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Abstract

The article deals with the 3D stationary Stokes system under traction bound-
ary conditions, in interior and exterior domains. In the interior domain case, we
obtain solutions with W?2P-regular velocity and W!P-regular pressure globally in
the domain, under suitable assumptions on the data. In the exterior domain case,
following up a conjecture by T. Hishida [16], we construct two solutions. The ve-
locity part of both of them is W?2P-regular, and the pressure part WP-regular, in
any vicinity of the boundary, with p € (1,00) determined by the assumptions on
the data. In addition the velocity is L*-integrable near infinity, for some s > 3 de-
termined by the data. Moreover the velocity part of one of these solutions satisfies
a zero flux condition on the boundary, whereas the pressure part of the other one
is L*-integrable near infinity, for some s > 3/2 also determined by the data. Both
existence classes are subsets of uniqueness classes.
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1 Introduction.

We consider the Stokes system
—Av+Vpo=f divi=0 (1.1)

in a bounded domain  C R? and in the exterior domain Q° := R3\Q, where the boundary
0 is connected and of class C?%. System ([1.1)) is supplemented by traction conditions (also
called Neumann boundary conditions)

3
Z(ajvk + Okvj — dj; 0) n,(fﬂ) =b ondf) for 1<j <3, (1.2)
k=1

where n(¥ denotes the outward unit normal to 2. The functions f (volume force) and
b (force orthogonal to the surface) are given, and u (velocity) and m (pressure) are the

unknowns of problem (|1.1)), (1.2). Boundary conditions as in (1.2)) arise, for example,

in incompressible elastostatics and in free boundary value problems for incompressible
viscous fluids.

If the Stokes system 1) in Q or Q° is supplemented by Dirichlet boundary conditions,
then v and 7 are respectively W?P- and W'P-regular up to the boundary, provided the



data satisfy suitable assumptions. In the case of the interior domain €2, this is well
known since the beginning of the 1960s, due to the pioneering work of Cattabriga [3] and
Ladyzhenskaya [19]. These two authors chose quite different accesses to their respective
theory. Cattabriga reduced his results to the half-space case, in which a solution to (|1.1)),
(1.2) may be constructed in a rather explicit form. Ladyzhenskaya used the method of
integral equations, that is, reduction of a boundary value problem to an integral equation
on the boundary. In the monograph [13], Cattabriga’s method is used to obtain a large
range of LP-estimates for interior and exterior Stokes flows under Dirichlet boundary
conditions. Reference [§] derives some of these estimates (WW*P-regularity of the velocity,
WP of the pressure) for exterior Stokes flows, but by applying Ladyzhenskaya’s approach.

As concerns the Stokes system (|1.1)) under traction condition , an L2-theory, derived
by Giaquinta, Modica [14], is available in literature; see [14, Theorem I1.1.2]. Classical so-
lutions were constructed by Starita, Tartaglione [23], via the method of integral equations.
In addition these authors estimated the maximum modulus of the traction field in the
direction of the normal to the boundary ([23] inequality (5.2)].) Problem (L.1)), is of
a type considered by Agmon, Douglis, Nirenberg [2]. But the parameters associated with
this problem in [2] are such that [2] Theorem 10.5], the main result in [2] on LP-regularity
and LP-estimates, can be applied to solutions of , only if their velocity part is
W?2P- regular, and their pressure part WP-regular, in €2 in the interior domain case and
in a neighbourhood of 92 else. This is the same situation as in the Dirichlet case ([24]
p. 23-24]). As far as we know, existence of solutions to (L.1)), with this level of
regularity and corresponding estimates have not been established in previous literature if

p# 2.

Our aim here is to fill this gap. Following [19] and [23], we will use the method of integral
equations. It yields a solution to , , as well as an integral representation of that
solution. This representation contains a single layer potential involving a fundamental
solution of and a ”layer function” which solves a certain integral equation on 0f2.
The key step and main difficulty of our approach consists in estimating the W?2-1/p.p-
norm of the Dirichlet boundary data of this single layer potential against the W=1/p.p.
norm of its traction boundary data. In this way we are able to reduce W?2P-estimates
of solutions to , , in Q and in Q°, to W2P-estimates of solutions to in
bounded domains, with Dirichlet conditions instead of ; see the proof of Theorem
6.1] (exterior domain case) and Theorem (interior domain case). The Dirichlet-to-
Neumann estimate mentioned above is stated in Corollary [5.1] which is a consequence
of Theorem [5.1] and [5.2] These two theorem provide the technical basis of Corollary [5.1}
their proof requires considerable effort. Section 2 to 4 serve to set up a suitable framework
and state auxiliary results. In Section 6, exploiting Corollary [5.I we present our theory
on existence and regularity, and in Section 7 we use some elements from this theory in
order to prove uniqueness results.

Following up a conjecture by T. Hishida [16], we show in Section 6 that in general there are
two solutions to , in Q° with velocity W2P-regular near the boundary and LP-
integrable near infinity, and with pressure W1P-regular near the boundary. The velocity
part of one of these two solutions has zero flux through 0f2, and the pressure part of the
other one is LP-integrable near infinity. The two solutions coincide only if the sum of b



and the traction boundary data of a solution to in the whole space R3, with the zero
extension of f to R? as right-hand side, is L?-orthogonal to the one-dimensional kernel of a
certain boundary operator on 0€2. Otherwise the difference of the two solutions possesses
a non-constant velocity part (Theorem [6.5)). These rather unexpected facts seem to have

been unobserved up to now. The two existence classes are contained in uniqueness classes
(Theorem [7.1]).

Solutions to (1.1]), (1.2) in interior domains with W??-regular velocity and W1P-regular
pressure are not unique either, but two such solutions only differ by a rigid motion (The-
orem [7.2)).

The main difficulties with our approach already arise if f = 0. Once this case is settled
(Theorem (exterior domain), [6.3] (interior domain)), the transition to non-vanishing
f may be achieved in an obvious way: The Stokes system (|1.1]) is solved in the whole
space R3, with the zero extension of f to R3 as right-hand side (Theorem [6.4). Then
problem , is solved with f = 0 and with the traction boundary data of the
whole space solution added to the right-hand side of ("boundary correction”). The
sum of the two solutions yields the flow field which is looked for (Theorem (exterior
domain), Corollary |6.5| (interior domain)). Since solving problem in R? is not linked
in any way to traction boundary conditions , the case f # 0 is not our main interest
here. We deal with it only for completeness and because for the proof of our uniqueness
results in Section 7, we need solutions to , with f being an arbitrary C°°-
function in Q° with bounded support. It is thus sufficient for our purposes to assume that
f € LP(Q°)? for some p € (1, 3/2). Then a whole space solution is conveniently given by
a volume potential, which is rather easy to handle. Actually the condition p < 3/2 may
be removed by an approximation argument as in [13, p. 242-243], or by working with
Kondratiev spaces in R? with weights (1 + |z])? (x € R3), for suitable values 3 € R; see
[21] for example. All this is not an issue when the interior domain is considered, because
if f € LP(Q)3 for whatever p € (1,00), we always have f € L¢(Q)3 for any ¢ € [1, p].

Pointwise decay estimates of our solutions to , in Q° are provided in Corollary
under the assumption that f has bounded support. These estimates allow to determine LP-
regularity and LP-estimates of exterior flows in more detail: We may distinguish regularity
properties outside large balls from those valid in neighbourhoods of 9Q (Corollary [6.4]
Theorem [6.2]).

Our results are summarized in the following Theorem [L.1] (exterior flows) and [L.2] (interior
flows).

Theorem 1.1 Let p € (1, 3/2), f € LP(Q)? and b € W'~Y/»P(9Q)®. Then there is a

unique pair (v, p) € I/I/'li’f(Qc)3 X I/Vl})f(QC) satisfying , , the zero flux condition
fBQ v-ndo, =0, as well as the inequality

o)l 1yp-2/3)-1 + 00l 1jp-1/3-1 + o+ cllajp-1/3-1 + 10md0ll, + [|00ll,  (1.3)
S ([ fllp + ollim1ypp) (1 <1,m < 3),

for some ¢ € R (whz'ﬁh is of course uniquely determined). Supppose in addition that
q € [3/2,3), f€ LYY and b € WY29(dQ)3. Then (v, 0) € Wii(Q°)? x WHI(Q°)

C C



and

100l 17g-1/3)-1 + le + cllajg-173)-1 + [10mrvllq + |iellq (1.4)
< C([|fllg + 10ll1-1/q,),  for L, m as above.

Further suppose that r € [3,00), f € L'(Q)3, b e W1/nr(9Q)% and R € (0,00) with
Q C Bg. Then (v,0) € W2 (92)? x W2 (Q°) and

loc
10mO0llr + l|Guellr < C (LIl + 1f1Bsgllg + 16l1-1/n,) (1.5)
for I, m as before. The constants € in these estimates do not depend on f orb.

Moreover there is one and only one pair (U,8) € W2P(Q9)? x WLP(Q°) such that the
preceding statements remain valid with U, 0 in the role of v and p, respectively, except that

faﬂﬂ-n(m do, # 0 in general and the constant c in and must be taken as zero.

If f =0, the assumption p < 3/2 may be dropped (hence inequality and become
special cases of and therefore are no longer relevant).

Theorem 1.2 Define

¢(j)(517) = (5jk>1§k§37 ¢(4)(37) = (553,0, —xl)a ¢(5)(37) = (5172, —371,0),
¢ (z) == (0,25, —x3) for 1<j<3, xR (rigid motions”).

Letp € (1,00), f € LP(Q)?, b € W'=VPP(90)? such that [y, b-¢W) do,+ [, f-¢\D dx =0
for 1 < j < 6. Then there is a unique pair of functions (v,0) € W*P(Q)? x WlP(Q)
satisfying and , as well as the equation va oW dr =0 for1 < j < 6. In
addition, the estimate [[v]l2p + ||0l1p < €[ flp + |blli=1/p,p) holds, with a constant €
independent of f and b.

Concerning the strange term || f|BSg|l, in (L), we think that in the case r > 3, an
estimate of the form ||0,,0iul|,+|0y|l, < C(|| fll;+|bll1-1/r,») cannot hold for all functions
fekrr (56)3 with the same constant €, even if b = 0. This is indicated by a similar situation
in the Dirichlet case; see [, Theorem 1.3] and compare with inequality [I3), (V.4.46)]. In
Theorem we present a more detailed version of inequality which may serve as
starting point for removing the term || f|BSz||, when is solved in R? by means of
Kondratiev’s theory.

We will use the fact, stated in Theorem [4.6] that the traction field of the Stokes double
layer potential associated with 0f) is continuous on any line through 0f2, provided this
line is orthogonal to 0f) and the layer function of the potential is sufficiently smooth. In
the context of the Laplace equation, this result is sometimes called ”Lyapunov-Tauber
theorem”. Its version in Theorem is frequently applied in analysis and numerics
(boundary element method) of incompressible flows, but what is available as proof is not
completely satisfying, as explained in the comment following Theorem [4.6] Therefore we
find it worthwhile to present a proof; see Appendix.

We will rely on [19] with respect to a number of auxiliary results on the integral operators
appearing in our proofs. However, we will not refer to [19] directly. Instead we will draw
on results from [9], where the pertinent sections from [19] are worked out in detail.



2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of R™ for any n € N, the length a3 + ... + «,
of a multi-index o € NI, as well as the Borel measure of a measurable subset A of R3.
For R € (0,00), * € R3, put Br(z) :={y € R® : |z —y| < R}. In the case z = 0, we
write By instead of Bg(0). An open ball in R? with radius R > 0 and centered in ¢ € R?
is denoted by B%(o).

The set Q C R3 introduced in Section 1 will be kept fixed throughout. Recall that € is
open and bounded, with connected C?-boundary, and that n*» denotes the outward unit
normal to Q. We put Qg := Bg\Q.

For n € N, I C R", let x; stand for the characteristic function of I in R™. If A C R3, we
denote by A¢ the complement R*\ A of A in R®. Put ¢, := (0;1)1<j<3 for 1 <1 < 3 (unit
vector in R?). If A is some nonempty set and v : A — R™ a function for some n € N, we
set [Y|oo == sup{|y(x)| : = € A}.

Let a € (0,1). For any B C R?, we write C*(B) for the set of all Holder continuous
functions on B, that is, ¥ € C*(B) iff ¢ : B — R with

[¥la = [Ploo +sup{[to(z) = (W)l [z —y|™* - z,y € B, x # y} < o0.

If B C R? is open, the space C"*(B) is to consist of all functions ¢ € C'(B) with || <
oo and |9y, < oo for 1 <1 < 3. We further define C1¢(0Q) := {4|0Q : ¢ € C1*(R?)}.

Let p € [1,00), m € N. For A C R? open, the notation || ||, stands for the norm of
the Lebesgue space LP(A), and || ||, for the usual norm of the Sobolev space W™P(A)
of order m and exponent p. If A C R? has a bounded C?-boundary, the Sobolev space
WrP(0A) with r € (0,2) is to be defined as in [12], Section 6.8.6].

If A and B are vector spaces and T : A + B is a linear operator, we write ker T for the
kernel of T" and ran T for the range of T'.

Numerical constants are denoted by C', and constants depending exclusively on parameters
Y1, - Yn € [0,00), for some n € N, take the form C(vy, ..., 7,). In most cases it is not
possible and of no interest to list all such parameters. Then we use the symbol € for
constant whose dependencies — or more importantly, their non-dependency — on certain
parameters should be clear from context, or are pointed out in the text.

In the following theorem, we reproduce the Calderon-Zygmund inequality for odd kernels.
This well known estimate is restated here because we will need some details on how the
upper bound given by this inequality relates to the structure of the kernel.

Theorem 2.1 Letn € N and K : R" — R a function with K(z) = |z|7" K(|z|™' 2) and
K(—2) = —K(z) for 2 € R"\{0}. Put A := K|0B; and suppose that A € L*(0By).

Let p € (1,00). Then f{yeRn:|y_$‘26} |K(x —vy) f(y)|dy < oo for x € R", € € (0,00) and
f € LP(R™). Define (K. x f)(x) := f{yeRn:|y—z\ze} K(x —vy) f(y)dy for z, €, f as before.
Then |Kex fll, < C(p,n) [All[[fllp for € € (0,00) and f € LP(R™).

Proof: [22 p.89, Theorem 2 a) |. O



We state a lemma which is convenient to handle weakly singular integral operators.

Lemma 2.1 Letn € N, A, B C R" nonempty, \ et v measures on o-algebras over A and
B, respectively. Further assume that the function K : A x B — [0,00) is measurable and
the upper bounds A := sup{ [, K(x,y) dv(y) : x € A} and Ay := sup{ [, K(x,y) d\(z) :
y € B} are finite.

Then, for p € [1,00) and ¢ : B — R measurable with [,|¢[’ dv < oo, the integral
Joo K (z.y) |0(y)| doy is finite for X\-a. e. x € A, and

([ ([ k@ owlaw) aw)” <o aye([lora)” @

The preceding assumptions hold true if, for example, n = 3, A = B = 02, X and v
are the usual surface measure on 0SY, and if there are numbers cy, k € (0,00) such that
K(z,y) <colz —y| 2™ forx,y € Q, v #vy.

These assumptions are also valid if n € {2, 3}, A, B C R™ open, bounded and nonempty,
A and v the usual Borel measure on A and B respectively, and if K(o,m) < co|o—n|™"t"
foroe A, n € B, p#n, with ¢y and k given as before.

Proof: Inequality (2.1]) is a simple application of Holder’s inequality and Fubini’s theo-
rem, as used in [22 p. 7] in the case of convolution kernels. The first claim of the lemma
follows from ([2.1)). O

In Theorem [2.2] and Lemma [2.2] to 2.4] below, we state some properties of weakly singular
integral operators on LP-spaces. In the case of Theorem [2.2] we give a proof for the
reader’s convenience because we do not know a precise reference.

Theorem 2.2 Let J C R? be open, bounded and convex, and L : J x J — R a measurable
function with L( - ,n) € C'(J\{n}) for n € J. Suppose there is co > 0 with [05L(0,n)| <
colo—mn|7r71l for o, n € J with 0 #n, a € N2 with |a| < 1.

Let p € (1,00) and define L(1)(0) == [, L(o,n) ¥ (n) dn for ¥ € LP(J), o € J; see Lemma
2.1 Then L(y) € WYPr () and ||L(W)11-1/p.p < €[00, for ¥ as before.

Proof: Let o, o', n € J withn ¢ {0, 0'}. If |o—n] < 2]o—¢'|, we have |o' —n| < 3]o—¢|,
SO

IL(o,n) — L(d',n)| < co(lo—nl""+ 1o —n™") <3co(lo—n|>+ |0 —n|*)|o— o

In the case |0 —n| > 2|0 — ¢'|, we get for ¥ € [0,1] that |0+ I (¢’ — 0) —n| > |0 —nl|/2.
Thus, using the equation |L(o,n) — L(¢/,m)| = | [; (VL) (e + 9 (¢ = 0), n) d¥ - (o — &),
we get in any case that

‘L(@,n) — L(Q’,n)) < Cleo)(lo=nl2+ | —nl?)loe—¢| foro, d,nel (22
with n ¢ {0, 0'}. Let r € (1,2), 0,0 € J, and put J,pp := {n € J : o —1n| <

2|o — ¢'|}. By splitting the set J into the parts J, , and J\J,, it may be shown that
the inequality [, |L(o,n) — L(¢',n)|" dn < €|o — ¢'| "*? holds, where the estimate of the



integral over J\J, , is based on (2.2). Note that |o' —n| > |o — ¢'| for n € J\J, . Put
e:=min{l1/(2p), 1/(4p)}. Then 1+ €p’ < 2. Let b € LP(J). By Holder’s inequality, the
splitting 1 = 1/p’ 4+ € + 1/p — € and the previous estimate with r =1 4 €p/,

L(6)(0) — LW < € (lo— o7 ¥ /|L 0.1) — L(d )% [ ()P di

for o, o € J. Set A(p, o) = |L(W)(0) — L(V)()|P |o — o'|7P~ . Tt follows that

A(o,0) < Clo— Q’\Q”’/ |L(0,n) — L(d',n)|"~" [v(n) [P dn.
J

We integrate both sides of the preceding inequality with respect to o € J and ¢’ € J, then
apply (2.2) and change the order of integration. In this way we arrive at the estimate
[, [, 40, ¢)dodd < €(By +By), where

B, :z///|@—'rz|2“”’) lo— |71 2P dodd [vh(n)[P dn.
JJJTJJT

and where term B, is to be defined in the same way as 81, except that the difference |o—1n)|
is replaced by |o' — 1|, and the order of integration with respect to ¢ and ¢’ is exchanged.
Now we use that —2 (1—ep) and —1—2€ep belong to (—2,0), and —2(1—€ep) —1—2¢ep =
—3 < —2. Thus we get that [, |o—n|207P) |o— o|172Pdp < €| — | for o/, p € J
with ¢ # n, as follows by splitting .J into four sets according to four cases, three of them
given by the inequalities [0 —n| < |0’ —n[/2, [o— | < [d'—nl/2, |o—n| = 2]¢" —n|, and
the fourth consisting of the requirement that none of the three preceding conditions holds;
compare [11, Lemma 1.4.2]. Tt follows that B, < €|]1[[F. An analogous argument yields
that By < €|[|9|P. Therefore the theorem follows from the estimate [, [, (o, ¢') dodg <
¢ (B1 + B5) shown above, and from Lemma [2.1] O

Lemma 2.2 Let L : 99 x 092 — R be measurable. Suppose there is ¢y € (0,00) with
|L(z,y)| < colx —y|™t for z,y € 89 x 7é Y. Letp € (1 oo) We may define an operator
L: LP(OQ) — LP(ONY) by setting L(¢p = [ L( ¢(y) doy for ¢ € LP(0Q2), x € O%;
see Lemma [2.1]

Then L : LP(0Q2) — LP(02) is linear, bounded and compact.

Proof: Obviously L is linear. The boundedness of L holds according to Lemma [2.1]
As for compactness, we remark that for any € € (0,00), the operator L, . : LP(02) >

LP(0Q), Ly (0)(x) = [y X(eoo) (| = yl) L(z,y) 6(y) do, (x € 09, ¢ € LP(09)) is
compact ([I7, p. 275, Theorem 11.6]). On the other hand,

sup{/ X0z —y]) |z — y|_1d0y cx e dN} —0(el0),
o0

so it follows by Lemma that L. converges to £ with respect to the operator norm of
the space of linear bounded operators from LP(0S2) into LP(02). As a consequence, L is
compact as well. 0



Lemma 2.3 Let L € CY(R3\{0}) and ¢y € (0,00) such that |0°L(2)| < co|z|7*71l for
z e RO\{0}, « e N}, |a| < 1. Let ¢ € C°(092) and put A(p)(x) := [, L(x —y) ¢(y) doy
for x € R®. Then A(¢) € C*(R?) for a € [0,1).

Proof: [9, Lemma 6.1]. O
Lemma 2.4 Letp € (1,00), a € (0,2/(3p)), R € (0,00) with Q C Bp. Then

</B ( =yl o)l doy

Proof: See [7, Lemma 3.2]. O

< &p,a,R)[|oll, for LP(09).

(1/p—a/2)"!
) o

> 1/p—a/2

We will use the fact that a function v defined in a 3D exterior domain and whose gradient
is L?-integrable for some ¢ € (1,3) takes a constant boundary value at infinity:

Theorem 2.3 Let U C R? be open and bounded, with Lipschitz boundary. Let q € (1,3).
Then for any v € Wi U®) with Vv € LI(U)?, there is 7(v) € R with v + 7(v) €
LU= (T, There is ¢g > 0 such that |jv + (V) ||(1/g-1/31 < co||Vollg for such
functions v. In addition, if a function v of this kind belongs to L*(U") for some s € (1, 00),
then the constant T(v) vanishes.

Proof: See [13, Theorem I1.6.1], except as concerns the criterion for the equation 7(v) = 0,
which is treated in [6, Lemma 2.4]. O

If U is an open, bounded set in R" with some regularity of the boundary, the trace of

a function v € C*(U) is, of course, the restriction of v to OU, by the definition of the
trace. Several times we will use a slight generalization of this fact, as stated in

Lemma 2.5 Let n € N, U C R™ with C*-boundary, v € C°(U) with v|U € WL(U).
Then the trace of v|U on 0$ coincides with v|0U.

Proof: The extension operator from [I, 4.26] yields a function v € Cj(R") N W (R™)
with ©|U = v. The lemma then follows via a sequence (v,) in C§°(R™) constructed by

means of Friedrich’s mollifier and converging to v in W1(R") and pointwise uniformly
in z € R"™. U

The role of the functions ¢, ..., ¢® from Theorem becomes clear by the following
theorem.

Theorem 2.4 Let U C R? be a domain. Put
£:={veC'U)? : dju,+ v =0 for1 < j, k <3}
Then the family (¢WW|U, ..., O|U) is a basis of £.
Proof: [9, Satz 6.1]. O

We end this section by recalling some properties of solutions to either the Poisson equation
or the Stokes system.



Lemma 2.6 Let U C R? be open and bounded, with C*-boundary. Let n'V) denote the
outward unit normal to U. Suppose that u € CHU) N WL U)* N C*U)3, = € C°(U) N
WLHU)N CYU), u € COU)> N WHHU)P N CYU)3. Alternatively, let p € (1,00), u €
W2P(U), m e Wh(U), u € W (U)3. Then

3
/ (Au— V7 + Vdivu) - Gde + (1/2) [ > (Ojur, + Opuy) (0;1y, + Oply) dar
U

U jk=1

3
= / Z n,(fU)(akuj + @uk — 5jk 7T) ﬁj de + / T divudz.
ou U

jk=1

Proof: Apply the Divergence theorem. For functions u, 7 and u given as in the first case
considered in the lemma, this is possible according to the reasoning in [9, Lemma 3.1]. In
the second case, the functions under consideration are such that applying the Divergence

theorem in a suitable way is possible due the density of C'*°-functions in Sobolev spaces.
O

The ensuing lemma deals with the Poisson equation with data in certain Sobolev and LP-
spaces, respectively. The lemma states that in such a situation, unsurprisingly, a classical
solution belongs to a Sobolev space corresponding to the regularity of the data.

Lemma 2.7 Let U C R? be open and bounded, with C*-boundary. Letr € (3/2, 00), v €
W2 (oU), g € L™(U), w € C(U) with w|U € C*(U), A(w|U) = g and w|0U = 7.

Then w|U € W™ (U) and w|0U = v in the trace sense.

Proof: This theorem is a special case of [7, Lemma 3.4], which, in turn, is based on the
W?24-theory of the Poisson equation and on the maximum principle. Also see Lemma, .
O

We state a result on W2P-resularity of solutions to the Stokes system in bounded domains
under Dirichlet boundary conditions:

Theorem 2.5 Let U C R? be a bounded domain with C*-boundary. Let p € (1,00), f €
LP(U)3, b e W2HPpr(U)? with [,,b-n'Y) do, = 0, where n'¥) denotes the outward unit
normal to U.

Then there are functions uw € W2P(U)3, m € WYP(U) such that —Au+ V7 = f, divu =
0, uloU = b, fUde = 0. Moreover there is co > 0 such that for f, b, uw and © as before,
the estimate [|ullo, + (7|1, < co ([[fllp + [|bll2-1/p,p) holds.

Proof: [13 Theorem IV.6.1]. O

In the ensuing theorem, we present a uniqueness result for LP-weak solutions to the Stokes
system in bounded domains, under Dirichlet boundary conditions:

Theorem 2.6 Let U, p, n'¥) be given as in Theorem. Assume thatu € WYP(U)3, m €
LP(U) such that [ (Vu -V +wdive)de = 0 for ¢ € C3°(U)>. Further suppose that
divu =0, u|oU = 0. Then u = 0.

Proof: [13| Lemma IV.6.2].



Finally we mention a technical result on the difference of two solutions to 1} in Q°,
concerning Li-integrability of the gradient of the pressure near infinity.

Theorem 2.7 For j € {1, 2}, let p;, r; € (1,00), u) € W2 Q)3 7 e W7 (Q°)

loc loc

with VrW|B$, € L' (B$)? for some R € (0,00) with Q@ C Bg. Further suppose there are
numbers q1, gz € (1,00) such that uW|BS, € L% (B%)? for j € {1, 2}.

Put u := uV) —u® 7= 70 — 7@ and suppose that the pair (u,7) solves with
f = 0. Abbreviate r := {p1, pa, 11, r2}. Then Vr|Bg, | € L*(B§,,)* for s € (1,7].

Proof: We refer to the proof of [5, (3.4)], only adding that due a misprint, there is
a reference to [5 (1.5)] instead of [5, (1.3)] in that proof. Note that 7|BS is a slowly
increasing function ([25, p. 150])in view of [13] (I1.6.19) and (I1.6.24)]. This latter fact is
relevant on [0, p. 1524 above]. O

3 Some results on local charts of 0f).

Since the crucial point of our theory is a W?2~1/P:P_estimate on 99 of a certain boundary
potential (Theorem [5.2)), precise informations on the local charts we will use are essential
for what follows. These informations are specified in this section. We choose a description
of the boundary as introduced in [12, p. 304-306].

Lemma 3.1 There are numbers k() € N, «(2) € (0,00), and for any t € {1, ..., k(2)}
a function a, € C?([—a(Q),(Q)]?) with |[Va,(0)] < 1/4 (0 € A1), an orthonormal
matriz D, € R¥® and a vector C, € R? such that the following properties hold:

Put A, = (=0 a(Q), 0a(Q))’ foro € (0,1],

%m) =Dy~ (0, a,(n)) +C, (ne D)), A= {vn):nei,},
Uio :={D; - (77, ai(n) +s) nEN,, sE (—aa(Q), aa(Q))}

for o, t as before. Then there is a constant cy € (0,00) such that

k()
o I <D I ol Ay ulh < collflly for f € LHOR). (3.1)
t=1

The function v, : Ay — A, is bijective, continuous and with continuous inverse, the
set Uy, is open in R? and Nyy = U, NOQ fort € {1, ..., k(Q)}, o € (0,1]. Moreover
dist(OQ0\A, ,,, Ny ,,) > 0 fort as before and oy, o5 € (0, 1] with o1 < 0.

Define J,(n) == (1+ 23:1 8jat(n)2)1/2 form € Ay, t as before. Then for such t and
for functions F : A, — C, the relation F' € L'(A,;) holds iff (F o~,)J, € L'(A)). In
addition

| Fdo= [ (Fortmaman for Ferin,), (32)

t,1 1
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Proof: All the statements of the lemma are standard results (see [12, Lemma 6.3.9, Def-
inition 6.3.10, Theorem 6.3.12], with additional details in [9], Section 2]), except perhaps
the claim that the local charts v, may be chosen in such a way that |Va,|. < 1/4 for
1 <t < E(Q). In order to satisfy this condition, the boundary 9 has to be split into
sufficiently small parts. Details of this procedure are rather technical but straightforward.
O

Lemma 3.2 There are constants 6(2), D € (0,00) such that
z4+ k0P (2)eQ’, z—rnD) e, (3.3)
|z 4+ kn D (z) — 2’ — K n D) > D (|z — 2|+ |k — K]), (3.4)
2), 6()]. In addition
@) < Cle -2 for z, 2’ €09, (3.5)
with € independent of x and x’'. For § € (O, 5(9)}, put

for z, ' € 09, K, K € [=d(
|(z — ')
Us = {r € R® : dist(x,Q) < D3/2}, U 5:={xcR*: dist(x,Q°) < D5/2}.

Note that the sets s and U_g5 are open in R and Q C s, Q° C U_g, for § as before. The
estimates

o= (y+0n'D(y)| =Dd/2, |2'— (y—n(y))| = Di/2 (3.6)
hold for § as before, y € 0N), x € Us and =’ € U_s.

Proof: See [9 (2.24), (2.22)] for (3.3), (3.5]), respectively, [7, Lemma 2.1] for (3.4), and
the proof of [7, Lemma 5.3| for the properties of s and $1_;. O

4 Simple and double layer potentials related to the
Stokes system or the Poisson equation.

The solutions to (|1.1)), (1.2)) we will consider are given by a sum of simple layer, double
layer and volume potentials. The first two types of potentials are introduced and studied
in this section. We begin by defining some kernel functions, among them a fundamental

solution to (L.1)). Put
N(z) = (4| Ep(e) = @l (0 + 22 |27%),  Ei= (Ejhgjnss,  (41)
Sjkl = _5jk 8;9? - (‘9kEjl - QjEkl for z € R3\{0}, 1 S j, k‘, [ S 3. (42)
The matrix-valued function E = (Ej;)1<;j k<3 is the velocity part of a fundamental solution
to the Stokes system (|1.1]), with its associated pressure part given by —VI1.

The next lemma is an obvious consequence of (4.1)) and (4.2)). In that lemma, as in similar
situations below, the restrictions on |a| (order of differentiation) may of course be dropped
if the constants may depend on |a|. We will not need this fact, instead limiting the range
of |a.
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Lemma 4.1 The relations Ejy,, Sjr, M€ C*(R*\{0}) and
3
—AEj — ;0 =0, Y 0,5, =0, AN =0 (4.3)
pn=1

hold for 1 < j,k,l < 3. In addition
|0° Eji(2)| + |0°0(2)] < C'[2| 771, (4.4)

for j, k as before, z € R3\{0}, o € N} with |«| < 3. Moreover, for j, k, I, z as before,

3
Siw(2) =3/(Am) zjze 2 |2 7°, —ASj +20,0.0M =0, Y 0,8, =0.  (45)
v=1

In the following lemma we introduce a simple layer potential associated with the Stokes
system ((1.1)).

Lemma 4.2 Let ¢ € L'(99Q). For x € R3\09Q, put
Vo) = [ Ea-y)-6)do, Q)= [ (- y)-oly) do,
) o0
The integral [, |E(x—1y)- ¢(y)| doy is finite for a. e. x € Q. In particular, for x € O,

the term V(¢)(z) may be defined in the same way as for x € R3\ 1.

The functions V(¢);|R*\0Q and Q(¢) belong to C*(R*\N), for 1 < j < 3, with
V(@) (x) = [,q(0“E)(x —y) - ¢(y) do, for x € RN\OQ, o € Nj, and with an analo-
gous formula being valid for Q(¢).

The pair (V(9)|R*\0Q, Q(¢)|R3\OQ) satisfies the Stokes system with f = 0.

If ¢ € C°(00)?, then V(¢) € C*(R*)? for a € [0,1).

Note that Q(¢) is not defined on 92 because its kernel is singular with respect to integrals
on 0f).

Proof of Lemma [4.2; The term V(¢)(z) is well defined also for € 99 according
to Lemma . The claims related to the differential properties in R3\99Q follow from
Lebesgue’s theorem and Lemma The statement on Holder continuity of V(¢) in R?
if ¢ is continuous is a consequence of and Lemma . 0J

Corollary 4.1 Letp € (1,00) and R € (0,00) with Qr C Bg. Then, if r € [1, 3p/2), the
estimate

IV ()IBR\O |1+ + Q)| BRI < €6, for ¢ € LP(09)°. (4.6)

is valid. In particular V(¢)|Q € W (Q)2, V(4)|Qr € WY (Qr)? for r, ¢ as above, and
V(0)|Q2 and V(9)|Q2r have a trace on 0. Moreover

V(e)loQll, < €lloll, for ¢ € LP(0Q)°, (4.7)
with V(¢)|09Q as defined in Lemmal[4.9. The preceding constants € are independent of ¢.
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Proof: Let ¢ € LP(0)3. The constants € in this proof are independent of ¢. Take
r € (p, 3p/2). Then we obtain from Lemma [2.4 with a = 2(1/p — 1/r) that

10m (V ()| BR\OQ) || + [|Q(9)| Br\, < €|ofl, (1 <m <3).

It follows that even if r € [1, 3p/2), the preceding inequality remains valid. Since for
x,y € Bg with x # y, we have |z — y|™! < 2 R|z — y|™2, the same argument implies
that if 7 € [1, 3p/2), the estimate ||V (¢)|Br\0Q||, < €||¢]|, holds. This proves (4.6). As
concerns inequality , we refer to Lemma . 0]

We turn to the question of how to approximate V' (¢)[Q2 and V(¢)|Q° by functions which
are C* in open sets somewhat larger than 2 and §2¢, respectively.

Lemma 4.3 Recall the parameter §(2) and the sets Us and U_s for § € (0, 5(Q)] intro-

duced in Lemma. Further recall that 5 and $_s are open sets in R with Q C Uy, Q° C
U_s, for & as before. Let ¢ € L'(0Q)* and define VO (¢) : Us — C3, Q0 (¢) : Us — C by
setting

VO (4) () = / E(z—[y+5n@)]) - 6(y) do,,

o0N

Q9 (9)(z) := / () (2 = [y+ 5] - oly) doy

for v € U5, 6 € (0,8(Q)]. In addition, we introduce the functions V(=9 (¢) : U_5 —
C3, QY : U_s5 — C by replacing s with U_5 and the term y + dn with y — s n in
the respective definitions of VO (¢) and Q) (¢).

Then VE)(¢);, QFD(¢) belong to C®(LUss) for 1 < j < 3 and for § as above. Any
derivative of these functions commutes with the integration over 02 appearing in their
definition. The pair (V(ﬂ)(@, Q(iE)(¢)) is a solution of in Uyps with f = 0. In
addition

VO(p)(z) = V(@) (x) forz € Q, V(@) (x) = V(o)(z) ifd10, for € Q. (4.8)
Suppose that p € (1,00), ¢ € LP(0Q)?, R € (0,00) with Q C Bg. Then

| (Vo) = vi) @ de. 0. (49)

102(VO(¢) — V(9) ) (2)[Pdo, — 0 if§10, for a€Njwith|a|<1. (4.10)

Q

If ¢ € C°(00)3, then for x € 90, 1 < j <3,

VED(6)(@) = V(9) (@) (4.11)
Son(@) (9,5 (@) + 0V E(9); - 0 QD (6) ) () (4.12)

= (1/2) (£¢+ T(¢) ) () (1< <3),
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for o | 0, with the convergence in and being uniform with respect to x € 0f).

The function V(¢)|0S2 as defined in Lemmal[4.3 and the trace of V(¢)|Q and V(¢)|Qr on
O (see Corollary[{.1) coincide.

Proof: We only consider V(=9 (¢) and Q= (¢). If —6 is replaced by 6, an analogous
reasoning is valid.

The differential properties of V(=9 (¢) and Q=% (¢) are a consequence of , the relation
Eji, 9t € C*(R*\{0}) for 1 < j, k < 3, the equations satisfied by E and 9 (see Lemma
and Lebesgue’s theorem.

Let 7 € Q. Fory € 99, ¢ € (0, 6(Q) ], the relation |z — [y — s nY(y)]| > D §/2 holds by
(3.6). Since E € C>(R*\{0})*, we may conclude that the claim on V9 (¢) in (4.§)
follows from Lebesgue’s theorem. For the proof of and , we refer to the proof
of [7, Lemma 5.4],

Concerning the proof of respectively (4.11) and (4.12), we refer to [9, Lemma 6.3] and
[9, (6.20), (4.72)], respectively, as concerns V(=9 (¢). When V) (¢) is considered, the
relevant references are [9, (6.10)] and [9], (6.19), (4.71)].

We finally note that because of Lemma , inequality (3.4) and Lebesgue’s theorem, the
relation ||V &) (¢) — V(4)[0Q|, — 0 (§ | 0) holds. The last claim of Lemma [4.3| follows
from the preceding relation, (4.9)), (4.10), and C*>-regularity of V*%)(¢) on .. O

Lemma 4.4 The inequality
01 (V(9)[RNOQ) (£ 0P () — VT (9) ()] < €|¢]o0"/?
holds for ¢ € C°(9Q)3, z € 9Q, § € (0, 5(Q)].

Proof: This lemma follows from (3.4); see the proof of [7, Corollary 5.3] or [0, (6.21),
(6.22)]. 0

Next we introduce double layer potentials related to the Stokes system.

Lemma 4.5 Let ¢ € L'(9Q)3. Then for x € R3\0Q, | € {1, 2, 3}, put

W (o)) = /8 =3 Sl =) ) 0) do,

Jk=1
3

(¢)(x) == / (2) 30 00w = 1) 85(0) i () do,

jk=1

Then W (¢); and T1(¢) belong to C=(R3\OQ) for 1 <1 < 3, and any derivative of these
functions commutes with the integration over 0S) appearing in their definition. Moreover

the pair (W (¢), I1(¢) ) solves with f = 0. (The functions Sjk and M were introduced
in and ({4.1), respectively.)

Proof: Lebesgue’s theorem and the relation Eji,, 0t € C°(R*\{0}) for 1 < j,k < 3 yield
the lemma except its last claim, which follows from (4.5]). U
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Lemma 4.6 Let R € (0,00) with Q C Bg, and put § := dist(Q, B%). Then

0°V(9) ()] < C(6,R) |6]l1 2|7, [0°W(9)(2)] < C(6, R) [|glly || > (4.13)

0°Q(¢) ()] < C(6, R) [|6]l1 |27, |0°TI(¢) ()] < C(6, R) [|@]lx |71 (4.14)

for ¢ € LY (09)3, = € B, a € N} with |a| < 2. Consequently, if ry € (1,00), 19 €
(3/2, 00), 73 € (3,00), then for 1 <I,m <3, ¢ € L}(0N)3,

[0mOV (0)|Bgllr, + 10mQ(0)| Billr, + 100 W (0)|Bgl|r, (4.15)

+[1L(¢)[Bgllr, + 10mI1(0)| Billr, < C(8, R, 1) [[0]]1,
IW ()| Bglr, + 100V (O)(Br) [, + 1Q(¢)|Bgll, < C(6, R, 72) [|9]l1, (4.16)
V(&) Billrs < C(6, R, 13) [|6]]1- (4.17)

Proof: Obviously 6 > 0. Let y € dQ\{0} and put z := |y|"* Ry. Then |y| + |z — y| <
|z| = R, and |z — y| > 9, so |y| < R — . Hence for z € B, we get

[z =yl = (6/R) [z[+ (1 = 6/R) |z] — [yl = (0/R) x| + R — 6 — [y| = (0/R) |].

Now the lemma follows from (4.4)). 0

We introduce two integral operators, denoted by ¥ and T* and defined by double layer
potentials, which map the space LP(99)? into itself, for any p € (1,00). These operators
are closely linked with the boundary values of W ()| and W (¢)|Q°, which do not coincide
except if ¢ = 0 (Theorem [4.5]).

Lemma 4.7 The inequality | > _, Sju(z — y) ( )| < €lz —y|™! holds for z,y € O
with x # 1, 1 < 4,1 < 3. The preceding estzmate remains valid if the term n,gﬂ)(x) 18

replaced by nk (y)
If $ € LY002)3, 1 < j < 3, we may define

T(9), /azsﬂdx— y) (@) di(y) do,

D pi=1

for x € 9Q. Then, for any p € (1,00), ¢ € LP(ON)3, the relation T (¢) € LP(9Q)3
valid, and the operator Ty : LP(0Q)* — LP(00), Ty (¢) = T(¢) (¢ € LP(9Q)*) is
linear, bounded and compact.

Define the function T(¢) by replacing the term nff (x) by nkﬂ)(y) in the definition of

T*(¢). An operator T, may be associated with T in the same way as Ty is associated with
T, for p € (1,00). Then equally T, : LP(0Q) — LP(0N)? is linear, bounded and compact.

Let I, : LY(0)? — L1(0Q)* denote the identity mapping of L1(O)3. Then the operators
+1, + T, and £1, + T are Fredholm with index zero.

For q € (1,00), the operator T is dual to Ty .
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Proof: For the estimate of | 320_ Sju(z — ) n,(CQ) (x)] stated in the lemma see 1' and
the first equation in ‘) In the case that the term n,(cQ) (x) is replaced by —n,(CQ) (y), the
same references may be used.

Lemmal2.1]yields that T*(¢) and T(¢) are well defined for ¢ € L'(92)%, and T*(¢), T(¢) €
LP(0Q)* if p € (1,00) and ¢ € LP(92)*. Moreover it follows from Lemma [2.2| that T,y and
T, are linear, bounded and compact. The general theory of Fredholm operators now
implies that +1, + T}, and 1}, + T are Fredholm with index zero. The last statement of
the lemma is a consequence of Fubini’s theorem. (]

Theorem 4.1 Let p € (1,00). Then with the notation of Lemma
ker(—1I, +T;) = {(kn® . keRY, ker(I,+T,) = spcm{gzﬁ(j)|3§2 cje{l, ..., 6}}.

Proof: [9 Lemma 6.7, 6.5, 6.10]. O
Corollary 4.2 Let p € (1,00). Then dimker(I, +T;) =6 and dim ker(—I, +T,) =1,

ran(l, + T) = {v € L?(6Q)° : / v- ¢V do, =0 for1 < j <6}, (4.18)
)

ran(—I, + T;) = {v € LP(0Q)" : /a v-ydoy forvy € ker(—Iy+Ty,)}. (4.19)
Q

Proof: By Lemma @, we know that the operator I, + T} is Fredholm with index zero,
so dim ker(I, +T;) = codimran(Il, + T). On the other hand, the fact that I, + T
is Fredholm means in particular this operator has closed range. We further recall that
Iy + Ty is dual to I, + T (Lemma . It follows with the closed range theorem and
Riesz’ representation theorem in LP-spaces that codimran(l, + T)) = dim ker(Iy + Ty)
and

ran(l, + 1) = {v € LP(6Q)° : / v-vydo, = 0forvy € ker(Iy +Ty)}.
o9
Equation (4.18) now is a consequence of Theorem , and the equation dim ker(I,+Ty) =

6 follows with Theorem [4.1] An analogous reasoning based on Lemma [£.7] and Theorem
yields that dim ker(—1, +T,) = 1 and that equation (4.19)) holds. O

Theorem 4.2 Letp € (1,00), a € [0,1), b € CYIN)3, v € LP(ON)? with +p+T () = b
or &1 + T (¢) = b. Then o € CYIN)3.

This means in particular that ker(+I, + T,) = ker(+I, + Ty) and ker(xI, + T;) =
ker(£1, +T;) for g € (1,00).

Proof: See [9, Lemma 5.4]. O
Corollary 4.3 Let p € (1,00). Then ker(£1I, + T) possesses a topological complement
ES) in LP(0Q)®. The estimate 9]l < €[[(£p+T;)(D)l, holds for ¢ € ESY.

If b e LP(0Q)* with [, b- ¢ do, =0 for 1 < j <6, there is a unique function Ffr)(b) €

EST) with (1/2) [Fp(ﬂ(b) + ‘Z*(Ff)(b) )] =0b. (See Theoremfor the definition of the
functions ¢V, ..., ¢9).)
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Fiz a function ¥ € ker(—1I, + Ty)\{0}. (In view of Theorem this function ¢
belongs to ker(—1.+T,) for any r € (1 oo) ) Ifb e LP(9Q)® with f Y@ do, = 0, then
there is a unique function Fzgf)(b) e B with (1/2) [-F E) (b) + ‘Z*( (b) )] =b.
Suppose that ¢, v € (1,00) and b € L(0Q)* N U(@Q) with [, b - &P do, = 0 for
1< j <6. Then F\V(b) = FP(b). Similarly F\ (b = ) if b € L9(00)3 N L7 (09)?
with faﬂb - pOD do, = 0. Therefore, in view of (4 , we will write F®)(b) instead of
Fp(i)(b) if beran(xl, +1,).

Proof: Since dim ker(i] + 1) < oo by Corollary n and Theorem . the existence
of a Complement E as described in Corollary |4.3| follows by general theory. Obviously
+1, + T;|Ep is a bijective operator from EI() ) onto ran(£l, + T;). On the other hand,
+1, + T is Fredholm (Lemma , and thus has closed range. It follows by the open
mapping theorem that [|¢], < € |[(£1, + T:)(9)||, for ¢ € ES”, hence [|o]l, < €| + ¢ +
T (¢)||, for such ¢.

For any b € LP(9Q)* with [,,b- ¢Y do, =0 for 1 < j < 6, we know by (4.18) that b €
ran(l,+T;). Thus, since [p+T;\EZ(;+) is a bijective operator from ES" onto ran(l,+T5),
there is a unique function F*)(b) with the properties stated in the corollary.

Since dim ker(—1Iy 4+ T,y) = 1, any function b € LP(0Q)* with [,,b- ¢ do, = 0 verifies
the equation |, 80 b 'ydox =0 for any vy € k:er( Iy +T,). Thus an analogous reasoning

as in the case of F*)(b), but based on instead of - yields existence of a
unique function F(7)(b) with properties as descrlbed in the corollary. The last claim of

the corollary follows from Theorem [£.2] O

Lemma 4.8 Put M := ([,, ¢ 0" do,)1<; k<3 and M = (foo9) -0 )dx)1<] k<3, where
oWV, ..., ¢ were introduced in Theorem | Then the matrices M and M are invertible.

Proof: The functions ¢M[0Q, ..., ¢@|0Q are linearly independent ([9, Lemma 6.5]).
Let a € R® with M - a = 0. Then Zf.:l a; 30 Joo @9 - 0™ do, ), = 0, that is,
Joa | S D2 do, = 0, 50 ) g ¢® = 0, and finally @ = 0. This means that M
is invertible. Obviously the functions ¢(V|Q, ..., (©|Q are linearly independent as well.
Thus the same argument as for M yields that M is invertible, too. 0

Lemma 4.9 Let p € (1,00), b € W'=/Pr(00)3 with [,, ¢ - bdo, =0 for 1 < j < 6.
Then there exists a sequence (b,) in C°(0Q)* such that for n € N, the function b, belongs
to C*(00)? for a € (0,1), hence b, € W=V/""(9Q)? for r € (1,00), [oq ¢V - b, do, =0
for 1 < j <6, and such that ||b — by, ||1-1/p,p — 0.

Suppose that [, 'Y - bdo, = 0, where ¥\*) was introduced in Corollary . Then there

is a sequence (b,) in C°(ON)3 with the same properties as before, except that the condition
faQ ¢V - b, do, =0 (1 <7 <6, neN) is replaced by faﬂ »© . b, do, =0 (n €N).

Proof: Since b € W'=1/PP(90)?, there is B € WHP(Q)? with B|0 = b. We may choose a
sequence (B,,) in C§°(R?)? with || B, — B||1,, — 0, and thus || B, —bl|1_1/,, — 0. Obviously
b, := B,|0Q € C*(00Q)? for n € N, a € (0,1).
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Let n € N and set ¢, := M- (fangn - ¢ do,)1< <6, With the matrix M introduced in
Lemma. Then fm En.¢(J) do, = 22:1 faa dD-p*) do, cn,k for 1 < j < 6. Thus, putting
by = by — S cnrd® | we obtain a function b, belonging to C*(99)? for a € (0,1) and
verifying the relation [, ¢\ - b, do, = 0 for 1 < j < 6. Since 16 — bll1-1/p.p — 0 and
Joq bn- 09 doy = [, (b, —b)- ¢\ do, for 1 < j < 6, n € N by our assumptions on b, hence
cn| < €||by, — b]|, with € independent of n, we get in addition that ||b, — b||1_1/p,, = 0

The second part of the lemma may be proved in the same way as the first, but the

reasoning is somewhat simpler because no matrix is involved. Note that by Theorem [4.2]
we have ¢ € C*(0Q)* for a € (0,1). O

The ensuing theorem constitutes the key point in Ladyzhenskaya’s theory [19] on W%P-
regularity of solutions to (|1.1) under Dirichlet boundary conditions.

Theorem 4.3 Let p € (1,00). If ¢ € C*(9N)3 for some a € (0,1) and if +¢ + T(¢) €
C(9Q)>NW21/PP(9Q)3, then ¢ belongs to W?=1/PP(9Q)* and the inequality @llo—1/p.p <
C(|| £+ F(D)|2-1/p.p + |0llp) holds.

Proof: [9, Lemma 7.8]. O

The following ” jump relation” combined with Lemma [£.2] and Corollary [4.3] allow to solve
(1.1), (1.2) by using the single layer potential V(¢) and Q(¢). However, due to the
nontrivial kernels of +1, + 77 (Theorem , Corollary , only data satisfying certain
conditions may be admitted. The double layer potentials introduced in Lemma will
be used in order to eliminate these conditions.

Theorem 4.4 Recall the parameter 6(Q0) from Lemma[3.3. Let ¢ € C°(00)* and put
U = V(@) |RNQ, 11 := Q(1), where V(¥) and Q(1) were introduced in Lemma [4.4
Then

]

n,(fl)(a:) (0;Ur + 0kU; — b, H)(a: + en(Q)(x)) — (1/2) (IF@/) + T (¥) )J(x) (4.20)
k=1

fore =0, e€ (07 5(9)}, uniformly with respect to x € 092, 1 < j < 3.

Proof: The relation in (4.20)) holds according to [9, Lemma 4.8]. Note that the definition
of T(¢) in [9] (see [9, Definition 4.2 and 5.1]) coincides with ours in Lemma This
follows from (|4.5)). U

Theorem 4.5 Let ¢ € C°(00)®. Then the function W(¢)|Q" admits a continuous exten-
sion to Q°, denoted by We,(¢) and given by We,(9)[0Q = (—1/2) (¢ + T(¢) ). Similarly
the function W(¢)|Q admits a continuous extension to €, denoted by Wi, (¢) and given

by Win(9)|0Q = (—1/2) (=6 + T(¢) ).
Proof: See [9, Theorem 4.1]. O

Theorem 4.6 Recall the parameter §(S2) introduced in Lemma . Let a € (0,1), ¢ €
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CH(00)3, © € 09, j € {1, 2, 3}. Define the function F : [—6(2), 6(2)]\{0} — C by

F(8) = nf (@) (W (0)k + 0W (6); — 05 T1(#) ) (2 + 61D (x) )

k=1

for § € [=6(2), 6(Q)]\{0}. Then the limits lims o F'(§) and lims o F'(5) exist and coincide.

This result is due to Faxén [10, § 11], but the proof in [I0] is rather long (10 pages) and
in parts somewhat vague. An analogous result for the Laplace double layer potential
is shown in a more precise way by Hackbusch [I5, Section 8.5.2]. More general elliptic
equations (but not systems) are treated by Miranda [20, Theorem I1.15.V]. Kupradze [18|
§VI.9, Theorem 10| considers two limits analogous to the ones in Theorem , but with
a "stress operator” applied to double layer potentials associated with the Lamé operator.
He shows a result somewhat weaker than the one in the theorem above: If one of the two
limits exists for all x € 02 and is Holder continuous as a function of such z, then the
other limit exists as well and coincides with the first.

Since Faxen’s argument [10] leaves a margin for improvement, and because the other
preceding references do not address the Stokes case relevant in Theorem 4.6, we present
a proof of that theorem in the Appendix. Lemma 3.2 allows us to carry out this proof
without using local coordinates.

Theorem 4.7 Let p € (3,00), b€ W*/rP(90)3, ¢ € LP(0N)3 such that one of the two
equations (—1/2) (—¢ + T(@)) = b or (—1/2) (¢ + T(¢p) ) = b holds. Take R € (0, 00)

Then there is a € (0,1) with ¢ € CY(9Q)>. Moreover ¢ € W2=1/PP(9Q)3, W(¢)|U €
WU, (@)U € WH(U) for U € {Q, Qr}, and Win(¢) € CH(Q)®, Weu(9) €
CY(Q)3. The functions T1(¢)|Q and T1(¢)|Q° may be continuously extended to Q and QF,
respectively. These extensions are denoted by 11;,(¢) and ., (), respectively. (The func-
tions Win(¢) and We,(¢) were introduced in Theorem[4.5)

Proof: A direct proof of the relation ¢ € C*(9Q)? for some a € (0,1) may be found in
[23]; see [23, Lemma 3.1]. In view of the LP-estimates available here, we may obtain this
result in a a shorter way.

In fact, by a trace theorem and an extension theorem, there is B € W02 P(R3)3 with B|OQ =
b. Since p > 3, a Sobolev inequality implies there is a € (0, 1) such that B € C**(R?)3, so
b € CL(02)3. Thus ¢ € C*(99)3 by Theorem 1.2l Moreover, referring to Theorem [4.3]
we see that ¢ € W2~1/PP(9Q)3. Now the same argument as used above for b provides that
¢ € CH*(9Q)3. In addition, [9, Lemma 7.15] yields at this point that II(¢)|U € W'?(U)?
for U € {Q, Qg}. Since p > 3, we may again refer to a Sobolev inequality, obtaining
that II(¢)|U may be continuously extended to U. Since II(¢)[Q° € C*°(Q°), this means in
particular that IT(¢)|Q° may be continuously extended to Q°.

Obviously (Lemma [4.5)), we have W(¢)|U € C=(U) for U as before. Since in partic-
ular ¢ € C°(00)3, we further know by Theorem 4.5 that W, (¢) € C°(Q)3, We.(¢) €
CO(Q)?, (=1/2) (—0+%(9) ) = Win(0)[09, (=1/2) (¢+T(¢) ) = Weu(¢)]0S2. Note that
(=1/2) (£6+T(¢)) € {b, b— ¢, b+ ¢}. But b, b— ¢, b+ ¢ € W21P(9Q)* N CO(0Q)?
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by what was explained above, so VVm( )10, Weo(9)[00 € W2PP(9Q)3 N CO(592)°.
On the other hand, W(¢)|Q" € COO( Y3 and Q C Bg, so in particular W (¢)|0Bg €
W21nP(9BR)3. Since W, (¢)|Q° = W(¢)|Q° by the definition of W, (¢), we thus get
Weo(0)|0Qr € W2 P2(90R)? N CO(0NR). Recall that AW (¢) = VII(¢) (Lemma
and I(¢)|[U € WHP(U) for U € {Q, Qr}, as mentioned above. Further recall that
Win(0)|Q2 = W(9)|S2. Altogether we see that Lemma may be applied; it yields that
W(p)|U € W2P(U)? for U € {Q, Qr}. Due to the assumption p > 3 and a Sobolev in-
equality, it follows that the function W (¢)|U may be extended to a C'-function in U, for U
as before, so Win(¢) € C1(Q)? and We,(¢)|Qr € C*(QUr)?. But W, (0)|Q° = W(¢)|Q e
C=(Q)3, s0 Wep() € CHQO). O
The next lemma indicates how for a given function b € C°(992)3, a function ¢ € C°(9N)
may be chosen so that the Dirichlet boundary data of V' (b)|Q2 and W ()| coincide. The
same question is answered for the boundary values of V(b)|Q° and W (¢)|Q°.

Lemma 4.10 Let ¢, b € C°(00)* with (1/2) (F¢ + T*(¢)) = b. Then V(¢) € C*(R?)?
for k €10,1) and

(1/2) [FV(9)|0Q + T(V ()]0

)] =
Note that the term (1/2) [ =V (¢)|0Q+T(V(4)[0Q) ]
ary data of —W(V (¢ )]89)|Q and the function (1/

those of =W (V (¢ )]89)\9 (Theorem.
Proof: We consider the case (1/2) (—¢ + T(¢)) = b. If (1/2) (¢ + T*(¢)) = b, an

analogous reasoning is valid.

The relation VY (¢)|0Q € C*(99)? for x € [0, 1) holds according to Lemma

Recall the parameter 6(€2) > 0, as well as the set U_s for 6 € (0, 6(2)] from Lemma
3.2l Put V(*‘S) = VEI(8), Q9 = Q9(¢). These functions were introduced in
Lemma Note that the set Y_s C R? is open and Q¢ C $_s (Lemma [3.2), V(=9 €
C> (U ) Q( 9 € O=(4_s), and and the pair (V=9 Q) satisfies (1.1]) in L_; with
f=0,for e (0,8)] (Lemma.

Take l € {1,2,3}, 2€Q and § € (0, 6(€2) ]. Let R € (0,00) such that {z} UQ C Bpgps.
We write n(?#®) for the outward unit normal to Qpg, that is, n(?8)(2) = —n(2) for
z € 09, n'®(z) = R7'z for = € dBg. Then it follows by a standard representation
formula for solutions to (/1.1 (see [9, (3.6)] for example) that

V(b)|OS.

oincides with the Dirichlet bound-

2) [V(9)]092 + T(V()|0Q) ] with

/ ]l xr — Z) (8kv —9) + 8 V — Ojk Q(_(S))(Z) (4.21)
O0R 1= 1
~Siu(x = 2) V(2) ) nf™ (2) do.

for 1 <1< 3, x € Qg. Note that V(=9 is continuous, so the restriction "a. e.” on = € Qp
n [9, (3.6)] may be dropped.

Since {x} UQ C Bg/2, and because y — dnY(y) € Q for y € 9Q (Lemma , we find for
z € OBp, y € 00 that |z — (y—dnD(y) )| > R/2 and |z — z| > R/2. As a consequence,
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with (4.4), for 2 € 9Bg, a € N3 with || <1, 1 < j, [,k < 3,

0°VED () < € RTTILQUV ()] S € R (02 (Bale — 2) )| < € R
(@) (x = 2)| + [Sjalz — 2)] < CR .

Thus, by letting R tend to infinity in (4.21]), the integral over 0 Bg implicitly present in
that equation tends to zero. Hence the integral over 0{2g becomes an integral over Of),

with n(?#) replaced by —n(Y. Next we use (4.8), (4.11), (4.12)) in order to let & tend to

zero. In this way we get that
Vioua) = [ (S -Fue=21/2 (<045 @),) G2

+ 3 Sile = 2) V(6);(2) nf(2) ) do.

k=1

We recall that (1/2) (—¢ + T(¢) ) = b. Abbreviate w := V(¢)|0€, and note that w €
C°(99Q)3; see at the beginning of this proof. We may then rewrite (4.22)) as

Vioh(z) = =V(b)i(z) = W(w)i(x), (4.23)

with W(w) defined in Lemma . This is true for any 2 € Q. Since w € C°(9Q)?,
Theorem 4.5 yields that the function W (w) may be extended continuously to Q¢. This
extension was denoted by W.,(w); see Theorem [4.5| By that theorem, we know that
Wez(w)(2) = (=1/2) (w + T(w) )(z) for z € IQ. Take zy € OQ. Thus we may conclude
that W(w)(z) = (=1/2) (w + T(w) )(zo) for z — xo, z € Q°. On the other hand, since
b, ¢ € C°(00)*, we know from Lemma[4.2] that V' (b), V(¢) € C°(R3)3. Thus, by letting x
tend to xo in Q°, we get from that V(¢)i(xo) = =V (0)i(z0)+(1/2) (w+Z(w) ),(x0).
But V(¢)(z9) = w(xp) by the definition of w, so we finally arrive at the equation 0 =
Y (O)lan) + (1/2) (—w -+ T(w) ) (z0). 0

5 W2 Yprr_regularity of V(¢)|0S.

In this section, we address the key element of our theory, that is, the fact that V(¢)|0$ €
W2=1rr(90)3 if ¢ € W=/PP(9Q)3. The proof of this relation constitutes the main
difficulty we have to put up with, and is split into the proofs of the next two theorems.
The result in the first — Theorem — amounts to an W!'P-estimate of V(¢)|0Q against
the LP-norm of ¢. (The function V(¢) was introduced in Lemma [£.2])

Theorem 5.1 Fiz numbers k(2) € N, a(Q2) € (0,00), sets A, U,
ar, v, for k € (0,1], 1 <t < k(Q) as specified in Lemmal[3.1]

Let t € {1, ..., k(Q)}. For f: A, — C3, define Z,(f) : 0Q — C? as the zero extension of
fo(y) ™Ay — C®todN. Fix a function ¥y € C5°(U, 374) with W4|U, , p = 1.

A, . and functions
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Let p € (1,00). Then, for f € LP(A,)? , the function U, Zi(f) belongs to LP(OQ)3, the
function V (W, Z,(f)) o, is in WHP(A,)?, and

V(% 2(f)) o vllip < €l1F 1L, (5.1)

Proof: Recall that a, € C%(A,), |Va, s < 1/4, and there is an orthonormal matrix
D, € R**3 and a vector C, € R® with ~,(n) = D, - (1, a,(n) ) + C, for n € A; see Lemma
. We have U, € C5°(U, 3,,) by the choice of ¥, in the theorem, so ¥; 0, € C’g(A3/4)
by the definition of U, 5, and 7, in Lemma 3.1 In addition we will use the function J;
(surface element) introduced in Lemma [3.1] as well as the parameter 6(f2), which was
fixed in Lemma . Let 09 € (0,00) be so small that BZ (0) C A, for ¢ € Ay, We

introduce some additional notation. For o, n € A,, 7 € R? § € [O, 5(€2) ], put

L(0.n,6) :=T,(0,n,0) :==7,(0) — %(n) — & (n'Y 0 y,)(n),

T(0,n,8) :=T,(0,m,6) == %(0) = 6 ("' 0 9,)(0) — % (n),
L(o,7) =T,(e,7) == D, (e =7, Va,(0) - (¢ = 7)),
¢ = (\I/tO’Yt) t

Let f € CYA))*NLP(A))?, j € {1,2, 3} and v € {1,2}. Since ¥, 07, € Cg(A3/4), we
have € € Cj(Ay,,)% so € f € C5(A,),)*. In particular € f considered as a function with
domain R? belongs to C*(IR?)? for any x € [0,1), and to LP(R?)3, and we may define

F(f)(o,n) =€) f(n) — €(o) f(o) for o, n e R

In addition (v,)~" : A,; = A, is continuous (Lemma , so U, Z,(f) € C°(00)* and
supp( Wy Z(f)) C A, 3,4 Note that (W Z(f)) o, = (Wrom,) f, so due to equation (3.2)),

1V Zi()llp = [1(Pe o) fIP Tl < Ll (5-2)

with € independent of f. We consider the function V@ (¥, Z,(f)) introduced in Lemma
. According to that reference, this function is C* in an open set 5 containing ) as a
subset, and

VO (B 2(),@) = [ S @EW -y +5nD W) (W E)) ) do, (53)

00 1.4

5 € (0,00Q)], v €, 1 <1 <3, with (Ejp)i<jres introduced in (4.1). Thus
VO, Z,(f) )j 01, is a C''-function, and we get with ‘) and 1D that

0, [VO (0, 2(f)), 0] (0)

= &m(@)z/A (DEs) (T(0,n,0)) fuln) €(n)dn =D F¥(g,),

k=1
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foroe A}, 0 € (0, (5(9)], with

3

FW(p,6) == Z&ﬁt(@)z/ ((8lEjk)(F(Q>77a5)) (BE;) (T(o,m, ))) fre(n) €(n) dn,

k=1 Ay

Zaﬂt / (0,E30)(T(e,m,8) ) F(£) (. n)w dn,

ka: /A(az Ejr)(T(0,n,6))

(8,7, (0)1 (T4 079,)(0) — By ()i (W, 0%,)(n) ) dn,

FY(0,6) ==

NE

filo) T(0) / By (T(0.n.6)) 0,(W, 07,) () ) dn.

k=1 Ay

The form chosen for the definition of F*)(p,6) arises after a partial integration with
respect to n € Ay, which is possible due to (3.6). Let ¢ € C{°(A,). Since ¥, Z(f) €
C°(092)3, as mentioned above, we may deduce from the uniform convergence in (4.11)
that

/ 0.0(0) [V (W 24),0n) (@ de = [ 0.6(0) [V(12(1)), 0] (0)de

for 6 | 0. Also because ¥, Z,(f) € CO(GQ) , we may refer to Lemma and equation
1} to obtain that the integral [, ¢ A, 0) FM(p,0) do tends to zero for § i 0. As explained

above, € f € CI(A3/4)3, SO
IF(N)e,ml < &le—n| for o,n €A, (5-4)

Here and until further notice, constants Q: are independent of o, n € Ay and (not relevant

in the case of . d €0, 0(2)]. By (4.4) and . we have |(9,E;,)(T(0,n,6))| <

¢ |o — 1|72, hence

(81 E;%) (T (0,m,8) ) F(f)(o,mil < €lo—n|™ (5.5)

foro,me Ay withp#n, 1 <k, 1<3,0¢ [0, 5(€2) } We thus see by Lebesgue’s theorem
that also for § = 0, a function F®(-,§) : A, = R may be defined in the same way as in
the case § # 0. It further follows that F'®)( -, §) is integrable for 6 € [0, 5(€2)] and

/C (0.6 d@—>/€ ) F®(0,0)do (5 1 0).

Since 7, belongs to C?(A;)? and has bounded derivatives, and because of (3.4) and the
relation W, 0, € CF(4,,), we have

(01 Ej1) (T(0,1,0) ) (8v(0)i (Wi 0 7,)(0) — vy (m)i (Trom) ()] < €lo—n|™",  (5.6)
1B (T(0,7,0)) 0,(Ts 09,)(0)] < €lo—n|™

23



foro,ne A, witho#n, 1 <k 1<3,0¢€ [0, d(2) ] As a consequence, as in the case of
F®(.9), the function F® (. §): A, +— R for u € {3, 4} may be defined as above also
for § = 0. In addition the function F*) (- §) is integrable for any § € [0, ()], and

/c (0,6 d@—>/< 0,0)do (6 1.0).

Altogether we may conclude that the weak derivative 0, [ V( v, Z(f) )j o %] exists and

4

A [V(T 2:(f)), 0m](0) = > FW(g,0) for g€ A,. (5.7)

n=2

We are going to transform F®)(-,0). Recall the term f(g, n) introduced at the beginning
of this proof. We have

IT(0,7,0) — T'(0,m)| = la,(0) — a,(n) — Va,(0) - (0 — n)| < €lo—nl?,
and |T(0,n) + 9 (T(0,1,0) — T(0,1))| > |0 — | for ¥ € [0,1], o0, 1 € Ay, so with (4.4),

(0Es) (T(2,,0)) — (AiEj) (T(e,m) )| < €lo—n| ™ (5.8)
for o, m € Ay, 0 #n, and for 1 < k,1 < 3. Since € f € Cj(Ay),)°, we may thus define

60 = Y alo S (@E(Tn.0) = @) (Fe)) fio) o) iy

k=1
3

6¥(0) =~ Y dnon i@ &) [ ((AED(T(en.0)) ~ @) (Flen)) ) dn

k=1 Ay

for p € A;. Inequality 1) holds with T'(g,7, ) replaced by f(g, n), so we may further
define

o) = 0wt(@)z/BQ ( )(& E)(T(e,n) ) F(f)(o,n)kdn (5.9)

k=1

for o € A,. Since

sup{| (O E;) (T(0,m))| : 0, m€ Ay, lo—n| > 00, 1 < k,1 <3} < o0, (5.10)

we may set

Q)= Y duleh [ @E(T(em) fulo) ) dn

k=1 A\BZ, (o)

Zawt €<Q)/A\B2()<al Ej)(T(o.n) ) dn
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for o € A;. Then
5
F®(0,0 ZG (o) for o€ A, (5.11)
pn=1

Concerning this equation, note that the domain of integration Bgo(g) in the definition of
G® () may be replaced by A, N B2 (o), because €, f € C}(As4)? and due to the choice
of o¢ at the beginning of this proof. In view of and , let us estimate the terms
GW(p) for € {1, ..., 5}, as well as F®(p,0) and F®(p,0). The function G® is by far
the most difficult to handle since it hides a singular integral. Following [4], (2.1)] (where
the term (o — 1)% (0 — 1)3”* is lacking), we write G as a series. To this end we recall
that [Va,(o)] < 1/4 (0 € A1) by the specifications on a, in Lemma[3.1] As a consequence
|Va,(0) - (e —n)|/|lo—n| <1/4 <1/2 for o, n € A, with o # 1. (The upper bound 1/2 is
sufficient here.) Hence for 7 € N, o, n € A, with o # n,

~ . . 2 —7/2
Tom™ =lo—nl"" (1+ (Va0)- (0= m))"/lo—nl*) (5.12)
oo 2m
—7/2 2m —n m—n T—2m
- ( m/ ) D ( . ) 016,(0)" Daa, (0™ (o = )i (0 = 3™ " o — | ™
m=0 n=0
On the other hand by the definition in (4.1))
(8[Ejk)(2’) = (—(Sjk zZ + (Sjl Z + 5kl Zj) ’2‘73 - 32j 2k 2l ‘2‘75 (513)

for 1 <k,1<3, 2 € R¥\{0}. We combine and . To this end we put
1 0
A(p):=D,-| 0 1 for o€ Ay,
tha,(0) Daa4(0)
with D, introduced in Lemma . Then T'(0,7) = A(0) - (0 — 1) (0, n € A,). Put
3(0)kir = =0k A(0)1r + 650 A(0)1r + o1 A(0) i,
3(0)kta = —3(0); 0 A(0)kaz A(0)1as(0)
for k, 1 € {1, 2, 3}, r € {1, 2}, a € {1, 2}3, o € A,. Then we get from that

(OEj) (T(e.m)) (5.14)

Z O)wir (0 — 1)y |F97 )72+ Z 3 klaHQ Ma

r=1 ae{l,2}3

[\

(0, n)|°

for k, [, o as before, and for n € R? with o # 1. Further put

B(m,n,r, k) = Kk, K] k3™ R[22, ‘B (m,n,a, k) := HKO‘@ K RS™ T k| TOTE™
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for r, @ as above, m € N, n € {0, ..., 2m}, r € R*\{0},

wimn,0)i= (7)) dale) deafo

m

Do) i= () (21 e rator

m

for m, n as before and o € A,. Then by (5.9)), (5.12)) and (5.14)), it follows that G®)(p) =
G@D(0) + G (o), with

G*(o) (5.15)
3 2 co 2m
= Z ZaV’Yt(QhE(Q)klr/ sz(mana Q)%(munur7 9_77) ‘F(f)(gu n)k dT]?
k=1 r=1 330(9) m=0 n=0
% (o)

oo 2m

=3 > 0n0i3(0ua /32 . > > W(m,n, 0) B(m,n,a, 0 — 1) F(f)(e,n)kdn

kl=1ae{1,2}3 m=0 n=0

for p € A,. Since |Va,(p)| < 1/4, we obtain with (5.4 that

‘Zﬁﬁ(m n,0) B(m,n,r, 0 —n) F(f)(e, n)k’ (5.16)

<[ (72 e ij (1) o= a1 e < (T [jzpm ool

m m

formeN 1<k<3 1<r<2, 9,n€ A with o # n, where € is independent not only
of o and 7, but also of m. We thus see that the integral in the definition of G*V (o) may
be moved inside the sum with respect to m € N. In this way we arrive at the integral
fBEO(Q) B(m,n,r, 0o—n)F(f)(o,n)dn for m, k, r as before and for 0 <n < 2m, g € A,.

Since |B(m,n,r, 0 —n) F(f)(o,n)k] < €lo—n|™* for m, k, r, o, n as in (5.16) and for
0 <n < 2m, as again follows from (5.4)), we obtain

/ B(m,n,r, 0 — 1) F(F) (o n) di (5.17)
Bgo(g)\BE(Q)

= [ B o—n) F(f)omhdy (010), uniformly in o€ Ar.

B2, (0)

But [, (Q)\BQ(Q)%(m, n,r, 0—mn)dn = 0 for p € R?, o € (0,00), m, k, r, n as before,
0'0 o
so we see that the term F(f)(o,n)r may be replaced by fi(n) €(n) in the integral on the
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left-hand side of ((5.17). Thus with (5.15)) and (5.17)), we finally arrive at the equation

3 2
(o) = 3% 0(o) 30 (5.18)

k=1 r=1
oo 2m
> ) W(m,n, o) lim B(m,n,r, 0—n) fuln) En)dn,
=0 n—0 740 /B2 (0)\Bo (o)

for p € A, with the limit of the integral over BgO\Ba for o | 0 being uniform with respect
to such p. An analogous reasoning yields that

D)= > 0mle)3(0)ua (5.19)

kl=1ac{1,2}3

o 2m
> ) W(m,n, o) lim B(m,n,a, 0 —n) fuln) €(n) dy
m=0 n=0 40 Bgo (0)\Bs(0)

for p as before, where the limit of the integral in this equation is again uniform with
respect to 0 € A,;. We note that faBQ |B(m,n, 7, k)| do, < faBQ k|72 do, = 27 for m €

N, n € {0, ., 2m}, r € {1, 2}, and S 27 190 (m, n, 0)| < 5 ‘(—;‘;{2)\ (1/2)2m
for o € Ay; compare - As explained in the passage preceding (|5 , we have € f €
LP(R?)3. At this point, due to the uniform convergence of the integral in (5.18)), we may
refer to Theorem to deduce from that |GGV, < €||€ f|l, < €|/ f],- Here and
in the rest of this proof, € stands for constants independent of f, and also of o € A; if
such a variable g is involved. In an analogous way as equation leads to the previous
estimate of GV it may be deduced from equation that |G|, < €| f]l,, so we
finally obtain that ||G®|, < €|,

All the other relevant functions may be estimated in a rather straightforward way. By
(5.6) we see that the absolute value of the integral in the definition of F®(m,0) and
F@W(.,0) is bounded uniformly in ¢ € A,. It follows that [|[F®W (- 0)|, < €| f|, for
w € {3, 4}. An analogous argument, based on (/5.8)) and , respectively, instead of
, yields that [|GW|, < €||f]l, for u € {2, 5}. As for GW,| we may use to obtain

G ()] < € / S €M dn < €[]l < € If ]

AI\BO'O (Q)

for o € A, so that [|GW|, < €||f|l,- Concerning GV, inequality (5.8) provides that
G ()] <€ [y le—nl""[f(m)]|€n)|dn for o € Ay, so that |G|, < €||f]], by Lemma
2.1

At this point it follows from the representations in ([5.7)), (5.11)) and the previous estimates
of the terms [|[F®) (-, 0)],, [|[F®(-,0)|, and |G®W]|, for u € {1, ..., 5} that

10, [V (¥ 2:(f)); 0 ]lls < €l fllp for fe LP(A)*NCHALY, je{l, 2,3} (5.20)
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and v € {1, 2}. Take f € LP(A;)3. Obviously inequality (5.2)) remains valid for such
f, so Lemma implies that ||V (¥ Z,(f))|l, < €|V Z,(f)|l, < €| ], hence by (3.2)),
V(U Z()) ol < IV (¥ 20001l < V(¥ 205 < €]l The theorem fol-
lows from this estimate, inequality(5.20)) and the density of LP(A;)*NC*(A;)? in LP(Aq)3.
U

The next theorem states that the W2~'/P*-norm of V(¢)|0f2 is bounded by the W'~1/p:»_
norm of ¢. This is the key result of our theory. Its proof is based on the preceding
theorem.

Theorem 5.2 Let p € (1,00). Then V(¢)|0Q € W2=VYrr(9Q)2 and ||V (6)|0Q|2-1/p,p <
C||¢ll-1/p.p for ¢ € WIHPP(0Q)?.

Proof: The notation introduced either in Theorem itself or at the beginning of the
proof of that theorem, up to inequality ([5.2)), will be used here again, without further
notice.

Let t € {1, ..., k(Q)}, j € {1,2,3}, fe LP(A)>NCYHA,)? and v € {1, 2}. Recall that
U, Z,(f) € C°09).

Let 6 € (0, 6(Q2)]. Consider the function V©® (W, Z,(f)) introduced in Lemma [4.3| As
stated in that lemma, this function is C* in an open set s containing ) as a subset;
see as concerns its first order derivatives. As in the proof of Theorem |5.1 we split
8V[V(5)(\I/t Z(f) )j o %}(Q) into a sum of several terms, but in a way different from

that in the previous proof. In fact, by 1) and because supp( U, Zi( f)) CU.; /4 and
(U Z(f)) oy = (U 07,) f, we get for p € A, that

0, [ VO (W 2()), 0% ](0) (5.21)

= > omon [ @EW(T(@n.0)] filn) €y = 3 HY (e.0),

k=1 Ay p=1
with

9= Y [ @E(Ten9) (9(0) — 2u(0) ), Jilo) €

k=175

i/ (0 Ex)(T(0,n,0) ) — (01E) (T (9,77,5))>

k=1 AI

O fr(n) €(n) dn,

;AE . 7.6)) fu() 9, €(n) i,

1

78S : / Eji(T(0.n,9)) 0y fr(n) €(n) dn.

k=178
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The last two functions arise due to a partial integration with respect to n € A;, which
is possible due to (3.6) and because € € Ci(A,). Let ¢ € C5°(A,). We deduce from
the relation ¥, Z,(f) € C°(09Q)? (see further above) and from the uniform convergence in

(4.11) that
/ 0.0(0) (VO (1 2:1)), 00) (@do = [ a0) (V(0ezd),00) (0)do

for ¢ ¢ 0 Lemma | equation (3.2)) and the relation € € C}(A;) yield that the integral

fA )(0,9) dg tends to zero for § } 0. The function ~, belongs to C?(A;) (Lemma
, SO Wlth . ) and (| -,
105 [ (DEj1) (T(0,m.0)) (o) = uy(n) ), ]I < €lo—m| 11 (5.22)

for 1 < k1 <3, o,ne A, witho#mn, ¢ [0, 5(9)], a € N2 with |a| < 1. Here
and in inequality below, € is independent of ¢ and 7. Since € € C}(A,), we have
¢ f e CY(A))3, in particular |€ f|,, < oo, so we may conclude from ((5.22)) with o = 0
and from Lebesgue’s theorem that the function H® (- 5) A, — C is well defined and
integrable also for § = 0, and [, (o) H"(0,0)do — fA H(l)(g, 0)dp for § | 0. We
further deduce from ) and that

09 Esu(T(0,m,0)) ]| < €lo—mn|~"1 fork, o, 7, 6, a as in (5-22). (5.23)

Taking into account that €9, f and 0, € f belong to Cj(4,,,)*, we see that due to (5.23)

with o = 0, the function HW(. 6) for ,u € {3, 4} is well defined and integrable also if
0 =0, and fA 0) HW(g,6)do — fA 0) HW(0,0)dp (§ | 0) for such u. At this point

we may deduce from 5.21)) that the Weak derivative (’91,[V(\Ift Z(f) )j o fyt] exists — a
fact already known from Theorem —and

O,[V(WZ(f)),0n](@)= Y, H"™(0,0) for o€ A, (5.24)

pe{l, 3,4}

Now consider f € LP(A,)3. In the following, the constants € are independent of f. Re-
calling that 0°€ € C(4,,,) for a € Nj With |a| < 1, we observe that %€ f € LP(A,)3

and |0%€ fll, < €| fll- It follows from (5.22)), (5.23) with &« =0, § = 0 and from Lemma
1) that if 4 € {1, 3}, the function H® (-, 0) is Well defined also with f as given now,

that is, f € LP(A,)?, and the estimate ||H“)(-,O)||p < €||f|l, holds. We recall that
according to Theorem [5.1] the weak derivative 9, [V (¥, Zt( f )) 01, ] exists also in the

case f € LP(A,)? con51dered presently, and inequality (5.1)) is Vahd for this f. Define

H® .= —HO(-,0) = HO(f)(-,0) +ay[v(\m Zi(f),; o). (5.25)
In view of (5 .j and the estimate HH W0, < €|l fl, for u € {1, 3} derived above, we
see that H® € LP(A,)? and ||HY Np < €N Fllp-

Next take f € WIP(A,)? ﬂCQ(Al) . We have H®Y = H®(. 0) by (5.24), and H®(-,0) =
—V( U, Z(0,f) ) o7, by (3.2). At this point we may refer to Theorem to obtain that

H® e W»(A,) and ||0,H" ||p < ¢||a,f|l, for r € {1, 2}.
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Since we have now shown that [|H®|, < &||f||, for f € LP(A,)? and H® € W#(A,)?,
| H Nip < €|l fllip for f € WEP(A)PNC?(A,)?, we may conclude that the two preceding
relations remain valid under the condition f € Wlp(Al) instead of f € Wlp(A )3 N
C?(A,)3. Therefore interpolation implies that H® € W'=1/PP(A)? and ||[HD||y_y, , <
Cl|flls-1/p,p for f € WHTUPP(A))°.

From - and Theorem [2.2) . we obtain that H® (- 0) for u € {1, 3} belongs to
Wi-l/er(A))? and [H@W (-, 0)1-1/pp < CIIfll, if £ € LP(A})?. At this point we may
refer to equation (5.25) to conclude that 9, [V (¥, Zt(f)). o] € WTPP(A)) and

10, [V (Wt 2:(f)) ;0% [ l1i-1/pp < €llflli-1p,p for any f € WA, v e {1, 2). Tt
follows with Theorem.that for f € WI=V/PP(A)3

V(\PtZt(f) )jo% €W2_1/p’p(A1)a ||V(\I’tzt<f)) ° Yella- 1/p,p = < €| fll- 1/p,p- (5.26)

Let ¢ € W'=/nP(9Q)3. In the rest of this proof, constants ¢ are independent of ¢.
We have ¢ oy, € WV/PP(A)? and Zy(¢ o v,)|A; = ¢[A,;. Since supp(¥,) N IQ C

A, 34 we see that W, Zy(¢ o y) = ¥y ¢. Thus the relations in (5.26) hold with ¢ oy
in the place of f. Moreover we observe that dist(OQ\A, ,,, A, /) > 0 (Lemma ,

supp( (1—0,)|0Q) C OO\, o and v,(0) € A, ), for 0 € A, . If follows with Lebesgue’s
theorem that V ( (1 — ;) ¢); o el € 02(A1/4) and

0 [V(A=2)6),0%](e)l = ‘/MZ@S[%(%(@)—ZJH (1= W4)(y) 6k (y) doy
<C|¢ly for g€ A, aeNjwith|a| <2,

with € being independent of ¢ and p. Therefore ||V ( (1 —¥,) gb)jo%|A1/4||27p < &||9||p, in
particular ||V ((1— 0 gb)j oA yll2-1/p,p < €||0[,. The preceding estimate and (5.26
with f = ¢ o~ yield that V(¢); 0, |A, 14 € w2t/ p(A1/4) and [[V(¢); O'Yt|A1/4||2 pp <

C([|o o vlliz1/pp + 10llp) < €l@]1- 1pp Since j, t, ¢ were chosen arbitrarily in the sets
{1, 2,3}, {1, ..., k} and W'=1/PP(9Q)3, respectively, the theorem follows with .

The consequence of Theorem we are interested in is stated as

Corollary 5.1 Let p € (1,00). For b € W=Vrr(9Q)3, ¢ € EST with (1/2) (Fo +
T*(¢)) = b, the relations V(¢)|02 € W2 1/P2(9Q)* and ||V (¢)|0Q2—1/p,p < € ||bll1=1/p,p
hold. (The space Ez(f) was introduced in Corollary . )

Note that in the situation of the preceding corollary, we have ¢ = F*(b); see Corollary
and [4.3] Thus it follows by Corollary [6.I] and Theorem [6.3] below that b is the traction
boundary data of the pair (V(qﬁ)]ﬁc, Q(qﬁ)]ﬁc) (exterior domain case; ¢ = F(7)(b)) and
(V(9)|€2 Q(4)|Q) (interior domain case; ¢ = F() (b)), respectively.

Proof of Corollary : Take b and ¢ as in the corollary, and consider the case (1/2) ( ¢+
T () ) = b. All the constants € appearing in the following are independent of b. We have
in particular b € ran(l, +T), so by Corollary Joq @) -bdo, =0 for 1 < j < 6. Since
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in addition b € W'=1/»2(9Q)3, we may conclude with Lemma 4.9 there is a sequence (b,,)
in C°(0Q)* with b, € C*(0Q)* NW=V/Pr(9Q)3, [, ¢ b, do, forn €N, a € (0,1), 1 <
J <6, and such that ||b — by[|1-1/p,, — 0.

Let n € N. It follows with Corollary 4.2 that b, € ran(l, + T)), so there is a unique

function ¢, € ES™ with (1/2) (¢ +T(dn) ) = by, for n € N; see Corollary . Theorem
yields in particular that ¢, € C*(9Q)% for a € (0,1). Now we may conclude from
Lemma .10 that

(1/2) [V(#)|02 + T(V($a)|02) ] = V (ba)|0%2. (5.27)
Since ||b, — b||, = 0, we know by that||V(b,,) — V(b)|0€?||, — 0. But
[fn — &llp < €lldn — &+ T (0 — P)|lp = €l[bn — bl|, for neN (5.28)

according to Corollary 4.3} so ||¢, — ¢||, — 0, hence ||V (¢, — ¢)|022, — 0 by (£.7). Now
it follows from the boundedness of T}, (Lemma that

1V (¢n — 0)|0Q2 + F(V (¢ — 6)[0Q) ], — 0.

Altogether we deduce from (5.27) that (1/2) [V (¢)[0Q+ T(V(4)|0Q) ] = V(b)|092.
Since b, € W1-1/2(90)3, Theorem [5.2] yields that V (b,)|8Q € W2 1/P?(9Q)? (n € N)
and

IV (b = bm)|0QU2-1/p,p < Cllbn = bimlli-1/p.p, [V 0u)IOLl2-1/.p < €lbnll1-1/p,ps (5:29)

for m,n € N. By Lemma [4.2] we further have V (b,)[09 € C%(092)* for 0 < a < 1, n € N,
so it follows with (5.27)) and Theorem [£.3]that the functions V (¢, — ¢,,)|0€ and V(¢,,) |02
belong to W2~1/7:P(9Q)3 and

||V(¢n - ¢m)|aQH2—1/p,p <c ( Hv(bn - bm)|aQ||2—1/p,p + ||¢n - QbmHP)?
IV (6n)10Q2-1/p,p < € ([IV (00)|0Q 2-1/p.p + lPnllp)  (m,n € N).

Due to (5.29) and because of ([5.28]) and an analogous inequality for ||¢,|,, we thus obtain
that

IV (¢n = om)|0U 21,0 < Cllbn = binll1-1/p,p [V (90)|09Q]2-1/p,p < Elbnll1-1/p,p (5-30)

for m,n € N. The first estimate in ((5.30) implies there is v € W?~1/P2(9Q)3 such that

|V (én) = Yll2=1/p,p — 0. Since ||V (¢n, — ¢)|0€|, — 0, as explained following ((5.28|), we
may conclude that V(¢)|0Q € W2 Y/72(9Q)% and |V (¢n — ¢)|l2-1/p.p — 0. In addition
|br, — b|l1=1/p,p — 0 by the choice of the sequence (b,). At this point the second estimate

in ‘) yields that ||V(¢)|aQ||2—1/p7p < Q:Hle—l/pm'

Analogous arguments are valid if (1/2)( —¢+T*(¢) ) = b if we note that the function 1
introduced in Corollary [£.3 belongs to C*(992)? for a € (0,1); see Theorem [4.2] O
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6 Existence and W??-regularity of solutions to (1.1]),
1.2)).

To begin with, here is an overview of some key notation used in this section and the
following one. The functions ¢, ..., ¢® were introduced in Theorem , V(¢) and
Q(¢) in Lemma |4.2, W () and I1(¢) in Lemma , the operators F(*) and F(-) and the
function () in Corollary . The constants v and 7(b) will be defined in Theorem
below, and the functions R(f) and &(f) in Theorem [6.4]

In the ensuing theorem we consider (1.1) with f = 0 (homogeneous Stokes system) in
Q° and with Neumann data satisfying a side condition. This theorem is proved by
reducing it to Corollary |5.1jand to the LP-theory of the Stokes system in bounded domains
under Dirichlet boundary conditions.

Theorem 6.1 Let p € (1,00) and R € (0,00) with Q& C B, b € W'1/PP(9Q)* with
Joq ¥ @ - bdo, = 0. Abbreviate ¢ := FO(b), v:=V(¢)|Q°, 0:= Q(¢)|".

Then v € C®(Q)?, o € C®(Q°), and the pair (v, ) solves with f = 0. Let r €
[1, 3p/2). Then, with constants € independent of b.

[0l < €llbllp,  [[012k[1rn + [lel2allr < 0], (6.1)
[0[Q8ll2p + 0[]y < Cbll-1/p,p- (6.2)

Proof: We refer to Lemma for the relations v € C=(Q°)?, o € C=(Q°) and the
fact that the pair (v, g) solves with f = 0. Moreover Corollary yields that
IV (9)Qr|11 + [|Q(#)|2kR]r < €||¢],- Here and in the following, the constants denoted
by € are independent of b, and therefore of ¢ as well. Due to Corollary and by the
definition of ¢ in Theorem , the relations ¢ € ES ), (1/2) (—0+T(9)) =b, o, <
€ |b]|, hold. The preceding inequalities imply . Let us show . Since ¢ € Ez(,_)
and (1/2) (—¢ 4+ T*(¢) ) = b, Corollary yields that V(¢)|0Q € W2~1/P?(9Q) and

IV (@)|0Q2-1/p,p < C[bll1-1/p,p- (6.3)

Recall that V(¢)(z) for x € 9Q was given by a direct definition in Lemma 4.2l On
the other hand, inequality means in particular that V(¢)|Qr € W'?(Qr)?, and
by the last statement in Lemma we know that the trace of V(¢)|Q2g on 0 coin-
cides with V' (¢)|0€ as defined in Lemma Moreover estimate (4.15) — (4.17)) yield
in particular that V(¢)|Bar\Br € W?P(Byp\Bgr)® and |V (¢)|Bar\Bgll2p < € ||8]l,, so
the C°°-regularity of V in Q mentioned above and a standard trace theorem yield that
V(4)|0Br € W2~1/PP(9Bg)? and ||V (¢)|0Bgll2-1/p.p < €| ¢ll,. Therefore we may con-
clude with and the estimate ||¢||, < €||b||, already shown that the directly defined
function V' (¢)|0Qg is the trace of V(¢)|Q2r on dQg, belongs to W=1/PP(9Qz)3, and

||V(¢)|aQR||2—1/p,p < Q:(Hle—l/p,p + ||¢||p) <c ||b||1—1/p,p' (6-4>

Since div(V(¢)|R*\0Q) = 0, and again by the relation V(¢)|Qr € W'P(Qg)3, we
get that fﬁQR V(¢)(x) - n*)(z)do, = 0, with n(®#) denoting the outward unit nor-
mal to Q. At this point we may apply Theorem [2.5] which yields functions u €
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W2P(Qg)?, m € WHP(Qg) with —Au + V7 = 0, uldQr = V(¢)|0Qr, [, mdx =
0 and [jull2p + (7)1, < €||V(¢)|0Qr||2-1/p,p- The latter inequality and (6.4)) imply
that [Jullap + |7lly < €[blli-1/p,p- But v = V(9)[Qr and m = Q(¢)[Qr + ¢, with
¢ = —|Qg|"" [y, Q(¢)(x)dr. This follows from Theorem and the properties of v
and o stated at the beginning of this proof, and because V(¢)|Q2x € W1P(Qg)? and
Q(¢)|Q2r € LP(QR) according to (6.1). Thus inequality is proved. O

Corollary 6.1 Consider assumptions and notation as in Theorem [6.1. Then the pair
(v, 0) satisfies in the trace sense.

Proof: We have b € LP(00Q)3, and f ¥ © - bdo, = 0 by the assumptions on b. Thus
Lemmal[4.9] yields a sequence (b,) in C’O((‘?Q) such that b, € C*(9Q)*NW=1/"7(9Q)? and
Joq 0@ - bydo, =0 forn €N, a € (0,1), r € (1,00), and such that |[b, — b|[1_1/,, — 0.

Let n € N. Since [, Y . b, do, = 0, the function ¢, := F7)(b,) € E; from Corollary
is well defined. By definition it satisfies the equation (1/2) ( —¢, +T*(¢n) ) = by,. Let
R € (0,00) with © C Bp/». By our choice of b, we have b, € W=1/""(9Q)3 for r € (1, 00),
so Theorem [6.1] implies that V(¢,)|Qr € W2"(Qr)3, Q(¢,)|Qr € WLT(Qg) for such r. It
follows by a Sobolev inequality that V' (¢,,)|{2g may be continuously extended to a function
from C'(Qz)?, and Q(¢,)|Q2r admits a continuous extension to Q. Since both V (¢, ) and
Q(¢n) are C* in Q° (Lemma[4.2), we may conclude there are functions V,, € C*(92¢)? and
Q. € C°(Q°) such that V(¢,)]|Q° = V,|Q" and Q(¢,)|Q° = Q,|Q°. On the other hand,
since b, € C*(0N)* for a € (0,1), Theorem [4.2) ylelds in partlcular that gbn € C’O(@Q)
Recalling that 9,V,, € C°(Q°)3, Q,, € C°(Q°), V,|Q° = V(4,)|Q" and Q,|Q° = Q(¢,)|Q",
we deduce from , Theorem and the equation (1/2) ( On + T (o) ) = b, that

> "0 (@) (03Viug + OV — 01 Qu)(2) = byj(x) forz €992, 1<j <3, neN. (6.5)
k=1

But by our choice of b, ¢, (b,) and (¢,), Theorem [6.1| yields that
1V (¢n = 0)Qrll2p + 1Q(¢n — @)|Qll1p < €lby = bll1-1/p,p forn € N.

Thus, recalling Lemma and the definition of v and p, and taking into account that
ajvn € 00(90)3’ Vn’QR = V(¢n)’QR S W27T(QR)37 Qn € OO(QC)a QH‘QR = Q(¢n)’QR S
WL (QR) for r € (1,00), as explained above, we conclude that

1850 = 05Vl 09l + lle = @nl0lp < €lbn = blli-ajpp (n €N, 1 <5 <3),

where the boundary values are taken in the trace sense. Since ||b, — b||1-1/p,, — 0 by the
choice of the sequence (b,), it follows with (6.5) that the pair (v, p) fulfills ((1.2]) in the
trace sense. O

It is well known (see [23]) that the side condition imposed on the boundary data b in the
preceding corollary may be eliminated by using the double layer potentials from Lemma
[4.5] In addition there is a second way to work around this condition. In the following
theorem we derive LP-estimates in both cases, obtaining a velocity satisfying a zero flux
condition on 0f2, or a pressure which is LP-integrable near infinity,
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Theorem 6.2 There is a € (0,1) with ' € C*(9Q)*. Moreover [, @ -n!? do, # 0,
and there is vo = 7o (1 ¥) € R3\{0} such that

> (@) (W)t W (@) =05 L) ) (1= 1@ (2) ) = =30 @) (1 L 0)

Jh=1
for1<j <3, 1€0Q. Let p € (1,00), b € WI=V/PP(9Q)3. Put

1

v(b) =~ [ v bdo, (| ¥ nDdo,), b:=b+~(b)n.
20 20

Then [, v©® -bdo, = 0.

Define ¢ = FOb), u = V(9)[Q, 7 = Q(¢) +v()[Q". Then u € C=(Q")’ N
W2P(Q0), © € C=(Q) N WLP(Q°), and the pair (u, ) solves the Stokes system

loc loc

with f =0, and verifies the boundary condition in the trace sense. In addition the
zero flux condition faQ u-nY do, = 0 holds.

Let R € (0,00) with Q@ C Bg, 11 € [1, 3p/2), 12 € (3,00), 73 € (3/2, 00), 74 € (1,00).
Then with constants € independent of b,
[wlQal1r + 1728 < Cl0llp,  (ulQall2p + 7|21 < €blli-1/p,p,  (6.6)
0% ()| < €fblly [z~ 0% (7 =y (0) ) ()] < €|[blp [ (6.7)

for x € B, a € N} with |a] < 2,

[ul Bgllr, < €|bllp,  |0nul Bllrs + llm = v(0)| Bl < €[[b]l,, (6.8)
10mOnu Bgllrs + 1007 | Bgllr, < €0ll,  for 1<m,n <3, (6.9)

in particular ||0p,0null, + |0n7 |, < €||b||,. Further define

C

U :=V($) +7 " 7 (O) W(Q, 7= Q) + 5" 7(b) ()2,

If y(b) = 0, that is, if [, -bdo, =0, then u =71 and 7 = 7.

Suppose that y(b) # 0. Then the previous results remain valid with u, ™ replaced by u and
T, respectively, with the following exceptions: The zero fluxr condition does not hold for .
The first estimate in is replaced by ||u|Qg|,, < €]y, the second estimate in (6.7

by |0°7 (x)| < €||b|l, |z| 727121 for  and a as in (6.7), and the second estimate in
1021| BG ||rs + |7| B ||y < €||B]|,, again with constants € independent of b.

There is Ry € [R,00) with |(m —7)(x)| > |y(b)|/2 for v € Bg,. Moreover u — ul0$) €
ker(1, — T,)\{0}, and the function uw —u is not constant.

Proof: First we prove the claims about v and [,, ¥® - n® do,. By the choice of ¥* in
Corollary we have —(© + T(1() = 0. Thus we may apply Theorem with b =0
and ) = 9 and with p = r for any r € (3,00). Abbreviating W := W (¢®), W, =
Win(©), W = W (), T := H(y@), I, := ,(¢) and T, = .. (@),
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this theorem combined with Theorem K3 and Lemma [£.5 allows us to conclude that
@ e C1e(90)? for some a € (0,1), © € W2 1/rr(90)3
Win € C1(Q)%, We, € CHQ)?, 1T, € CO(Q), M, € CO(Q°), (6.10)
Win0Q = (=1/2) (=@ + T(@©)) =0, We,[09Q = (=1/2) (v + T(pV)) = -,
Win|Q = W|Q € WP(Q)3, W,,|Q = WI[Q°, W e C(R*N\9Q)?, II € C®(R*\09),
AW + VII =0, divIV =0, I1,,|Q = I|Q € W' (Q), I1,|Q° = ]Q,
W|Qr € W*P(Qr)?, TI|Qr € WHP(Qpg).

and I, (¢(?) in Theorem 4.7, The parameter R was fixed in Theorem [6.2l) Theorem [4.6
and the relation ¥ € C**(9Q)? provide the equation

(The functions Wi, (1) and We,(¥?) were introduced in Theorem , and TT,, (¢
6.2

w

3
Z 2\ (0, Wik + Wi ; — 05 TLy,) = Z g (0 Wer ks + OsWea j — 0 ey (6.11)
k=1 k=1

for 1 < j < 3. Among the relations in (6.10)), we next use that W;, € C*(Q)3, W;,|00 =
0, Win| = WIQ € W2P(Q)3, I, € C%(Q), I1;,|Q = H|Q € LP(Q), W € C=(R3\00N)*
and IT € C*(R3\09), with AW + VII = 0, divIW = 0. From this and Theorem [2.6} it
follows that W, = 0, hence 9;W;,, = 0 (1 < 5 < 3) and VII|Q2 = 0. But Q is a domain
and II is in particular continuous, so there is 7o = 7o(1/Y)) € R with II|Q2 = 7,, hence

IT;;, = 9. Thus the left-hand side of (6.11]) equals —~q néﬂ), and therefore its right-hand
side as well, so that

3
> i (0 Wew b+ O Wew ;= 03 Tey) = =0l (1< 5 <3). (6.12)
s

For the relation |, 50 @ . n D do, # 0 we may refer to [23, Remark 3.3]. However, since
this reference would not shorten the argument here, we prove this relation here, too. In
fact, suppose for a contradiction that

Y% =0 or Y@ . n @ do, = 0. (6.13)
a9
Then let S € [R,00). We use Lemma with U = Qg, u = & = W,|Qg, ™ = Qs

This choice in Lemma is possible according to (6.10). Also by (6.10), we have
Wop|0Q = —1p©. Thus Lemma , equation (6.12)) and assumption (6.13) imply that

J.

But the surface integral on the right-hand side of preceding equation tends to zero for
S — oo due to (4.13), (4.14). It follows that [ >0, | |0;W; + 9,W;[*dz = 0. This

means that 0;W;, + 0kVVj|§° = 0 for 1 < j,k < 3. Turning to Theorem we now

3 3
> 10 W + O W[ da = / > (x1/9) (Wi + 0y — 651, I0) () Wi(z) do,.

jk=1 9Bs j k=1
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conclude there are numbers ay, ..., ag € R such that W|Q° = ZS L0 ¢W[Q°. Tf there

were an index j € {1, ..., 6} with a; # 0, we might choose a sequence (z,) in Q° such
that |z,| — oo and Z _, ;99 (z,,) -+ 0. For example, if ag # 0, a suitable choice would

be z, = (0, R+n, 0) for n € N. But on the other hand, for any sequence (x,) in Q° with
|z,| = o0, inequality implies |W(x,)| — 0. Thus we may conclude that a; = 0 for
1 < j <6, hence W|Q" =0, and so W,, = 0. But W,,|0Q = —® by , so (0 =0,
in contradiction to the choice of ¥(® in Corollary Thus none of the equations in
(6.13]) can be true. As a consequence vy # 0 and faa P 0 do, #£0.

Since Q is C2-bounded, we have n(®) € C*(9§2)3 for any a € (0, 1). This means in particular
that n® € W=1/Pr(90)3, so b € W1/rP(9Q)3. (The function b was introduced in
Theorem ) Obviously [, ¥ -bdo, = 0. Recall that ¢ = F()(b); see the definitions in
Theorem It immediately follows from Theorem [6.1] and Corollary [6.1] that the claims
about u and 7 in Theorem up to but excluding the zero flux condition hold true. As
concerns that latter condition, we note that by Corollary and the last statement of
Lemma , the traces of V(¢)|Q" and V(4)|Q coincide. So in view of Lemma , we
obtain that [, u-n® do, = [, divV(¢)dz = 0. We further find that

VO] < €1bllp,  [Ibll, < N1Bll, + v (B) [ P]], < &b, (6.14)
||b||1—1/p,p < Hb“l—l/np +C |'7(b)| ||”(Q)||1—1/p,p < ||b||1—1/p7p +C ||b||p <c ||b||1—1/p,p'

Thus we may deduce (/6.6 by referring to the second estimate in and to , each
time with b replaced by b and by using 1-) Moreover, in view of the first estlmate in

with b replaced by b, and due to (6.14), we obtain that ||¢||; < € ||¢|l, < € |[b]l, <
¢ ||b||p Inequality (6.7) follows from the preceding estimate, (4.13) and (4.14). Similarly

the preceding estimate and (4.15)— (4.17) imply and 1@'

For the rest of this proof we suppose that v(b) # 0. Turning to @ and 7, we recall that
according to (6.10) we have in particular that

Wee € CHO), W |Q© = W|Q° € ()3, T, € CO(Q°), T.|Q° =T|Q°  (6.15)
€ C™(Q°), —AW 4+ VII =0, div W =0, W|Qgr € W?P(Qg)?, II|Qg € WP(Qp).

As a first consequence, we see that 9;(W|Q°) for 1 < j < 3 and IT|Q" have a trace on 99,
and this trace equals 0;W.,|0Q and II., |09, respectively (Lemma . Recalling that
Theorem and Corollary are valid with b in the place of b, and taking into account
, we may therefore conclude that @ € C>(Q)3NW2P(Q°)3, 7 € COO(Q YNWLEP(Q0),
and the pair (u,7) solves the Stokes system (1.1)) with f = 0 and fulfills in the trace
sense. We further note that © = u+15 "' y(b) W, T = m —y(b) + v, ' v(b) H. Therefore the
estimates which according to Theorem are satisfied by w and 7 follow from - ,
(6.15), the inequality |v(b)| < €|[b]|,, and the relation W € L"(Qg)? for r € [1, 3p/2),

which is a consequence of Lemma [2.4]

Existence of Ry € [R,00) such that |(7 —7)(z)| > |y(b)|/2 for z € Bf, follows from
(6.7) and from the estimate of |[0°7(x)| stated in Theorem [6.2. We recall that W,,|0Q =
—© € ker(I, — T,)\{0} according to (6.10) and Corollary [4.3l Thus we may deduce
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from the relations We, € C(Q°)3, W,,[Q0" = W[Q° (see (6.15)) and @ = u + ~5 ' y(b) W
that u — u|0Q € ker(I, — T,)\{0}. Since it was shown that [, %@ - n(® do, # 0 and
faﬂ uw-n do, = 0, it further follows that faﬂﬂ-n(m do, # 0 and faQ —7)-n do, # 0.
In particular u — u|0S) and hence u — U are not constant. O

Next we turn to the interior domain case.

Theorem 6.3 Let p € (1,00) and b € W'=1/PP(0Q)3 with [,, ¢V -bdo, =0 for1 < j <
6. Abbreviate ¢ := F(b), v :=V(¢)|Q, 0:= Q(¢)|

Then v € C*(Q)3, o € C(Q), the pair (v, ) solves with f = 0. Moreover equation
holds in the trace sense, and

[ollir + llellr < €llbll,  forr e[, 3p/2),  lvllzp + llollipy < €lbll1i-1/p,p-

The constants € appearing in the preceding estimates are independent of b.

Proof: Theorem is proved by an analogous reasoning as used in the proof of Theorem
and Corollary with the role of 2z now played by (2. The argument is somewhat
more simple. For example there is no analogue to (6.4) which would come up. All the
references used in the proof of Theorem and Corollary are such that they also
cover the situation in Theorem [6.3 O

Corollary below shows that the condition on b in Theorem is necessary. The
ensuing lemma is needed for the proof of this corollary.

Lemma 6.1 Letp € (1,00), u € W*P(Q)3, 7 € W'2(Q). Then

/ Zgbl)Zn (Ojug + Opuj — O, ) doy, = /Zqﬁ (0;divu + Au; — 0;m) dx
o9

k=1
f0r1§l§6.

Proof: The lemma follows from the Divergence theorem and the fact that

3
Z (9k¢§-l) (Ojup + Oku; — ) =0 for1 <1 <6. O

jk=1

Corollary 6.2 Let p € (1,00), f € LP(Q)3, b € W'Y/PP(9Q)?, u € W?P(Q)3, 7 €
WhP(Q) such that the pair (u, ) satisfies in Q as well as . Then the equation
Joq @Y -bdo, + [, ¢V - fdx =0 holds for 1 <1< 6.

Proof: Combine Lemma [6.1] with (1.2)) and (L.1J). OJ

In the rest of this section, we consider solutions to ((1.1]), (1.2)) in the case f # 0.

Theorem 6.4 Let A C R? be measurable and p € (1, 3/2). If f € LP(A)3, the integral
[ S50 1B (x — ) fu(y)| dy is finite for o € N3 with |a] <1, 1 < j < 3 and a. e.

x € R3, so we may define

/Z )dy) 1<jes (z € R?).
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For such f, the relations R(f) € I/Vlif(R?))?’, dz’vi)%(f) 0 and [|R(f)|la/p—2/3-1 <
C(p) |fll, hold, and in addition OR(f);(x) = [, Zk VO Ex)(x —y) fuly)dy for z €
R3, 1<74,1<3.

Let q € (1,3). If f € LY(A)?, the integral [, S 0N —y) fr(y)| dy is finite for a. e.

x € R3, so we may define

/AZ ~0M (@ — ) fly)dy for v € R,

k=1

and we have &(f) € Wig!(R*)?, 16(f)llasg-1/5 < Cla) Hqu-
If A=R3 and f € LP(A)3, we have —AR(f) + VS(f) =

In the case f € LP(A)* N LI(A)? the estimate ||OR(f)]|(1/q-1/3-1 < C(q) || fllq s valid.
Letr € (1,00). If f € LP(A)>NL"(A)3, then [|0,0,R()|l, < C(r) | f|l- (1 <1,m < 3), and
in the case f € LY(A)PNL"(A)3, the estimate |0,S(f)|. < C(r) || fll- holds for 1 <1 < 3.

Proof: The theorem follows from the Hardy-Littlewood-Sobolev inequality and from the
Calderon-Zygmund inequality; see [9, Satz 1.4] and the proof of [13, Theorem IV.2.1]. O

Corollary 6.3 Let r € (1,00), R, S € (0,00), f € L"(Bg)3. Then ||R(f)|Bsl|l2, +
IS(N)Bsllr < COr, B, S) [ ]l

Proof: Obviously f € LP(Bg)? for any p € (1, min{r, 3/2}), so R(f) and &(f) are well
defined. Lemma [2.1] and yield that ||0*R(f)|Bsl|- + [|S(f)|Bsll» < C(r, R, S) || £~
for a € N§ with |a| < 1. If |a| = 2 and [ € {1, 2, 3}, we know by Theorem [6.4] that
10“R()]- + ]S ()|l < C(r) || f|l-. Altogether we obtain the estimate stated in the
corollary. 0

In the ensuing theorem, which is a more detailed version of Theorem , we solve ([1.1),

(1.2) in exterior domains also in the case f # 0.
Theorem 6.5 Let p € (1, 3/2), f € LP(Q°)?, and b € W'=1/PP(90)3. Then

=S 0 (R + AR(); — 55 S(f)) for j € {1, 2,3},

k=1
is well defined in the trace sense for 1 < j < 3. Further define (b + b) and ¢ as in
Theorem but with b replaced by b+ b. Finally put

uw:="V()|Q, 7:=0Q(¢)+~(b+0b)Q, (6.16)
w:=V(9) + 7% 0+ ) WD), 7= Q(0) + (0 + D) (W)Y,
vi=u+R(f), o=m+6(f), v:=u+R(f), 0:=7+6(f).

Note that the functions u, w, ™ and 7 coincide with the corresponding functions in Theorem
except that b is replaced here by b+ b.

The function ¢ is independent of choice of p, (last statement of Corollary , so the
same 1is true for the functions defined in .
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The pairs (v, 0) and (v,0) satisfy all the claims stated about them in T. heorem with
c=—y(b+0b). Let R € (0,00) with Q C Bg. Then inequality may be replaced by
the more detailed estimate

||amalv||r + HalQ”r (617)
< C(|fll- + IVR(fIBs &) | Qwllr + 1S(f1BS £) | &l + [1bll1-1/rr )
<C(Ifll-+ [I/1Bsgllq + 1Iblli-1/nr) (1 <1,m <3, Re (0,00) withQ C Bg),

with the constant € independent of f and b, and hence also of v and o. This estimate
remains valid with the same type of constant when (u, o) is replaced by (U, D).

If y(b+b) = 0, then (v,0) = (v, 0). Suppose that y(b+b) # 0. Then Lo n® . Tdo, # 0,

and there is Ry € [R,00) with |(0 — 0)(z)| > |y(b+ b)|/2 for x € B, In addition
v —0|0Q € ker(I, — T,)\{0} and v — 7 is not constant.

Proof: Let p; € (1,3), p; € (1,00), and suppose that f € L*(Q°)3, b € W'=1/52(9Q)?
for s € {p, p1, p2}-
Since R(f) € W2P(R?)3 by Theorem , the traces of |(f)|Q and R(f)|Q° on 9N exist

loc
and coincide, so [, R(f) - nY do, = [, divR(f)dz = 0, with the last equation due to
Theorem . The same reference additionally yields that &(f) € W,5P(R?), so we may

oc

conclude that R(f)|Q° € W2P(Q9)3, &(f)|Q° € W,2P(Q°), hence the trace of GR(f);|Qr

loc oc

and &(f)|Qg exists and belongs to W'=/P7(9Q), for 1 < j,1 < 3. Therefore b is well
defined and in W'=1/P?(9Q)3. Thus we may deduce from Theorem |6.2 with b + b in the
place of b and from Theorem [6.4] and (6.16) that the pair (v, o) belongs to WP(Q°)? x

loc

WLP(Q°), solves (1.1), and satisfies (1.2) in the trace sense. In addition it follows from

oc

Theorem and by the results on 9R(f) mentioned above that [, v - n® do, = 0.

All the constants € appearing in the following are independent of f and b. Let s €
{p, p2, p3}. Theorem applied with ¢, r replaced by p and s, respectively, yields that

1000, R()ls + 1S ()lls < C(s)[[flls for 1 <1,m < 3. (6.18)
Let R € (0,00) with Q C Bg. Consider the case s = py. Let [ € {1, 2, 3}. The estimate

1R 122 8) [ Qgllp, + 1S(f1Q228) | Qrllp, < Cpa, B) [|f1Q2kllp, < Cp2; B) ([ £]lp, (6.19)
holds by Corollary [6.3] Moreover, for z € B and y € BS 5, we have |z — y| > |y|/2, so

1OR(fIB5 p) | llps + 16(F1B5R) [ Qmllp, < C1QR[M72 /B I 1 f(y)ldy  (6.20)
2R

< C(pr,p2, R) || fIB3 gllp: s

where the last inequality holds due to Holder’s inequality and because p; < 3. A trace
theorem and inequality (6.18)) — (6.20)) imply that b € W1=1/P2:72(90Q)3 and

1Bll1-1/p2, o < € (VRN 100 + 16() Q] 12 ) (6.21)
< C([1fllpe + IVR(£1B3 r) | Qe + 1S(F1B5 ) | Qllpe ) < €IS llp + 1 £1B5 allp,)-
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On the other hand, by the definitions in , and from and the second estimate
in With b+ b in the role of b and p, in that of p, we get that ||0,,01ullp, + 107 ||y, <
b4 bl[1-1/ps, ps for 1 < I,m < 3. Inequality m with po, p1 in the role of respectively
r and ¢ follows from this estimate, (6.21)), (]6_182D and again the definitions in (6.16]). At
this point [I3, Lemma I1.6.1] yields that v € W2P2(Q€)3, o € W,2P*(Q°).

loc oc

Consider the case s € {p, p1}. Let [ € {1, 2, 3}. We know from Theorem that

1OR(F) | 1/s=1/3)-1 + 1SNl a/s-1/3- < CCs) [ f]s- (6.22)

As a consequence [|OR(f)[Qells + [S()Qklls < Cls, R) || f]s, so with (6.18) we see that
ORI+ 1S(F)IQR]1s < C(s, R) || f|ls- Again using a standard trace theorem, we
thus obtain that b € W1=1/*(99)% and ||b||1_1/s,s < €| f]|s, hence

16+ Bll1-1/5,5 < C(UIbll-1/5,5 + I fls). (6.23)

At this point we note that |y(b + b)| < €||b + bl|s. Therefore from with b replaced
by b+ b and p by s, and from (6.23) we find that

[ulQkllzs + |17 = (b +0)|Qrll1s < €16+ blliorys,s < C(IFIls + Illi-1ss.s)- (6.24)

Suppose that s = p; Then from ([6.24)) by a Sobolev inequality,

10|kl /17371 + 7 = 1+ )Rl 1/ -173-1 < EUfllpy + [Bll1-1/p11)- (6.25)

On the other hand, because (1/p1 —1/3)~" > 3/2, the second inequality in with
b+ b, p; in the place of respectively b and p, together with (6.23)), provide that

1ol BRl(1/ps-1/3-1 + |7 = 40+ B)|BRll 1/ -1/3-1 < €Ufllpr + [bll-1/p1.1)-

The preceding estimate and ([6.25)) imply that
10ull (1711731 + 17 =3B+ D)1 pi-1/3)-1 < € llpe + [0lli-1/p1, )
hence with (6.22)) and the definitions in (6.16)),

0wl /pr-173-1 + e =70+ D)la/m-1m=+ < EUf o + Ibllicr/prp)- (6.26)

Now take s = p. We have ||u|Qr|lq/p—2/3-1 < C([[fllp + 16]1=1/p,p) due to (6.24) and a
Sobolev inequality. Moreover, since (1/p;—2/3)~" > 3, the first inequality in (6.8) with b+

b in the place of b together with (6.23) yields that ||u| B || 1 /p—2/3-1 < € ([ flp+H10ll1=1/p.p)-
It follows with Theorem [6.4{ and (6.16)) that ||v{|1/p—2/3-1 < C(||fllp + [[bll1=1/p,p)-

We recall that (6.17]) has been shown above to hold with r and g replaced by respectively
pe and p;. Take p = p; = p. Then we may conclude from this variant of (6.17)), the
preceding estimate and (6.26)) that inequality (1.3) holds with ¢ = —y(b + b).

Consider the case ps = p; = ¢. Then (6.26)), our variant of (6.17) and the relations
v € WEP ()3, 0 € WhP2(Q°) also shown above yield inequality (1.4)) and the regularity

loc oc

statement preceding it. Finally, setting r = p3, ¢ = ps, we obtain inequality (6.17)) and
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the relations v € W2 (Q°)3, o € WL (Q°) from the variant of this inequality already

loc loc
proved, and from the regularity property of v an p just mentioned.

The statements in Theorem with respect to v and p follow by analogous arguments,
again based on Theorem [6.2 and [6.4]

If v(b+ b) = 0, we deduce from Theorem (6.2{ with b+ b in the place of b, and from (6.16])
that (v, o) = (7,2). Suppose that (b +b) # 0. Since [oa n® . R(f) do, = 0, as shown at
the beginning of this proof, it follows from Theorem (6.2 with b replaced by b+ b, and from
that |, 50 n® . Tdo, # 0. It further follows from these references that there exists
Ry with properties as mentioned in Theorem [6.5, and that v — v|0Q € ker (I, — T,)\{0}

O

and v — T is not constant.

Corollary 6.4 Let p € (1,00), R € (0,00), f € LP(Bg)*, b € W'/r2(0Q)* and
S € (R,00) with Q C Bg. In particular f € L"(Bg)* for any r € (1,p]. Then, with the
notation of Theorem[6.5, and with a constant € independent of f, b and x,
[ e [|0%o(a)] +10°T(2)] ] + |2 [10* (0 =~ (b + D)) (@) +[0°8(x)]]  (6.27)
< C(Iflh+N1ollp)  for = € BS, a € NG, |a| <2.
As a consequence, inequalities , and their analogues for (u,T) as described in
Theorem[6.4 remain valid when (u, ), (u,7) are replaced by (v, 0) and (v, ), respectively,

and the factor ||bll, by [[bll, + || f|l1- In addition, if v(b+b) # 0, there is Ry € [S, 00) with
|o(x)[ = [7(b+b)|/2 for x € B,

Proof: It may be deduced from Lebesgue’s theorem and Lemma that R(f);| B¢ and
S(f)|BE belong to C?*(BS) (1 < j < 3), and the derivatives appearing in (6.27)) commute
with the integrals defining SR(f) and &(f) (Theorem [6.4). Thus it may be shown in the
same way as Lemma [4.6] that

[ R(f) ()] + |06 (f) (@) < €Iflly for 2, a asin (6:27),

with € independent of f and x. Inequality (6.27) now follows with (6.7). The other
statements of Corollary are obvious consequences of ((6.27)). 0

The ensuing corollary provides additional details about the existence and regularity results
in Theorem which deals with solutions in interior domains.

Corollary 6.5 Letp € (1,00), f € LP(Q)3, b € W=V/PP(90)3 with
/ ¢(’)-bdox+/¢(l)-fd:rzo for 1<1<6.
o9 Q
Put b; == =30, n,(cm (OR(f)k + OWR(f); — 0 S(f)) for 1 < j < 3. Then for | as
above, the equation [, ¢© - (b +b) do, = 0 holds.

Define ¢ := FH(b+1b), u:=V(d) + R, 0:=Q(¢) + &(f)|Q With the matriz M
g — M-L. . o® =y — 5 O]

from Lemma set o= M1 ([qu- oW dr)iges, vi=u— > a ol

Then v € W2P(Q)3, 0 € WHP(Q), the pair (v, 0) satisfies and (1.9), and v verifies

the relation va-gb(l) dz =0 for1 <1< 6. Moreover |[v||ap+]oll1p < € fllp+10l1-1/p,p)
with a constant € independent of f and b.
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Proof: By Corollary [6.3] we have R(f)|Q € W?P(Q)?, &(f)|Q € W'P(Q), so b €
W=1/pp(90)3. Let | € {1, ..., 6}. Then we find by Theorem [6.4] and Lemma | that

¢V (b+b)do, = [ ¢ -bdo, +/¢<’> - fdu,

o9 00 Q

so |, 50 #D-(b+b) do, = 0 by our assumptions on f and b. Therefore we may apply Theorem
with b replaced by b+ b, to obtain that V(¢)|Q2 € W2P(Q)3, Q(#)|Q € W?(Q), the
pair (V(¢)|, Q(¢)|Q) solves with f = 0, and equation 1) holds with b+ b in the
place of b. In addition this theorem implies that ||V (¢)|Q]]2, + [|Q(0)|21, < € ||b+ b1,
(The constants € in this proof are independent of f and b.) A trace estimate yields that

Bl < € (Z RV + [S()I21p) < € (IR + SR, )-

Since || R(f)|Q|2p + S(f)|Q1p < €| f[l, again by Corollary [6.3] we thus arrive at the
inequality ||ull2p + [|0]l1p < €| fllp + [|b]l1-1/p,p)- Due to Theorem and by what was
stated above on the pair (V(¢)|Q, Q(¢)|Q), the pair (u, o) solves ‘ .

For any [ € {1, ..., 6}, the function ¢#’|Q belongs to C*(Q)3, and the pair (¢, 0) is a
solution of (1.1, with f = 0 and b = 0. Recall the vector o € R® introduced in
Corollary . Since |oy| < € ||ul|, for 1 <1 < 6, and by the properties of u, ¢ and M, the
pair (v, ) fulfills the claims stated in that corollary. O

7 Some uniqueness results.

The claims on uniqueness in this section imply in particular what is stated on uniqueness
in Theorem [L.1] and [L2l First we consider the exterior domain case.

Theorem 7.1 Let R € (0,00) with Q C Bg. Forj € {1, 2}, letpj, 75, 85 € (1,00), ul) €
W2S(Q0)3, 7)€ W™ (Q°) with u®|BS, € LPi(B%)? and Vrd|BS, € L (BS)?.

loc
Further assume that either [, u) - n® do, =0 for j € {1, 2}, or that there are numbers
q1, ¢2 € (1,00) such that 79 |Bg € L9 (BS) for j € {1, 2}.

Put v := u(l) —u®, =70 — 7@ Suppose the pair (u, ) satisfies with f =0 as
well as with b=0. Then u =0 and m = 0.

Proof: Put r := min{ry, 79, s1, s2}. By Theorem.we know that Vrr|BS,, € L*(B%,,)?
for s € (1 r]. Theorem [2.3] then implies there is 7(7) € R such that © 4+ 7(7)|Bg,, €
LA/ (Bg ) for s € (1,7] if r < 3, and for any s € (1,3) else. Note that 7(r)
is independent of s, as follows from the criterion for the case 7(v) = 0 in Theorem [2.3|
As a consequence there is p € (3/2, oo] such that © + 7(7)|B%,, € LP(Bg,,) for any
p € (3/2, p). In fact, we may choose p := (1/r —1/3)~! in the case r < 3, and p = oo else.

Fix a function ¢ € C§°(By) with ¢|B; = 1 and 0 < ¢ < 1. Put p,,(z) := p(m~'z) for
r € R} m € N. Then ¢, € C*(Bam), ¢|Bmn =1, 0 < ¢, <1, supp(Vpm) C Bap\ B
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for m € N, |[Vou|, = 0(m — oo) for p € (3,00), and ||0,0k¢m|l, — 0(m — oo) for
pe (32, 00), 1<,k <3.

Let ® € C°(Q°)%. By Theorem we may choose a pair (v, o) € W2H(Q)? x W.-H(Q)
and a constant ¢(p) € R such that this pair solves with f = ® and with b =0,
and such that v; € LP (), v, 0 + (o) € LP2(Q), nbiv;, G0 € LP*(Y) for any
p1 € (3,00), pa € (3/2, ), p3 € (1,00), 1 < j,k,I < 3. According to that corollary, we

may additionally require that [, v - n do, or c(p) = 0.
For n € N, put v, := 0, v, 0pm = Om (,Q + c(p) ) We claim that

|lu- (—Avy, + Vo, —P)|1 = 0, ||u-Vdivu,|; — 0, ||(7r—|— c(m) ) divog| =0 (7.1)

for m — oo. In fact, concerning the first of these relations, recall that supp(Vm) C
By \Bm C B for m € N, m > R, and that {2 C Bg. Therefore by Holder’s inequality

g Oror Oromlls < g | B, [10willsp 2 |0rgmllsy for m as before, j € {1, 2},

1 < k,1 < 3. Further recall that dv € LP(Q°)? for p € (3/2, o0), u)|B% € LPi(B%)? and
IVomllsp, — 0 (m — oo) for j € {1, 2}. It follows that Hug) Ok, Oipmll1 — 0 (m — o0)
for j, k and [ as before. Similarly [[u'? - v App,[l; = 0 and [[u (0 +¢(0) ) Vi [1 — 0
for m — oo. Altogether, since —Av + Vo = &, we get that ||u - (Av, + Vo, — )| —
0 (m — o0). Moreover dive = 0, so a variant of the preceding argument yields that
|w-Vdiv vyl = 0 (m — o0). Since 7 +7(7)|Bf,, € LP(B%,,) for p € (3/2, p), as shown
above, and because v|B§,, € L*(B%,,)? for s € (3,00), we may choose p € (3/2, D)
and s € (3,00) so close to respectively 3/2 and 3 that 1 — 1/p — 1/s < 1/3, hence
(1—-1/p—1/s)"" > 3. As a consequence |V, |a—1/p-1/5-1 = 0 (m — 00), so we
get in view of the equation dive = 0 that ||(7 + 7(7) ) divom,|s — 0 (m — co). This
completes the proof of . We apply the first and second relation in , obtaining that
fﬁc u-®dr = lim,, fﬁc - (—Avy + Vo, — Vdivo,,) dz. At this point we recall that the
pair (v, o) satisfies with b = 0, and that divu = 0, ¢,,| B = 1, supp(p.m,) C B2y, and
Q C B,, form € Nwith m > R. Thus we have 9;v,,, x|0Q = 9;0%|09Q, 0,|0Q = 0+c(0)]02,
and we may apply Lemma [2.6| with Q2. (U, 0)|Q21m, u|Q2., in the role of U, (u, ) and
u, respectively. It follows from the preceding equation for fﬁc u - ® dx that

/ch-cbdx (7.2)

3
= (1/2) lim / Z (Okuj + Ojug) (OkVm j + OjUm k) dx — c(0) / n . wdo,.
QC

m—r0o0
Jok=1 o8

Next we again use Lemma , this time with (u, T+7(m) ) 12, Um|Q24, corresponding to
(u, ), u, respectively. In addition we apply the third relation in (7.1]) and the assumption
that the pair (u,7) is a solution of with f = 0 and of with b = 0. Once more
we take into account that ¢,,|B, = 1, supp(¢m) C Bam and Q C B, for m € N with
m > R. In this way we may deduce from that

/ u-Pdr=—c(p) / nY - wdo, + () / nY . v do,. (7.3)
o i)

onN
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Now suppose that | 80 n® . udo, = 0. Then we choose the function v in such a way that it
additionally satisfies the condition |, n v do, = 0. As mentioned above, such a choice
is possible according to Theorem In this way we get from |} that fﬁc u-ddr =0.

In view of the second uniqueness criterion in Theorem|[7.1} let us suppose there are numbers
q1, @2 € (1,00) such that 79|B € L%(B$) for j € {1,2}. Then 7(x) = 0. In fact,
due to the choice of 7(7) at the beginning of this proof, there is s € (1,00) with 7 +
7(m)| By € L¥(B%.,)?, so fBl(m) |7+ 7(7)|°dx — 0 (m — oo) by Lebegue’s theorem,
hence fBl(m) 7 +7(m) dz — 0. Since 79| B§ € L%(BS) for j € {1, 2}, the same reasoning
vields that [ 7 dr — 0 (m — oo) for j € {1, 2}. But 7 — 7 4+ 7 = (), so we
conclude that 7(w) = 0. On the other hand, according to Theorem [6.5 we may require
that c¢(g) = 0, as already stated at the beginning of this proof. Returning to ([7.3), with
this choice of p we obtain once more that fﬁc d-udr=0.

Therefore this equation is valid in any of the two cases considered in Theorem [7.1]. Since
® was taken arbitrarily from 080(90)3, it follows in both cases that v = 0, so 7 = 0 due

to 1) |) and the assumption that 99, and hence also Q and Q°, are connected. O
Finally let us consider uniqueness of solutions in 2.

Theorem 7.2 Let p € (1,00), v € W?P(Q)3, o € W'(Q) such that the pair (v, o)
satisfies , with f =0 and b =0, and such that [yv- ¢V dx =0 for 1 < j <6.

Then v and o vanish.

Proof: Let g € C5°(Q)?, and put a := M-! ([ - Y dx)1<j<6, With the matrix M
defined in Lemma . Define f := g — Z?Zl a; - 99, Then f € C°(Q)* c L¥(Q)?
and fﬂ f-¢Wde =0 for 1 < k < 6. Therefore, by Corollary there are functions
w e W?P(Q)3, o € WH(Q) such that the pair (w, o) satisfies (1.1)) with the function f
defined above, and with b = 0.

In this situation we twice use the formula in Lemma [2.6] first with (u,7) = (w,0), u =
v, and then with (u,7) = (v,0), & = w. It follows that [, f-vdr = 0. But by our
assumptions, v is orthogonal to the functions ¢¥). Therefore fQ g-vdx =0 in view of the
definition of f. Since g was an arbitrary function from C§°(2)?, we may conclude that
v = 0, hence there is ¢ € R with ¢ = ¢ a. e. Equation (|1.2)) now yields that ¢ = 0. 0J

8 Appendix: Proof of Theorem 4.6,

We only consider the limit limsjo F'(—0) for the function F' from Theorem The limit
limg)o £'(0) is easier to determine because then the integrals on Q2 appearing below are
replaced by ones on (2, so the parameter R and the difficulties related to it do not arise.

Let 0 € (0, 6(Q)] and put z := z — §n{?(z). Note that z € Q (see (3.3)) and |z — b| >
Do6/2 for b € U 5 (see (3.6)). (The open set t_s and the constants §(€2) and D were

introduced in Lemma 3-2) It follows that for m € N, the function |z — y|™ (y € H_;) is
C> in 4. Since Qp C Q° C U_4 for R € (0,00) (see Lemma , this C*°-regularity in
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$l_s will allow us in the following to apply the Divergence theorem in p.

Let j € {1, 2, 3} and put Kklm = —@-Sklm _aijlm +25]k 816,”‘)1 for k’, l, m e {1, 2, 3},
where Sy, for v € {1, 2, 3} and 9 were introduced in (4.2)) and (4.1)), respectively. Then
by the definitions in Theorem [4.6) and Lemma [4.5]

F(=6) = Y a0l@) [ Kun(z—y) 0\ () dmly) do,. (8.4)

k,lm=1 Gy
Let R € (0,00) with Q C Bg, and let n{#) denote the outward unit normal to Q, that
is, n(27)|0Q = —nM|0Q, ) (y) = R~ y for y € 0Bg. By the definition of C'*(09)
(see at the beginning of Section 2), there is e C’1 O‘(R?’) with ¢|0Q = ¢. We will write ¢

instead of & in the following. Then we get from (8.4) that F(—kr); =2, +B,(R) + A+,
where 21; is given by the right-hand side of (8.4 - but with the term ¢,,(y) replaced by

O (y) = Om (@) — 32, 0y () (y — ), for 1 < m < 3. Moreover

Y bwl@) (@) | Kum(z —y)u/Rdo,

ke lm=1 9Br

3
Z Oy () n,(CQ) (x) Kim(z —y) nl(Q)(y) (y — ), do,.
klm,u=1 o0

The term 2 differs from B, (R) insofar as the integration extends over 0f2g instead of
0Bgr, and —n(QR)(y) takes the place of y;/R, for 1 <[ < 3. Due the Divergence theorem,
and , we get that 2 = 0. Next we observe that 2 = 2, + By (R) + B3(R) + 2,
where 2l is defined in the same way as 2, but with n( )( )”z( (y) for 1 < k,1 <3
replaced by n,gQ)(x) nl(m(y) - n,(cm (v) nl(m (x). Moreover

> 00V (@) | Kun(z—y) (y—2)ng ™ (y) do,,  (8.5)

k,l,m,v=1 QR

3
> 0om@)n (@) | Kum(—y) vy ys/Rdo,
k,lm,v=1 9BR
and with B(R) chosen as B3(R), but with Kyn(z —y) (y — 2), — Kgm(—y) v, in the
role of Kiim(—y) vy, where 1 < k. I,m,v < 3. Now the Divergence theorem is applied
to 2, transforming the integral over 9)g in 1} into an integral over 2. Note that

due to 1' 1' the sum Zi:l 8yk(Kklm(z —vy) (y— x)y) reduces to K, (z — y); see
the definition of K, at the beginning of this proof (v,l, m as before). In view of this

definition, we may again apply the Divergence theorem, this time in order to retransform
the integral over Qr into an integral over d€Q2x, which we split according to the equation
A =2A+ B, with

3
> Outu(a) V(@) /89< Sum(z = 1) 1V (9) + Syim(= — 1) i (1)
Im,v=1

—26,; (M) (2 — y) n (y) ) doy,
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> ) nf?@) [ (=Sunlz =) w5/ R = Sz =)/ R

Iym,v=1

+26,; (OMN) (2 — ) ym/R) doy.

As a consequence 2A = Az + By(R) + Bs(R) + 2A, where ng Coincides with 2 except
that nl(Q)(x) néﬂ)(y) - nl(Q)(y) ngg)(m) takes the role of nl(Q)(:v) nb ( ), for b,1 € {1, 2, 3}.
Moreover B4(R) and B5(R) correspond to B(R), but we put —Sy,(z — y) + Sblm( Y)
and (OMN)(z —y) — (0M)(—y) in the place of =Sy, (2 —y) and () (z — y), respectively,
in the case of B4(R), whereas B5(R) arises from B(R) by substituting —Sy,,(—y) and
(ON)(—y) for —Sym(z —y) and (9;N)(z — y), respectively (1 < b,l,m < 3). The term 2A
is given by

3
— Z au¢m< (Q) Z Sylm (Q) (y) doy

m,r=1 o0 =1

+n(Q Z Sjlm z — (Q)<y) dOy -2 (51,] nﬁf} / Z 8l ( ) dOy) .
0

90 Q=1

We finally observe that 2 = B4(R) + B7(R) + 2, where 2 differs from 2 insofar as the
domain of integration now is J{2x instead of 02, and the term —nl(QR)(y) is substituted
for nl(Q) (y) (1 <1< 3). Moreover

3
= Z azz(bm( (Q Z Sl/lm yl/R dOy

m,v=1 9Br _1

3

/ Zsjzm y) yi/ Rdo, — 26,;n" (x)/ Z(@l‘ﬁ)(—y) yl/Rd0y>.
OBr OBRr |

As for the term Bg(R), it is defined in a way analogous to the definition of B7(R),
but the terms Sy, (z — y) and (9;N)(z — y) are replaced by Sblm(z —y) — Spm(—y) and
(09) (2 — y) — (OM)(—y), respectively (b € {1, 2, 3}). By (4.5) and (4.3)) we have A = 0.

The splitting of F'(—9), 2, A and 2A considered above, and the equations 2 = 2 = 0
may be subsumed into a single equation, that is, F(—¢) = 213/=1 A, + 217,21 B,(R).
Recall the abbreviation z = x — § n®) () introduced at the beginning of this proof. Since
Q0 C Bgpy and z € Q (see (3.3)), we have |9z —y| > |y|/2 for ¥ € [0,1], y € OBk,
so |By(R)| < €faBR ly|2do, < €R™! for b € {1, 2, 4, 6}, with € independent of R.
Moreover we indicate that Zizl a, faBl Yj Y Ym Yo doy = (j Ot + Q1 Oy, + vy 951) 47/ 15
for € R3, I,m € {1, 2, 3}. The factor 47/15 arises due to the equation f831 yi y2, do, =
(1 + 28m)4m/15, for I, m as before. It follows that » 0, s 5 7 By(R) = 0. Up to this
point the parameter R was fixed. Letting R tend to infinity, we may conclude from the
preceding remarks on B,(R) that 325_, B (R) — 0 (R — 00), hence F(—6) = 32°_, 2,
By the definition of 2(;, 2, and 23, it is obvious that for b € {1, 2, 3}, there is a function
3 = 31()j’x’5) : 0Q — R such that A, = [,, 3,(y) do,. As explained at the beginning of
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this proof, we have |z —y| > D]z — y| for y € Q. In addition ¢ belongs to C1*(R3),
and n¥ is in particular Lipschitz continuous on 0€2. For these reasons we obtain that
130(y)| < €lo —y|2" for y € 9O, 1 < b < 3, where € > 0 does not depend on
y. But fm |z — y| T do, < oo, so it follows by Lebesgue’s theorem and the equation

F(—

)) = Zi:l 20, that F'(—¢) converges for 6 | 0, with the limit being the integral arising

if z is replaced by z in the definition of 2, [, and 3.

A similar but much simpler reasoning (see the remark at the beginning of this proof) yields
that the limit of F'(J) for ¢ | 0 exists, too, and its value coincides with limg o F'(—3d). O
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