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Abstract

The article deals with the 3D stationary Stokes system under traction bound-
ary conditions, in interior and exterior domains. In the interior domain case, we
obtain solutions with W?2P-regular velocity and W!P-regular pressure globally in
the domain, under suitable assumptions on the data. In the exterior domain case
we construct two solutions, both of them W2P-W1P_regular in any vicinity of the
boundary, with p € (1,00) determined by the assumptions on the data. In addi-
tion the velocity is L°-integrable near infinity, for some s > 3, provided that the
right-hand side of the Stokes system is LP-integrable near infinity for some p < 3/2.
Moreover the velocity part of one of these solutions satisfies a zero flux condition
on the boundary, whereas the pressure part of the other one is L*-integrable near
infinity, for some s > 3/2. There are also two uniqueness classes, one related to a
zero flux condition for the velocity, the other one to decay of the pressure at infinity.
This result confirms a conjecture by T. Hishida (University of Nagoya).
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1 Introduction.

We consider the Stokes system
—Av+Vo=Ff, divv=0 (1.1)

in a bounded domain ©Q € R® and in the exterior domain Q° := R3\Q, where the boundary
0 is connected and of class C?. System (|1.1)) is supplemented by traction conditions (also
called Neumann boundary conditions)
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Z(ﬁjvk + Opv; — )i 0) n,(fm =b ondf) for 1<j <3, (1.2)
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where n(¥ denotes the outward unit normal to €. The functions f (volume force) and
b (force orthogonal to the surface) are given, and u (velocity) and 7w (pressure) are the
unknowns of problem , . Boundary conditions as in arise, for example,
in incompressible elastostatics and in free boundary value problems for incompressible
viscous fluids.



If the Stokes system (|1.1)) in © or Q° is supplemented by Dirichlet boundary conditions,
then u and 7 are respectively W2P- and W'P-regular up to the boundary (" W?2P-W1»-
regularity”), provided the data satisfy suitable assumptions. In the case of the interior
domain (2, this is well known since the beginning of the 1960s, due to the pioneering
work of Cattabriga [3] and Ladyzhenskaya [19]. These two authors chose quite different
methods in their work. Cattabriga reduced his results to the half-space case, in which
a solution to , may be constructed in a rather explicit form. Ladyzhenskaya
used the method of integral equations, that is, reduction of a boundary value problem
to an integral equation on the boundary. In the monograph [I3], Cattabriga’s method is
used to obtain a large range of LP-estimates for interior and exterior Stokes flows under
Dirichlet boundary conditions. Reference [§] derives some of these estimates for exterior
Stokes flows by applying Ladyzhenskaya’s approach.

As concerns the Stokes system under traction condition , an L2-theory, derived
by Giaquinta, Modica [14], is available in literature; see [14, Theorem II1.1.2]. Classical
solutions were constructed by Starita, Tartaglione [23], via the method of integral equa-
tions. In addition these authors estimated the maximum modulus of the traction field in
the direction of the normal to the boundary ([23 inequality (5.2)].) Moreover problem
, is of a type considered by Agmon, Douglis, Nirenberg [2]. But the parameters
associated with this problem in [2] are such that [2, Theorem 10.5], the main result in
[2] on LP-regularity and LP-estimates, can be applied to solutions of , only if
they are W2P-WHP_regular, in  in the interior domain case and in a neighbourhood of
00 else. This is the same situation as in the Dirichlet case ([24], p. 23-24]). As far as we
know, existence of solutions to , with this level of regularity and corresponding
estimates have not been established in previous literature if p # 2.

Our aim here is to fill this gap. Following [19] and [23], we will use the method of integral
equations. It yields solutions to , in the interior domain 2 and the exterior
domain Q°, as well as an integral representation of each of these solutions. These repre-
sentations contain a single layer potential involving a fundamental solution of and a
"layer function” which solves a certain integral equation on 0f2. The key step and main
difficulty of our approach consists in estimating the W2~'/7P-norm of the Dirichlet bound-
ary data of this single layer potential against the W'=/PP-norm of its traction boundary
data. In this way we are able to reduce W2P-W1P_estimates of solutions to , ,
in Q and in Q°, to W2P-IW " -estimates of solutions to in bounded domains, with
Dirichlet conditions instead of (L.2)); see the proof of Theorem (exterior domain case)
and Theorem [6.3| (interior domain case). The Dirichlet-to-Neumann estimate mentioned
above is stated in Corollary [5.1] which is a consequence of Theorem 5.1 and These two
theorems provide the technical base of Corollary [5.1l Their proof requires considerable
effort. Section 2 to 4 serve to set up a suitable framework and state auxiliary results. In
Section 6, exploiting Corollary [5.1], we present our theory on existence and regularity, and
in Section 7 we use some elements from this theory in order to prove uniqueness results.

It is well known that solutions to , in the interior domain €2 are unique only up
to a rigid motion; see [22, p. 351], [23] Theorem 3.2, 4.1] in the case of classical solutions,
and Theorem below for W2P-W1P-regular solutions. Concerning the exterior domain
case, uniqueness of solutions to , in LP-spaces requires of course that the velocity
vanishes at infinity in some way or other. But it was suggested by T. Hishida [16] that




in addition it is necessary for the velocity to have zero flux on 0f2, or for the pressure
to tend to zero near infinity. As far as we know, up to now uniqueness was proved only
under the second assumption (decay of the pressure), and only for classical solutions;
compare [23, Theorem 2.1]. Zero flux of the velocity on 02 as uniqueness criterion seems
not to have been discussed in existing literature. We will consider uniqueness under each
of these assumptions, as proposed by Hishida; see Theorem and Lemma [7.1] with the
latter reference showing that nonuniqueness arises although b = 0, f € C§°(R?®)? and the
velocity decays as O(|z|™!) for |z| — oo.

The two types of solutions relevant with respect to uniqueness are taken into account in
our theory on existence, too. In fact, we construct a solution with velocity part satisfying
a zero flux condition on 0€2, and another one with pressure part tending to zero at infinity,
under the assumption that f € LP(Q°)? for some p € (1, 3/2). The second type of solution
is well known [23] Theorem 5.1], [25, p. 358], whereas the first does not seem to be have
been mentioned in literature, at least not explicitly, although it is easy to construct. In
some situations these two solutions coincide. Otherwise the difference of their velocity
parts is nonconstant. Our proof of regularity works for both kinds of solutions because
their difference, up to a constant as concerns the pressure, is given by a double layer
potential which is W2P-W1P-regular near 92 according to [19]. For more details we refer
to Theorem (case f = 0) and (case of nonvanishing f). We summarize the main
points from these two theorems in

Theorem 1.1 Letp € (1, 3/2), f € LP(Q°)? and b € W'=V/PP(9Q)3. Then there is a pair
(v, 0) € W2P(Q)3 x WLP(Q°) satisfying , , as well as the zero flux condition

loc loc

Joqv -1 do, =0 and the inequality

[0l /p—2/3)-1 + 100 1 yp-173)-1 + o + clla/p-173)-1 + [[OmO0]lp + [|Or0]lp (1.3)
< ([ fllp + ollim1ypp) (1 <1,m < 3),

for some ¢ € R (which is of course uniquely determined). Suppose in addition that q €
1,3), f e LYQ)? and b € WY49(90)3. Then (v, o) € W2(Q)3 x W9(Q°) and
lo lo

190l 1 g1/ + lle + cllasa-1/3-1 + 10mOrvllg + 10ielly < €[ fllg + 1[bll1-1/g.4), (1.4)

for I, m as above. Further suppose_in addition that r € (1,00), f € LT(QC)3, b e
W=1/nr(90)3 and R € (0,00) with Q C Bg. Then (v, 0) € W2 (Q°)? x WL (Q°) and

loc loc
10mOv]|- + [|Ovolly < €I fIl- + [1fI1B3rllq + 10ll1=1/r,+) (1.5)

forl, m as before. The constants € in these estimates do not depend on f orb. Of course,
inequality 15 already included in if ¢ < 3/2. A similar remark is valid for
with respect to if r € [3/2, 3), and concerning if r e (1, 3/2).

Moreover there is a pair (T,0) € WP (929)? x W,iP(Q°) such that the preceding statements

loc
remain valid with v, 9 in the role of v and p, respectively, except that faaﬂ -1 do, # 0

in general and the constant ¢ in and vanishes.

If f =0, the assumption p < 3/2 may be dropped (hence inequality and become
special cases of and therefore are no longer relevant).



Our existence results in the interior domain case are stated in Corollary

The principal difficulties inherent in our approach already arise if f = 0. Once this case
is settled (Theorem (exterior domain), [6.3| (interior domain)), the transition to non-
vanishing f may be achieved in an obvious way: The Stokes system is solved in
the whole space R?, with the zero extension of f to R? as right-hand side (Theorem [6.4]).
Then problem , is solved with f = 0 and with the traction boundary data of
the whole space solution added to the right-hand side of ("boundary correction”).
The sum of the two solutions yields the flow field which is looked for; see Theorem
(exterior domain), and Corollary (interior domain). Since solving problem in
R3 is not linked to traction boundary conditions , the case f # 0 is not our main
interest here. We deal with it only for completeness and because for the proof of our
uniqueness results in Section 7, we need solutions to , with f € C§° (50)3. It
is thus sufficient for our purposes to assume that f € LP(€2)3 for some p € (1, 3/2).
Then a whole space solution is conveniently given by a volume potential, which is rather
easy to handle. Actually the condition p < 3/2 may be removed by an approximation
argument as in [I3, p. 242-243]. All this is not an issue when the interior domain is
considered, because if f € LP(Q)? for whatever p € (1,00), we always have f € L4(Q2)?
for any g € [1, p|, of course.

Pointwise decay estimates of our solutions to , in Q° are provided by Corollary
[6.3]under the assumption that f has bounded support. These estimates allow to determine
LP-estimates of exterior flows in more detail: We may distinguish regularity properties
outside large balls from those valid in neighbourhoods of 92 (Corollary , Theorem
[6.2). Concerning the strange term || f|BSgll, in (L.5)), we think that in the case r > 3,
an estimate of the form ||0,,0ull, + [|O|l, < €(||f]l» + ||blli=1/r,») cannot hold for all
functions f € L"(Q°)® with the same constant €, even if b = 0. This is indicated by a
similar situation in the Dirichlet case; see [5, Theorem 1.3] and [13], (V.4.46)].

We will use the fact, stated in Theorem [4.5] that the traction field of the Stokes double
layer potential associated with 0f) is continuous on any line through 0f2, provided this
line is orthogonal to J€) and the layer function of the potential is sufficiently smooth. In
the context of the Laplace equation, this result is sometimes called (”Lyapunov-Tauber
theorem”). Its version in Theorem is frequently applied in analysis and numerics
(boundary element method) of incompressible flows, but what is available as proof is not
completely satisfying, as explained in the comment following Theorem [4.5 Therefore we
find it worthwhile to present a proof; see Appendix.

We will rely on [19] with respect to a number of auxiliary results on the integral operators
appearing in our proofs. However, we will not refer to [19] directly. Instead we will draw
on results from [9], where the pertinent sections from [19] are worked out in detail.

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of R™ for any n € N, the length ay + ... + o,
of a multi-index o € NI, as well as the Borel measure of a measurable subset A of R3.
For R € (0,00), € R, put Bgr(z) :={y € R® : |z —y| < R}. In the case z = 0, we



write By instead of Bg(0). An open ball in R? with radius R > 0 and centered in ¢ € R?
is denoted by B%(o).

The set Q C R? introduced in Section 1 will be kept fixed throughout. Recall that ) is
open and bounded, with connected C?-boundary, and that n* denotes the outward unit
normal to Q. We put Qg := Bg\Q.

For n € N, I C R", let x; stand for the characteristic function of I in R™. If A C R3, we
denote by A¢ the complement R*\ A of A in R®. Put ¢ := (0;1)1<j<3 for 1 <1 < 3 (unit
vector in R3). If A is some nonempty set and 7 : A — R™ a function for some n € N, we
set [V|oo :=sup{|y(x)| : = € A}.

Let a € (0,1). For any B C R3, we write C*%(B) for the set of all Holder continuous
functions on B, that is, ¢ € C*(B) iff ¢ : B — R with

|¢’a = |¢|oo + Sup{hb(x) - ¢(y)| |J] - y|—a ST,y € 37 T 7é y} < 0.

If B C R? is open, the space C"*(B) is to consist of all functions ¥ € C'(B) with || <
oo and |9|, < oo for 1 <1 < 3. We further define C1%(9Q) := {¢|0Q : v € C(R3)}.

Let p € [1,00), m € N. For A C R? open, the notation | ||, stands for the norm of
the Lebesgue space LP(A), and || ||, for the usual norm of the Sobolev space W™P(A)
of order m and exponent p. If A C R? has a bounded C?-boundary, the Sobolev space
WrP(9A) with r € (0,2) is to be defined as in [12], Section 6.8.6].

If A and B are vector spaces and T : A — B is a linear operator, we write ker T for the
kernel of T" and ran T for the range of T'.

Numerical constants are denoted by ', and constants depending exclusively on parameters
My oy Tn € [0,00), for some n € N, take the form C(y, ..., 7,). In most cases it is not
possible and of no interest to list all such parameters. Then we use the symbol € for
constant whose dependencies — or more importantly, their non-dependency — on certain
parameters should be clear from context, or are pointed out in the text.

In the following theorem, we reproduce the Calderon-Zygmund inequality for odd kernels.
This well known estimate is restated here because we will need some details on how the
upper bound given by this inequality relates to the structure of the kernel.

Theorem 2.1 Letn € N and K : R" — R a function with K(z) = |2|™ K(|z|7' 2) and
K(—=2) = —K(z) for 2 € R"\{0}. Put A := K|0B; and suppose that A € L*(0By).

Let p € (1,00). Then f{yeR":|y—x\ze} |K(x —vy) f(y)|dy < oo for x € R", € € (0,00) and
f € LP(R™). Define (K. x f)(z) := f{yeRn:|y—x\ze} K(x —vy) f(y)dy for x, €, f as before.
Then || Kex fll, < C(p,n) [All £l for e € (0,00) and f € LP(R").

Proof: [21], p.89, Theorem 2 a) |. O

We state a lemma which is convenient to handle weakly singular integral operators.

Lemma 2.1 Letn € N, A, B C R" nonempty, A et v measures on o-algebras over A and
B, respectively. Further assume that the function K : A x B — [0,00) is measurable and
the upper bounds A := sup{ [, K(z,y)dv(y) : © € A} and Ay := sup{ [, K(z,y) d\(z)
y € B} are finite.



Then, for p € [1,00) and ¢ : B — R measurable with [, |¢|Pdv < oo, the integral
Joo K (z.y) |0(y)| doy is finite for X\-a. e. x € A, and

(//1(/3 K(z,y) \d)(y)ldu(y))pdA(x))l/p <o (/B 67 dz/)l/p. (2.1)

The preceding assumptions hold true if, for example, n = 3, A = B = 00, X and v
are the usual surface measure on 0S), and if there are numbers cy, k € (0,00) such that
K(z,y) < colz —y[>™ forv,y € Q, v #y.

These assumptions are also valid if n € {2, 3}, A, B C R"™ open, bounded and nonempty,

A and v the usual Borel measure on A and B respectively, and if K(o,m) < colo—n| "t"
foroe A, ne B, o#n, with ¢y and Kk given as before.

Proof: Inequality (2.1]) is a simple application of Holder’s inequality and Fubini’s theo-
rem, as used in [2I) p. 7] in the case of convolution kernels. The first claim of the lemma
follows from ([2.1)). O

In Theorem [2.2] and Lemma [2.2] to [2.4] below, we state some properties of weakly singular
integral operators on LP-spaces. In the case of Theorem [2.2] we give a proof for the
reader’s convenience because we do not know a precise reference.

Theorem 2.2 Let J C R? be open, bounded and convex, and L : J x J — R a measurable
function with L( - ,n) € C'(J\{n}) for n € J. Suppose there is co > 0 with [05L(0,n)| <
colo—n|~t71 for o, m € J with o 7£ n, a € N2 with |a] < 1.

Let p € (1,00) and define L(v = [, L( n)dn for+p € LP(J), o € J; see Lemma
2.1 Then L(v) € Wl_l/pp( ) cmd HE( )||1_1/p,p § ||, for i as before.

Proof: Let o, o, n € J withn ¢ {o,0'}. If |[o—n| < 2|o—¢|, we have |o' —n| < 3|o— |,
SO
1L(o,n) — L(d' )| < co(lo—nl"" +1d —nl™") <3co(Jo—nl"?+ 1 —nl7%) e — o]

In the case |0 —n| > 2|0 — ¢|, we get for ¥ € [0, 1] that |0+ V(o' — 0) —n| > |0 — n|/2.
Thus, using the equation |L(e,n) — L(¢',n)| = | 5 (VL) (e + 9 (¢ = 0), 1) d9 - (0 = &),

we get in any case that
L(e,n) — L(Q’,n)) <Cleo)(lo=nl+1le =nl"*)le—¢| foro o ,ne] (22)

with n ¢ {o0,0'}. Let r € (1,2), 0,0 € J, and put J,y == {n € J : |[o—1n| <
2|o — ¢'|}. By splitting the set J into the parts J, , and J\J,, it may be shown that
the inequality [, |L(o,n) — L(¢',n)|" dn < €|o — ¢'| "*? holds, where the estimate of the
integral over J\J, is based on (2.2). Note that |0’ —n| > |0 — ¢/| for n € J\J, . Put
e:=min{1/(2p'), 1/(4p)}. Then 1 +ep’ < 2. Let ¢ € LP(J). By Hélder’s inequality, the
splitting 1 = 1/p’ 4+ € + 1/p — € and the previous estimate with r = 1 4 €p/,

[L(w)(0) = L) < €(Jo— [~y /\L 0,n) = L(e', )"~ [ ()P dny

for o, o € J. Set A(p, o) = |L(¥)(0) — L(V)()|P |o — ¢'|7P7 . Tt follows that

Ao, o) < Clo— o > / IL(o.n) — L(ds )| [ (n)P di.




We integrate both sides of the preceding inequality with respect to o € J and ¢’ € J, then
apply (2.2) and change the order of integration. In this way we arrive at the estimate
[, [, %0, ¢) dodd < € (B1 + B,), where

B, :=///\@—77!2(“”) lo— |71 2P dodd [¢h(n)[P dn.
JJJJJT

and where term 8B, is to be defined in the same way as 9B, except that the difference |o—n)|
is replaced by |¢ — 7|, and the order of integration with respect to ¢ and ¢’ is exchanged.
Now we use that —2 (1 —ep) and —1—2¢ep belong to (—2,0), and =2 (1—€ep) —1—2¢€p =
—3 < —2. Thus we get that [, |o—n|207P) |o— o|7172Pdo < €| —n| ' for o/, e J
with o' # n, as follows by splitting J into four sets according to four cases, three of them
given by the inequalities |0 —n| < | —n|/2, o — 0| < |0 —n|/2, |e—n| > 2|0 —n|, and
the fourth consisting of the requirement that none of the three preceding conditions holds;
compare [1T, Lemma 1.4.2]. It follows that %B; < €|]1[[?. An analogous argument yields
that By < €|[|9||8. Therefore the theorem follows from the estimate [, [, (o, ¢') dodg <
¢ (B1 + B5) shown above, and from Lemma [2.1] O

Lemma 2.2 Let L : 99 x 092 — R be measurable. Suppose there is ¢y € (0,00) with
|L(z,y)| < colr —y|™ forz,y € 89 x 7é Y. Letp € (1 oo) We may define an operator
L: LP(0Q) — LP(09) by setting L(¢ = [0 L( d(y) do, for ¢ € LP(0Q), x € IY;
see Lemma 2]

Then L : LP(0Q2) — LP(0) is linear, bounded and compact.

Proof: Obviously L is linear. The boundedness of L holds according to Lemma [2.1]
As for compactness, we remark that for any € € (0,00), the operator L, . : LP(02)

LP(0Q), Ly (0)(x) = [y X(eoo) (| = yl) L(z,y) 8(y) do, (x € 09, ¢ € LP(09)) is
compact ([I7, p. 275, Theorem 11.6]). On the other hand,

sup / Yoolz — yl) [ — [V do, - © € 02} =0 (¢ L 0),
(9]

so it follows by Lemma that L. converges to £ with respect to the operator norm of
the space of linear bounded operators from LP(02) into LP(02). As a consequence, L is
compact as well. O

Lemma 2.3 Let L € C*(R*\{0}) and ¢y € (0,00) such that |8°‘L( )| < co ]z\_l_w for

z € RO\{0}, a e N3, |a| < 1. Let ¢ € C°(00Q) and put A(¢p = Joo L ) d(y) doy,
for x € R®. Then A(¢) € C*(R?) for a € [0,1).
Proof: [9, Lemma 6.1]. O

Lemma 2.4 Letp € (1,00), a € (0,2/(3p)), R € (0,00) with Q@ C Bg. Then
(1/p—a/2)~" 1/p—a/2
() (] te=vr 10wl ao,) do.) """ < elp.a B ol for L7(0).
Br

Proof: See [7, Lemma 3.2]. O

We will use the fact that a function v defined in a 3D exterior domain and whose gradient
is L?-integrable for some ¢ € (1,3) takes a constant boundary value at infinity:



Theorem 2.3 Let U C ]Rj be open and bounded, with Lipschitz boundary. Let q € (1,3).
Then for any v € W,oHTU®) with Vv € LI(U )3, there is 7(v) € R with v + 7(v) €

LYW= TY). There is ¢g > 0 such that ||v + 7(0)||(1/g-1/31 < co||Vullg for such
functions v. In addition, if a function v of this kind belongs to L*(U") for some s € (1, 00),
then the constant T(v) vanishes.

Proof: See [I3, Theorem I1.6.1], except as concerns the criterion for the equation 7(v) = 0,
which is treated in [6, Lemma 2.4]. O

If U is an open, bounded set in R" with some regularity of the boundary, the trace of a

function v € C*°(U) is, of course, the restriction of v to OU, by the definition of the trace.
Several times we will use a slight generalization of this fact, as stated in

Lemma 2.5 Let n € N, U C R™ with C*-boundary, v € C°(U) with v|U € WY(U).
Then the trace of v|U on OS2 coincides with v|OU.

Proof: The extension operator from [I, 4.26] yields a function v € C§(R") N W (R™)
with 9|U = v. The lemma then follows via a sequence (v,) in C§°(R™) constructed by
means of Friedrich’s mollifier and converging to v in WH1(R") and pointwise uniformly
in x € R™. UJ

We end this section by recalling some properties of solutions to either the Poisson equation
or the Stokes system.

Lemma 2.6 Let U C R® be open and bounded, with C*-boundary. Let n'Y) denote the
outward unit normal to U. Suppose that u € CHU) N WL U)* N C*U)3, = € C°(U) N
WL U)NCHU), u € COU)> N WHHU)? N CYHU)3. Alternatively, let p € (1,00), u €
W2P(U)3, 7 e Wh(U), u € W (U)3. Then

3
/(Au — Vr+ Vdivu) - udz + (1/2) / Z (Ojur + Okuj) (05U + Ouy) da
U U jk=1
3

:/GUZ

n,gU)(ﬁkuj + Ojuy, — 0, ) Uj do, + / 7 divudz.
k=1

U

Proof: Apply the Divergence theorem. For functions u, 7 and w given as in the first case
considered in the lemma, this is possible according to the reasoning in [9, Lemma 3.1]. In
the second case, the functions under consideration are such that applying the Divergence

theorem in a suitable way is possible due the density of C"*°-functions in Sobolev spaces.
OJ

The ensuing lemma deals with the Poisson equation with data in certain Sobolev and LP-
spaces, respectively. The lemma states that in such a situation, unsurprisingly, a classical
solution belongs to a Sobolev space corresponding to the regularity of the data.

Lemma 2.7 Let U C R? be open and bounded, with C*-boundary. Letr € (3/2, ), v €
W2=rr(9U), g € L™(U), w € C°(U) with w|U € C*(U), A(w|U) = g and w|0U = ~.

Then w|U € W™(U) and w|dU = v in the trace sense.



Proof: This theorem is a special case of [7, Lemma 3.4], which, in turn, is based on the
W?24-theory of the Poisson equation and on the maximum principle. Also see Lemma .
O

We state a result on W?2P-resularity of solutions to the Stokes system in bounded domains
under Dirichlet boundary conditions:

Theorem 2.4 Let U C R? be a bounded domain with C*-boundary. Let p € (1,00), f €
LP(U)3, b e W2 Vpr(U)? with [,,b-nY) do, = 0, where n'¥) denotes the outward unit
normal to U.

Then there are functions u € W2P(U)3, m € W'P(U) such that —Au + V7 = f, divu =
0, uloU = b, fUﬂ'd.fL' = 0. Moreover there is co > 0 such that for f, b, u and 7 as before,
the estimate [[ulz,p + |7l < co (| fllp + [bllo-1/p.p) holds.

Proof: [13 Theorem IV.6.1]. O

In the ensuing theorem, we present a uniqueness result for LP-weak solutions to the Stokes
system in bounded domains, under Dirichlet boundary conditions:

Theorem 2.5 Let U, p, n'¥) be given as in Theorem. Assume thatu € WHP(U)3, m €
LP(U) such that [ (Vu -V + ndivep)ds = 0 for ¢ € C3°(U)*. Further suppose that
divu =0, u|oU = 0. Then u= 0.

Proof: [13, Lemma IV.6.2].

Finally we mention a technical result on the difference of two solutions to (1.1) in Q°,
concerning L%-integrability of the gradient of the pressure near infinity.

Theorem 2.6 For j € {1, 2}, let p;, r; € (1,00), u) € W2 ("), =) e Wil (Q0°)
with Va0 |Bg € Li(B%)? for some R € (0,00) with Q C Bg. Further suppose there are
numbers q, g2 € (1,00) such that uW|B§, € L% (B%)* for j € {1, 2}.

Put u := uV) —u® 7= 70 — 72 and suppose that the pair (u,7) solves with
[ =0. Abbreviate r := {p1, ps, 11, r2}. Then Vr|B§, | € L*(B§,)* for s € (1,r].

Proof: We refer to the proof of [5, (3.4)], only adding that due a misprint, there is
a reference to [5, (1.5)] instead of [, (1.3)] in that proof. Note that w|B% is a slowly
increasing function ([26, p. 150])in view of [13] (I1.6.19) and (I1.6.24)]. This latter fact is
relevant on [, p. 1524 above]. O

3 Some results on local charts of 0f).

Since the crucial point of our theory is a W?2~/P:P-estimate on 92 of a certain boundary
potential (Theorem , precise informations on the local charts we will use are essential
for what follows. These informations are specified in this section. We choose a description
of the boundary as introduced in [12, p. 304-306].

Lemma 3.1 There are numbers k(Q2) € N, a(Q2) € (0,00), and for any t € {1, ..., ()}
a function a, € C?([—a(Q),(Q)]?) with [Va,(0)] < 1/4 (0 € A1), an orthonormal



matriz D, € R¥3 and a vector C, € R3 such that the following properties hold:
Put A, = (—0a(Q), ca(Q) )2 for o € (0,1],
%) =Dy (n, a(n)) +Cp (n€ D)), Ay i={nn) : neA,},
Uo ={Dr- (0, as(n) +s) : n €Ny, s€ (—0a(), ca(Q))}
for o, t as before. Then there is a constant cy € (0,00) such that

k(Q)
e Il < Y NFornlAyul < collflly for £ € L'(09). (3.1)
t=1
The function v, : Ay — A, is bijective, continuous and with continuous inverse, the
set Uy, 1is open in R3, and Ny = Uy, NOQ fort € {1, ..., k(Q)}, o € (0,1]. Moreover
dist(0OQ\A ) > 0 fort as before and o1, 02 € (0, 1] with o1 < 0.

Define J,(n) = (1+ 2521 8jat(n)2)1/2 form € Ay, t as before. Then for such t and
for functions F : A, — C, the relation F' € L'(A,;) holds iff (F o~,)J, € L'(A,). In
addition

t,027 to‘1

| Fdo= [ (Fortmaman for Ferin,), (32)

t,1 1

Proof: All the statements of the lemma are standard results (see [12], Lemma 6.3.9, Def-
inition 6.3.10, Theorem 6.3.12], with additional details in [9], Section 2]), except perhaps
the claim that the local charts v, may be chosen in such a way that |Va,|. < 1/4 for
1 <t < E(Q). In order to satisfy this condition, the boundary 9 has to be split into
sufficiently small parts. Details of this procedure are rather technical but straightforward.
O

Lemma 3.2 There are constants §(Q2), D € (0,00) such that

z+rnD(2)eQ’, z—rnP () e, (3.3)
|z 4+ kD (z) — 2’ — &' n D) > D (|z — 2| + |k — K]), (3.4)

for x, &’ € 00, Kk, K" € [=6(Q), 6(Q)]. In addition
(z—2) - nD(@) < Cle—2'|*  for z, 2’ €09, (3.5)

with € independent of x and x'. For § € (O, (5(9)}, put
Us :={z € R® : dist(z,Q) < D3/2}, U 5:={rx R : dist(x,Q°) < D§/2}.

Note that the sets U5 and 4_5 are open in R and Q C Uy, Q° C U_s, for § as before. The
estimates

o= (y+nP(y) )2 Ds/2, |2~ (y—6nD(y))| > D5/ (3.6)
hold for § as before, y € 0, x € Us and x’ € U ;.

Proof: See [9, (2.24), (2.22)] for (3.3), (3.5)), respectively, [7, Lemma 2.1] for (3.4), and
the proof of [7, Lemma 5.3| for the propertles of Us and U_s. O
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4 Simple and double layer potentials related to the
Stokes system or the Poisson equation.

The solutions to (|1.1)), (1.2)) we will consider are given by a sum of simple layer, double
layer and volume potentials. The first two types of potentials are introduced and studied
in this section. We begin by defining some kernel functions, among them a fundamental

solution to (L.1)). Put
NE) = @rle) ™, Bpl2) = Brle)” Gtz ald ), Bi= Ephees (41)
Sipt = =0 ON — O Ejy — ;B for 2 € R*\{0}, 1<,k 1<3. (4.2)
The matrix-valued function F = (Ej;)1<j k<3 is the velocity part of a fundamental solution
to the Stokes system (|1.1]), with its associated pressure part given by —VI1.

The next lemma is an obvious consequence of (4.1)) and (4.2)). In that lemma, as in similar
situations below, the restrictions on |a| (order of differentiation) may of course be dropped
if the constants may depend on |a|. We will not need this fact, instead limiting the range
of |a].

Lemma 4.1 The relations Ejj,, Sjr, M€ C*(R*\{0}) and
3
~AEj, — 0;0M =0, Y 0,Ej;, =0, A=0 (4.3)
pn=1

hold for 1 < j,k,l < 3. In addition
0% Ej(2)| + |0°0(2)] < C'l2| 771, (4.4)

for j, k as before, 2 € R3\{0}, o € N3 with |a| < 3. Moreover, for j, k, I, z as before,

3
Siwi(2) =3/(Am) zj 2 2 2%, —ASj +20,000M =0, Y 0,8, =0.  (4.5)
v=1

In the following lemma we introduce a simple layer potential associated with the Stokes
system ((1.1)).

Lemma 4.2 Let ¢ € L(99). For x € R3\0Q, put
V(e)a) = [ Ex—y)-o(y)do, Q6)(x) = / (—VR)(x — y) - 6y) do,.
o0 oN

The integral [, |E(x —y) - ¢(y)|doy is finite for a. e. x € dQ. In particular, for x € 0L,
the term V(¢)(z) may be defined in the same way as for x € R*\0Q.

The functions V(¢);|R*\0Q and Q(¢) belong to C*(R*\N), for 1 < j < 3, with
IV (P)(x) = [oo(0*E)(x —y) - ¢(y) do, for x € RN\IQ, a € N§, and with an analo-
gous formula being valid for Q(¢).

The pair (V(9)|R*\0Q, Q(¢)|R3\OQ) satisfies the Stokes system with f = 0.
If ¢ € C°(00)3, then V(¢) € C*(R3)? for a € [0,1).

11



Note that Q(¢) is not defined on 92 because its kernel is singular with respect to integrals
on 0.

Proof of Lemma [4.2; The term V(¢)(z) is well defined also for = € 9 according
to Lemma . The claims related to the differential properties in R3\9 follow from
Lebesgue’s theorem and Lemma The statement on Holder continuity of V(¢) in R?
if ¢ is continuous is a consequence of and Lemma . 0

Corollary 4.1 Letp € (1,00) and R € (0,00) with Qg C Bg. Then, if r € [1, 3p/2), the
estimate

IV ($)|BR\OQ 1 + [Q(9)| Br\OQ, < €|, for ¢ € LP(09)*. (4.6)

is valid. In particular V(¢)|Q € W (Q)3, V(9)|Qr € WL (Qg)? for r, ¢ as above, and
V()| and V(¢)|Qr have a trace on 02. Moreover

IV()loQll, < €llgll, for ¢ € LP(0Q)°, (4.7)

with V(¢)|092 as defined in Lemma . The preceding constants € are independent of ¢.

Proof: Let ¢ € LP(9)3. The constants € in this proof are independent of ¢. Take
r € (p, 3p/2). Then we obtain from Lemma [2.4 with a = 2(1/p — 1/r) that

10m(V(9)|BR\OQ) || + [|Q(9)| BRI, < €|ofl, (1 <m < 3).

It follows that even if r € [1, 3p/2), the preceding inequality remains valid. Since for
x,y € Bg with x # y, we have |z — y|™! < 2R|z — y|™2, the same argument implies
that if 7 € [1, 3p/2), the estimate ||V (¢)|Br\0||, < €||¢]|, holds. This proves (£.6). As
concerns inequality , we refer to Lemma . 0

We turn to the question of how to approximate V(¢)[€2 and V(¢)|Q° by functions which
are C* in open sets somewhat larger than € and §2¢, respectively.

Lemma 4.3 Recall the parameter §(Q) and the sets Us and U_s for § € (0, 6(Q) | intro-

duced in Lemma. Further recall that 5 and _s are open sets in R with Q C Uy, Q° C
U_s, for & as before. Let ¢ € L'(0Q)* and define VO (¢) : Us — C3, Q) (¢) : Us — C by
setting

VO@)a) = [ E(a-ly+3n ) - o) doy

o0

Q¥ ($)(x) = /a M (o~ o)) ) do,

for x € s, 6 € (O, (5(9)] In addition, we introduce the functions V9 (4) : U_s —
C3, QY : U_s — C by replacing s with U_s and the term y + §n with y — dnY in
the respective definitions of V. (¢) and Q¥ ().

Then VE)(¢);, QED(¢) belong to C*(Uss) for 1 < j < 3 and for § as above. Any
derivative of these functions commutes with the integration over OS2 appearing in their
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definition. The pair (V(ﬂ)(@, Q(iE)(¢)) is a solution of in Uyps with f = 0. In
addition

V(‘S)(qﬁ)(x) — V(o) (z) forz € Q, V(";)((b)(x) — V(o)(z) ifd 0, for x € Q. (4.8)

Suppose that p € (1,00), ¢ € LP(0Q)?, R € (0,00) with Q C Bg. Then

| (Vo) = vi) @ do . (49)
) 105 (VO (p) =V (9))(x)Pdo, — 0 if510, for a€Njwith|a] <1. (4.10)
If € C°(00)3, then forx € 900, 1 < j <3,

VEN () () = V(9)(x), (4.11)

0\ (@) (,VE) () + 0V ED () — 656 QD (9) ) () (4.12)

e
Il w
—

= (1/2) (£6+T(9) ),(x) (1< <3),
for 6 10, uniformly in x € 9. Moreover, for ¢ € C°(ON)3, v € 99, § € (O, 5(9)},
0 (V(#)|R*\OQ) (2 £ 00D (z)) — VIV (@) (2)] < €[d]6"2. (4.13)

The function V()02 as defined in Lemma4.3 and the trace of V(¢)|Q and V(¢)|Qg on
0 (see C’orollary coincide.

Proof: We only consider V(=9 (¢) and Q=% (¢). If —§ is replaced by §, an analogous
reasoning is valid.

The differential properties of V(=9 (¢) and Q=% (¢) are a consequence of (3.6)), the relation
Ej, M e C*(R*\{0}) for 1 < j,k < 3, the equations satisfied by £ and 9 (see Lemma
4.1)) and Lebesgue’s theorem.

Let v € Q°. For y € 09, § € (0, 5(Q) |, the relation |z — [y — d nY(y)]| > D §/2 holds by
. Since E € C=(R*\{0})*>*3, we may conclude that the claim on V(=9 (¢) in (4.8))
follows from Lebesgue’s theorem. For the proof of and , we refer to the proof
of [7, Lemma 5.4,

Concerning the proof of respectively and (4.12)), we refer to [9, Lemma 6.3] and [9),
(6.20), (4.72)], respectively, as concerns V(=9 (¢). When V() (¢) is considered, the relevant
references are [9, (6.10)] and [9, (6.19), (4.71)]. Inequality is a consequence of (3.4);
see the proof of [7, Corollary 5.3] or [9, (6.21), (6.22)].

We finally note that because of Lemma , inequality (3.4) and Lebesgue’s theorem, the
relation ||V &) (¢) — V(¢)|092|, — 0 (6 J 0) holds. The last claim of Lemma 4.3 follows
from this, (4.9), (4.10), and C*®-regularity of V*9(¢) on . O

Next we introduce double layer potentials related to the Stokes system.
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Lemma 4.4 Let ¢ € L'(9Q)3. Then for x € R3\0Q, | € {1, 2, 3}, put

W (o)) = /8 =3 Sule — )65 (0) do,

7,k=1
3

() (x) == /a (2) Y0 00w~ 1) 85(0) i () do,

jk=1

Then W (¢); and T1(¢) belong to C=(R3\OQ) for 1 <1 < 3, and any derivative of these
functions commutes with the integration over ) appearing in their definition. Moreover

the pair (W(gb), I1(¢) ) solves with f = 0. (The functions Sjg and M were introduced
in and , respectively. )

Proof: Lebesgue’s theorem and the relation Eji,, 9 € C°(R*\{0}) for 1 < j,k < 3 yield
the lemma except its last claim, which follows from (4.5). 0

Lemma 4.5 Let R € (0,00) with Q C Bg, and put § = dist(Q, B%). Then

0°V (0) ()| < O, R) [|o]l1 |27, 10°W(¢)(2)] < C(8, R) |o]lx || 7% (4.14)
0°Q(6)(2)] < C(8, R) 01 || 727, 0°T1(¢) ()| < C(6, R) ||glls 27>~ (4.15)
for ¢ € LY (9Q)3, =z € B, a € N3 with |a| < 2. Consequently, if ri € (1,00), ry €

(3/2, 00), 13 € (3,00), then for 1 <1,m < 3, ¢ € L'(9N)3,
10mOV (9)| Bgllry + 10mQ(0)| BE|lr, + 10mW (0)| Bi (4.16)

HIT(O)I Bzl + 10mI1(@)| Bl < C(6, R, 11) [[6]]1,

W (O)IBallry + 100V (O)(Br) I, + [|Q(&)|Billr, < C(6, R, 72) [|0]l1,  (4.17)
V()| Billrs < C(6, R, 73) |61 (4.18)

Proof: Obviously 6 > 0. Let y € dQ\{0} and put 2z := |y|™* Ry. Then |y| + |z — y| <
|z| = R, and |z — y| > 9, so |y| < R — 4. Hence for z € B, we get

[z =yl = (0/R) [z[ + (1 = 6/R) x| — [yl = (0/R) x| + R — 0 — [y| = (0/R) |].

Now the lemma follows from (4.4)). O

We introduce two integral operators, denoted by ¥ and ¥ and defined by double layer
potentials, which map the space LF(99)? into itself, for any p € (1,00). These operators
are closely linked with the boundary values of W ()| and W (¢)|Q°, which do not coincide
except if ¢ = 0 (Theorem [4.4]).

Lemma 4.6 The inequality | 3, Siu(z — y)n\? (z)] < €|z — y|™* holds for x,y € 99
with x # y, 1 < 7,1 < 3. The preceding estimate remains valid if the term n,(cﬂ)(x) 18

replaced by n,(CQ) (y).
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If p € LY(002)3, 1 < j < 3, we may define

T(0);(@) = (=2) | Y Sz —y)ni(x) ¢i(y) do,

O =1

for x € 0Q. Let p € (1,00). For ¢ € LP(OQ)3, the relation T (¢) € LP(9Q)? is valid, and
the operator Ty = LP(02)* — LP(00Q)*, T (¢) := (@) (¢ € LP(9Q)*) is linear, bounded
and compact.

Define the function T(¢) by replacing the term néﬂ) (x) by —nlgﬂ)(y) in the definition of
T(p). An operator T,, may be associated with T in the same way as T is associated with
T*. Then equally T, : LP(0Q)3 — LP(9N)? is linear, bounded and compact.

Let I, : LP(0Q)? — LP(02)* denote the identity mapping of LP(92)*. Then the operators
+1, + T, and £1, + T are Fredholm with index zero.

For q € (1,00), the operator T is dual to Ty .

Proof: For the estimate of | S0_, Sju(z — y) n,(gm (x)] stated in the lemma see 1} and
®

the first equation in 1) In the case that the term n,(cm (z) is replaced by —n, " (y), the
same references may be used.

Lemmal2.1]yields that T*(¢) and T(¢) are well defined for ¢ € L'(92)%, and T*(¢), T(¢) €
LP(0Q)* if ¢ € LP(99)*. Moreover it follows from Lemma [2.2| that T and T}, are linear,
bounded and compact. The general theory of Fredholm operators now implies that £1, +
T, and +I, + T are Fredholm with index zero. The last statement of the lemma is a
consequence of Fubini’s theorem. O

Theorem 4.1 Letp € (1,00). If a € [0,1) and ¢ € LP(ON)? with +¢ + T(¢) € C*(0N)?
or £)+%* () € CUIN)3, then ¢ € C*(ON)3. In particular ker(£1,4+T,) = ker(£Il,+T,)
and ker(£1, + T;) = ker(£l, + T;) for q € (1, 00).

If ¢ € C4(00)? for some a € (0,1) and £¢ + T(p) € C*(ON)> N W21/PP(9Q)3, then ¢
belongs to W2=1/rr(00)® and the inequality ||¢]l2-1/p.p < € (|| £ &+ F(D)la=1/p.p + 10]l5)
holds, with € independent of ¢.

Ifp >3 and ¢ € LP(9Q)? such that £¢+F(p) € W PP(9Q)3, then ¢ € W2~1PP(9Q)3,
and there is a € (0,1) with ¢ € CH*(9Q)3.

Proof: For the first statement of this theorem see [9, Lemma 5.4]. For the second we
refer to[9, Lemma 7.8]. As concerns the third, a direct proof of the relation ¢ € C''*(9Q)?
for some a € (0,1) may be found in [23]; see [23, Lemma 3.1]. In view of the LP-estimates
available here, we may obtain this result in a a shorter way.

In fact, suppose that p > 3, and take ¢ as in the third claim of the theorem. Put
b:= ¢+%(¢). Then by a trace theorem and an extension theorem, there is B € W (R?)?
with B|0€) = b. Since p > 3, a Sobolev inequality implies there is a € (0,1) such that
B € CY*(R3)3, so b € C*(9Q)3. Thus ¢ € C*(992)® by the first statement of Theorem
, hence ¢ € W2=1/P2(9Q)3 by the second claim. Now the same argument as used above
for b provides that ¢ € C**(9Q)3. The same reasoning is valid if ¢ is replaced by —¢ in
the preceding definition of b. 0
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Theorem 4.2 Define

¢(j)(~’17) = (0jk)1<k<3; <Z5(4)(37) 1= (13,0, —11), ¢(5)(37) 1= (12, —71,0),
¢ (z) == (0,25, —x3) for 1 <j <3, x€R®("rigid motions”).

Then for any domain U C R3, the space
LU) :={veCYU)? : dju,+ ;=0 for1 < j, k < 3}

is spanned by the family (¢WW|U, ..., 'O|U) and thus has dimension 6.

Let p € (1,00). Then with the notation of Lemma ker(—I, +T7) = {kn® : k € R}
and ker(I, + T,) = span{¢W|0Q : j € {1, ..., 6} }. Morcover dimker(I, 4+ T7) =6 and
dim ker(—1I, +T,) = 1. In addition ker(£I, + T;) possesses a topological complement
ESY in LP(0Q)3. For ¢ € ESY, the estimate oll, < € |[(£p +T;) (D), holds.

Let b € LP(0Q)®. Then [,,b- ¢V do, =0 for 1 < j < 6 iff there is a function ¢ € ES
with (1/2) (gzﬁ + T (o ) =b. This function is uniquely determined and will be denoted by
ES(b).

Fiz a function ¥ € ker(—1I, + Ty)\{0}. (In view of Theorem this function ¢
belongs to ker(—1,+1T,) for anyr € (1,00).) Again letb € LP(9Q)*. Then [, b0 do, =
0 iff there is a function ¢ € E,gf) with (1/2) (—qﬁ - ‘Z*(qﬁ)) = b. This function is uniquely
determinded, too, and will be denoted by Fzgf)(b).

Suppose that q, r € (1 o0) andb € Lq(ﬁQ) NL"(9Q)* with [, b-¢") do, =0 for1 < j <6.
Then FO(b) = F). Similarly FSO(0) = FOb) if b € LI(OQ)3 N L7(8Q)3 with
Joo 0019 do, = 0. Therefore we will write F*)(b) instead of Flgi)(b) if b € ran(£IL,+1T,).

Proof: Concerning the claims about £(U) we refer to [9, Satz 6.1]. By [0, Lemma
6.5] the space span{qﬁ(j)]@Q : j € {1, .., 6}} has dimension 6. The equations for
ker(—1I, + Ty) and ker(I, + T,) hold according to [9, Lemma 6.7, 6.5, 6.10]. We re-
call that for ¢ € (1,00), a € {1, 1}, the operator al, + T is dual to al, + T}, and these
operators are Fredholm with index zero (Lemma [£.6). Therefore the remaining claims
in Theorem [.2] except the last one, follow by the closed range theorem, Riesz’ repre-
sentation theorem in LP-spaces, the open mapping theorem and standard results about
topological complements. The last claim of the theorem follows from Theorem O

Lemma 4.7 Put M = (fr?Q ¢(]) ¢(k) d01>1§j7k§3 and M = (IQ ¢(]) ¢(k) dm)lgj,kSS; where
oW ... ¢ were introduced in Theorem|4.4. Then the matrices M and M are invertible.
Proof: The functions ¢M[0Q, ..., ¢®|0Q are linearly independent ([9, Lemma 6.5]).
Let @« € RS with M - a = 0. Then 2]6.:1 a; 30, Joq @9 - ¢W do, ), = 0, that is,
Joa | S ¢ do, = 0,50 S g = 0, and finally o = 0. This means that M

is invertible. The functions ¢(V)|Q, ..., (®|Q are linearly independent as well (Theorem
. Thus the same argument as for M yields that M is invertible, too. 0

Lemma 4.8 Let p € (1,00), b € W/PP(00)3 with [,, ¢ - bdo, =0 for 1 < j < 6.
Then there exists a sequence (by,) in C°(ON)? such that for n € N, the function b, belongs
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to C*(0Q)? for a € (0,1), hence b, € W=Y"7(9Q)? for r € (1,00), [5q ¢ - b, do, =0
for 1 < j <6, and such that ||b — by||1-1/p,p — 0.
Suppose that [,, v'© -bdo, = 0, where ©) was introduced in Theorem . Then there is

a sequence (by,) in C°(OQ)3 with the same properties as before, except that the condition
Joq @9 - by do, =0 (1 < j <6, n€N) is replaced by [, ¥ b, do, =0 (n € N).

Proof: Since b € W'=V/PP(9Q)3, there is B € W'P(Q)? with B|0Q = b. We may choose a
sequence (B,,) in Cg°(R?)? with | B, — B||1, — 0, and thus || B, —b]|1_1/p,, — 0. Obviously
b, := B,|0Q € C*(0Q)? forn € N, a € (0,1).

Let n € N and set ¢, := M~! fa U dox)1<]<6, with the matrix M introduced in
Lemma . Then [, by do, = Zk:l Joq @90 do, ¢, for 1 < j < 6. Thus, putting
by, = by, — Zk Lk &) we obtam a function b, belonging to C*(99Q)3 for a € (0,1) and
verlfylng the relation fm ¢ - b, do, = 0 for 1 < j < 6. Since ||b, — bll1-1/p,p — 0 and
Jo0 by, 69 do, = Joq(bn—b) -9\ do, for 1 < j < 6, n € N by our assumptions on b, hence
lco] < €|y, — b||, with € independent of n, we get in addition that ||b, — b||1-1/p,, — 0.

The second part of the lemma may be proved in the same way as the first, but the
reasoning is somewhat simpler because no matrix is involved. Note that by Theorem [4.1]

we have ¢(© € C*(9Q)? for a € (0,1). O
We present ”jump relations” for the single layer potential.

Theorem 4.3 Recall the parameter 6(Q2) from Lemma[3.3, Let v € C°(00)* and put
U = V(@) |RNQ, II := Q(1), where V() and Q(1) were introduced in Lemma [4.4
Then

> i (@) (QUk + 0kU; — 0 ) (2 £ en@(x) ) = (1/2) (F + T (1)) ,(2)  (4.19)

k=1
fore—0, €€ (0, 5(9)}, uniformly with respect to x € 99, 1 < j < 3.

Proof: The relation in (4.19)) holds according to [9, Lemma 4.8]. Note that the definition
of T*(¢) in [9] (see [9, Definition 4.2 and 5.1]) coincides with ours in Lemma This
follows from (4.5)). O

The first part of the ensuing theorem states a jump relation for the double layer potential
W (¢) because the continuous extension of W (¢) 1Q° to Q° and the corresponding extension
of W ()| to ©Q do not coincide if ¢ # 0.

Theorem 4.4 Let ¢ € C°(0Q)3. Recall that W (¢) € C®(R*\0Q)? (Lemmal{.4). Then
the function W(¢)|Q" admits a continuous extension to Q°, denoted by W(¢) and given
by Weo(9)[0Q2 = (=1/2) (¢ + Z() ). Similarly the function W(¢)|Q admits a continuous
extension to Q, denoted by Wi,(¢) and given by Wiy, (6)|0Q = (=1/2) (—¢ + T(9) ).

Let p € (3,00), ¢ € LP(0N)? such that +¢ +T(¢) € W2 1/pp 89)3 (hence ¢ € CH2(99Q)3
for some a € (0,1), and ¢ € W*V/PP(00)3; see Theorem |4 Take R € (0,00) with

Q C Bg. Then W()|U € W*P(U)3, TI(¢)|U € W'P(U) for U € {Q, Qr}, Win(0) €
CYQ)? and W,,(¢) € CHQO). The functions I1($)|Q and T1(¢)|Q° may be continuously
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extended to Q and Q°, respectively. These extensions are denoted by i, (¢) and e, (),
respectively.

Proof: For the first part of Theorem we refer to [9, Theorem 4.1].

Suppose that p > 3 and ¢ satisfies the conditions stated in the second part of the theorem.
Then [9, Lemma 7.15] yields that I1(¢)|U € WhP(U)? for U € {Q, Qg}. Since p > 3, we
may refer to a Sobolev inequality, obtaining that II(¢)|U may be continuously extended
to U. Since I(¢)|Q° € C=®(Q°) (Lemma , this means in particular that IT(¢)[Q°
may be continuously extended to ¢. By the first part of Theorem [4.4] and because of
the assumptions on ¢ in the second, we have W;,(¢)|09Q, We.(¢)|02 € W2=1/PP(9Q)% N
C°(99)*. On the other hand, since W(¢)|Q° € C*(Q°)? and Q C Bg, it is obvious that
W(¢)|0Br € W 1/PP(OBR)?. But We,(¢)|Q° = W(¢)|Q° by the definition of W,,(¢) in
the theorem, so We,(4)|0Qr € W2 1/PP(90QR)>NCC(002)3. Recall that AW (¢) = VII(¢)
(Lemma and (@)U € WHP(U) for U € {Q, Qr} (see above). Further note that
Win ()2 = W()|Q2 by the definition of W;,(¢) in the theorem.

Altogether we see that Lemma [2.7| may be applied; it yields that W (¢)|U € W*P(U)3 for
U € {Q, Qr}. Due to the assumption p > 3 and a Sobolev inequality, it follows that the
function W (¢)|U may be extended to a C'-function in U, for U as before, so W;,(¢) €
C(Q)? and W.,(¢)|Qr € C'(Qr)%. Again using that W.(6)|Q° = W(9)|Q° € C=(Q)?,
we obtain that W, (¢) € C1(Q°)>. O

The next theorem states that for a function ¢ with suitable regularity, the traction bound-
ary data of the double layer potential in €2 coincides with the corresponding data of this
potential in Q°.

Theorem 4.5 Recall the parameter §(S2) introduced in Lemma 3.3, Let a € (0,1), ¢ €
Che(9Q)3, x € 09, 7 € {1, 2, 3}. Define the function F : [—6(2), 6(Q)]\{0} — C by

F(8) =Y 0" (@) (9, W () + BW(0); — 0 1(9) ) (z + 50 D(x))

for § € [=6(2), 6(Q)]\{0}. Then the limits lims o F'(5) and lims g F'(5) exist and coincide.

This result is frequently used in analysis and numerics (boundary element method) of
incompressible flows; see [25, Proposition 3.31] for example. A proof is due to Faxén [10],
§ 11], but this proof is rather long (10 pages) and in parts somewhat vague. An analogous
result for the Laplace double layer potential is shown in a precise way by Hackbusch [15
Section 8.5.2]. More general elliptic equations (but not systems) are treated by Miranda
[20, Theorem I1.15.V]. Kupradze [I8], §VI.9, Theorem 10] shows a somewhat weaker result
for the double layer potential associated with the Lamé system. In this situation a proof
of Theorem should be of interest. In the Appendix we give a such a proof. Although
still rather long, is much shorter and more precise than Faxen’s. In addition the estimates
in Lemma [3.2] allow us to avoid the use of local coordinates.

The next lemma indicates how for a given function b € C°(9Q)3, a function ¢ € C°(9NQ)
may be chosen so that the Dirichlet boundary data of V(b)[S2 and W (%)|€2 coincide. The
same question is answered for the boundary values of V(b)|Q° and W ()|Q".
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Lemma 4.9 Let ¢, b € C°(9Q)® with (1/2) (F¢ + T(¢)) = b. Then V(¢) € C*(R?)?
for k €[0,1) and

(1/2) [FV(9)|0Q + T(V ()]0

)] =
Note that the term (1/2) [ =V (¢)|0Q+T(V(4)|0Q) | coincides with the Dirichlet bound-
ary data of =W (V (¢ )]89)\9 and the function (1/2) [V (¢)[0Q + T(V(¢)|0Q)] with
those of =W (V (¢ )|0Q)|Q (Theorem.

Proof: We consider the case (1/2) (—¢ + T*(¢)) = b. If (1/2) (¢ + T(¢)) = b, an
analogous reasoning is valid.

The relation VIV (¢)[0Q € C*(0Q)? for x € [0,1) holds according to Lemma

Recall the parameter §(€2) > 0, as well as the set U_s; for § € (0, 6(€2) ] from Lemma

3.20 Put V9 = VEI(g), QU9 = Q9(¢). These functions were introduced in

Lemma . Note that the set Y_s C R® is open and Q° C {_s (Lemma |3.2), V(=% ¢
1.1

V(b)|092.

C®(8U_s)3, QY € O(U_s), and and the pair (V9 Q%) satisfies (1.1)) in U_s with
f=0,for e (0,86)] (Lemma.

Takel € {1,2,3}, 2€Q and 6 € (0, 6() ]. Let R € (0,00) such that {z} UQ C Bpgs.
We write n(?#) for the outward unit normal to Qg, that is, n(®#)(2) = —nV(2) for

2z € 09, n’(2) = R71z for = € dBg. Then it follows by a standard representation
formula for solutions to (1.1)) (see [9, (3.6)] for example) that

3
V(@) = / Y (Enlw—2) @V, + 0,V =55 Q0)(2)  (4.20)
MR k=1
—Sjn(x — 2) V}(_(s)(z) ) nkQR (2) do,

for 1 <1 <3, z € Qg. Note that V(=9 ig continuous, so the restriction ”a. e.” on x € Qg
n [9 (3.6)] may be dropped.

Since {2} UQ C Bgs, and because y — §n(y) € Q for y € 90 (Lemma , we find for
2 € OBg, y € 00 that |z — (y —dnD(y) )| > R/2 and |z — 2| > R/2. As a consequence,
with (4.4), for 2 € 9Bg, o € N3 with || <1, 1 < j, [,k < 3,
0°V ()| < € R 1QUY(2)| < € R, |02 (Ep(z — 2) )| < € Rl
|(c‘)l‘ﬁ)(x — Z>| + |Sjkl(x - Z)| < CR2
Thus, by letting R tend to infinity in (4.20)), the integral over 0B implicitly present in
that equation tends to zero. Hence the integral over 0{2z becomes an integral over 0f),

with n(?#) replaced by —n(®. Next we use (4.8), (4.11), (4.12)) in order to let & tend to
zero. In this way we get that

Vi) = [ (S -Eue=21/2 (<04 T@),) @2

+ 3 Siule = 2) V(6);(2) ni(2) ) do.

Jk=1
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We recall that (1/2) (—¢ + T(¢) ) = b. Abbreviate w := V(¢)|0€, and note that w €
C°(99Q)3; see at the beginning of this proof. We may then rewrite (4.21)) as

Vioh(z) = =V(b)i(z) = W(w)i(x), (4.22)

with W(w) defined in Lemma . This is true for any z € Q. Since w € C°(9Q)?,
Theorem yields that the function W(w) may be extended continuously to €. This
extension was denoted by W,,(w); see Theorem . By that theorem, we know that
Weo(w)(2) = (=1/2) (w + T(w) )(z) for z € 0N Take zy € 02 Thus we may conclude
that W(w)(z) — (=1/2) (w + F(w) ) (z0) for  — 2o, ¥ € Q. On the other hand, since
b, ¢ € C°(9Q)*, we know from Lemma [4.2] that V (b), V(¢) € C°(R?)3. Thus, by letting x
tend to xo in Q°, we get from that V(¢)i(z0) = =V (b)i(z0)+(1/2) (w+Z(w) ),(x0).
But V(¢)(z9) = w(xy) by the definition of w, so we finally arrive at the equation 0 =
V(B)lo) + (1/2) (—w + T(aw) ), (z0). 0

5 W2 lprr_regularity of V(¢)|0S.

In this section, we address the key element of our theory, that is, the fact that V(¢)|0€2 €
W2=1pr(90)3 if ¢ € W=/PP(9Q)3. The proof of this relation constitutes the main
difficulty we have to put up with, and is split into the proofs of the next two theorems.
The result in the first — Theorem — amounts to an W!'P-estimate of V(¢)|0Q against
the LP-norm of ¢. (The function V(¢) was introduced in Lemma[1.2])

Theorem 5.1 Fiz numbers k(2) € N, a(Q2) € (0,00), sets A, U,
ar, v, for k € (0,1], 1 <t < k(Q) as specified in Lemmal[3.1]

Lett € {1, ..., k(Q)}. For f: A, — C3, define Z,(f) : 02 — C? as the zero extension of
fo(y) ™A, — C®todN. Fixa function ¥y € C5°(U, 374) with W4|U, 5 = 1.

Let p € (1,00). Then, for f € LP(A,)? , the function U, Z,(f) belongs to LP(0Q)3, the
function V(W Z,(f)) o, is in WHP(A,)3, and

V(% Z(f)) o vllip < €l1f]l,. (5.1)

A, . and functions

Proof: Recall that a, € C%(A)), |Va,|s < 1/4, and there is an orthonormal matrix
D, € R**3 and a vector C, € R® with ~,(n) = D, - (1, a,(n) ) + C, for n € A; see Lemma
. We have ¥, € C5°(U, 3,,) by the choice of ¥y in the theorem, so ¥; 07, € Cg(A3/4)
by the definition of U, ;,, and 7, in Lemma 3.1 In addition we will use the function J

(surface element) introduced in Lemma [3.1] as well as the parameter 6(f2), which was
fixed in Lemma . Let 09 € (0,00) be so small that BZ (0) C A, for ¢ € A, We

introduce some additional notation. For o, n € A, 7 € R? § € [O, 5(£2) ], put
L(0,n,0) :=Ty(0,1,6) := 7,(0) = 7(n) — & (n“ 0 3,)(m),
T(e,n,8) :=T;(0,n,0) := () = & ('Y 0 7,)(0) = %(n),

(o, 7) =T,(,7) == Dy - (e =7, Va,(0) - (¢ — 1)),

= (VU 0,) J,.

(&)
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Let f € CY(A)? N LP(A,)% j € {1,2, 3} and v € {1,2}. Since ¥, 07, € CF(4y,,), we
have € € C&(A3/4)3, so € fe C&(A3/4)3. In particular & f considered as a function with
domain R? belongs to C*(R?)? for any x € [0,1), and to LP(R?)?, and we may define

F(f)(e.n) = €n) f(n) — €(0) f(o) for o, n€ R
In addition (v,)~" : A,; = A, is continuous (Lemma , so W, Z,(f) € C°(0Q)* and
supp( U, Z,(f) ) C At’3/4. Note that (\Ift Z(f) ) o7, = (V;07,) f, so due to equation 1}

1We Z()llp = M(Weoy,) P Tl < €| flp, (5.2)

with € independent of f. We consider the function V) (¥, Z,(f) ) introduced in Lemma
. According to that reference, this function is C* in an open set s containing ) as a
subset, and

v (3, 2,(f) /B Zal W)@ — [y + 50D (U 2(f)), (v do, (53)

Q=1
§ € (0,6Q)], v €8s, 1 <1 < 3, with (Ej)1<jk<s introduced in (4.1)). Thus
17482 ( U, Z(f) )j 07, is a C'-function, and we get with ‘) and 1D that

0,[VO(W: Z(f)), 0% ](0)

= >~ alon [ @ED(T(en.) il dn—ZF(“ 0,5

k=1 Ay

for o € Ay, 6 € (0, 6(Q)], with

=" 0,(0) / (& Ej)(T(e,n,0)) — (0iE;) (T (e, ))) fe(n) €(n) dn,

k=1 Ay

Zémt / (91 ;%) (T(0,n,0) ) F(f) (0, n)k dn,

ka /A(al jk)( (9,77»5))

(001 (Tr 0 %)(0) — Dy ()i (Tr 0 7,)(n) ) dn,

F%(0,6) :=

WE

fi(0) T(0) / Eu(T(0n,6)) (T, 07,) () ) dn.

k=1 Ay

The form chosen for the definition of F(*)(p,6) arises after a partial integration with
respect to n € Ay, which is possible due to (3.6). Let ¢ € C§°(4A,). Since ¥, Z,(f) €
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C°(99Q)3, as mentioned above, we may deduce from the uniform convergence in (4.11])
that

/AM(@)[V(‘”(\I’tZt(f))jovt](g)d@%/A&/C(Q)[V(\I’tZt(f))jO%](@)de

1

for § | 0. Also because U; Z,(f) € C°(9Q)3, we may refer to (4.13) and (3.2)) to obtain
that the integral fAl C(0) FM(p,8) do tends to zero for 6 | 0. As explained above, & f €

Co(Ag,)% s0
|F(f)(e.n)| < €lo—n| for o,ne A (5.4)

Here and until further notice, constants QI are independent of g, n € Ay and (not relevant

in the case of . 5 €10, 5(Q)]. By (4.4) and . we have [(8,E;)(T(0,1,6))] <

€ |o — 1|72, hence

(81 E;x)(T(0,n,8) ) F(f)(e,mil < €lo—n|™ (5.5)

foro,ne Ay witho#n, 1<k 1<3 ¢ [0, 5(€2) } We thus see by Lebesgue’s theorem
that also for § = 0, a function F®(-,6) : A; — R may be defined in the same way as in
the case § # 0. It further follows that F'?)( -, §) is integrable for 6 € [0, §(£2)] and

/c (0,6 d0—>/C 0,0)do (6 10).

Since 7, belongs to C?(A;)? and has bounded derivatives, and because of (3.4) and the
relation W, 0, € CF(4,,,), we have

(0 E) (T(0,n,6) ) (Quve(@)i (e 07,)(0) = dvy(mi (W0 y,)(m) )| < €lo—nl™,  (5.6)
|Eji(T(0,1,0)) 0,(¥r07,)(0)] < €lo—n|™
for o, n € Ay with p#1n, 1 <k, 1 <3, §¢€ [0, d(2) ] As a consequence, as in the case of

F®(.9), the function F® (. §) : A, +— R for pu € {3, 4} may be defined as above also
for § = 0. In addition the function F*) (- §) is integrable for any § € [0, ()], and

/ (o) F(0.0 dg%/ C(0) F*)(0,0) do (5 1 0).
Altogether we may conclude that the weak derivative 9, [ V( U, Z(f) )j o %] exists and
4
0,[V(W: Zdf)), 0 ](0) = > FW(g,0) for g€ A,. (5.7)
n=2

We are going to transform F®)(-,0). Recall the term f(g, n) introduced at the beginning
of this proof. We have

IT(0.7,0) — T(0, )| = la,(0) — a,(n) — Va,(0) - (0 — n)| < €lo—nl*,
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and |T'(o,7) + 9 (T(e,n,0) —T(0,n) )| > |0 —n| for ¥ € [0,1], o, n € A, so with (4.4),

(0E;) (T(2,0,0) ) — (AE) (T(e,m) )| < €lo—n|™ (5.8)
for o, m € Ay, 0 #n, and for 1 < k,1 < 3. Since € f € C(Ay),)°, we may thus define

3

GW(o) = Zam(@)z/ ((fh Ej1)(T(o,n, ))—(@Ejk)(f(@,n))> fr(n) €(n) dn,

k=1 Ay

60 == Y anlon @ &) [ ((AED(T(en.0) ~ @) (Flen)) ) dn

k=1 Ay

for o € A,. Inequality 1} holds with T'(g,7, ) replaced by f(g, n), so we may further
define

690 = 3 Blo) [, @B (Tem) F (e medn (59

k=1

for p € A,. Since

sup{| (@1 Ejx) (T(e.n))| = o, m €Ay, lo—nl =00, 1 < k1 <3} < o, (5.10)

we may set

3

(o)=Y a0 / @) (F(em)) fuln) €(n) dn,

k=1 AI\BE (o)

=Yoo @€ [ @) (Fem) d

k=1
for p € A;. Then

5
= GW(g) for g€ A,. (5.11)

Concerning this equation, note that the domain of integration Bgo(g) in the definition of
G® () may be replaced by A, N B2 (o), because €, f € C}(As4)° and due to the choice
of o at the beginning of this proof. In view of and 7 let us estimate the terms
GW () for € {1, ..., 5}, as well as F®(p,0) and F*(p,0). The function G® is by far
the most difficult to handle since it hides a singular integral. Following [4, (2.1)] (where
the term (0 —1)$ (0 — n)3"~* is lacking), we write G®) as a series. To this end we recall
that |[Va,(0)| <1/4 (0 € Ay) by the specifications on a, in Lemma[3.1] As a consequence
|Va,(0)- (o—n)|/le—n| <1/4 < 1/2 for o, n € A, with o # n. (The upper bound 1/2 is
sufficient here.) Hence for 7 € N, g, n € A; with ¢ # 7,

T(o.n)| ™ =lo—n"" (1 +(Vayo) - (e—n))?/lo - 77\2) o (5.12)

[e.o]

Z( 7/2) > ( ! )alat(g)”agat(g)m_”(g—n) (0=n)3" "o —nl777™m

=0
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On the other hand by the definition in (4.1))

(8lEjk)(z) = <_5jk 21+ 5jl Zr + 5kl Zj) ’Z|_3 — 3Zj Rk 2l |Z|_5 (513)
for 1 <k,1 <3, 2 € R¥\{0}. We combine (5.12)) and (5.13)). To this end we put
1 0
A(e):=D,- | 0 1 for o€ Ay,

da,(0) Oaay(0)
with D, introduced in Lemma . Then I(o,n) = A(0) - (0 —n) (0, n € A,). Put

3(0)kir = =0k A(0)1r + 9t A(0)kr + 011 A(0) 1,
3(@)]41& = -3 Q[(Q)j ai m(@)kCn Q[(Q)la:;(g)

for k, 1 € {1, 2,3}, r€ {1, 2}, a € {1, 2}3, o € A,. Then we get from ([5.13)) that

(OEx) (T(em)) (5.14)

O)wir (0 = 1)r |F97 )7+ Z 3 klaHQ Mas

ae{l,2}3

(0. n)|°

IIMM

for k, [, o as before, and for n € R? with ¢ # 7. Further put
B(m,n,r, k) =k &7 K2R3 B(m,n,a, k) Hlias Ky k™ R TPTE™

for r, o as above, m € N, n € {0, ..., 2m}, k € R?\{0},

W(m,n, o) == (_3/2) (2:) Oha,(0)" Doy (0)*™ ",

m

B 0)i= (7)) dade 2l

m

for m, n as before and ¢ € A,. Then by (5.9), (5.12)) and (5.14)), it follows that G®)(p) =
GG (0) + G3 (), with

G3Y(p) (5.15)
3 2 co 2m

= > amle)i3(e m/ DD W(m,n, 0) B(m,n,r, 0 —n) F(f)(e,m)kdn,
k=1 r=1 B24(0) ;=0 n=0

G“””(@)

oo 2m N .

Y Y 00 / S W, n, 0) Blm,n,a, 0 — 1) F(F) (0. di

kl=1ae{1,2}3 m:O n=0
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for p € A,. Since |Va,(0)| < 1/4, we obtain with (5.4) that

‘QZmﬂﬁ(m,m 0)B(m,n,r, 0o—n) F(f) o, n)k’ (5.16)
: ‘(_;/2> ‘ (1/4™ im (2:) lo =0l |F(f)(e.mil < C((_im) ‘ (1/2)>™ o — p| !

formeN, 1<k<3 1<r<2, 0,n€ A with o # 1, where € is independent not only
of o and 7, but also of m. We thus see that the integral in the definition of GV (o) may
be moved inside the sum with respect to m € N. In this way we arrive at the integral
fBgo(Q) B(m,n,r, 0—n) F(f)(o,n)kdn for m, k, r as before and for 0 <n <2m, p € A,.

Since |[B(m,n,7, 0 — 1) F(f)(o.n)e| < €lo—n™* for m, k, 7, o,y as in (5-16) and for
0 <n < 2m, as again follows from (5.4)), we obtain

/ B(m,n,r, 0 — 1) FUF) (o n) di (5.17)
BQO(Q)\B?;(Q)

— B(m,n,r, 0 —n) F(f)(e;n)edn (o 10), uniformlyin o€ A;.
B3, (o)
But fBgO(g)\Bg(g)iB(m, n,r, 0—n)dn = 0 for p € R?, o € (0,00), m, k, r, n as before,

so we see that the term F(f)(o,n)r may be replaced by fi(n) €(n) in the integral on the
left-hand side of ((5.17). Thus with (5.15)) and (5.17)), we finally arrive at the equation

3 2
G%V (o) = Z Zaﬂt(g)l3(0)klr (5.18)
k=1 r=1
oo 2m
> D W(m,n, o) lim B(m,n,r, 0 —n) fr(n) €(n)dn,
=0 n=0 740 J B2 (0)\Bo(0)

for p € A, with the limit of the integral over BgO\B,, for o | 0 being uniform with respect
to such p. An analogous reasoning yields that

3
G ) =>" Y 070 3(0)ka (5.19)
k=1 ae{1,2}3
oo 2m ~ _
Z Zm(m>n> Q) liHOI %(mana&a 0 — 77) fk<77) 6(77) d77
=0 n—=0 740 /B2 (0)\Bo (o)

for o as before, where the limit of the integral in this equation is again uniform with

respect to o € A;. We note that [, |B(m,n,r, k)| do. < [,z |k ?do, = 27 for m €
1 1

N, 0 € {0, . 2m}, 7 € {1, 2}, and Y5y 0% [20(m, n, o) < Yono| (F2%)| (1/2)2"

for o € Ay; compare (5.16]). As explained in the passage preceding (5.2]), we have € f €
LP(R?)3. At this point, due to the uniform convergence of the integral in (5.18]), we may
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refer to Theorem [2.1]to deduce from that |GGV, < €||€ f|l, < €| f],- Here and
in the rest of this proof, € stands for constants independent of f, and also of o € Ay if
such a variable p is involved. In an analogous way as equation leads to the previous
estimate of G®Y | it may be deduced from equation that |GG, < €||f]l,, so we
finally obtain that [|G®|, < €| f]l,-

All the other relevant functions may be estimated in a rather straightforward way. By
(5.6) we see that the absolute value of the integral in the definition of F®)(m  0) and
FW(.,0) is bounded uniformly in ¢ € A,. It follows that |[FW(-,0)|, < €|f]|, for
w € {3, 4}. An analogous argument, based on and , respectively, instead of
(5.6)), yields that [|GW], < €||f]|, for u € {2, 5}. As for GW| we may use to obtain

GW (o)l <€ / [fl€m)ldn < €[l fll < €| f]]p-

A1\BD'0 (9)

for o € Ay, so that |G@W], < €| f|,- Concerning G, inequality (5.8) provides that
G (o) <€ [y lo—nl~" [f(m)]|€n)|dn for o € Ay, s0 that |G|, < €||f]], by Lemma
21

At this point it follows from the representations in ([5.7)), (5.11]) and the previous estimates
of the terms |[|[F® (-, 0)|l,, |F@(-,0)], and |G®W||, for u € {1, ..., 5} that

10, [V (¥ Z(),0m]l < €lfll, for feLr (AN NC (A, je{l 23} (520

and v € {1, 2}. Take f € LP(A;)3. Obviously inequality (5.2)) remains valid for such
f, so Lemma implies that ||V (¥ Z,(f))|l, < €|V Z,(f)|l, < €| f]l,, hence by (3.2)),
V(0 Z()) ol < IV (¥ Z00)) 1Al < V(¥ 205 < €]l The theorem fol-
lows from this estimate, inequality(5.20)) and the density of LP(A;)*NC*(A;)? in LP(Aq)3.
U

The next theorem states that the W2~1/P*-norm of V(¢)|0€2 is bounded by the W'=1/p:»_
norm of ¢. This is the key result of our theory. Its proof is based on the preceding
theorem.

Theorem 5.2 Let p € (1,00). Then V(¢)|0Q € W2=Yrr(90)2 and ||V (6)|0Q|2-1/p,p <
Cl|@lli-1/p,p for ¢ € WIHPP(00)%.

Proof: The notation introduced either in Theorem itself or at the beginning of the
proof of that theorem, up to inequality ([5.2)), will be used here again, without further
notice.

Let t € {1, ..., k()}, 7€ {1,2,3}, feLP(A)PNCHA,)? and v € {1, 2}. Recall that
U, Z,(f) € C°(09).

Let 6 € (0, 6(Q2)]. Consider the function V©® (W, Z,(f)) introduced in Lemma [4.3| As
stated in that lemma, this function is C* in an open set s containing ) as a subset;

see (5.3 as concerns its first order derivatives. As in the proof of Theorem [5.1 we split
O, [ VO (W, Z(f) )j o ](0) into a sum of several terms, but in a way different from

that in the previous proof. In fact, by 1) and because supp( U, Zi( f)) CU.; /4 and
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(U, Z4(f)) oy = (W 07,) f, we get for p € A that

0, [VO(W, Z,(f)), %] (0) (5.21)
= 3" Aol /A (OuE3) (D(0,m,0) ) ] feln) €y dn = S~ HO) (0,),
k=1 1 p=1

with

3

9= Y [ @E(Ten9) (9(0) - 2u(0)), Jilo) €Ca) i

Eki=1751

i/ (0 Ejx)(T(0,m,0) ) = (1E) (T (9,77,5))>

k=1 Al
(M) fr(n) €(n) dn,
3

Z/A Eii(T(0.n,9)) fe(n) 8,€(n) dn,

1

3

= Z/ Ejx(T(0,m,6)) 0, fr(n) &(n) dn

=1 A1

The last two functions arise due to a partial integration with respect to n € A;, which
is possible due to (3.6) and because € € Cj(A,). Let ¢ € C5°(A,). We deduce from
the relation W, Z,(f) € C°(00Q)? (see further above) and from the uniform convergence in

(4.11) that
/ 0.0(0) (VO (W 2)), o) @ de— | .c(0) (VW) 07) (0)de

for o i O From ([.13), and the relation € € Cj(A;) we get that the integral
fA 5) do tends to zero for ¢ | 0. The function 7, belongs to C*(A,) (Lemma

, SO Wlth and -,

109 [ (D Ej1) (T(0,m.6)) (o) = uv(n) ), ] < €lo—m| 7171 (5.22)

for 1 < k,1 <3, o,me€ Ay with p #n, § € [0, 5(9)], a € N2 with || < 1. Here
and in inequality below, € is independent of g and 7. Since € € C§(4,), we have
¢ f € C}(A))3, in particular |€ f|o < 00, so we may conclude from ((5.22)) with o = 0
and from Lebesgue’s theorem that the function HM(-,§) : A; — C is well defined and
integrable also for § = 0, and [, (o) HV(o,8)do — fAl C(o) HM(p,0)do for § | 0. We
further deduce from and that

09 [ Ej(T(0.n,6)) ]I < €lo—n7 1 for k, o, n, 6, a as in (5:22). (5.23)

Taking into account that €9, f and 0,€ f belong to CO(A3/4) we see that due to ([5.23))
with a = 0, the function H" (- §) for u € {3, 4} is well defined and integrable also if
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6 =0, and [, ((0) HM(0,8)do— [, ¢(0) H"(0,0)do (6 | 0) for such p. At this point
we may deduce from (5.21]) that the weak derivative 81,[V(\I/t Zi(f) )j o %] exists — a
fact already known from Theorem — and

O [V(VZ(f)),0n](@= Y, H"™(0,0) for o €A, (5.24)

pe{l, 3,4}

Now consider f € LP(A;)3. In the following, the constants € are independent of f. Re-
calling that 0°¢ € Cg(A3/4) for o € N2 with |a| < 1, we observe that 90“€ f € LP(A,)?

and [|0“€ f|, < €| f|l,. It follows from (5.22), (5.23) with o = 0, § = 0 and from Lemma
that if u € {1, 3}, the function H* (-, 0) is well defined also with f as given now,

that is, f € LP(A,)3, and the estimate ||[HW(-,0)|, < €||f|l, holds. We recall that
according to Theorem , the weak derivative 8, [V (¥, Z,(f) )j 01, | exists also in the

case f € LP(A,)? considered presently, and inequality (5.1)) is valid for this f. Define
HY .= —HW (- 0) = HO(f)(-,0) +0,[V (W, Z,(f) ), 0] (5.25)

In view of (5.1)) and the estimate [|[H®W(-,0)|, < €|/ f]l, for u € {1, 3} derived above, we
see that H® € LP(A)? and ||[HW|, < €| f]l,-

Next take f € WP(A,)PNC%(A,)3. We have H® = H® (- 0) by (5.24), and H@ (-, 0) =
—V( U, Z(0,f) )j o7, by 1} At this point we may refer to Theorem to obtain that

H® e W»(A)) and ||0,HD ||, < €18, f]|, for r € {1, 2}.

Since we have now shown that [|[H®|, < &||f||, for f € LP(A,)? and H® € WiP(A,)?,
[H®||1, < €| f|lp for f € WEP(A)3NC2(A,)3, we may conclude that the two preceding
relations remain valid under the condition f € W1P(A,)? instead of f € WHP(A,)? N
C?(A,)3. Therefore interpolation implies that H® € W=1/PP(A)? and ||[HD||y_y/p , <
[ flli-r/p,p for f € WHVEE(A).

From , and Theorem [2.2 we obtain that H®(-,0) for u € {1, 3} belongs to
WA=1Pe (A3 and [[HW (-, 0)li-1/pp < €|IfNl, if f € LP(A)®. At this point we may
refer to equation (5.25) to conclude that 9, [V ( ¥, Zt(f))j o] € W=/PP(A)) and
||8V[V(\Ijt Z(f) )j Y ||1—1/p,p <c ||f||1—1/p,p for any f € Wlfl/p’p(Al):g, ve{l 2} It
follows with Theorem [5.1| that for f € W1=1/PP(A )3,

V( W Z4(f) )j oM € W271/p’p(A1)> ||v(‘I't Z(f) )j © Yiell2=1/p,p < €l fll1-1/p,p- (5.26)

Let ¢ € W'/PP(9Q)3. In the rest of this proof, constants ¢ are independent of ¢.
We have ¢ oy, € WI=VPP(A)? and Z,(¢ o v,)|A,, = ¢|A, . Since supp(¥,) N IN C
A, 54> We see that W, Z(¢o,) = ¥, ¢. Thus the relations in hold with ¢ o v,
in the place of f. Moreover we observe that dist(9Q\A, ;,, A, /) > 0 (Lemma ,
supp( (1—0,)|0Q) C ONA, | o and (o) € A, for 0 € A, . If follows with Lebesgue’s
theorem that V' ((1 — ¥,) ¢); o NlA, € 02(A1/4) and

0 [V((A=2)6),0%](e)l = ‘/89233[Ejk(%(@) —y) ] (1= W)(y) dx(y) do,

< Clly for o€ A, a € N;with o] <2,
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with € being independent of ¢ and p. Therefore ||V ( (1 —¥,) ¢)j0’yt]A1/4H27p < €||9|lp, in
particular |V ( (1 — ¥,) gb)j 0% |A 4ll2=1/p,p < €||9[lp- The preceding estimate and (5.26
with f = ¢o yield that V(¢);0v,|A, , € WQfl/p’p(Al/ll) and [[V(8); 07|14 4ll2-1/p,p <

C(|éovllizipp + 10llp) < €l|@|l1=1/p,p- Since j, t, ¢ were chosen arbitrarily in the sets
{1, 2,3}, {1, ..., k} and W'=1/»P(9Q)3, respectively, the theorem follows with (3.1). O

The consequence of Theorem we are interested in is stated as

Corollary 5.1 Let p € (1,00). For b € W=1/rr(90)3, ¢ € ES with (1/2) (Fo +
T*(¢) ) = b, the relations V(¢)|0Q2 € W2 HP2(0Q)* and ||V (4)|0Q2—1/p,p < € [|bll1=1/p,p
hold. (The space EST) was introduced in Theorem . )

Note that in the situation of the preceding corollary, we have ¢ = F*(b); see Theorem
4.2 Thus it follows by Corollary and Theorem below that b is the traction
boundary data of the pair (V((b)@c, Q(qb)@c) (exterior domain case; ¢ = F(7)(b)) and
(V(9)|€2 Q(4)|Q2) (interior domain case; ¢ = F()(b)), respectively.

Proof of Corollary : Take b and ¢ as in the corollary, and suppose that (1/2) (¢ +
T (9) ) = b. All the constants € appearing in the following are independent of b. Theorem
yields that [, ") - bdo, = 0 for 1 < j < 6. Since in addition b € W'=1/PP(9Q)3, we
may conclude with Lemma [4.8] there is a sequence (b,) in C°(99Q)* with b, € C*(9Q)* N
Wi=1/p.p(90)3, Lo ¢ b, do, forn € N, a € (0,1), 1 < j <6, and such that in addition
16— ball1-1/p,p = 0.

Let n € N. It follows with Theorem there is a unique function ¢, € E,gﬂ with
(1/2) (¢n+T*(¢n) ) = by for n € N. Theorem yields in particular that ¢, € C*(99Q)3
for a € (0,1). Now we may conclude from Lemma (4.9 that

(1/2) [V(60)|0Q + T(V(60)|02) | =V (bn)|02. (5.27)
Since ||b,, — b||, — 0, we know by that||V'(b,) — V(b)|092]|, — 0. But
I6n — llp < Cllgn — &+ T (¢ — P)lp = €[Ibw — b, for n€N (5.28)

according to Theorem [£.2] so [|¢, — ¢, — 0, hence ||V (¢, — ¢)[09], — 0 by (£.7)). Now
it follows from the boundedness of 7}, (Lemma that

1V (¢n — 0)|0Q2 + F(V (¢, — 0)[0Q) ], — 0.

Altogether we deduce from that (1/2) [V (¢)[0Q +T(V(¢)|0Q)] = V(b)|0S.

Since b, € W=1/PP(9Q)3 Theorem [5.2] yields that V(b,)|0Q € W~1/»P(9Q)3 (n € N)
and

1V (b = bm) |0 2-1/p,p < Cllbn = bimlli-1/p.p, [V (0u)IOLl2-1/p.p < €l|bnll1-1/p,ps (5:29)

for m,n € N. By Lemma [4.2] we further have V (b,)|0Q € C?(9Q)% for 0 <a < 1, n € N,
so it follows with (5.27) and Theorem [4.1] that the functions V (¢, — ¢,,)|0€ and V (¢,,)|0$2
belong to W2~1/P2(9Q)? and

HV(¢n - ¢m)|aQH271/p,p <c ( Hv(bn - bm)|aQH2fl/p,p + H¢n - ¢me>’
1V (6n)10U2-1/p,p < € (IIV(0:)10Q|2-1/p,p + |Onll,)  (m,7 € N).
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Due to (5.29) and because of (5.28) and an analogous inequality for ||¢y||,, we thus obtain
that

1V (¢n — G ) |0 2-1/p,p < Ebn = binlli-1/p.ps 1V (90)I0Q2-1/p,p < E|[bulli-1/p,p (5.30)

for m,n € N. The first estimate in implies there is v € W2~1/P7(9Q)% such that
IV (6n) = Yll2=1/p,p = 0. Since |V (¢n, — ¢)[09Q, — 0, as explained following (5.28), we
may conclude that V(¢)|0Q € W2 1/»2(9Q)% and ||V (¢n — ¢)|l2-1/p.p — 0. In addition
b, — bl1-1/p,» — 0 by the choice of the sequence (b,). At this point the second estimate

in (5.30) yields that ||V (#)[0|2-1/p,p < €||b]l1-1/p,p-

Analogous arguments are valid if (1/2)( —¢+T*(¢) ) = b if we note that the function ¢
introduced in Theorem belongs to C*(9Q)3 for a € (0,1), as follows from Theorem
4.1l O

6 Existence and W??-regularity of solutions to (1.1,
1.2).

To begin with, here is an overview of some key notation used in this section and the
following one. The functions ¢V, ..., ¢(® the operators F*) and F(-) and the function
1(© were introduced in Theorem , V(¢) and Q(¢) in Lemma , and W (¢) and I1(¢)
in Lemma [£.4] The constants y, and 7(b) will be defined in Theorem [6.2) below, and the
functions R(f) and &(f) in Theorem [6.4]

In the ensuing theorem we consider (1.1)) with f = 0 (homogeneous Stokes system) in
Q° and with Neumann data satisfying a side condition. This theorem is proved by
reducing it to Corollary and to the LP-theory of the Stokes system in bounded domains
under Dirichlet boundary conditions.

Theorem 6.1 Let p € (1,00) and R € (0,00) with @ C B, b € W'=PP(9Q)* with
[ 0@ -bdo, = 0. Abbreviate ¢ := FO(b), v :=V(¢)|Q", 0 := Q(4)|2".
Then v € C(Q°)%, o € C=(Q°), and the pair (v, o) solves with f = 0. Let 1 €
[1, 3p/2). Then, with constants € independent of b.
[0l < €[lbllp,  [[012k]11r + [lolQallr < 0], (6.1)
[0]2zl2p + [[0l2kl1p < €[10l[1-1/p,p- (6.2)

Proof: We refer to Lemma for the relations v € C=(Q°)?, o € C=(Q°) and the
fact that the pair (v, g) solves with f = 0. Moreover Corollary yields that
1V (0)|kR]l1 + [|Q(@D)|Qrl < C||@|l,.- Here and in the following, the constants denoted
by € are independent of b, and therefore of ¢ as well. Due to Theorem and by the
definition of ¢ in Theorem , the relations ¢ € ES, (1/2) (—¢+T(9)) =0b, ¢ll, <
€ ||b]|, hold. The preceding inequalities imply . Let us show . Since ¢ € E]g_)
and (1/2) (—¢ 4+ T*(¢) ) = b, Corollary yields that V(¢)|0Q € W2~1/P2(9Q) and

||V(¢)|aQ||271/p,p S €||b||171/p,p- (63)
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Recall that V(¢)(z) for z € 9Q was given by a direct definition in Lemma 1.2} On
the other hand, inequality means in particular that V(¢)|Qgr € W'P(Qgr)?, and
by the last statement in Lemma we know that the trace of V(¢)|Q2g on 0Q coin-
cides with V' (¢)|0Q2 as defined in Lemma Moreover estimate - yield
in particular that V(¢)|Bag\Br € W?P(Byp\Br)® and ||V (¢)|Bar\Brll2p < € ||8]l,, so
the C°-regularity of V in Q° mentioned above and a standard trace theorem yield that
V(¢)|0Br € W2 VPP(9Bg)* and ||V (4)|0Bg|la-1/p.p < €||@||,- Therefore we may con-
clude with and the estimate ||¢||, < €||b]|, already shown that the directly defined
function V (¢)|0Qr is the trace of V(¢)|Q2z on 00z, belongs to W2=1/PP(9Qg)3, and

IV (@)10Q%l2-1/p.p < EUbll1-1/p.p + 1€l) < Ebll1-1/p,p- (6.4)

Since div(V(¢)|R*\0Q) = 0, and again by the relation V(¢)|Qr € W'P(Qg)3, we
get that faQR V(¢)(x) - n*®)(z)do, = 0, with n{?") denoting the outward unit nor-
mal to Qr. At this point we may apply Theorem [2.4] which yields functions u €
W2P(Qgp)®, ©m € W'(Qp) with —Au 4+ Vr = 0, u|0Qr = V(¢)|0Qgr, [, mdr =
0 and |lull2p + ||I7]1p < €||V(0)|0QR]|2-1/p,p- The latter inequality and 1} imply
that |lullop + ||7l1p < €|blliz1/p,p- But u = V(¢)|Qr and 7 = Q(¢)|Qr + ¢, with
c = —|Qg|™ fQR Q(¢)(z) dx. This follows from Theorem and the properties of v
and o stated at the beginning of this proof, and because V(¢)|Q2x € W'?(Qg)? and

Q(o)|Q2r € LP(Qr) according to (6.1)). Thus inequality (6.2)) is proved. O

Corollary 6.1 Consider assumptions and notation as in Theorem [6.1. Then the pair
(v, 0) satisfies in the trace sense.

Proof: We have b € LP(0Q)*, and [,, %@ - bdo, = 0 by the assumptions on b. Thus
Lemmal4.8)yields a sequence (b,) in C°(9Q)? such that b, € C*(9Q)?*NWI=1/77(9Q)* and
Joq 0@ - bydo, =0 for n €N, a € (0,1), r € (1,00), and such that |[b, — b|[1_1/,, — 0.

Let n € N. Since [, Y b, do, = 0, the function ¢, := F(7)(b,) € E; from Theorem
is well defined. By definition it satisfies the equation (1/2) (—¢, +T"(¢,) ) = by. Let
R € (0,00) with Q C Bg/». By our choice of b, we have b, € W=1/"7(9Q)3 for r € (1, 00),
so Theorem [6.1] implies that V (¢,)|2r € W2(Qr)?, Q(¢,)|r € W(Qg) for such r. It
follows by a Sobolev inequality that V' (¢,,)|{2z may be continuously extended to a function
from C'(Qr)?, and Q(¢,)|Q2r admits a continuous extension to Qg. Since both V(¢,,) and
Q(¢y,) are C® in Q° (Lemma, we may conclude there are functions V,, € C''(Q¢)? and
Qn € C°(Q°) such that V(4,)[Q° = V,|Q and Q(¢,)|Q° = Q,|Q°". On the other hand,
since b, € C*(09Q) for a € (0,1), Theorem yields in particular that ¢, € C°(92)3.
Recalling that 9,V,, € C°(Q°)3, Q,, € C°(Q°), V,|Q° = V(4,)[Q" and Q,|Q° = Q(¢,)|",
we deduce from , Theorem (4.3 and the equation (1/2) (—¢, + T*(¢,) ) = b, that

3
Zn,(cm(x) (O Vise + OkVij — 01 Qn)(x) = by j(x) forz € 09, 1 <j <3, neN. (6.5)
k=1

But by our choice of b, ¢, (b,) and (¢,), Theorem [6.1| yields that

1V (¢n = 9)[Qxll2p + 1Q(dn — )[Qrllp < Cllbn = bll1-1/p,p forn € N.
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Thus, recalling Lemma, [2.5| and the definition of v and p, and taking into account the
relations between V,, and V(¢), and @Q,, and Q(¢), as mentioned above, we conclude that

Hajv - ajanaQHp + HQ - QanHp <c an - b“l—l/p,p (n € N, 1 Sj < 3)a

where the boundary values are taken in the trace sense. Since ||b, — b||1-1/p,, — 0 by the
choice of the sequence (b,), it follows with (6.5) that the pair (v, p) fulfills (1.2]) in the
trace sense. 0J

It is well known (see [23]) that the side condition imposed on the boundary data b in the
preceding corollary may be eliminated by using the double layer potentials from Lemma
4.4 In addition there is a second way to work around this condition. In the following
theorem we derive LP-estimates in both cases, obtaining a velocity satisfying a zero flux
condition on 0f2, or a pressure which is LP-integrable near infinity,

Theorem 6.2 There is a € (0,1) with © € C**(9Q)*. Moreover [, @ -n!® do, # 0,
and there is vo = 7o(1¥) € R3\{0} such that

3

> P (@) (9 W @O+ W ()=, () ) (2 =0 () ) = =30 () (s 1 0)

jk=1

for1 <3 <3 x€09. Letp € (1,00), b € WI=V/rP(9Q)3. Put
() == [ @ bdo, ([ ¢@-nDdo,), bi=b+~(b)n .
[2)9] o0

Then faﬂ p©) -gdox = 0.

Define ¢ = FOb), u = V()|[Q, 7 = Q(¢) +v(b)[Q". Then u € C=(Q)’ N
W2P(Q)3, € C=(Q°) N W.EP(Q°), and the pair (u, ) solves the Stokes system

loc

with f =0, and verifies the boundary condition i the trace sense. In addition the
zero flux condition faﬂ u-nY do, = 0 holds.

Let R € (0,00) with Q C Bg, 1 € [1,3p/2), 7 € (3,00), 73 € (3/2, 00), 14 € (1,00).
Then with constants € independent of b,

[l + 17281 < €[bllp, [[ulQRllop + (1712811, < C0ll1-1/p,p,  (6.6)
(0% u(x)] < € [blly [z~ 0% (7 —(8) ) ()] < b, || (6.7)
for z € B, o € N} with |af < 2,

[ul Billr, < €|bllp,  |10nul Bgllrs + I = v(0)| Bl < €[b]l,, (6.8)
10mOnul Bgllry + 00| Bellrs < €0l for 1<m, n <3, (6.9)

in particular ||0p0null, + |0n7|l, < €||b||,. Further define

C

W= V(9) + 9 10) WD, 7 = Q(9) + 95 7(0) IO

If y(b) = 0, that is, if [, -bdo, =0, then u =71 and ™ = 7.
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Suppose that y(b) # 0. Then the previous results remain valid with u, m replaced by w and
7, respectively, with the following exceptions: The zero flux condition does not hold for u.
The first estimate in is replaced by ||u|Qg|l,, < €], the second estimate in (6.7

by |0°7(z)| < €||b]|, || 7271 for 2 and o as in (6.7), and the second estimate in
1053| B v + |7 BErs < €||b]p, again with constants € independent of b.

There is Ry € [R,00) with |(m —7)(x)| > |y(b)|/2 for v € Bg,. Moreover u — U0 €
ker(I, — T,)\{0}, and the function u —u is not constant.

Proof: First we prove the claims about v, and f 50 O . n do,. The general approach
of this proof is well known for classical solutions, in particular as concerns the assertion
that [, @ - n® do, # 0; see [22, p. 353] or [23, Remark 3.3]. However, it is perhaps
not so obvious how this proof works out in the context of our LP-theory. Moreover we do
not know a reference where the argument is adapted in a precise way to the assertions at
the beginning of Theorem [6.2] So we deem it useful to give some details.

We start by noting that —© + T(¢(@) = 0 due to the choice of 1® in Theorem .
Thus we may apply Theorem and with b = 0 and ¢ = ¢©, and with p = r for
any r € (3,00). Abbreviating W := W(¢©), W, :== Wi, (), W, 1= Wep(xp©), TI :=
H(p©), I, := i (1®) and IL,, := (@), these theorems combined with Lemma
allow us to conclude that (*) € C1%(9Q)3 for some a € (0, 1), © € W2=1/Pr(9Q)3,

Win € CY(Q)3, W., € CHQ)3, T, € CO(Q), ., € CO(Q°), (6.10)
Win|09 = (=1/2) (=@ + T(?) ) =0, Wea|0Q = (=1/2) (@ + T(¥)) = -4,
Win|Q = W|Q € W2P(Q)?, W,.|Q" = WI[Q°, W e C®([R*\9N)?, I € C=(R*\09),
—AW + VI =0, diviV =0, T1;,|Q = IT|Q € W'(Q), TI,|Q° = T1|Q",

W|Qr € W2P(Qr)3, T|Qr € W (Qg).

The functions Wi, (@), We, (@), I, (@) and 1., (1)?)) were introduced in Theorem

4.4, The parameter R was fixed in Theorem ) Theorem and the relation ¢ ¢
C12(99Q)? provide the equation

3
Z n,(gQ) (8ij,k + 8ka7j — 5jk Hm) = Z TL](CQ) (@-Wem,k + 8kWex,j - 5jk Hew) (611)

k=1 k=1

w

for 1 < j < 3. Among the relations in , we next use that W, € C1(Q)3, W;,|0Q =
0, Win|Q = W|Q € W3P(Q)3, TI;, € C%(Q), I1;,|Q = T|Q € WHP(Q), W € C=(R?\90Q)*
and IT € C®(R*\09Q), with —AW + VII = 0, divWW = 0. From this and Theorem [2.5] it
follows that W, = 0, hence 9;W;,, = 0 (1 < 57 < 3) and VII|Q2 = 0. But Q is a domain
and II is in particular continuous, so there is vy = v (¢¥(?) € R with II|Q = 7o, hence
IT;;, = 0. Thus the left-hand side of (6.11]) equals —~q néﬂ), and therefore its right-hand
side as well, so that

3
Zn;(gm (O Wea, ko + O Wy ; — 01 o) = =0l (1< 5 < 3). (6.12)
o
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Suppose for a contradiction that

Y% =0 or PO D do, = 0. (6.13)
o0

Then let S € [R,00). We use Lemma with U = Qg, u = 1 = We|Qs, ™ = Qs

This choice in Lemma is possible according to (6.10). Also by (6.10), we have
Wee|0Q = —1p©. Thus Lemma equation (6.12)) and assumption (6.13) imply that

3
/ Z |0, Wi + W, |? dz = / > (r/S) (0;Wi + 0 — 63 TT) () Wy(x) do,.
Qs dBs

But the surface integral on the right-hand side of precedlng equation tends to zero for
S — oo due to (4.14), (4.15). It follows that [5e > k L10;Wy, + 0, W;|* dx = 0. This

means that 0;W}, + akw Q" =0for1<jk<3. Referrmg to the first claim in Theorem
| we now conclude there are numbers ay, ..., ag € R such that W|Q° = Z L a; ¢V
I there were an index j € {1, ..., 6} with a; # 0, we might choose a sequence (z,) in
Q° such that |z,| — oo and 2521 a; 99 (z,) - 0. For example, if ag # 0, a suitable
choice would be z, = (0, R+ n, 0) for n € N. But on the other hand, for any sequence
(z,,) in Q° with |z,| — oo, inequality implies |W(z,)| — 0. Thus we may conclude
that a; = 0 for 1 < j < 6, hence W[ = 0, and so W,, = 0. But W,,|0Q = —¢©
, so 0 = 07 in contradiction to the choice of ¥(®) in Theorem |4.2l Thus none of
the equations in can be true. As a consequence vy # 0 and [, O n® do, #£0.

Since  is C2-bounded, we have n(®) € C*(992)3 for any a € (0, 1). This means in particular
that nY € W=1/PP(9Q)3 so b € W1=1/r.2(9Q)3. (The function b was introduced in
Theorem ) Obviously [, (O ).bdo, = 0. Recall that o=F (_)(g); see the definitions in
Theorem It immediately follows from Theorem [6.1] and Corollary [6.1] that the claims
about w and 7 in Theorem up to but excluding the zero flux condition hold true. As
concerns that latter condition, we note that by Corollary and the last statement of
Lemma , the traces of V(¢)|Q and V(¢)|Q coincide. So in view of Lemma , we
obtain that [, u-n® do, = [, divV(¢)dz = 0. We further find that

VO] < €1bllp,  [[bll, < N1bll, + () [ P]], < &b, (6.14)
||b||l—l/p,p < ||b||1—1/p7p +C |'7(b)| ||n(m||l—l/p,p < Hb”l—l/p,zzJ +C ||b||p <c ||b||1—1/p,p'

Thus we may deduce (/6.6 by referring to the second estimate in and to , each
time with b replaced by b and by using 1-) Moreover, in view of the first estimate in
(6.1) with b replaced by b, and due to (6.14), we obtain that ||¢|l; < € ||¢[, < €|b], <

¢ ||b]l,- Inequality (6.7) follows from the preceding estimate, (4.14) and (4.15). Similarly
the preceding estimate and (4.16)— (4.18) imply and 1@}

For the rest of this proof we suppose that v(b) # 0. Turning to @ and 7, we recall that
according to (6.10) we have in particular that

Wee € CHOQ), W |Q© = W|Q° € ()3, T, € CO(Q°), T.|Q° =T|Q°  (6.15)
e C®(Q), —AW 4+ VII =0, div W =0, W|Qr € W2P(Qg)®, II|Qxr € WP(Qp).
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As a first consequence, we see that 9;(TW|Q°) for 1 < j < 3 and IT|Q" have a trace on 99,
and this trace equals 0;W.,|0Q and [T, |09, respectlvely (Lemma 2. . Recalling that
Theorem and Corollary |6 ! are valid with b in the place of b, and takmg into account
, we may therefore conclude that @ € C®(Q)>NW2P(Q°)3, 7 € COO(Q YNWLEP(Q0),
and the pair (@, ) solves the Stokes system with f = 0 and fulfills in the trace
sense. We further note that @ = u + v, ' y(b) W, @ = 7 — y(b) + 7, * ’y(b) II. Therefore
the estimates which according to Theorem are satisfied by u and 7 follow from (6.6]) —
(6.9), (6.15), (4.14), (4.15), the inequality |y(b)| < €||b]|, and the relation W € L"(Qg)?

for r € [1, 3p/2), which is a consequence of Lemma

Existence of Ry € [R, c0) such that |(m —7)(z)| > |y(b)|/2 for x € By, follows from the
equation 7 — 7 = v(b) — 75 v(b) I1|Q° and . We recall that W,,|0Q = —© ¢
ker(1, — T,)\{0} according to and Theore Thus we may deduce from the
relations W, € C(Q)3, W |Q = W|Q" (see (6.15)) and @ = u + 75 (b) W that
u —uloQ € ker(I, — T,)\{0}. Since it was shown that [, @ - ndo, # 0 and [, u

n do, = 0, it further follows that Joo T - n do, # 0 and Joo (v — ) -1 do, # 0. In
particular u — w0 and hence v — @ are not constant. UJ

Next we turn to the interior domain case.

Theorem 6.3 Let p € (1,00) and b € W'=1/PP(0Q)3 with [,, ¢V -bdo, =0 for1 < j <
6. Abbreviate ¢ :== FH(b), v :=V(9)|Q, 0:= Q(o)|S

Then v € C*(Q)3, o € C°°(Q), the pair (v, ) solves with f = 0. Moreover equation
holds in the trace sense, and

[oller + llell- < €flbll,  forr e 1, 3p/2),  |vllap + llellip < €lbll1-1/p.p-

The constants € appearing in the preceding estimates are independent of b.

Proof: Theorem is proved by an analogous reasoning as used in the proof of Theorem
and Corollary with the role of Q2 now played by 2. The argument is somewhat
more simple. For example there is no analogue to (6.4) which would come up. All the
references used in the proof of Theorem and Corollary are such that they also
cover the situation in Theorem [6.3 O

In the rest of this section, we consider solutions to (1.1)), (1.2) in the case f # 0. We begin
by constructing solutions to ([1.1)) in the whole space R3.

Theorem 6.4 Let A C R® be measurable and p € (1, 3/2). If f € LP(A)3, the integral
JAO*E)(x —y) - fly )|dy isﬁmteforozeNg with |a| <1, 1< j <3 and a. e. x € R?,

so we may define R(f = [, E( ) f(y)dy (z € R3).

For such f, the relations R(f) € I/Vif(R?’) : divi)f{(f) = 0 and [|R(f)|la/p-2/31 <
C(p) |fll, hold, and in addition OR(f);(x) = [L(OE)(x —y)- f(y)dy forz € R® 1<

gl <3

Let q € (1,3). If f € LI(A)3, the integml S l( V‘ﬁ (:B — ) - f(y)| dy is finite for a.

r € R3 so we may define S(f = [,(= (x —y) - f(y)dy for x € R®. Then

(7)€ WY and 16 o s < 210 ||f||q for such f.
Moreover —AR(f) + VS(f) = f, where ]"V denotes the zero extension of f to R3.
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In the case f € LP(A)* N LI(A)? the estimate ||OR(f)]|(1/q-1/3-1 < C(q) || fllq s valid.

Letr € (1,00). If f € LP(A)>NL"(A)3, then [|0,0, R, < C(r) | f|l- (1 <1,m < 3), and
in the case f € LY(A)PNL"(A)3, the estimate ||0,S(f)|. < C(r) || f|l- holds for 1 <1 < 3.

Proof: The theorem follows from the Hardy-Littlewood-Sobolev inequality and from the
Calderon-Zygmund inequality; see [0, Satz 1.4] and the proof of [13, Theorem IV.2.1]. O

Corollary 6.2 Let r € (1,00), R, S € (0,00), f € L"(Bgr). Then ||R(f)|Bsl|l2, +
IS(NIBsllr < C(r, R, S) (£

Proof: Obviously f € LP(Bg)? for any p € (1, min{r, 3/2}), so R(f) and &(f) are well
defined. Lemma [2.1] and yield that ||0*R(f)|Bsl- + [|S(f)|Bsll» < C(r, R, S) || £~
for a € N§ with |a| < 1. If |o| = 2 and [ € {1, 2, 3}, we know by Theorem [6.4] that
10“R(N)- + 1S ()l < C(r) || f]l-. Altogether we obtain the estimate stated in the
corollary. 0

In the ensuing Theorem which is a more detailed version of Theorem we solve
. 1n exterior domains also in the case f # 0. However, instead of a function

fe Lp as in Theorem , we consider a function g € LP(R?)3, without assuming
that ¢ vamshes in €2. In this way inequality may be applied also in the interior
domain case (proof of Corollary . Further note that inequality is somewhat
more detailed than . In fact, the first estimate in is added because it may be a
starting point for replacing the term || f|BSg|, in by other norms of f, for example
by a weighted norm.

Theorem 6.5 Let p € (1, 3/2), g € LP(R*)3 and b € W=1/PP(9Q)3. Then
3
Q .
== > (R + AR(9); — 016 S(g))  for j € {1, 2,3}

is well defined in the trace sense and belongs to W =1/P?(0Q)3. Further define v(b+N(g))
and ¢ as in Theorem[6.4, but with b replaced by b+ N(g). Put

U= V(qb)@c, T :=Q(¢) + W(b + N(g) ) ]ﬁc, (6.16)
w:= V() + " v (b+ N(g)) WQ, 7:=Q(¢) + " v(b+ N(g)) M),
v:i=v(g,0) == u+NR(g), o:=o0(9,0):=7+6(g),
v:=70(g,0) :=u+NR(g), ©0:=0(g,0) =7+ &(g).

Note that the functions u, u, ™ and T coincide with the corresponding functions in Theorem
except that b is replaced here by b+ N(g).

The function ¢ is independent of choice of p, (last statement of Theorem , so the same
is true for the functions defined in .

The pairs (v, 0) and (v,0) satisfy all the claims stated about them in Theorem [1.1}, with
c = —7(b + N(g)), and with f replaced by g|Q in the case of , and by g else.
Let ¢ € (1,3), » € (1,00), R € (0,00) with Q C Bgr, and suppose that the additional
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assumption g € LY(R3)3 N L"(R3) holds. Then

IN(Dl1i-1/r,» < €(llgllr + 91 B3 gllq) (6.17)
[0mOrv]l» + (|00l (6.18)
< € (gl + IVR(9IBs ) | Qllr + 16(9IB5 &) | Q&llr + 1111/ )

< C(lglls + 91 Bsgllg + l1blli=1/r) (1 <1,m <3, Re (0,00) withQ C Bg),

with the constants € independent of g and b, and hence also of v and p. This estimate
remains valid with the same type of constant when (v, o) is replaced by (v, 9).

[f'y(b—l—N(g)) =0, then (v,0) = (v, 0). Suppose that 7(b+N(g)) =# 0. Then the integral

Joo D0 do, does not vanish, and there is Ry € [R, 00) with |(0—2)(x)| > |v(b+N(g))|/2
for x € Bg . In addition v —v|0Q € ker(I, — T,)\{0} and v — 7 is not constant.

Proof: Let p; € (1,3), p» € (1,00), and suppose that g € L*(Q°)3, b e W'=1/55(9Q)3
for s € {p7 P, pQ}
Since M (g) € WP (R?)? by Theorem , the traces of 9(g)|Q and R(g)|Q" on I exist and

loc

coincide, so [, R(g)-n'? do, = [, divR(g) dz = 0, with the last equation due to Theorem
. The same reference additionally yields that &(g) € W,2P(R?), so we may conclude

oc

that R(g)|Q° € W2P(Q°)3, &(g)|Q° € WLP(Q), and the trace of 9MR(g); and &(g) on I

loc oc

exists and belongs to W!=1/P2(9Q), for 1 < j,1 < 3. Therefore N(g) is well defined and
in W'=1/p.P(9Q)3. Thus we may deduce from Theorem (6.2 with b+ N(g) in the place of
b and from Theorem [6.4] and (6.16)) that the pair (v, o) belongs to W2P(Q€)3 x WP (Q°),

loc loc

solves ([1.1]), and satisfies (|1.2)) in the trace sense. In addition it follows from Theorem
and by the results on 9R(g) mentioned above that fm v-n do, = 0.

All the constants € appearing in the following are independent of f and b. Let s €
{p, p1, p2}. Theorem applied with ¢, r replaced by p and s, respectively, yields that

1010mR(9)[|s + 10:6(9)lls < C(s) [lglls  for 1 <1,m <3. (6.19)
Let R € (0,00) with Q C Bg. Consider the case s = py. Let [ € {1, 2, 3}. The estimate
108 (9]922 r) | Qrllp, + 169122 8) [ Qrllp, < C(p2; B) 9122 kllp, < Cp2; R) ll9lp, (6.20)

holds by Corollary [6.2] Moreover, for # € Bg and y € BS 5, we have |z —y| > |y|/2, so

10R (91 B3 r) | Qillp, + [|6(9]B5 r) [ Qkllp, < CIQRIU’”/ Yl lo(y)ldy  (6.21)

B g
< C<p1;p27 R) Hg|B§R||P17

where the last inequality holds due to Holder’s inequality and because p; < 3. A trace
theorem and inequality (6.19) — (6.21) imply that N(g) € W'=1/P2.r2(9Q)3 and

IN(Dll1-1/p2,p2 < € (IVR(9)IQ 1.0, + [6(9) |21, ) (6.22)
< C(llgllpe + IVR(gIB ) [ Qrllp. +116(91B5 ) | Qrllp. ) < € Ulgllpe + Nl B5 Iy )-
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This proves (6.17). On the other hand, by the definitions in (6.16)), and from and
the second estimate in with b+ N(g) in the role of b and ps in that of p, we get that

10mOit|py + |01 ||py < €[04 N(9)|l1-1/ps,pe for 1 < I,m < 3. In view of the definitions

in (6.16]), inequality (6.18)) follows from the preceding estimate and inequality (6.22]) with
p2, p1 replaced by r and g, respectively, and from (6.19) with r instead of s. In particular

(1.5)) is proved. Combining the latter reference with [I3, Lemma I1.6.1], we obtain that
v e WEP(Q0)3, 0 € WP2(Qe).

loc loc

Consider the case s € {p, p1}. Let [ € {1, 2, 3}. We know from Theorem 6.4 that

10R (9l /s-1/3)-1 + 1691751731 < C(s) [l9]ls- (6.23)

As a consequence [|0,R(g)|Qr]s + |6(9)|Qrlls < C(s, R) ||g]ls, so with (6.19)) we see that
10R(9)|2R]1s + 16(9)|Qr]1s < C(s, R) ||g]|s- Again using a standard trace theorem, we
thus obtain that N(g) € W'=/5(9Q)3 and ||[N(g)|li-1/s,s < €|gl|s, hence

16+ N(g)ll1-175,s < C(Ibll1-1/5.5 + llglls)- (6.24)

At this point we note that |y(b+ N(g))| < €||b+ N(g)|ls. Therefore from the second
estimate in with b replaced by b+ N(g) and p by s, and from (6.24) we find that

[ulQRl2s + 17 = (b + N(9) ) Qs < € llglls + [1Bll1-1/s,5)- (6.25)

Suppose that s = p; Then from ([6.25) by a Sobolev inequality,

10| QR 1511731 + I = ¥ (b + N(9) ) 2l /pi-1/3-1 < EUgllpr + [blli-1/p1.p.)- (6.26)

On the other hand, because (1/p; — 1/3)~! > 3/2, the second inequality in with
b+ N(g), (1/p1 —1/3)71, p; in the place of respectively b, r3 and p, together with (6.24)),
provide that

10| Bg|| (1 /p1—1/3)-1 + |[m =7 (b + N(9) )| Bl /1 —1/3)-1 < € (|1gllpy + [16]l1-1/py,p1)-

The preceding estimate and ([6.26]) imply that

10l 1 /a1 + Im = 7 (0 + N(9) Mlasm-175-1 < €lgllon + 1bll1-1/p1,1);

hence with (6.23) and the definitions in (6.16)),
18011 /p1—172)-1 + llo =7 (b + N(9) Masm-1/m-+ < Egllp + 1bll=1/p1, ). (6.:27)

Now take s = p. We have [ul2alla/p-zm+ < € (gl + [Mliv/pp) due to BIF) and
a Sobolev inequality. Moreover, since (1/p; — 2/3)™! > 3, the first inequality in
with b + N(g) in the place of b together with (6.24) yields that |u|B%|/(1/p—2/3-1 <
(|lgllp+116ll1-1/p,p)- It follows with Theorem [6.4)and (6.16]) that ||v||1/p—2/3)-1 is bounded
by €(llglly + [1bll1-1/p.p)-

Recall that (|1.5)) has been shown above, and r € (1,00), ¢ € (1,3) in that reference. Take
p2 = p1 = p. Then we may conclude from (1.5), the preceding estimate of ||v]|(1/p—2/3)-1
and |D that inequality |) holds with ¢ = —7( b+ N(g) )

38



Consider the case p» = p; = ¢. Then . 6.27) and the relations v € WP ()3, o €

loc

Wwlp ?(£2¢) also shown above yield inequality 1} and the regularity statement preceding

loc

it.

The assertions in Theorem with respect to v and p follow by analogous arguments,
again based on Theorem [6.2 and [6.4]

If v(b+N(g)) = 0, we deduce from Theorem (6.2 with b+N(g) in the place of b, and from
that (v, 0) = (v,0). Suppose that v(b-+ N(g)) # 0. Since [,,n'? - R(g) do, = 0,
as shown at the beginning of this proof, it follows from Theorem with b replaced
by b+ N(g), and from 1) that [, n® . Tdo, # 0. It further follows from these
references that there exists Ry with properties as mentioned in Theorem and that
v — 0|0 € ker(I, — T,)\{0} and v — ¥ is not constant. O

Corollary 6.3 Let p € (1,00), R € (0,00), f € LP(Bg)*, b € W'V/rP(9Q)* and
S € (R,00) with Q C Bg. In particular f € L"(Bg)® for any r € (1,p]. Then, with the
notation of Theorem[0.3, and with a constant € independent of f, b and x,

o1 ool + 0o()| ] + Ja?* (10°[e (b + N(D) 1(@)] + 0°2(x)] ) (6.28)
<€(Ifl + ) for € By, a €N, Jo] <2,

where ]? denotes the zero extension of f to R3. Therefore inequalities , and
their analogues for (u,T) as described in Theorem[6.9 remain valid when (u, ), (u,T) are
replaced by (v, 0) and (v,0), respectively, and the factor ||bl, by ||bl|, + || f|l1- In addition,

if v(b+ N(f )) # 0, there is Ry € [S, 00) with |o(x )|2|7(b+N(f))|/2f0rx€Bf%o

Proof: It may be deduced from Lebesgue’s theorem and Lemma [4.1] that 28(f);|BS and
S(f)|BE belong to C*(B§) (1 < j < 3), and the derivatives appearing in (6.28)) commute
with the integrals defining SR(f) and &(f) (Theorem [6.4). Thus it may be shown in the
same way as Lemma [£.5] that

2 R @)] + PN S () (@)] < €l for @, o as in (625).

with € independent of f and x. Inequality (6.28) now follows with (6.7). The other
statements of Corollary are obvious consequences of ([6.28)). U

We turn to existence and regularity of interior Stokes flows, beginning with an auxiliary
lemma.

Lemma 6.1 Letp € (1,00), u € W*P(Q)3, 7 € W'2(Q). Then

/Zcbl)Zn (Bjup, + Oyu; — 85, m) do, = /Z¢ (8;divu + Auj — 0;m) da
o

k=1
for1 <1<6.

Proof: The lemma follows from the Divergence theorem and the fact that

3
Z 3k¢§l) (Ojug, + Opu; — 0jm) =0 for 1 <1 <6. O

jk=1
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Corollary 6.4 Let p € (1,00), f € LP(Q)3, b € W'=V/Pr(9Q)* with

/ ¢(l)-bdox+/¢(l)'fd$=0 for 1<1<6.
80 Q

Let g be the zero extension of f to R®, and define N(g) as in Theorem . Then forl as
above, the equation [, O (b + N(g) ) do, = 0 holds.

Define ¢ := FH (b+N(g) ), u:=V($) +R(f)|Q, 0 := Q(¢)+&(f)|Q. With the matriz
M from Lemmah set o= ML (fou- oW dr)i<ics, vi=u— 216:1 a; oW,

Then v € W2P(Q)3, 0 € WHP(Q), the pair (v, 0) satisfies and (1.9), and v verifies
the relation [, v-¢V dz =0 for 1 <1 < 6. Moreover ||v]l2p+ | oll1p < €[ fllp+1bll1=1/p.p),
with a constant € independent of f and b.

Proof: Let [ € {1, ..., 6}. Then we find by Theorem and Lemma that
60 (b4 Nlg))dou = [ 9" -bdo,+ [ 6 f,
09 o9 Q

so [, 50 oW - (b + N(g) ) do, = 0 by our assumptions on f and b. Therefore we may apply
Theorem with b replaced by b+ N(g), combined with Corollary @, Theorem and
the estimate ||N(g)||1_1/p7p § ¢ |||, provided in our situation by (6.17). It follows that
the pair (u, o) solves (L.1] » and [Jullzp + [lellrp < €[ f1lp + 16]l1-1/p.p)-

We further note that for any l , 6}, the function ¢|Q belongs to C*(Q)?, and
the pair (¢, 0) is a solution of (1.1] . with f = 0 and b = 0. Recall the vector o € R®
introduced in Corollary [6.4] Smce |Oq| < Clul|, for 1 <1 < 6, and by the properties of
u, 0 and M , the pair (v, o) fulfills the claims stated in that corollary. O

7 Some uniqueness results. The case b = 0.

First we consider the exterior domain case.

Theorem 7.1 Let R € (0,00) with Q C Bg. Forj € {1, 2}, let p;, r;, s; € (1,00), ul) €
W2s(Q0)3, 7)€ W™ (Q°) with u®|BS, € LPi(B%)? and VrD|BS, € L (BS)?.

Further assume that either faQ uV —u?).n® do, = 0, or that there are numbers qi, ¢a €
(1,00) such that 7 |Bg € L%(B%) for j € {1, 2}.

Put u = u(l) —u®, =70 — 7@ Suppose the pair (u, ) satisfies with f =0 as
well as with b=0. Then u =0 and 7 = 0.

Proof: Put r := min{ry, 79, s1, s2}. By Theorem.we know that Vr|B§, , € L¥(B§,4)?

for s € (1 r]. Theorem [2.3] then implies there is 7(7) € R such that = + 7(7)|Bf,, €
LOs=137N(Bs, 1) for s € (1,r] if 7 < 3, and for any s € (1,3) else. Note that 7(r)
is independent of s, as follows from the criterion for the case 7(v) = 0 in Theorem [2.3|
As a consequence there is p € (3/2, o] such that m + 7(7)|Bg,, € LP(B%,,) for any
p € (3/2, p). In fact, we may choose p := (1/r —1/3)7! in the case r < 3, and p = oo else.
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Fix a function ¢ € C§°(By) with ¢|B; = 1 and 0 < ¢ < 1. Put ¢,,(x) := o(m™'z) for
r € R3 m e N. Then ¢, € C(Bam), ¢|Bm =1, 0 < ¢, <1, supp(Ven,) C zm\B
for m € N, ||[Venll, = 0(m — oo) for p € (3,00), and ||81(9kgom|]p — 0(m — o0) for
peE(3/2,00), 1 <1 k<3.

Let ® € C°(Q°)%. By Theorem we may choose a pair (v,0) € W ()% and a
constant ¢(p) € R such that this pair solves with f = ® and (1.2) with b = 0,
and such that v; € LP(Q), dwvj, 0+ (o) € Lm( ), OmOpvj, B0 € LP3(°) for any
p1 € (3,00), pa € (3/2, 00), p3 € (1,00), 1 < 7, k,1 < 3. According to that corollary, we

may additionally require that [, v - n do, or c(p) = 0.

For n € N, put v, :== @ v, 0m = Om (g + (o) ) We claim that
|lu- (—Avyp + Vo, — )1 =0, |u-Vdive,|; — 0, H(Ti’ + c(m) ) divog| =0 (7.1)

for m — oo. In fact, concerning the first of these relations, recall that supp(Vom) C
By \Bm, C B, for m € N, m > R, and that €2 C Bg. Therefore by Hélder’s inequality

lu” Ok ol < N1’ | Billp, 190kl 2 100pmllsyy for m as before, j € {1, 2},

1 < k,1 < 3. Further recall that dyv € LP(Q°)? for p € (3/2, o), uY)|B% € LPi(B%)? and
IVmllsy, — 0 (m — o0) for j € {1, 2}. It follows that [|ug” dvx gy — 0 (m — o0)
for j, k and [ as before. Similarly [[u'9) - v Ag,, [ = 0 and [[u") (0 + c(0) ) Vioulli — 0
for m — oco. Altogether, since —Av + Vo = @, we get that ||u- (Avy, + Vo, — @)|1 —
0 (m — o). Moreover divv = 0, so a variant of the preceding argument yields that
|w-Vdivuy,|y = 0 (m — 00). Since 7 +7(7)|Bf,, € LP(B%,,) for p € (3/2, p), as shown
above, and because v|B§,, € L*(B%,,)? for s € (3,00), we may choose p € (3/2, D)
and s € (3,00) so close to respectively 3/2 and 3 that 1 — 1/p — 1/s < 1/3, hence
(1—-1/p—1/s)"" > 3. As a consequence ||Veu,|[1-1/p-1/5-1 — 0 (m — o0), so we
get in view of the equation dive = 0 that ||(7 + 7(7) ) divun|i — 0 (m — oo). This
completes the proof of (7.1] We apply the first and second relation in , obtaining that
Joe u- @ dr = limy, o fQ —Avy, + Vo, — Vdivu,,) dr. At this point we recall that the
pair (v, p) satisfies (I Wlth b =0, and that divu = 0, ¢, By = 1, supp(¢m) C Bay, and
QC B, form €N With m > R. Thus we have 0;vy, ;|09 = 0;v; |0, 0,|02 = p+c(p)|082,
and we may apply Lemma [2.6| with Q2. (U, 0n)|Q21m, Q2. in the role of U, (u,7) and
u, respectively. It follows from the preceding equation for fﬁc u - ® dx that

/ w- ®dz (7.2)

Qc

=(1/2) hm/ Z (Okuj + Ojug) (OkUm,j + Ojm k) dx — c(o )/ n . udo,.

Next we again use Lemma , this time with ( w, T+7(m) ) 122, Um|Q24, corresponding to
(u, ), u, respectively. In addition we apply the third relation in and the assumption
that the pair (u, ) is a solution of with f = 0 and of with b = 0. Once more
we take into account that ¢,,|B, = 1, supp(¢m) C B2, and Q C By, for m € N with
m > R. In this way we may deduce from that

/ u-Pdr=—c(p) / n® - wdo, + () / nY . v do,. (7.3)
F o0 i)
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Now suppose that | 80 n® . udo, = 0. Then we choose the function v in such a way that it
additionally satisfies the condition |, n v do, = 0. As mentioned above, such a choice
is possible according to Theorem In this way we get from |} that fﬁc u-ddr =0.

In view of the second uniqueness criterion in Theorem|[7.1} let us suppose there are numbers
q1, @2 € (1,00) such that 79|B € L%(B$) for j € {1,2}. Then 7(x) = 0. In fact,
due to the choice of 7'( ) at the beginning of this proof, there is s € (1,00) with 7 +

7(m)| By € L*(Bgi)?, 50 [p (m) |7+ 7(7)|°dx — 0 (m — oo) by Lebegue’s theorem,
hence fBl(m) 7 +7(m) dz — 0. Since 79| B§ € L%(BS) for j € {1, 2}, the same reasoning
vields that [ ., W dr — 0 (m — oo) for j € {1,2}. But 7 — 7 + 7@ = 7(7)
by the definition of 7, so we conclude that 7(7) = 0. On the other hand, according to
Theorem |6 - we may require that ¢(p) = 0, as already stated at the beginning of this
proof. Returning to (| . with this choice of ¢ we obtain once more that [ge ®-udz = 0.

Therefore this equation is valid in any of the two cases considered in Theorem [7.1]. Since
o Was taken arb1trarlly from C’OO(Q )3, it follows in both cases that u = 0, so 7 = 0 due
to and the assumption that 99, and hence also Q and Q°, are connected. O

Finally let us consider uniqueness of solutions in 2.

Theorem 7.2 Let p € (1,00), v € W?P(Q)3, o € W'(Q) such that the pair (v, o)
satisfies , with f =0 and b =0, and such that [yv- ¢V dx =0 for 1 < j <6.
Then v and o vanish.

Proof: Let g € C5°(Q)?, and put a := M-! ([ - Y dx)1<j<6, With the matrix M
defined in Lemma . Define f := g — Z?Zl a; - 99, Then f € C°(Q)* c L¥(Q)?
and fﬂ f-¢Wde =0 for 1 < k < 6. Therefore, by Corollary there are functions
w e W?P(Q)3, o € WH(Q) such that the pair (w, o) satisfies (1.1)) with the function f
defined above, and with b = 0.

In this situation we twice use the formula in Lemma [2.6] first with (u,7) = (w,0), u =
v, and then with (u,7) = (v,0), & = w. It follows that [, f-vdr = 0. But by our
assumptions, v is orthogonal to the functions ¢¥). Therefore fQ g-vdx =0 in view of the
definition of f. Since g was an arbitrary function from C§°(2)?, we may conclude that
v = 0, hence there is ¢ € R with ¢ = ¢ a. e. Equation (1.2)) now yields that o = 0. 0J

Two d1fferent solutions to - ) may arise even if b = 0 in and the right-hand
side in belongs to C’OO . This follows from the ensuing lemma The velocity part
of both of these solution deoay for |z| — o0, so the lack of uniqueness, as already evident
by Corollary [6.3] is not due to lack of boundedness of the velocity near infinity.

Lemma 7.1 There is F € C3°(Q°)? such that v(F,0)—5(F,0) is nonconstant. (Notation
as in Theorem[6.8) Note that both v(F,0)(x) and O(F,0)(z) decay as O(|z|™t) for |z| —
oo (Corollary[6.5).

Proof: We use the notation from Theorem . The function ¥ belongs in particular to
CO(99)3; see Theorem 4.2l Let F € C5°(2)3, and choose R € (0, 00) with QU supp(F) C
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Bpg. Then we find with (4.4) that

A= / / Z (05" (@) (9;Bxa + 0k By + 630 00 (@ — ) Fi(y) ny.” ()| dy do,

7,k =1

< OO |Flue /a ) /B & — y|2 dy do,.
R

Since  C Bpg, we have for x € 9Q, y € Bg that |z —y| < 2 R, that is, y € By g(z). Thus
we conclude from the preceding estimate that 2l is finite. Hence we may apply Fubini’s
theorem, deducing from the definition of R(F), &(F) and W () in Theorem and
Lemma [4.4] respectively, that

1/1 F)do, = Zw) OR(F)y + HR(F); — 0, S(F) ) ni do,  (7.4)
o k=1
—y) b z)doydy = | W - F(y) dy,
//Zw e =) Filg) ) dos dy = [ Wi (4) dy

with N(F') introduced in Theorem [6.2] In the last equation we used that the function
Sit (1 < j,k,1 < 3) (see ({L.F)) is odd. Now suppose that the claim of the lemma is not
true. Then it follows from the last part of Theorem with b=10 that 'y( N (F)) =0 (see
Theorem [6.2] for the definition of v( N (F ))), hence by (7.4) [5- W -F(y)dy =0,
for any F' € C5°(Q°)3. Therefore W ((@)|Q° = 0. In view of the j Jump relatlon in Theorem
4.4] we may conclude that ¢ + T(Yp™N) = 0. On the other hand, by the choice of ¥® in
Theorem , we have —1)(© 4+ T (M) = 0. Altogether we obtain that ¢)(*) vanishes. But
this is a contradiction to the choice of 1(*) in Theorem , so the lemma is proved. [

8 Appendix: Proof of Theorem 4.5|

We only consider the limit limg)g F'(—6) for the function F' from Theorem The limit
limg)o £'(0) is easier to determine because then the integrals on Q2 appearing below are
replaced by ones on (), so the parameter R and the difficulties related to it do not arise.

Let 0 € (0, 6(Q)] and put z := z — §n{Y(z). Note that z € Q (see ) and |z — b| >
Do/2 for b € U 5 (see (3.6)). (The open set L_s and the constants §(€2) and D were
introduced in Lemma[3.2]) It follows that for m € N, the functlon |z —y|™™ (y € U_g) is
C* in Y_;. Since Qp C Q C U_s for R € (0,00) (see Lemma , this C*°-regularity in
s will allow us in the following to apply the Divergence theorem in Qg.

Let 7€ {1, 2, 3} and put Ky = —@Sklm — aijlm+25jk 0,0, for ]{7, l, m € {1, 2, 3},
where Sy, for v € {1, 2, 3} and 9 were introduced in (4.2)) and (4.1)), respectively. Then
by the definitions in Theorem [£.5] and Lemma [£.4]

3

F(=8)= Y n@) [ Kun(z —y) () duly) do,. (8.5)

Elm=1 o0
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Let R € (0,00) with Q C Bg, and let n{?#) denote the outward unit normal to Qg, that
is, n]90 = —nD]9Q, n@r)(y) = R~'y for y € OBg. By the definition of C1*(9Q)3
(see at the beginning of Section 2), there is ¢ € C1*(R3)? with ¢|0Q = ¢. We will write ¢
instead of ¢ in the following. Then we get from ‘) that F'(—k); =24 +B1(R) + A+,
where 21; is given by the right-hand side of (8.5), but with the term ¢,,(y) replaced by
Om(Y) — dm(x) — 23:1 Oydm(x) (y — x),, for 1 < m < 3. Moreover

Bi(R) = Y du(@)n (@) | Kun(z —y) y/Rdo,

kel m=1 9Br

3
A= Y 06u@)n®(@) | Kun(z —y)nP W) (y - ), do,.
o0

k,lym =1
The term 2 differs from B1(R) insofar as the integration extends over 0{2g instead of
0Bpg, and —n(QR)(y) takes the place of y;/R, for 1 <[ < 3. Due the Divergence theorem,
(4.3) and , we get that 2 = 0. Next we observe that A = 2, + B (R) + B3(R) + L,
where 2(; is defined in the same way as 2(, but with ngcg)(x) nl(Q)(y) for 1 < k1 <3
replaced by n,ig)(x) nl(ﬂ)(y) — néﬂ) (y) nl(ﬂ) (x). Moreover

A== Y 00n@)nfV@) [ Kunlz—y) (y—2)y 0" (y) do,, (86)

k,l,m,v=1 Mg

By(R) = Y 0,6m@) (@) [ Kum(—y) v ye/Rdoy,

ELmp=1 9BR

and with By(R) chosen as B3(R), but with Kyn(z — y) (v — ), — Kim(—y) v, in the
role of Kyym(—vy)y,, where 1 < k,I,m,v < 3. Now the Divergence theorem is applied
to 51, transforming the integral over 0Q2p in into an integral over 2. Note that
due to , , the sum >, Oy ( Kim(z — y) (y — ), ) reduces to Ky im(z — y); see
the definition of K, at the beginning of this proof (v,l,m as before). In view of this
definition, we may again apply the Divergence theorem, this time in order to retransform
the integral over Q0 into an integral over d€Q2x, which we split according to the equation

A=A+ B, with

Aim 3" 26u(e) (@) [ (Sanlz = 1)) + Sz~ 1))

Im,v=1 o0

~26,; (AM) (2 — y) ' (y) ) doy,

B= Y Oomlx)n(x) / (=Svim(z = 9) yj/R — Sjim(z — y) 4/ R

lym,v=1 9BR

+20,; (09M) (2 — y) ym/R ) do,,.

44



As a consequence A = Az + B4(R) + B5(R) + 5(, where 213 coincides with 20 except
that nl(Q)(x) nl()ﬂ)(y) - nl(m(y) nl(,m(:v) takes the role of nl(ﬂ)(x) nb ( ), for b1 € {1, 2, 3}.
Moreover B4(R) and B5(R) correspond to B(R), but we put —Sy,(z — y) + Sblm( )
and (0,0)(z —y) — (0N)(—y) in the place of =Sy, (z —y) and (ON)(z —y), respectively,
in the case of B,(R), whereas B5(R) arises from B(R) by substituting —Sy,,(—y) and
(O (—y) for —Spm(z —y) and (O,M)(z — y), respectively (1 <b,1,m < 3). The term A
is given by

3
— Z Oy Om () (Q) ZSVlm (z—vy nl ( ) doy

m,v=1 0 =1

+ni (x Sitm(z — doy — 26,;n') (x (oM doy ).

82 (y) do, — 24, 82 n?(y) do, )
We finally observe that 2 = B4(R) + B7(R) + 2, where 2 differs from 2 insofar as the
domain of integration now is J{2x instead of 02, and the term —nl(QR)(y) is substituted
for nl(ﬂ) (y) (1 <1< 3). Moreover

= i 0y () (ngQ)(I)/ ZSylm y)yi/Rdoy

m,v=1 OBRr =1

3

) [ S Sy 1/ Rilo, — 26,352 [ > @) u/rds,).
9Br 1— 9BRr 1—1

As for the term Bg(R), it is defined in a way analogous to the definition of B7(R),

but the terms Sy, (z — y) and (9,N)(z — y) are replaced by Sblm(z —y) — Spm(—y) and

(OMN)(z —y) — (OM)(—y), respectively (b € {1, 2, 3}). By (4.5) and (4.3) we have A = 0.

The splitting of F'(—9), 2, A and 2A considered above, and the equations 2 = 2 = 0
may be subsumed into a single equation, that is, F(—¢) = 213,21 A, + 2171:1 B,(R).
Recall the abbreviation z = x — §n*®) () introduced at the beginning of this proof. Since
Q) C Bgpo and z € Q (see (3.3)), we have |9z —y| > |y|/2 for ¥ € [0,1], y € IBp,
so [By(R)| < € [yp |yl Pdo, < CR7! for b € {1, 2, 4, 6}, with € independent of R.
Moreover we indicate that Zizl a, faBl Yj Y Ym Yo doy = (j Opm, + Q1 O, + vy 951) 47/ 15
for « € R? I,m € {1, 2, 3}. The factor 47/15 arises due to the equation [, v} yz, do, =
(1 + 20m)4m/15, for I, m as before. It follows that » s 5 7y By(R) = 0. Up to this
point the parameter R was fixed. Letting R tend to infinity, we may conclude from the
preceding remarks on B,(R) that 325_, B (R) — 0 (R — 00), hence F(—6) = 32°_, 2,.
By the definition of ;, 2, and 23, it is obvious that for b € {1, 2, 3}, there is a function
3, = 3£j’x’5) : 0Q — R such that A, = [,, 3,(y) do,. As explained at the beginning of
this proof, we have |z —y| > D]z — y| for y € Q. In addition ¢ belongs to C1*(R3?),
and n¥ is in particular Lipschitz continuous on 0€2. For these reasons we obtain that
130(y)| < €lo —y|72" for y € 9O, 1 < b < 3, where € > 0 does not depend on
y. But [, |z —y|7*"*do, < oo, so it follows by Lebesgue’s theorem and the equation
F(=0) =322 _ 9, that F(—0) converges for § | 0, with the limit being the integral arising
if 2 is replaced by x in the definition of 2l;, 2y and 3.
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A similar but much simpler reasoning (see the remark at the beginning of this proof) yields
that the limit of F'(0) for ¢ | 0 exists, too, and its value coincides with limg o F'(—¢). O
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