
[
V
(
ΨZt(f)

)
j
◦ γt

]
∥p ≤ C ∥f∥p for f ∈ Lp(∆1)

3 ∩ C1(∆1)
3, j ∈ {1, 2, 3} (5.20)

and ν ∈ {1, 2}. Take f ∈ Lp(∆1)
3. Obviously inequality (5.2) remains valid for such

f , so Lemma 2.2 implies that ∥V
(
ΨZt(f)

)
∥p ≤ C ∥ΨZt(f)∥p ≤ C ∥f∥p, hence by (3.2),

∥V
(
ΨZt(f)

)
◦γt∥p ≤ ∥V

(
ΨZt(f)

)
|Λt,1∥p ≤ ∥V

(
ΨZt(f)

)
∥p ≤ C ∥f∥p. The theorem fol-

lows from this estimate, inequality(5.20) and the density of Lp(∆1)
3∩C1(∆1)

3 in Lp(∆1)
3.

□

The next theorem states that the W 2−1/p, p-norm of V (ϕ)|∂Ω is bounded by the W 1−1/p, p-
norm of ϕ. This is the key result of our theory. Its proof is based on the preceding
theorem.

Theorem 5.2 Let p ∈ (1,∞). Then V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 and ∥V (ϕ)|∂Ω∥2−1/p, p ≤
C ∥ϕ∥1−1/p, p for ϕ ∈ W 1−1/p, p(∂Ω)3.

Proof: The notation introduced either in Theorem 5.1 itself or at the beginning of the
proof of that theorem, up to inequality (5.2), will be used here again, without further
notice.

Let t ∈ {1, ..., k(Ω)}, j ∈ {1, 2, 3}, f ∈ Lp(∆1)
3 ∩ C1(∆1)

3 and ν ∈ {1, 2}. Recall that
ΨtZt(f) ∈ C0(∂Ω).

Let δ ∈
(
0, δ(Ω)

]
. Consider the function V (δ)

(
ΨtZt(f)

)
introduced in Lemma 4.3. As

stated in that lemma, this function is C∞ in an open set Uδ containing Ω as a subset;
see (5.3) as concerns its first order derivatives. As in the proof of Theorem 5.1, we split
∂ν
[
V (δ)

(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) into a sum of several terms, but in a way different from

that in the previous proof. In fact, by (3.2) and because supp
(
Ψt Zt(f)

)
⊂ Ut, 3/4 and
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(
ΨtZt(f)

)
◦ γt = (Ψt ◦ γt) f , we get for ϱ ∈ ∆1 that

∂ν
[
V (δ)

(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) (5.21)

=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

) ]
fk(η)E(η) dη =

4∑
µ=1

H(µ)(ϱ, δ),

with

H(1)(ϱ, δ) :=
3∑

k,l=1

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

) (
∂νγt(ϱ)− ∂νγt(η)

)
l
fk(η)E(η) dη,

H(2)(ϱ, δ) :=
3∑

k,l=1

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, δ)

)
− (∂lEjk)

(
Γ(ϱ, η, δ)

))
∂νγt(η)l fk(η)E(η) dη,

H(3)(ϱ, δ) :=
3∑

k=1

∫
∆1

Ejk

(
Γ(ϱ, η, δ)

)
fk(η) ∂νE(η) dη,

H(4)(ϱ, δ) :=
3∑

k=1

∫
∆1

Ejk

(
Γ(ϱ, η, δ)

)
∂νfk(η)E(η) dη.

The last two functions arise due to a partial integration with respect to η ∈ ∆1, which
is possible due to (3.6) and because E ∈ C1

0(∆1). Let ζ ∈ C∞
0 (∆1). We deduce from

the relation Ψt Zt(f) ∈ C0(∂Ω)3 (see further above) and from the uniform convergence in
(4.11) that∫

∆1

∂νζ(ϱ)
(
V (δ)

(
Ψt Zt(f)

)
j
◦ γt

)
(ϱ) dϱ→

∫
∆1

∂νζ(ϱ)
(
V
(
Ψt Zt(f)

)
j
◦ γt

)
(ϱ) dϱ

for δ ↓ 0. From (4.13), (3.2) and the relation E ∈ C1
0(∆1) we get that the integral∫

∆1
ζ(ϱ)H(2)(ϱ, δ) dϱ tends to zero for δ ↓ 0. The function γt belongs to C

2(∆1) (Lemma

3.1), so with (4.4) and (3.4),

|∂αϱ
[
(∂lEjk)

(
Γ(ϱ, η, δ)

) (
∂νγt(ϱ)− ∂νγt(η)

)
l

]
| ≤ C |ϱ− η|−1−|α| (5.22)

for 1 ≤ k, l ≤ 3, ϱ, η ∈ ∆1 with ϱ ̸= η, δ ∈
[
0, δ(Ω)

]
, α ∈ N2

0 with |α| ≤ 1. Here
and in inequality (5.23) below, C is independent of ϱ and η. Since E ∈ C1

0(∆1), we have
E f ∈ C1

0(∆1)
3, in particular |E f |∞ < ∞, so we may conclude from (5.22) with α = 0

and from Lebesgue’s theorem that the function H(1)( · , δ) : ∆1 7→ C is well defined and
integrable also for δ = 0, and

∫
∆1
ζ(ϱ)H(1)(ϱ, δ) dϱ →

∫
∆1
ζ(ϱ)H(1)(ϱ, 0) dϱ for δ ↓ 0. We

further deduce from (4.4) and (3.4) that

|∂αϱ
[
Ejk

(
Γ(ϱ, η, δ)

) ]
| ≤ C |ϱ− η|−1−|α| for k, ϱ, η, δ, α as in (5.22). (5.23)

Taking into account that E ∂νf and ∂νE f belong to C0
0(∆3/4)

3, we see that due to (5.23)

with α = 0, the function H(µ)( · , δ) for µ ∈ {3, 4} is well defined and integrable also if
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δ = 0, and
∫
∆1
ζ(ϱ)H(µ)(ϱ, δ) dϱ →

∫
∆1
ζ(ϱ)H(µ)(ϱ, 0) dϱ (δ ↓ 0) for such µ. At this point

we may deduce from (5.21) that the weak derivative ∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
exists – a

fact already known from Theorem 5.1 – and

∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) =

∑
µ∈{1, 3, 4}

H(µ)(ϱ, 0) for ϱ ∈ ∆1. (5.24)

Now consider f ∈ Lp(∆1)
3. In the following, the constants C are independent of f . Re-

calling that ∂αE ∈ C0
0(∆3/4) for α ∈ N2

0 with |α| ≤ 1, we observe that ∂αE f ∈ Lp(∆1)
3

and ∥∂αE f∥p ≤ C ∥f∥p. It follows from (5.22), (5.23) with α = 0, δ = 0 and from Lemma
2.1 that if µ ∈ {1, 3}, the function H(µ)( · , 0) is well defined also with f as given now,
that is, f ∈ Lp(∆1)

3, and the estimate ∥H(µ)( · , 0)∥p ≤ C ∥f∥p holds. We recall that
according to Theorem 5.1, the weak derivative ∂ν

[
V
(
Ψt Zt(f)

)
j
◦ γt

]
exists also in the

case f ∈ Lp(∆1)
3 considered presently, and inequality (5.1) is valid for this f . Define

H̃(4) := −H(1)( · , 0)−H(3)(f)( · , 0) + ∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
. (5.25)

In view of (5.1) and the estimate ∥H(µ)( · , 0)∥p ≤ C ∥f∥p for µ ∈ {1, 3} derived above, we

see that H̃(4) ∈ Lp(∆1)
3 and ∥H̃(4)∥p ≤ C ∥f∥p.

Next take f ∈ W 1,p(∆1)
3∩C2(∆1)

3. We have H̃(4) = H(4)( · , 0) by (5.24), andH(4)( · , 0) =
−V

(
Ψt Zt(∂νf)

)
j
◦γt by (3.2). At this point we may refer to Theorem 5.1 to obtain that

H̃(4) ∈ W 1,p(∆1) and ∥∂rH̃(4)∥p ≤ C ∥∂νf∥p for r ∈ {1, 2}.

Since we have now shown that ∥H̃(4)∥p ≤ C ∥f∥p for f ∈ Lp(∆1)
3 and H̃(4) ∈ W 1,p(∆1)

3,

∥H̃(4)∥1,p ≤ C ∥f∥1,p for f ∈ W 1,p(∆1)
3∩C2(∆1)

3, we may conclude that the two preceding
relations remain valid under the condition f ∈ W 1,p(∆1)

3 instead of f ∈ W 1,p(∆1)
3 ∩

C2(∆1)
3. Therefore interpolation implies that H̃(4) ∈ W 1−1/p, p(∆1)

3 and ∥H̃(4)∥1−1/p, p ≤
C ∥f∥1−1/p, p for f ∈ W 1−1/p, p(∆1)

3.

From (5.22), (5.23) and Theorem 2.2 we obtain that H(µ)( · , 0) for µ ∈ {1, 3} belongs to
W 1−1/p, p(∆1)

3 and ∥H(µ)( · , 0)∥1−1/p, p ≤ C ∥f∥p if f ∈ Lp(∆1)
3. At this point we may

refer to equation (5.25) to conclude that ∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
∈ W 1−1/p, p(∆1) and

∥∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
∥1−1/p, p ≤ C ∥f∥1−1/p, p for any f ∈ W 1−1/p, p(∆1)

3, ν ∈ {1, 2}. It
follows with Theorem 5.1 that for f ∈ W 1−1/p, p(∆1)

3,

V
(
ΨtZt(f)

)
j
◦ γt ∈ W 2−1/p, p(∆1), ∥V

(
Ψt Zt(f)

)
j
◦ γt∥2−1/p, p ≤ C ∥f∥1−1/p, p. (5.26)

Let ϕ ∈ W 1−1/p, p(∂Ω)3. In the rest of this proof, constants C are independent of ϕ.
We have ϕ ◦ γt ∈ W 1−1/p, p(∆t)

3 and Zt(ϕ ◦ γt)|Λt,1 = ϕ|Λt,1. Since supp(Ψt) ∩ ∂Ω ⊂
Λt, 3/4, we see that Ψt Zt(ϕ ◦ γt) = Ψt ϕ. Thus the relations in (5.26) hold with ϕ ◦ γt
in the place of f . Moreover we observe that dist(∂Ω\Λt, 1/2, Λt, 1/4) > 0 (Lemma 3.1),

supp
(
(1−Ψt)|∂Ω

)
⊂ ∂Ω\Λt, 1/2 and γt(ϱ) ∈ Λt, 1/4 for ϱ ∈ ∆1/4. If follows with Lebesgue’s

theorem that V
(
(1−Ψt)ϕ)j ◦ γt|∆1/4 ∈ C2(∆1/4) and

|∂α
[
V
(
(1−Ψt)ϕ

)
j
◦ γt

]
(ϱ)| =

∣∣∣∫
∂Ω

3∑
k=1

∂αϱ
[
Ejk

(
γt(ϱ)− y

) ]
(1−Ψt)(y)ϕk(y) doy

∣∣∣
≤ C ∥ϕ∥1 for ϱ ∈ ∆1/4, α ∈ N2

0 with |α| ≤ 2,
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with C being independent of ϕ and ϱ. Therefore ∥V
(
(1−Ψt)ϕ

)
j
◦γt|∆1/4∥2,p ≤ C ∥ϕ∥p, in

particular ∥V
(
(1−Ψt)ϕ

)
j
◦ γt|∆1/4∥2−1/p, p ≤ C ∥ϕ∥p. The preceding estimate and (5.26)

with f = ϕ◦γt yield that V (ϕ)j ◦γt|∆1/4 ∈ W 2−1/p, p(∆1/4) and ∥V (ϕ)j ◦γt|∆1/4∥2−1/p, p ≤
C (∥ϕ ◦ γt∥1−1/p, p + ∥ϕ∥p) ≤ C ∥ϕ∥1−1/p, p. Since j, t, ϕ were chosen arbitrarily in the sets
{1, 2, 3}, {1, ..., k} and W 1−1/p, p(∂Ω)3, respectively, the theorem follows with (3.1). □

The consequence of Theorem 5.2 we are interested in is stated as

Corollary 5.1 Let p ∈ (1,∞). For b ∈ W 1−1/p, p(∂Ω)3, ϕ ∈ E
(∓)
p with (1/2)

(
∓ϕ +

T∗(ϕ)
)
= b, the relations V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 and ∥V (ϕ)|∂Ω∥2−1/p, p ≤ C ∥b∥1−1/p, p

hold. (The space E
(∓)
p was introduced in Theorem 4.2.)

Note that in the situation of the preceding corollary, we have ϕ = F±(b); see Theorem
4.2. Thus it follows by Corollary 6.1 and Theorem 6.3 below that b is the traction
boundary data of the pair

(
V (ϕ)|Ωc

, Q(ϕ)|Ωc )
(exterior domain case; ϕ = F (−)(b)) and(

V (ϕ)|Ω, Q(ϕ)|Ω
)
(interior domain case; ϕ = F (+)(b)), respectively.

Proof of Corollary 5.1: Take b and ϕ as in the corollary, and suppose that (1/2)
(
ϕ+

T∗(ϕ)
)
= b. All the constants C appearing in the following are independent of b. Theorem

4.2 yields that
∫
∂Ω
ϕ(j) · b dox = 0 for 1 ≤ j ≤ 6. Since in addition b ∈ W 1−1/p, p(∂Ω)3, we

may conclude with Lemma 4.8 there is a sequence (bn) in C
0(∂Ω)3 with bn ∈ Ca(∂Ω)3 ∩

W 1−1/p, p(∂Ω)3,
∫
∂Ω
ϕ(j) ·bn dox for n ∈ N, a ∈ (0, 1), 1 ≤ j ≤ 6, and such that in addition

∥b− bn∥1−1/p, p → 0.

Let n ∈ N. It follows with Theorem 4.2 there is a unique function ϕn ∈ E
(+)
p with

(1/2)
(
ϕn +T∗(ϕn)

)
= bn for n ∈ N. Theorem 4.1 yields in particular that ϕn ∈ Ca(∂Ω)3

for a ∈ (0, 1). Now we may conclude from Lemma 4.9 that

(1/2)
[
V (ϕn)|∂Ω + T

(
V (ϕn)|∂Ω

) ]
= V (bn)|∂Ω. (5.27)

Since ∥bn − b∥p → 0, we know by (4.7) that∥V (bn)− V (b)|∂Ω∥p → 0. But

∥ϕn − ϕ∥p ≤ C ∥ϕn − ϕ+ T∗(ϕn − ϕ)∥p = C ∥bn − b∥p for n ∈ N (5.28)

according to Theorem 4.2, so ∥ϕn − ϕ∥p → 0, hence ∥V (ϕn − ϕ)|∂Ω∥p → 0 by (4.7). Now
it follows from the boundedness of Tp (Lemma 4.6) that

∥V (ϕn − ϕ)|∂Ω + T
(
V (ϕn − ϕ)|∂Ω

)
∥p → 0.

Altogether we deduce from (5.27) that (1/2)
[
V (ϕ)|∂Ω + T

(
V (ϕ)|∂Ω

) ]
= V (b)|∂Ω.

Since bn ∈ W 1−1/p, p(∂Ω)3, Theorem 5.2 yields that V (bn)|∂Ω ∈ W 2−1/p, p(∂Ω)3 (n ∈ N)
and

∥V (bn − bm)|∂Ω∥2−1/p, p ≤ C ∥bn − bm∥1−1/p, p, ∥V (bn)|∂Ω∥2−1/p, p ≤ C ∥bn∥1−1/p, p, (5.29)

for m,n ∈ N. By Lemma 4.2 we further have V (bn)|∂Ω ∈ Ca(∂Ω)3 for 0 < a < 1, n ∈ N,
so it follows with (5.27) and Theorem 4.1 that the functions V (ϕn−ϕm)|∂Ω and V (ϕn)|∂Ω
belong to W 2−1/p, p(∂Ω)3 and

∥V (ϕn − ϕm)|∂Ω∥2−1/p, p ≤ C
(
∥V (bn − bm)|∂Ω∥2−1/p, p + ∥ϕn − ϕm∥p

)
,

∥V (ϕn)|∂Ω∥2−1/p, p ≤ C
(
∥V (bn)|∂Ω∥2−1/p, p + ∥ϕn∥p

)
(m,n ∈ N).
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Due to (5.29) and because of (5.28) and an analogous inequality for ∥ϕn∥p, we thus obtain
that

∥V (ϕn − ϕm)|∂Ω∥2−1/p, p ≤ C ∥bn − bm∥1−1/p, p, ∥V (ϕn)|∂Ω∥2−1/p, p ≤ C ∥bn∥1−1/p, p (5.30)

for m,n ∈ N. The first estimate in (5.30) implies there is γ ∈ W 2−1/p, p(∂Ω)3 such that
∥V (ϕn) − γ∥2−1/p, p → 0. Since ∥V (ϕn − ϕ)|∂Ω∥p → 0, as explained following (5.28), we
may conclude that V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 and ∥V (ϕn − ϕ)∥2−1/p, p → 0. In addition
∥bn − b∥1−1/p, p → 0 by the choice of the sequence (bn). At this point the second estimate
in (5.30) yields that ∥V (ϕ)|∂Ω∥2−1/p, p ≤ C ∥b∥1−1/p, p.

Analogous arguments are valid if (1/2)
(
−ϕ+T∗(ϕ)

)
= b if we note that the function ψ(0)

introduced in Theorem 4.2 belongs to Ca(∂Ω)3 for a ∈ (0, 1), as follows from Theorem
4.1. □

6 Existence and W 2,p-regularity of solutions to (1.1),

(1.2).

To begin with, here is an overview of some key notation used in this section and the
following one. The functions ϕ(1), ..., ϕ(6), the operators F (+) and F (−) and the function
ψ(0) were introduced in Theorem 4.2, V (ϕ) and Q(ϕ) in Lemma 4.2, and W (ϕ) and Π(ϕ)
in Lemma 4.4. The constants γ0 and γ(b) will be defined in Theorem 6.2 below, and the
functions R(f) and S(f) in Theorem 6.4.

In the ensuing theorem we consider (1.1) with f = 0 (homogeneous Stokes system) in
Ω

c
and (1.2) with Neumann data satisfying a side condition. This theorem is proved by

reducing it to Corollary 5.1 and to the Lp-theory of the Stokes system in bounded domains
under Dirichlet boundary conditions.

Theorem 6.1 Let p ∈ (1,∞) and R ∈ (0,∞) with Ω ⊂ BR, b ∈ W 1−1/p, p(∂Ω)3 with∫
∂Ω
ψ(0) · b dox = 0. Abbreviate ϕ := F (−)(b), v := V (ϕ)|Ωc

, ϱ := Q(ϕ)|Ωc
.

Then v ∈ C∞(Ω
c
)3, ϱ ∈ C∞(Ω

c
), and the pair (v, ϱ) solves (1.1) with f = 0. Let r1 ∈

[1, 3 p/2). Then, with constants C independent of b.

∥ϕ∥p ≤ C ∥b∥p, ∥v|ΩR∥1,r1 + ∥ϱ|ΩR∥r1 ≤ C ∥b∥p, (6.1)

∥v|ΩR∥2,p + ∥ϱ|ΩR∥1,p ≤ C ∥b∥1−1/p, p. (6.2)

Proof: We refer to Lemma 4.2 for the relations v ∈ C∞(Ω
c
)3, ϱ ∈ C∞(Ω

c
) and the

fact that the pair (v, ϱ) solves (1.1) with f = 0. Moreover Corollary 4.1 yields that
∥V (ϕ)|ΩR∥1,r1 + ∥Q(ϕ)|ΩR∥r1 ≤ C ∥ϕ∥p. Here and in the following, the constants denoted
by C are independent of b, and therefore of ϕ as well. Due to Theorem 4.2 and by the
definition of ϕ in Theorem 6.1, the relations ϕ ∈ E

(−)
p , (1/2)

(
−ϕ+T∗(ϕ)

)
= b, ∥ϕ∥p ≤

C ∥b∥p hold. The preceding inequalities imply (6.1). Let us show (6.2). Since ϕ ∈ E
(−)
p

and (1/2)
(
−ϕ+ T∗(ϕ)

)
= b, Corollary 5.1 yields that V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 and

∥V (ϕ)|∂Ω∥2−1/p, p ≤ C ∥b∥1−1/p, p. (6.3)
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Recall that V (ϕ)(x) for x ∈ ∂Ω was given by a direct definition in Lemma 4.2. On
the other hand, inequality (6.1) means in particular that V (ϕ)|ΩR ∈ W 1,p(ΩR)

3, and
by the last statement in Lemma 4.3, we know that the trace of V (ϕ)|ΩR on ∂Ω coin-
cides with V (ϕ)|∂Ω as defined in Lemma 4.2. Moreover estimate (4.16) – (4.18) yield
in particular that V (ϕ)|B2R\BR ∈ W 2,p(B2R\BR)

3 and ∥V (ϕ)|B2R\BR∥2,p ≤ C ∥ϕ∥p, so
the C∞-regularity of V in Ω

c
mentioned above and a standard trace theorem yield that

V (ϕ)|∂BR ∈ W 2−1/p, p(∂BR)
3 and ∥V (ϕ)|∂BR∥2−1/p, p ≤ C ∥ϕ∥p. Therefore we may con-

clude with (6.3) and the estimate ∥ϕ∥p ≤ C ∥b∥p already shown that the directly defined
function V (ϕ)|∂ΩR is the trace of V (ϕ)|ΩR on ∂ΩR, belongs to W

2−1/p, p(∂ΩR)
3, and

∥V (ϕ)|∂ΩR∥2−1/p, p ≤ C (∥b∥1−1/p, p + ∥ϕ∥p) ≤ C ∥b∥1−1/p, p. (6.4)

Since div
(
V (ϕ)|R3\∂Ω

)
= 0, and again by the relation V (ϕ)|ΩR ∈ W 1,p(ΩR)

3, we

get that
∫
∂ΩR

V (ϕ)(x) · n(ΩR)(x) dox = 0, with n(ΩR) denoting the outward unit nor-
mal to ΩR. At this point we may apply Theorem 2.4, which yields functions u ∈
W 2,p(ΩR)

3, π ∈ W 1,p(ΩR) with −∆u + ∇π = 0, u|∂ΩR = V (ϕ)|∂ΩR,
∫
ΩR
π dx =

0 and ∥u∥2,p + ∥π∥1,p ≤ C ∥V (ϕ)|∂ΩR∥2−1/p, p. The latter inequality and (6.4) imply
that ∥u∥2,p + ∥π∥1,p ≤ C ∥b∥1−1/p, p. But u = V (ϕ)|ΩR and π = Q(ϕ)|ΩR + c, with
c := −|ΩR|−1

∫
ΩR
Q(ϕ)(x) dx. This follows from Theorem 2.5 and the properties of v

and ϱ stated at the beginning of this proof, and because V (ϕ)|ΩR ∈ W 1,p(ΩR)
3 and

Q(ϕ)|ΩR ∈ Lp(ΩR) according to (6.1). Thus inequality (6.2) is proved. □

Corollary 6.1 Consider assumptions and notation as in Theorem 6.1. Then the pair
(v, ϱ) satisfies (1.2) in the trace sense.

Proof: We have b ∈ Lp(∂Ω)3, and
∫
∂Ω
ψ(0) · b dox = 0 by the assumptions on b. Thus

Lemma 4.8 yields a sequence (bn) in C
0(∂Ω)3 such that bn ∈ Ca(∂Ω)3∩W 1−1/r, r(∂Ω)3 and∫

∂Ω
ψ(0) · bn dox = 0 for n ∈ N, a ∈ (0, 1), r ∈ (1,∞), and such that ∥bn − b∥1−1/p, p → 0.

Let n ∈ N. Since
∫
∂Ω
ψ(0) · bn dox = 0, the function ϕn := F (−)(bn) ∈ E−

p from Theorem

4.2 is well defined. By definition it satisfies the equation (1/2)
(
−ϕn +T∗(ϕn)

)
= bn. Let

R ∈ (0,∞) with Ω ⊂ BR/2. By our choice of bn, we have bn ∈ W 1−1/r, r(∂Ω)3 for r ∈ (1,∞),
so Theorem 6.1 implies that V (ϕn)|ΩR ∈ W 2,r(ΩR)

3, Q(ϕn)|ΩR ∈ W 1,r(ΩR) for such r. It
follows by a Sobolev inequality that V (ϕn)|ΩR may be continuously extended to a function
from C1(ΩR)

3, and Q(ϕn)|ΩR admits a continuous extension to ΩR. Since both V (ϕn) and
Q(ϕn) are C

∞ in Ω
c
(Lemma 4.2), we may conclude there are functions Vn ∈ C1(Ωc)3 and

Qn ∈ C0(Ωc) such that V (ϕn)|Ω
c
= Vn|Ω

c
and Q(ϕn)|Ω

c
= Qn|Ω

c
. On the other hand,

since bn ∈ Ca(∂Ω)3 for a ∈ (0, 1), Theorem 4.1 yields in particular that ϕn ∈ C0(∂Ω)3.
Recalling that ∂jVn ∈ C0(Ωc)3, Qn ∈ C0(Ωc), Vn|Ω

c
= V (ϕn)|Ω

c
and Qn|Ω

c
= Q(ϕn)|Ω

c
,

we deduce from (3.3), Theorem 4.3 and the equation (1/2)
(
−ϕn + T∗(ϕn)

)
= bn that

3∑
k=1

n
(Ω)
k (x) (∂jVn,k + ∂kVn,j − δjkQn)(x) = bn,j(x) for x ∈ ∂Ω, 1 ≤ j ≤ 3, n ∈ N. (6.5)

But by our choice of b, ϕ, (bn) and (ϕn), Theorem 6.1 yields that

∥V (ϕn − ϕ)|ΩR∥2,p + ∥Q(ϕn − ϕ)|ΩR∥1,p ≤ C ∥bn − b∥1−1/p, p for n ∈ N.
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Thus, recalling Lemma 2.5 and the definition of v and ϱ, and taking into account the
relations between Vn and V (ϕ), and Qn and Q(ϕ), as mentioned above, we conclude that

∥∂jv − ∂jVn|∂Ω∥p + ∥ϱ−Qn|∂Ω∥p ≤ C ∥bn − b∥1−1/p, p (n ∈ N, 1 ≤ j ≤ 3),

where the boundary values are taken in the trace sense. Since ∥bn − b∥1−1/p, p → 0 by the
choice of the sequence (bn), it follows with (6.5) that the pair (v, ϱ) fulfills (1.2) in the
trace sense. □

It is well known (see [23]) that the side condition imposed on the boundary data b in the
preceding corollary may be eliminated by using the double layer potentials from Lemma
4.4. In addition there is a second way to work around this condition. In the following
theorem we derive Lp-estimates in both cases, obtaining a velocity satisfying a zero flux
condition on ∂Ω, or a pressure which is Lp-integrable near infinity,

Theorem 6.2 There is a ∈ (0, 1) with ψ(0) ∈ C1,a(∂Ω)3. Moreover
∫
∂Ω
ψ(0) ·n(Ω) dox ̸= 0,

and there is γ0 = γ0(ψ
(0)) ∈ R3\{0} such that

3∑
j,k=1

n
(Ω)
k (x)

(
∂jW (ψ(0))k+∂kW (ψ(0))j−δjk Π(ψ(0))

)(
x−κn(Ω)(x)

)
→ −γ0 n(Ω)

j (x) (κ ↓ 0)

for 1 ≤ j ≤ 3, x ∈ ∂Ω. Let p ∈ (1,∞), b ∈ W 1−1/p, p(∂Ω)3. Put

γ(b) := −
∫
∂Ω

ψ(0) · b dox
( ∫

∂Ω

ψ(0) · n(Ω) dox
)−1

, b̃ := b+ γ(b)n(Ω).

Then
∫
∂Ω
ψ(0) · b̃ dox = 0.

Define ϕ := F (−)(̃b), u := V (ϕ)|Ωc
, π := Q(ϕ) + γ(b)|Ωc

. Then u ∈ C∞(Ω
c
)3 ∩

W 2,p
loc (Ω

c)3, π ∈ C∞(Ω
c
) ∩ W 1,p

loc (Ω
c), and the pair (u, π) solves the Stokes system (1.1)

with f = 0, and verifies the boundary condition (1.2) in the trace sense. In addition the
zero flux condition

∫
∂Ω
u · n(Ω) dox = 0 holds.

Let R ∈ (0,∞) with Ω ⊂ BR, r1 ∈ [1, 3 p/2), r2 ∈ (3,∞), r3 ∈ (3/2, ∞), r4 ∈ (1,∞).
Then with constants C independent of b,

∥u|ΩR∥1,r1 + ∥π|ΩR∥r1 ≤ C ∥b∥p, ∥u|ΩR∥2,p + ∥π|ΩR∥1,p ≤ C ∥b∥1−1/p, p, (6.6)

|∂αu(x)| ≤ C ∥b∥p |x|−1−|α|, |∂α
(
π − γ(b)

)
(x)| ≤ C ∥b∥p |x|−2−|α| (6.7)

for x ∈ Bc
R, α ∈ N3

0 with |α| ≤ 2,

∥u|Bc
R∥r2 ≤ C ∥b∥p, ∥∂nu|Bc

R∥r3 + ∥π − γ(b)|Bc
R∥r3 ≤ C ∥b∥p, (6.8)

∥∂m∂nu|Bc
R∥r4 + ∥∂nπ|Bc

R∥r4 ≤ C ∥b∥p for 1 ≤ m, n ≤ 3, (6.9)

in particular ∥∂m∂nu∥p + ∥∂nπ∥p ≤ C ∥b∥p. Further define

u := V (ϕ) + γ−1
0 γ(b)W (ψ(0))|Ωc

, π := Q(ϕ) + γ−1
0 γ(b)Π(ψ(0))|Ωc

.

If γ(b) = 0, that is, if
∫
∂Ω
ψ(0) · b dox = 0, then u = u and π = π.
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Suppose that γ(b) ̸= 0. Then the previous results remain valid with u, π replaced by u and
π, respectively, with the following exceptions: The zero flux condition does not hold for u.
The first estimate in (6.6) is replaced by ∥u|ΩR∥r1 ≤ C ∥b∥p, the second estimate in (6.7)
by |∂απ(x)| ≤ C ∥b∥p |x|−2−|α| for x and α as in (6.7), and the second estimate in (6.8) by
∥∂nu|Bc

R∥r3 + ∥π|Bc
R∥r3 ≤ C ∥b∥p, again with constants C independent of b.

There is R0 ∈ [R,∞) with |(π − π)(x)| ≥ |γ(b)|/2 for x ∈ Bc
R0
. Moreover u − u|∂Ω ∈

ker(Ip − Tp)\{0}, and the function u− u is not constant.

Proof: First we prove the claims about γ0 and
∫
∂Ω
ψ(0) · n(Ω) dox. The general approach

of this proof is well known for classical solutions, in particular as concerns the assertion
that

∫
∂Ω
ψ(0) · n(Ω) dox ̸= 0; see [22, p. 353] or [23, Remark 3.3]. However, it is perhaps

not so obvious how this proof works out in the context of our Lp-theory. Moreover we do
not know a reference where the argument is adapted in a precise way to the assertions at
the beginning of Theorem 6.2. So we deem it useful to give some details.

We start by noting that −ψ(0) + T(ψ(0)) = 0 due to the choice of ψ(0) in Theorem 4.2.
Thus we may apply Theorem 4.1 and 4.4 with b = 0 and ψ = ψ(0), and with p = r for
any r ∈ (3,∞). Abbreviating W := W (ψ(0)), Win := Win(ψ

(0)), Wex := Wex(ψ
(0)), Π :=

Π(ψ(0)), Πin := Πin(ψ
(0)) and Πex := Πex(ψ

(0)), these theorems combined with Lemma
4.4 allow us to conclude that ψ(0) ∈ C1,a(∂Ω)3 for some a ∈ (0, 1), ψ(0) ∈ W 2−1/p, p(∂Ω)3,

Win ∈ C1(Ω)3, Wex ∈ C1(Ωc)3, Πin ∈ C0(Ω), Πex ∈ C0(Ωc), (6.10)

Win|∂Ω = (−1/2)
(
−ψ(0) + T(ψ(0))

)
= 0, Wex|∂Ω = (−1/2)

(
ψ(0) + T(ψ(0))

)
= −ψ(0),

Win|Ω = W |Ω ∈ W 2,p(Ω)3, Wex|Ω
c
= W |Ωc

, W ∈ C∞(R3\∂Ω)3, Π ∈ C∞(R3\∂Ω),

−∆W +∇Π = 0, divW = 0, Πin|Ω = Π|Ω ∈ W 1,p(Ω), Πex|Ω
c
= Π|Ωc

,

W |ΩR ∈ W 2,p(ΩR)
3, Π|ΩR ∈ W 1,p(ΩR).

(The functions Win(ψ
(0)), Wex(ψ

(0)), Πin(ψ
(0)) and Πex(ψ

(0)) were introduced in Theorem
4.4. The parameter R was fixed in Theorem 6.2.) Theorem 4.5 and the relation ψ(0) ∈
C1,a(∂Ω)3 provide the equation

3∑
k=1

n
(Ω)
k (∂jWin, k + ∂kWin, j − δjk Πin) =

3∑
k=1

n
(Ω)
k (∂jWex, k + ∂kWex, j − δjk Πex) (6.11)

for 1 ≤ j ≤ 3. Among the relations in (6.10), we next use that Win ∈ C1(Ω)3, Win|∂Ω =
0, Win|Ω = W |Ω ∈ W 2,p(Ω)3, Πin ∈ C0(Ω), Πin|Ω = Π|Ω ∈ W 1,p(Ω), W ∈ C∞(R3\∂Ω)3
and Π ∈ C∞(R3\∂Ω), with −∆W +∇Π = 0, divW = 0. From this and Theorem 2.5, it
follows that Win = 0, hence ∂jWin = 0 (1 ≤ j ≤ 3) and ∇Π|Ω = 0. But Ω is a domain
and Π is in particular continuous, so there is γ0 = γ0(ψ

(0)) ∈ R with Π|Ω = γ0, hence

Πin = γ0. Thus the left-hand side of (6.11) equals −γ0 n(Ω)
j , and therefore its right-hand

side as well, so that

3∑
k=1

n
(Ω)
k (∂jWex, k + ∂kWex, j − δjk Πex) = −γ0 n(Ω)

j (1 ≤ j ≤ 3). (6.12)
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Suppose for a contradiction that

γ0 = 0 or

∫
∂Ω

ψ(0) · n(Ω) dox = 0. (6.13)

Then let S ∈ [R,∞). We use Lemma 2.6 with U = ΩS, u = ũ = Wex|ΩS, π = Πex|ΩS.
This choice in Lemma 2.6 is possible according to (6.10). Also by (6.10), we have
Wex|∂Ω = −ψ(0). Thus Lemma 2.6, equation (6.12) and assumption (6.13) imply that∫

ΩS

3∑
j,k=1

|∂jWk + ∂kWj|2 dx =

∫
∂BS

3∑
j,k=1

(xk/S) (∂jWk + ∂kWj − δjk Π)(x)Wj(x) dox.

But the surface integral on the right-hand side of preceding equation tends to zero for
S → ∞ due to (4.14), (4.15). It follows that

∫
Ω

c

∑3
j,k=1 |∂jWk + ∂kWj|2 dx = 0. This

means that ∂jWk + ∂kWj|Ω
c
= 0 for 1 ≤ j, k ≤ 3. Referring to the first claim in Theorem

4.2, we now conclude there are numbers α1, ..., α6 ∈ R such thatW |Ωc
=

∑6
j=1 αj ϕ

(j)|Ωc
.

If there were an index j ∈ {1, ..., 6} with αj ̸= 0, we might choose a sequence (xn) in
Ω

c
such that |xn| → ∞ and

∑6
j=1 αj ϕ

(j)(xn) ↛ 0. For example, if α6 ̸= 0, a suitable
choice would be xn = (0, R + n, 0) for n ∈ N. But on the other hand, for any sequence
(xn) in Ω

c
with |xn| → ∞, inequality (4.14) implies |W (xn)| → 0. Thus we may conclude

that αj = 0 for 1 ≤ j ≤ 6, hence W |Ωc
= 0, and so Wex = 0. But Wex|∂Ω = −ψ(0) by

(6.10), so ψ(0) = 0, in contradiction to the choice of ψ(0) in Theorem 4.2. Thus none of
the equations in (6.13) can be true. As a consequence γ0 ̸= 0 and

∫
∂Ω
ψ(0) · n(Ω) dox ̸= 0.

Since Ω is C2-bounded, we have n(Ω) ∈ Ca(∂Ω)3 for any a ∈ (0, 1). This means in particular

that n(Ω) ∈ W 1−1/p, p(∂Ω)3, so b̃ ∈ W 1−1/p, p(∂Ω)3. (The function b̃ was introduced in

Theorem 6.2.) Obviously
∫
∂Ω
ψ(0) · b̃ dox = 0. Recall that ϕ = F (−)(̃b); see the definitions in

Theorem 6.2. It immediately follows from Theorem 6.1 and Corollary 6.1 that the claims
about u and π in Theorem 6.2 up to but excluding the zero flux condition hold true. As
concerns that latter condition, we note that by Corollary 4.1 and the last statement of
Lemma 4.3, the traces of V (ϕ)|Ωc

and V (ϕ)|Ω coincide. So in view of Lemma 4.2, we
obtain that

∫
∂Ω
u · n(Ω) dox =

∫
Ω
divV (ϕ) dx = 0. We further find that

|γ(b)| ≤ C ∥b∥p, ∥b̃∥p ≤ ∥b∥p + γ(b) ∥n(Ω)∥p ≤ C ∥b∥p, (6.14)

∥b̃∥1−1/p, p ≤ ∥b∥1−1/p, p + C |γ(b)| ∥n(Ω)∥1−1/p, p ≤ ∥b∥1−1/p, p + C ∥b∥p ≤ C ∥b∥1−1/p, p.

Thus we may deduce (6.6) by referring to the second estimate in (6.1) and to (6.2), each

time with b replaced by b̃, and by using (6.14). Moreover, in view of the first estimate in

(6.1) with b replaced by b̃, and due to (6.14), we obtain that ∥ϕ∥1 ≤ C ∥ϕ∥p ≤ C ∥b̃∥p ≤
C ∥b∥p. Inequality (6.7) follows from the preceding estimate, (4.14) and (4.15). Similarly
the preceding estimate and (4.16)– (4.18) imply (6.8) and (6.9).

For the rest of this proof we suppose that γ(b) ̸= 0. Turning to u and π, we recall that
according to (6.10) we have in particular that

Wex ∈ C1(Ωc)3, Wex|Ω
c
= W |Ωc ∈ C∞(Ω

c
)3, Πex ∈ C0(Ωc), Πex|Ω

c
= Π|Ωc

(6.15)

∈ C∞(Ω
c
), −∆W +∇Π = 0, div W = 0, W |ΩR ∈ W 2,p(ΩR)

3, Π|ΩR ∈ W 1,p(ΩR).

34



As a first consequence, we see that ∂j(W |Ωc
) for 1 ≤ j ≤ 3 and Π|Ωc

have a trace on ∂Ω,
and this trace equals ∂jWex|∂Ω and Πex|∂Ω, respectively (Lemma 2.5). Recalling that

Theorem 6.1 and Corollary 6.1 are valid with b̃ in the place of b, and taking into account
(6.12), we may therefore conclude that u ∈ C∞(Ω

c
)3∩W 2,p

loc (Ω
c)3, π ∈ C∞(Ω

c
)∩W 1,p

loc (Ω
c),

and the pair (u, π) solves the Stokes system (1.1) with f = 0 and fulfills (1.2) in the trace
sense. We further note that u = u + γ−1

0 γ(b)W, π = π − γ(b) + γ−1
0 γ(b)Π. Therefore

the estimates which according to Theorem 6.2 are satisfied by u and π follow from (6.6) –
(6.9), (6.15), (4.14), (4.15), the inequality |γ(b)| ≤ C ∥b∥p and the relation W ∈ Lr(ΩR)

3

for r ∈ [1, 3 p/2), which is a consequence of Lemma 2.4.

Existence of R0 ∈ [R,∞) such that |(π − π)(x)| ≥ |γ(b)|/2 for x ∈ Bc
R0

follows from the

equation π − π = γ(b) − γ−1
0 γ(b)Π|Ωc

and (4.15). We recall that Wex|∂Ω = −ψ(0) ∈
ker(Ip − Tp)\{0} according to (6.10) and Theorem 4.2. Thus we may deduce from the
relations Wex ∈ C0(Ωc)3, Wex|Ω

c
= W |Ωc

(see (6.15)) and u = u + γ−1
0 γ(b)W that

u − u|∂Ω ∈ ker(Ip − Tp)\{0}. Since it was shown that
∫
∂Ω
ψ(0) · n(Ω) dox ̸= 0 and

∫
∂Ω
u ·

n(Ω) dox = 0, it further follows that
∫
∂Ω
u · n(Ω) dox ̸= 0 and

∫
∂Ω
(u − u) · n(Ω) dox ̸= 0. In

particular u− u|∂Ω and hence u− u are not constant. □

Next we turn to the interior domain case.

Theorem 6.3 Let p ∈ (1,∞) and b ∈ W 1−1/p, p(∂Ω)3 with
∫
∂Ω
ϕ(j) · b dox = 0 for 1 ≤ j ≤

6. Abbreviate ϕ := F (+)(b), v := V (ϕ)|Ω, ϱ := Q(ϕ)|Ω.
Then v ∈ C∞(Ω)3, ϱ ∈ C∞(Ω), the pair (v, ϱ) solves (1.1) with f = 0. Moreover equation
(1.2) holds in the trace sense, and

∥v∥1,r + ∥ϱ∥r ≤ C ∥b∥p for r ∈ [1, 3p/2), ∥v∥2,p + ∥ϱ∥1,p ≤ C ∥b∥1−1/p, p.

The constants C appearing in the preceding estimates are independent of b.

Proof: Theorem 6.3 is proved by an analogous reasoning as used in the proof of Theorem
6.1 and Corollary 6.1, with the role of ΩR now played by Ω. The argument is somewhat
more simple. For example there is no analogue to (6.4) which would come up. All the
references used in the proof of Theorem 6.1 and Corollary 6.1 are such that they also
cover the situation in Theorem 6.3. □

In the rest of this section, we consider solutions to (1.1), (1.2) in the case f ̸= 0.We begin
by constructing solutions to (1.1) in the whole space R3.

Theorem 6.4 Let A ⊂ R3 be measurable and p ∈ (1, 3/2). If f ∈ Lp(A)3, the integral∫
A
|(∂αE)(x− y) · f(y)| dy is finite for α ∈ N3

0 with |α| ≤ 1, 1 ≤ j ≤ 3 and a. e. x ∈ R3,
so we may define R(f)(x) :=

∫
A
E(x− y) · f(y) dy (x ∈ R3).

For such f , the relations R(f) ∈ W 2,p
loc (R3)3, divR(f) = 0 and ∥R(f)∥(1/p−2/3)−1 ≤

C(p) ∥f∥p hold, and in addition ∂lR(f)j(x) =
∫
A
(∂lE)(x − y) · f(y) dy for x ∈ R3, 1 ≤

j, l ≤ 3.

Let q ∈ (1, 3). If f ∈ Lq(A)3, the integral
∫
A
|(∇N)(x − y) · f(y)| dy is finite for a. e.

x ∈ R3, so we may define S(f)(x) :=
∫
A
(−∇N)(x − y) · f(y) dy for x ∈ R3. Then

S(f) ∈ W 1,q
loc (R3)3 and ∥S(f)∥(1/q−1/3)−1 ≤ C(q) ∥f∥q for such f .

Moreover −∆R(f) +∇S(f) = f̃ , where f̃ denotes the zero extension of f to R3.
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In the case f ∈ Lp(A)3 ∩ Lq(A)3 the estimate ∥∂lR(f)∥(1/q−1/3)−1 ≤ C(q) ∥f∥q is valid.

Let r ∈ (1,∞). If f ∈ Lp(A)3∩Lr(A)3, then ∥∂l∂mR(f)∥r ≤ C(r) ∥f∥r (1 ≤ l,m ≤ 3), and
in the case f ∈ Lq(A)3∩Lr(A)3, the estimate ∥∂lS(f)∥r ≤ C(r) ∥f∥r holds for 1 ≤ l ≤ 3.

Proof: The theorem follows from the Hardy-Littlewood-Sobolev inequality and from the
Calderon-Zygmund inequality; see [9, Satz 1.4] and the proof of [13, Theorem IV.2.1]. □

Corollary 6.2 Let r ∈ (1,∞), R, S ∈ (0,∞), f ∈ Lr(BR)
3. Then ∥R(f)|BS∥2,r +

∥S(f)|BS∥1,r ≤ C(r, R, S) ∥f∥r.

Proof: Obviously f ∈ Lp(BR)
3 for any p ∈ (1, min{r, 3/2}), so R(f) and S(f) are well

defined. Lemma 2.1 and (4.4) yield that ∥∂αR(f)|BS∥r + ∥S(f)|BS∥r ≤ C(r, R, S) ∥f∥r
for α ∈ N3

0 with |α| ≤ 1. If |α| = 2 and l ∈ {1, 2, 3}, we know by Theorem 6.4 that
∥∂αR(f)∥r + ∥∂lS(f)∥r ≤ C(r) ∥f∥r. Altogether we obtain the estimate stated in the
corollary. □

In the ensuing Theorem 6.5, which is a more detailed version of Theorem 1.1, we solve
(1.1), (1.2) in exterior domains also in the case f ̸= 0. However, instead of a function
f ∈ Lp(Ω

c
)3 as in Theorem 1.1, we consider a function g ∈ Lp(R3)3, without assuming

that g vanishes in Ω. In this way inequality (6.17) may be applied also in the interior
domain case (proof of Corollary 6.4). Further note that inequality (6.18) is somewhat
more detailed than (1.5). In fact, the first estimate in (6.18) is added because it may be a
starting point for replacing the term ∥f |Bc

2R∥q in (1.5) by other norms of f , for example
by a weighted norm.

Theorem 6.5 Let p ∈ (1, 3/2), g ∈ Lp(R3)3 and b ∈ W 1−1/p, p(∂Ω)3. Then

N(g)j := −
3∑

k=1

n
(Ω)
k

(
∂jR(g)k + ∂kR(g)j − δjk S(g)

)
for j ∈ {1, 2, 3}.

is well defined in the trace sense and belongs toW 1−1/p, p(∂Ω)3. Further define γ
(
b+N(g)

)
and ϕ as in Theorem 6.2, but with b replaced by b+N(g). Put

u := V (ϕ)|Ωc
, π := Q(ϕ) + γ

(
b+N(g)

)
|Ωc

, (6.16)

u := V (ϕ) + γ−1
0 γ

(
b+N(g)

)
W (ψ(0))|Ωc

, π := Q(ϕ) + γ−1
0 γ

(
b+N(g)

)
Π(ψ(0))|Ωc

,

v := v(g, b) := u+R(g), ϱ := ϱ(g, b) := π +S(g),

v := v(g, b) := u+R(g), ϱ := ϱ(g, b) := π +S(g).

Note that the functions u, u, π and π coincide with the corresponding functions in Theorem
6.2, except that b is replaced here by b+N(g).

The function ϕ is independent of choice of p, (last statement of Theorem 4.2), so the same
is true for the functions defined in (6.16).

The pairs (v, ϱ) and (v, ϱ) satisfy all the claims stated about them in Theorem 1.1, with
c = −γ

(
b + N(g)

)
, and with f replaced by g|Ωc

in the case of (1.1), and by g else.

Let q ∈ (1, 3), r ∈ (1,∞), R ∈ (0,∞) with Ω ⊂ BR, and suppose that the additional
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assumption g ∈ Lq(R3)3 ∩ Lr(R3)3 holds. Then

∥N(g)∥1−1/r, r ≤ C (∥g∥r + ∥g|Bc
2R∥q), (6.17)

∥∂m∂lv∥r + ∥∂lϱ∥r (6.18)

≤ C
(
∥g∥r + ∥∇R(g|Bc

2R) |ΩR∥r + ∥S(g|Bc
2R) |ΩR∥r + ∥b∥1−1/r, r

)
≤ C (∥g∥r + ∥g|Bc

2R∥q + ∥b∥1−1/r, r) (1 ≤ l,m ≤ 3, R ∈ (0,∞) with Ω ⊂ BR),

with the constants C independent of g and b, and hence also of v and ϱ. This estimate
remains valid with the same type of constant when (v, ϱ) is replaced by (v, ϱ).

If γ
(
b+N(g)

)
= 0, then (v, ϱ) = (v, ϱ). Suppose that γ

(
b+N(g)

)
̸= 0. Then the integral∫

∂Ω
n(Ω)·v dox does not vanish, and there is R0 ∈ [R,∞) with |(ϱ−ϱ)(x)| ≥ |γ

(
b+N(g)

)
|/2

for x ∈ Bc
R0
. In addition v − v|∂Ω ∈ ker(Ip − Tp)\{0} and v − v is not constant.

Proof: Let p1 ∈ (1, 3), p2 ∈ (1,∞), and suppose that g ∈ Ls(Ω
c
)3, b ∈ W 1−1/s, s(∂Ω)3

for s ∈ {p, p1, p2}.
SinceR(g) ∈ W 2,p

loc (R3)3 by Theorem 6.4, the traces ofR(g)|Ω andR(g)|Ωc
on ∂Ω exist and

coincide, so
∫
∂Ω

R(g)·n(Ω) dox =
∫
Ω
divR(g) dx = 0, with the last equation due to Theorem

6.4. The same reference additionally yields that S(g) ∈ W 1,p
loc (R3), so we may conclude

that R(g)|Ωc ∈ W 2,p
loc (Ω

c)3, S(g)|Ωc ∈ W 1,p
loc (Ω

c), and the trace of ∂lR(g)j and S(g) on ∂Ω
exists and belongs to W 1−1/p, p(∂Ω), for 1 ≤ j, l ≤ 3. Therefore N(g) is well defined and
in W 1−1/p, p(∂Ω)3. Thus we may deduce from Theorem 6.2 with b+N(g) in the place of
b and from Theorem 6.4 and (6.16) that the pair (v, ϱ) belongs to W 2,p

loc (Ω
c)3 ×W 1,p

loc (Ω
c),

solves (1.1), and satisfies (1.2) in the trace sense. In addition it follows from Theorem 6.2
and by the results on R(g) mentioned above that

∫
∂Ω
v · n(Ω) dox = 0.

All the constants C appearing in the following are independent of f and b. Let s ∈
{p, p1, p2}. Theorem 6.4, applied with q, r replaced by p and s, respectively, yields that

∥∂l∂mR(g)∥s + ∥∂lS(g)∥s ≤ C(s) ∥g∥s for 1 ≤ l,m ≤ 3. (6.19)

Let R ∈ (0,∞) with Ω ⊂ BR. Consider the case s = p2. Let l ∈ {1, 2, 3}. The estimate

∥∂lR(g|Ω2R) |ΩR∥p2 + ∥S(g|Ω2R) |ΩR∥p2 ≤ C(p2, R) ∥g|Ω2R∥p2 ≤ C(p2, R) ∥g∥p2 (6.20)

holds by Corollary 6.2. Moreover, for x ∈ BR and y ∈ Bc
2R, we have |x− y| ≥ |y|/2, so

∥∂lR(g|Bc
2R) |ΩR∥p2 + ∥S(g|Bc

2R) |ΩR∥p2 ≤ C |ΩR|1/p2
∫
Bc

2R

|y|−2 |g(y)| dy (6.21)

≤ C(p1, p2, R) ∥g|Bc
2R∥p1 ,

where the last inequality holds due to Hölder’s inequality and because p1 < 3. A trace
theorem and inequality (6.19) – (6.21) imply that N(g) ∈ W 1−1/p2, p2(∂Ω)3 and

∥N(g)∥1−1/p2, p2 ≤ C
(
∥∇R(g)|ΩR∥1,p2 + ∥S(g)|ΩR∥1,p2

)
(6.22)

≤ C
(
∥g∥p2 + ∥∇R(g|Bc

2R) |ΩR∥p2 + ∥S(g|Bc
2R) |ΩR∥p2

)
≤ C (∥g∥p2 + ∥g|Bc

2R∥p1).
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This proves (6.17). On the other hand, by the definitions in (6.16), and from (6.9) and
the second estimate in (6.6) with b+N(g) in the role of b and p2 in that of p, we get that
∥∂m∂lu∥p2 + ∥∂lπ∥p2 ≤ C ∥b + N(g)∥1−1/p2, p2 for 1 ≤ l,m ≤ 3. In view of the definitions
in (6.16), inequality (6.18) follows from the preceding estimate and inequality (6.22) with
p2, p1 replaced by r and q, respectively, and from (6.19) with r instead of s. In particular
(1.5) is proved. Combining the latter reference with [13, Lemma II.6.1], we obtain that
v ∈ W 2,p2

loc (Ωc)3, ϱ ∈ W 1,p2
loc (Ωc).

Consider the case s ∈ {p, p1}. Let l ∈ {1, 2, 3}. We know from Theorem 6.4 that

∥∂lR(g)∥(1/s−1/3)−1 + ∥S(g)∥(1/s−1/3)−1 ≤ C(s) ∥g∥s. (6.23)

As a consequence ∥∂lR(g)|ΩR∥s + ∥S(g)|ΩR∥s ≤ C(s, R) ∥g∥s, so with (6.19) we see that
∥∂lR(g)|ΩR∥1,s+ ∥S(g)|ΩR∥1,s ≤ C(s, R) ∥g∥s. Again using a standard trace theorem, we
thus obtain that N(g) ∈ W 1−1/s,s(∂Ω)3 and ∥N(g)∥1−1/s, s ≤ C ∥g∥s, hence

∥b+N(g)∥1−1/s, s ≤ C (∥b∥1−1/s, s + ∥g∥s). (6.24)

At this point we note that |γ
(
b + N(g)

)
| ≤ C ∥b + N(g)∥s. Therefore from the second

estimate in (6.6) with b replaced by b+N(g) and p by s, and from (6.24) we find that

∥u|ΩR∥2,s + ∥π − γ
(
b+N(g)

)
|ΩR∥1,s ≤ C (∥g∥s + ∥b∥1−1/s, s). (6.25)

Suppose that s = p1 Then from (6.25) by a Sobolev inequality,

∥∂lu|ΩR∥(1/p1−1/3)−1 + ∥π − γ
(
b+N(g)

)
|ΩR∥(1/p1−1/3)−1 ≤ C (∥g∥p1 + ∥b∥1−1/p1, p1).(6.26)

On the other hand, because (1/p1 − 1/3)−1 > 3/2, the second inequality in (6.8) with
b+N(g), (1/p1 − 1/3)−1, p1 in the place of respectively b, r3 and p, together with (6.24),
provide that

∥∂lu|Bc
R∥(1/p1−1/3)−1 + ∥π − γ

(
b+N(g)

)
|Bc

R∥(1/p1−1/3)−1 ≤ C (∥g∥p1 + ∥b∥1−1/p1, p1).

The preceding estimate and (6.26) imply that

∥∂lu∥(1/p1−1/3)−1 + ∥π − γ
(
b+N(g)

)
∥(1/p1−1/3)−1 ≤ C (∥g∥p1 + ∥b∥1−1/p1, p1),

hence with (6.23) and the definitions in (6.16),

∥∂lv∥(1/p1−1/3)−1 + ∥ϱ− γ
(
b+N(g)

)
∥(1/p1−1/3)−1 ≤ C (∥g∥p1 + ∥b∥1−1/p1, p1). (6.27)

Now take s = p. We have ∥u|ΩR∥(1/p−2/3)−1 ≤ C (∥g∥p + ∥b∥1−1/p, p) due to (6.25) and
a Sobolev inequality. Moreover, since (1/p1 − 2/3)−1 > 3, the first inequality in (6.8)
with b + N(g) in the place of b together with (6.24) yields that ∥u|Bc

R∥(1/p−2/3)−1 ≤
C (∥g∥p+∥b∥1−1/p, p). It follows with Theorem 6.4 and (6.16) that ∥v∥(1/p−2/3)−1 is bounded
by C (∥g∥p + ∥b∥1−1/p, p).

Recall that (1.5) has been shown above, and r ∈ (1,∞), q ∈ (1, 3) in that reference. Take
p2 = p1 = p. Then we may conclude from (1.5), the preceding estimate of ∥v∥(1/p−2/3)−1

and (6.27) that inequality (1.3) holds with c = −γ
(
b+N(g)

)
.
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Consider the case p2 = p1 = q. Then (1.5), (6.27) and the relations v ∈ W 2,p2
loc (Ωc)3, ϱ ∈

W 1,p2
loc (Ωc) also shown above yield inequality (1.4) and the regularity statement preceding

it.

The assertions in Theorem 1.1 with respect to v and ϱ follow by analogous arguments,
again based on Theorem 6.2 and 6.4.

If γ
(
b+N(g)

)
= 0, we deduce from Theorem (6.2 with b+N(g) in the place of b, and from

(6.16) that (v, ϱ) = (v, ϱ). Suppose that γ
(
b +N(g)

)
̸= 0. Since

∫
∂Ω
n(Ω) ·R(g) dox = 0,

as shown at the beginning of this proof, it follows from Theorem 6.2 with b replaced
by b + N(g), and from (6.16) that

∫
∂Ω
n(Ω) · v dox ̸= 0. It further follows from these

references that there exists R0 with properties as mentioned in Theorem 6.5, and that
v − v|∂Ω ∈ ker(Ip − Tp)\{0} and v − v is not constant. □

Corollary 6.3 Let p ∈ (1,∞), R ∈ (0,∞), f ∈ Lp(BR)
3, b ∈ W 1−1/p,p(∂Ω)3 and

S ∈ (R,∞) with Ω ⊂ BS. In particular f ∈ Lr(BR)
3 for any r ∈ (1, p]. Then, with the

notation of Theorem 6.5, and with a constant C independent of f, b and x,

|x|1+|α| [ |∂αv(x)|+ |∂αv(x)|
]
+ |x|2+|α|

(
|∂α

[
ϱ− γ

(
b+N(f̃)

) ]
(x)|+ |∂αϱ(x)|

)
(6.28)

≤ C (∥f∥1 + ∥b∥p) for x ∈ Bc
S, α ∈ N3

0, |α| ≤ 2,

where f̃ denotes the zero extension of f to R3. Therefore inequalities (6.8), (6.9) and
their analogues for (u, π) as described in Theorem 6.2 remain valid when (u, π), (u, π) are
replaced by (v, ϱ) and (v, ϱ), respectively, and the factor ∥b∥p by ∥b∥p + ∥f∥1. In addition,

if γ
(
b+N(f̃)

)
̸= 0, there is R0 ∈ [S,∞) with |ϱ(x)| ≥ |γ

(
b+N(f̃)

)
|/2 for x ∈ Bc

R0
.

Proof: It may be deduced from Lebesgue’s theorem and Lemma 4.1 that R(f)j|Bc
S and

S(f)|Bc
S belong to C2(Bc

S) (1 ≤ j ≤ 3), and the derivatives appearing in (6.28) commute
with the integrals defining R(f) and S(f) (Theorem 6.4). Thus it may be shown in the
same way as Lemma 4.5 that

|x|1+|α| |∂αR(f)(x)| + |x|2+|α| |∂αS(f)(x)| ≤ C ∥f∥1 for x, α as in (6.28),

with C independent of f and x. Inequality (6.28) now follows with (6.7). The other
statements of Corollary 6.3 are obvious consequences of (6.28). □

We turn to existence and regularity of interior Stokes flows, beginning with an auxiliary
lemma.

Lemma 6.1 Let p ∈ (1,∞), u ∈ W 2,p(Ω)3, π ∈ W 1,p(Ω). Then∫
∂Ω

3∑
j=1

ϕ
(l)
j

3∑
k=1

n
(Ω)
k (∂juk + ∂kuj − δjk π) dox =

∫
Ω

3∑
j=1

ϕ
(l)
j (∂jdivu+∆uj − ∂jπ) dx

for 1 ≤ l ≤ 6.

Proof: The lemma follows from the Divergence theorem and the fact that

3∑
j,k=1

∂kϕ
(l)
j (∂juk + ∂kuj − δjk π) = 0 for 1 ≤ l ≤ 6. □
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Corollary 6.4 Let p ∈ (1,∞), f ∈ Lp(Ω)3, b ∈ W 1−1/p,p(∂Ω)3 with∫
∂Ω

ϕ(l) · b dox +
∫
Ω

ϕ(l) · f dx = 0 for 1 ≤ l ≤ 6.

Let g be the zero extension of f to R3, and define N(g) as in Theorem 6.5. Then for l as
above, the equation

∫
∂Ω
ϕ(l) ·

(
b+N(g)

)
dox = 0 holds.

Define ϕ := F (+)
(
b+N(g)

)
, u := V (ϕ)+R(f)|Ω, ϱ := Q(ϕ)+S(f)|Ω. With the matrix

M̃ from Lemma 4.7, set α := M̃−1 · (
∫
Ω
u · ϕ(l) dx)1≤l≤6, v := u−

∑6
l=1 αl ϕ

(l).

Then v ∈ W 2,p(Ω)3, ϱ ∈ W 1,p(Ω), the pair (v, ϱ) satisfies (1.1) and (1.2), and v verifies
the relation

∫
Ω
v ·ϕ(l) dx = 0 for 1 ≤ l ≤ 6. Moreover ∥v∥2,p+∥ϱ∥1,p ≤ C (∥f∥p+∥b∥1−1/p, p),

with a constant C independent of f and b.

Proof: Let l ∈ {1, ..., 6}. Then we find by Theorem 6.4 and Lemma 6.1 that∫
∂Ω

ϕ(l) ·
(
b+N(g)

)
dox =

∫
∂Ω

ϕ(l) · b dox +
∫
Ω

ϕ(l) · f dx,

so
∫
∂Ω
ϕ(l) ·

(
b+N(g)

)
dox = 0 by our assumptions on f and b. Therefore we may apply

Theorem 6.3 with b replaced by b+N(g), combined with Corollary 6.2, Theorem 6.4 and
the estimate ∥N(g)∥1−1/p, p ≤ C ∥f∥p provided in our situation by (6.17). It follows that
the pair (u, ϱ) solves (1.1), (1.2), and ∥u∥2,p + ∥ϱ∥1,p ≤ C (∥f∥p + ∥b∥1−1/p, p).

We further note that for any l ∈ {1, ..., 6}, the function ϕ(l)|Ω belongs to C∞(Ω)3, and
the pair (ϕ(l), 0) is a solution of (1.1), (1.2) with f = 0 and b = 0. Recall the vector α ∈ R6

introduced in Corollary 6.4. Since |αl| ≤ C ∥u∥p for 1 ≤ l ≤ 6, and by the properties of

u, ϱ and M̃, the pair (v, ϱ) fulfills the claims stated in that corollary. □

7 Some uniqueness results. The case b = 0.

First we consider the exterior domain case.

Theorem 7.1 Let R ∈ (0,∞) with Ω ⊂ BR. For j ∈ {1, 2}, let pj, rj, sj ∈ (1,∞), u(j) ∈
W

2,sj
loc (Ωc)3, π(j) ∈ W

1,sj
loc (Ωc) with u(j)|Bc

R ∈ Lpj(Bc
R)

3 and ∇π(j)|Bc
R ∈ Lrj(Bc

R)
3.

Further assume that either
∫
∂Ω
(u(1)−u(2)) ·n(Ω) dox = 0, or that there are numbers q1, q2 ∈

(1,∞) such that π(j)|Bc
R ∈ Lqj(Bc

R) for j ∈ {1, 2}.
Put u := u(1) − u(2), π := π(1) − π(2). Suppose the pair (u, π) satisfies (1.1) with f = 0 as
well as (1.2) with b = 0. Then u = 0 and π = 0.

Proof: Put r := min{r1, r2, s1, s2}. By Theorem 2.6 we know that∇π|Bc
R+1 ∈ Ls(Bc

R+1)
3

for s ∈ (1, r]. Theorem 2.3 then implies there is τ(π) ∈ R such that π + τ(π)|Bc
R+1 ∈

L(1/s−1/3)−1
(Bc

R+1) for s ∈ (1, r] if r < 3, and for any s ∈ (1, 3) else. Note that τ(π)
is independent of s, as follows from the criterion for the case τ(v) = 0 in Theorem 2.3.
As a consequence there is p̃ ∈ (3/2, ∞] such that π + τ(π)|Bc

R+1 ∈ Lp(Bc
R+1) for any

p ∈ (3/2, p̃). In fact, we may choose p̃ := (1/r−1/3)−1 in the case r < 3, and p̃ = ∞ else.
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Fix a function φ ∈ C∞
0 (B2) with φ|B1 = 1 and 0 ≤ φ ≤ 1. Put φm(x) := φ(m−1 x) for

x ∈ R3, m ∈ N. Then φm ∈ C∞
0 (B2m), φ|Bm = 1, 0 ≤ φm ≤ 1, supp(∇φm) ⊂ B2m\Bm

for m ∈ N, ∥∇φm∥p → 0 (m → ∞) for p ∈ (3,∞), and ∥∂l∂kφm∥p → 0 (m → ∞) for
p ∈ (3/2, ∞), 1 ≤ l, k ≤ 3.

Let Φ ∈ C∞
0 (Ω

c
)3. By Theorem 6.5, we may choose a pair (v, ϱ) ∈ W 2,1

loc (Ω
c)3× and a

constant c(ϱ) ∈ R such that this pair solves (1.1) with f = Φ and (1.2) with b = 0,
and such that vj ∈ Lp1(Ω

c
), ∂kvj, ϱ + c(ϱ) ∈ Lp2(Ω

c
), ∂m∂kvj, ∂lϱ ∈ Lp3(Ω

c
) for any

p1 ∈ (3,∞), p2 ∈ (3/2, ∞), p3 ∈ (1,∞), 1 ≤ j, k, l ≤ 3. According to that corollary, we
may additionally require that

∫
∂Ω
v · n(Ω) dox or c(ϱ) = 0.

For n ∈ N, put vm := φm v, ϱm := φm

(
ϱ+ c(ϱ)

)
. We claim that

∥u · (−∆vm +∇ϱm − Φ)∥1 → 0, ∥u · ∇div vm∥1 → 0, ∥
(
π + c(π)

)
div vm∥1 → 0 (7.1)

for m → ∞. In fact, concerning the first of these relations, recall that supp(∇φm) ⊂
B2m\Bm ⊂ Bc

R for m ∈ N, m ≥ R, and that Ω ⊂ BR. Therefore by Hölder’s inequality

∥u(j)k ∂lvk ∂lφm∥1 ≤ ∥u(j)k |Bc
R∥pj ∥∂lvk∥3 p′j/2 ∥∂lφm∥3 p′j for m as before, j ∈ {1, 2},

1 ≤ k, l ≤ 3. Further recall that ∂lv ∈ Lp(Ω
c
)3 for p ∈ (3/2, ∞), u(j)|Bc

R ∈ Lpj(Bc
R)

3 and

∥∇φm∥3 p′j → 0 (m → ∞) for j ∈ {1, 2}. It follows that ∥u(j)k ∂lvk ∂lφm∥1 → 0 (m → ∞)

for j, k and l as before. Similarly ∥u(j) · v∆φm∥1 → 0 and ∥u(j)
(
ϱ + c(ϱ)

)
∇φm∥1 → 0

for m → ∞. Altogether, since −∆v +∇ϱ = Φ, we get that ∥u · (∆vm +∇ϱm − Φ)∥1 →
0 (m → ∞). Moreover div v = 0, so a variant of the preceding argument yields that
∥u ·∇div vm∥1 → 0 (m→ ∞). Since π+ τ(π)|Bc

R+1 ∈ Lp(Bc
R+1) for p ∈ (3/2, p̃), as shown

above, and because v|Bc
R+1 ∈ Ls(Bc

R+1)
3 for s ∈ (3,∞), we may choose p ∈ (3/2, p̃)

and s ∈ (3,∞) so close to respectively 3/2 and 3 that 1 − 1/p − 1/s < 1/3, hence
(1 − 1/p − 1/s)−1 > 3. As a consequence ∥∇φm∥(1−1/p−1/s)−1 → 0 (m → ∞), so we
get in view of the equation div v = 0 that ∥

(
π + τ(π)

)
div vm∥1 → 0 (m → ∞). This

completes the proof of (7.1). We apply the first and second relation in (7.1), obtaining that∫
Ω

c u ·Φ dx = limm→∞
∫
Ω

c u · (−∆vm+∇ϱm−∇div vm) dx. At this point we recall that the
pair (v, ϱ) satisfies (1.2) with b = 0, and that divu = 0, φm|Bm = 1, supp(φm) ⊂ B2m and
Ω ⊂ Bm form ∈ N withm ≥ R. Thus we have ∂jvm,k|∂Ω = ∂jvk|∂Ω, ϱm|∂Ω = ϱ+c(ϱ)|∂Ω,
and we may apply Lemma 2.6 with Ω2m, (vm, ϱm)|Ω2m, u|Ω2m in the role of U, (u, π) and
ũ, respectively. It follows from the preceding equation for

∫
Ω

c u · Φ dx that∫
Ω

c
u · Φ dx (7.2)

= (1/2) lim
m→∞

∫
Ω

c

3∑
j,k=1

(∂kuj + ∂juk) (∂kvm,j + ∂jvm,k) dx− c(ϱ)

∫
∂Ω

n(Ω) · u dox.

Next we again use Lemma 2.6, this time with
(
u, π+τ(π)

)
|Ω2m, vm|Ω2m corresponding to

(u, π), ũ, respectively. In addition we apply the third relation in (7.1) and the assumption
that the pair (u, π) is a solution of (1.1) with f = 0 and of (1.2) with b = 0. Once more
we take into account that φm|Bm = 1, supp(φm) ⊂ B2m and Ω ⊂ Bm for m ∈ N with
m ≥ R. In this way we may deduce from (7.2) that∫

Ω
c
u · Φ dx = −c(ϱ)

∫
∂Ω

n(Ω) · u dox + τ(π)

∫
∂Ω

n(Ω) · v dox. (7.3)
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Now suppose that
∫
∂Ω
n(Ω) ·u dox = 0. Then we choose the function v in such a way that it

additionally satisfies the condition
∫
∂Ω
n(Ω) · v dox = 0. As mentioned above, such a choice

is possible according to Theorem 6.5. In this way we get from (7.3) that
∫
Ω

c u ·Φ dx = 0.

In view of the second uniqueness criterion in Theorem 7.1, let us suppose there are numbers
q1, q2 ∈ (1,∞) such that π(j)|Bc

R ∈ Lqj(Bc
R) for j ∈ {1, 2}. Then τ(π) = 0. In fact,

due to the choice of τ(π) at the beginning of this proof, there is s ∈ (1,∞) with π +
τ(π)|Bc

R+1 ∈ Ls(Bc
R+1)

3, so
∫
B1(m)

|π + τ(π)|s dx → 0 (m → ∞) by Lebegue’s theorem,

hence
∫
B1(m)

π+ τ(π) dx→ 0. Since π(j)|Bc
R ∈ Lqj(Bc

R) for j ∈ {1, 2}, the same reasoning

yields that
∫
B1(m)

π(j) dx → 0 (m → ∞) for j ∈ {1, 2}. But π − π(1) + π(2) = τ(π)

by the definition of π, so we conclude that τ(π) = 0. On the other hand, according to
Theorem 6.5, we may require that c(ϱ) = 0, as already stated at the beginning of this
proof. Returning to (7.3), with this choice of ϱ we obtain once more that

∫
Ω

c Φ ·u dx = 0.

Therefore this equation is valid in any of the two cases considered in Theorem 7.1. Since
Φ was taken arbitrarily from C∞

0 (Ω
c
)3, it follows in both cases that u = 0, so π = 0 due

to (1.1), (1.2) and the assumption that ∂Ω, and hence also Ω and Ω
c
, are connected. □

Finally let us consider uniqueness of solutions in Ω.

Theorem 7.2 Let p ∈ (1,∞), v ∈ W 2,p(Ω)3, ϱ ∈ W 1,p(Ω) such that the pair (v, ϱ)
satisfies (1.1), (1.2) with f = 0 and b = 0, and such that

∫
Ω
v · ϕ(j) dx = 0 for 1 ≤ j ≤ 6.

Then v and ϱ vanish.

Proof: Let g ∈ C∞
0 (Ω)3, and put α := M̃−1 (

∫
Ω
g · ϕ(j) dx)1≤j≤6, with the matrix M̃

defined in Lemma 4.7. Define f := g −
∑6

j=1 αj · ϕ(j). Then f ∈ C0(Ω)3 ⊂ Lp′(Ω)3

and
∫
Ω
f · ϕ(k) dx = 0 for 1 ≤ k ≤ 6. Therefore, by Corollary 6.4, there are functions

w ∈ W 2,p(Ω)3, σ ∈ W 1,p(Ω) such that the pair (w, σ) satisfies (1.1) with the function f
defined above, and (1.2) with b = 0.

In this situation we twice use the formula in Lemma 2.6, first with (u, π) = (w, σ), ũ =
v, and then with (u, π) = (v, ϱ), ũ = w. It follows that

∫
Ω
f · v dx = 0. But by our

assumptions, v is orthogonal to the functions ϕ(j). Therefore
∫
Ω
g · v dx = 0 in view of the

definition of f . Since g was an arbitrary function from C∞
0 (Ω)3, we may conclude that

v = 0, hence there is c ∈ R with ϱ = c a. e. Equation (1.2) now yields that ϱ = 0. □

Two different solutions to (1.1), (1.2) may arise even if b = 0 in (1.2) and the right-hand
side in (1.1) belongs to C∞

0 (Ω
c
)3. This follows from the ensuing lemma. The velocity part

of both of these solution decay for |x| → ∞, so the lack of uniqueness, as already evident
by Corollary 6.3, is not due to lack of boundedness of the velocity near infinity.

Lemma 7.1 There is F ∈ C∞
0 (Ω

c
)3 such that v(F, 0)−v(F, 0) is nonconstant. (Notation

as in Theorem 6.5.) Note that both v(F, 0)(x) and v(F, 0)(x) decay as O(|x|−1) for |x| →
∞ (Corollary 6.3).

Proof: We use the notation from Theorem 6.5. The function ψ(0) belongs in particular to
C0(∂Ω)3; see Theorem 4.2. Let F ∈ C∞

0 (Ω
c
)3, and choose R ∈ (0,∞) with Ω∪supp(F ) ⊂
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BR. Then we find with (4.4) that

A :=

∫
∂Ω

∫
Ω

c

3∑
j,k,l=1

|ψ(0)
j (x) (∂jEkl + ∂kEjl + δjk ∂lN)(x− y)Fl(y)n

(Ω)
k (x)| dy dox

≤ C |ψ(0)|∞ |F |∞
∫
∂Ω

∫
BR

|x− y|−2 dy dox.

Since Ω ⊂ BR, we have for x ∈ ∂Ω, y ∈ BR that |x− y| ≤ 2R, that is, y ∈ B2R(x). Thus
we conclude from the preceding estimate that A is finite. Hence we may apply Fubini’s
theorem, deducing from the definition of R(F ), S(F ) and W (ψ(0)) in Theorem 6.4 and
Lemma 4.4, respectively, that∫

∂Ω

ψ(0) ·N(F ) dox =

∫
∂Ω

3∑
j,k=1

ψ
(0)
j

(
∂jR(F )k + ∂kR(F )j − δjk S(F )

)
n
(Ω)
k dox (7.4)

= −
∫
Ω

c

∫
∂Ω

3∑
j,k,l=1

ψj(x)Sjkl(x− y)Fl(y)n
(Ω)
k (x) dox dy =

∫
Ω

c
W (ψ(0))(y) · F (y) dy,

with N(F ) introduced in Theorem 6.2. In the last equation we used that the function
Sjkl (1 ≤ j, k, l ≤ 3) (see (4.5)) is odd. Now suppose that the claim of the lemma is not
true. Then it follows from the last part of Theorem 6.5 with b = 0 that γ

(
N(F )

)
= 0 (see

Theorem 6.2 for the definition of γ
(
N(F )

)
), hence by (7.4)

∫
Ω

c W (ψ(0))(y) ·F (y) dy = 0,

for any F ∈ C∞
0 (Ω

c
)3. ThereforeW (ψ(0))|Ωc

= 0. In view of the jump relation in Theorem
4.4, we may conclude that ψ(0) +T(ψ(λ)) = 0. On the other hand, by the choice of ψ(0) in
Theorem 4.2, we have −ψ(0) + T(ψ(λ)) = 0. Altogether we obtain that ψ(0) vanishes. But
this is a contradiction to the choice of ψ(0) in Theorem 4.2, so the lemma is proved. □

8 Appendix: Proof of Theorem 4.5.

We only consider the limit limδ↓0 F (−δ) for the function F from Theorem 4.5. The limit
limδ↓0 F (δ) is easier to determine because then the integrals on ΩR appearing below are
replaced by ones on Ω, so the parameter R and the difficulties related to it do not arise.

Let δ ∈
(
0, δ(Ω)

]
and put z := x − δ n(Ω)(x). Note that z ∈ Ω (see (3.3)) and |z − b| ≥

D δ/2 for b ∈ U−δ (see (3.6)). (The open set U−δ and the constants δ(Ω) and D were
introduced in Lemma 3.2.) It follows that for m ∈ N, the function |z − y|−m (y ∈ U−δ) is
C∞ in U−δ. Since ΩR ⊂ Ωc ⊂ U−δ for R ∈ (0,∞) (see Lemma 3.2), this C∞-regularity in
U−δ will allow us in the following to apply the Divergence theorem in ΩR.

Let j ∈ {1, 2, 3} and put Kklm := −∂jSklm − ∂kSjlm +2 δjk ∂l∂mN for k, l, m ∈ {1, 2, 3},
where Sνlm for ν ∈ {1, 2, 3} and N were introduced in (4.2) and (4.1), respectively. Then
by the definitions in Theorem 4.5 and Lemma 4.4,

F (−δ) =
3∑

k,l,m=1

n
(Ω)
k (x)

∫
∂Ω

Kklm(z − y)n
(Ω)
l (y)ϕm(y) doy. (8.5)
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Let R ∈ (0,∞) with Ω ⊂ BR, and let n(ΩR) denote the outward unit normal to ΩR, that
is, n(ΩR)|∂Ω = −n(Ω)|∂Ω, n(ΩR)(y) = R−1 y for y ∈ ∂BR. By the definition of C1,α(∂Ω)3

(see at the beginning of Section 2), there is ϕ̃ ∈ C1,α(R3)3 with ϕ̃|∂Ω = ϕ. We will write ϕ

instead of ϕ̃ in the following. Then we get from (8.5) that F (−κ)j = A1+B1(R)+ Å+A,
where A1 is given by the right-hand side of (8.5), but with the term ϕm(y) replaced by
ϕm(y)− ϕm(x)−

∑3
ν=1 ∂νϕm(x) (y − x)ν , for 1 ≤ m ≤ 3. Moreover

B1(R) :=
3∑

k,l,m=1

ϕm(x)n
(Ω)
k (x)

∫
∂BR

Kklm(z − y) yl/R doy,

A :=
3∑

k,l,m,ν=1

∂νϕm(x)n
(Ω)
k (x)

∫
∂Ω

Kklm(z − y)n
(Ω)
l (y) (y − x)ν doy.

The term Å differs from B1(R) insofar as the integration extends over ∂ΩR instead of

∂BR, and −n(ΩR)
l (y) takes the place of yl/R, for 1 ≤ l ≤ 3. Due the Divergence theorem,

(4.3) and (4.5), we get that Å = 0. Next we observe that A = A2 +B2(R) +B3(R) + Ã,

where A2 is defined in the same way as A, but with n
(Ω)
k (x)n

(Ω)
l (y) for 1 ≤ k, l ≤ 3

replaced by n
(Ω)
k (x)n

(Ω)
l (y)− n

(Ω)
k (y)n

(Ω)
l (x). Moreover

Ã := −
3∑

k,l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂ΩR

Kklm(z − y) (y − x)ν n
(ΩR)
k (y) doy, (8.6)

B3(R) :=
3∑

k,l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂BR

Kklm(−y) yν yk/R doy,

and with B2(R) chosen as B3(R), but with Kklm(z − y) (y − x)ν − Kklm(−y) yν in the
role of Kklm(−y) yν , where 1 ≤ k, l,m, ν ≤ 3. Now the Divergence theorem is applied

to Ã, transforming the integral over ∂ΩR in (8.6) into an integral over ΩR. Note that
due to (4.5), (4.3), the sum

∑3
k=1 ∂yk

(
Kklm(z − y) (y − x)ν

)
reduces to Kνlm(z − y); see

the definition of Kνlm at the beginning of this proof (ν, l,m as before). In view of this
definition, we may again apply the Divergence theorem, this time in order to retransform
the integral over ΩR into an integral over ∂ΩR, which we split according to the equation
Ã = A+B, with

A :=
3∑

l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂Ω

(
Sνlm(z − y)n

(Ω)
j (y) + Sjlm(z − y)n(Ω)

ν (y)

−2 δνj (∂lN)(z − y)n(Ω)
m (y)

)
doy,

B :=
3∑

l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂BR

(
−Sνlm(z − y) yj/R− Sjlm(z − y) yν/R

+2 δνj (∂lN)(z − y) ym/R
)
doy.
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As a consequence Ã = A3 + B4(R) + B5(R) + Â, where A3 coincides with A except

that n
(Ω)
l (x)n

(Ω)
b (y)− n

(Ω)
l (y)n

(Ω)
b (x) takes the role of n

(Ω)
l (x)n

(Ω)
b (y), for b, l ∈ {1, 2, 3}.

Moreover B4(R) and B5(R) correspond to B(R), but we put −Sblm(z − y) + Sblm(−y)
and (∂lN)(z− y)− (∂lN)(−y) in the place of −Sblm(z− y) and (∂lN)(z− y), respectively,
in the case of B4(R), whereas B5(R) arises from B(R) by substituting −Sblm(−y) and

(∂lN)(−y) for −Sblm(z − y) and (∂lN)(z − y), respectively (1 ≤ b, l,m ≤ 3). The term Â
is given by

Â :=
3∑

m,ν=1

∂νϕm(x)
(
n
(Ω)
j (x)

∫
∂Ω

3∑
l=1

Sνlm(z − y)n
(Ω)
l (y) doy

+n(Ω)
ν (x)

∫
∂Ω

3∑
l=1

Sjlm(z − y)n
(Ω)
l (y) doy − 2 δνj n

(Ω)
m (x)

∫
∂Ω

3∑
l=1

(∂lN)(z − y)n
(Ω)
l (y) doy

)
.

We finally observe that Â = B6(R) +B7(R) + A, where A differs from Â insofar as the

domain of integration now is ∂ΩR instead of ∂Ω, and the term −n(ΩR)
l (y) is substituted

for n
(Ω)
l (y) (1 ≤ l ≤ 3). Moreover

B7(R) :=
3∑

m,ν=1

∂νϕm(x)
(
n
(Ω)
j (x)

∫
∂BR

3∑
l=1

Sνlm(−y) yl/R doy

+n(Ω)
ν (x)

∫
∂BR

3∑
l=1

Sjlm(−y) yl/R doy − 2 δνj n
(Ω)
m (x)

∫
∂BR

3∑
l=1

(∂lN)(−y) yl/R doy
)
.

As for the term B6(R), it is defined in a way analogous to the definition of B7(R),
but the terms Sblm(z − y) and (∂lN)(z − y) are replaced by Sblm(z − y) − Sblm(−y) and
(∂lN)(z− y)− (∂lN)(−y), respectively (b ∈ {1, 2, 3}). By (4.5) and (4.3) we have A = 0.

The splitting of F (−δ), A, Ã and Â considered above, and the equations A = Å = 0
may be subsumed into a single equation, that is, F (−δ) =

∑3
ν=1Aν +

∑7
ν=1Bν(R).

Recall the abbreviation z = x− δ n(Ω)(x) introduced at the beginning of this proof. Since
Ω ⊂ BR/2 and z ∈ Ω (see (3.3)), we have |ϑ z − y| ≥ |y|/2 for ϑ ∈ [0, 1], y ∈ ∂BR,
so |Bb(R)| ≤ C

∫
∂BR

|y|−3 doy ≤ CR−1 for b ∈ {1, 2, 4, 6}, with C independent of R.

Moreover we indicate that
∑3

ν=1 αν

∫
∂B1

yj yl ym yν doy = (αj δlm + αν δjm + αm δjl) 4π/15

for α ∈ R3, l,m ∈ {1, 2, 3}. The factor 4π/15 arises due to the equation
∫
∂B1

y2l y
2
m doy =

(1 + 2 δlm) 4π/15, for l, m as before. It follows that
∑

b∈{3, 5, 7}Bb(R) = 0. Up to this
point the parameter R was fixed. Letting R tend to infinity, we may conclude from the
preceding remarks on Bb(R) that

∑8
b=1Bb(R) → 0 (R → ∞), hence F (−δ) =

∑3
ν=1Aν .

By the definition of A1, A2 and A3, it is obvious that for b ∈ {1, 2, 3}, there is a function

Zb = Z
(j,x,δ)
b : ∂Ω 7→ R such that Ab =

∫
∂Ω

Zb(y) doy. As explained at the beginning of
this proof, we have |z − y| ≥ D |x − y| for y ∈ ∂Ω. In addition ϕ belongs to C1,α(R3),
and n(Ω) is in particular Lipschitz continuous on ∂Ω. For these reasons we obtain that
|Zb(y)| ≤ C|x − y|−2+α for y ∈ ∂Ω, 1 ≤ b ≤ 3, where C > 0 does not depend on
y. But

∫
∂Ω

|x − y|−2+α doy < ∞, so it follows by Lebesgue’s theorem and the equation

F (−δ) =
∑3

ν=1 Aν that F (−δ) converges for δ ↓ 0, with the limit being the integral arising
if z is replaced by x in the definition of A1, A2 and A3.
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A similar but much simpler reasoning (see the remark at the beginning of this proof) yields
that the limit of F (δ) for δ ↓ 0 exists, too, and its value coincides with limδ↓0F (−δ). □
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