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Abstract

The article deals with W%P-estimates of solutions to the 3D stationary Stokes
system under traction boundary conditions. Existence, uniqueness and W?P-estima-
tes up to the boundary are established for solutions in interior and exterior domains.
The proofs are based on the method of integral equations. With this well known
approach, solutions to the boundary value problem are constructed by solving cer-
tain integral equations on the boundary of the domain under consideration. This
access simultaneously yields an integral representation of the solution of the bound-
ary value problem. The difficulty then is to derive W?P-estimates of the integrals
appearing in this representation. Ultimately such estimates are reduced to the
W?2P_theory of the Stokes system in bounded domains, under Dirichlet boundary
conditions.
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1 Introduction.

We consider the Stokes system
—AU+VP=F, divU=0 (1.1)[10]

in a bounded domain ©Q C R? and in the exterior domain Q° := R3\Q, where the boundary
0 is connected and of class C?. System ([1.1]) is supplemented by traction conditions (also
called Neumann boundary conditions)

3
> (@0;Uk + Uy — 6 P)yny,) =B for 1< j <3, (1.2)[20]

k=1

where n¥ denotes the outward unit normal to 2. The functions F (volume force) and
B (force orthogonal to the surface) are given, and U (velocity) and P (pressure) are the
unknowns of problem , . Boundary conditions as in arise, for example, in
incompressible linear elastostatics and in free boundary value problems for in incompress-
ible viscous fluids.



If the Stokes system in Q or Q is supplemented by Dirichlet boundary conditions,
then U and P are respectively W2P- and W'P-regular up to the boundary, provided the
data satisfy suitable assumptions. In the case of the interior domain €2, this is well known
since the beginning of the 1960s, due to the pioneering work of Cattabriga [2] and La-
dyzhenskaya [18]. These two authors chose quite different accesses to their respective
theory. Cattabriga reduced his results to the half-space case, in which a solution to (|1.1)),
(1.2) may be constructed in a rather explicit form. Ladyzhenskaya used the method of
integral equations. More precisely, by solving suitable integral equations whose unknowns
are functions on <), she was able to construct a solution, in © and in Q°, to the Dirichlet
problem associated with the Stokes system ([1.1). Then she evaluated the integrals ap-
pearing in this representation in such a way that LP-estimates for Stokes flows in €2 under
Dirichlet conditions reduce to LP-estimates for the Poisson equation in (2 with the same
type of boundary conditions. W?%P-regularity for exterior Stokes flows was not treated in
either [2] or [I8]. To cite a more recent reference, in the monograph [12], Cattabriga’s
method is used in order to obtain W?2P-regularity of the velocity and W1P-regularity for
the pressure up to the boundary for interior and exterior flows under Dirichlet boundary
conditions. Reference [7] derives the same type of regularity for the same type of problem
for exterior flows, but by applying Ladyzhenskaya’s approach.

An L?-theory for the Stokes system (1.1)) under traction condition ((1.2)) may be found in
literature. In fact, such a theory was derived by Giaquinta, Modica [13]; see [13, Theorem
11.1.2].

LP-theories for the Stokes system under boundary conditions other than Dirichlet ones
— but different from — are also available in literature. As an example we mention
reference [1], where Navier conditions are considered. On the other hand, systems closely
related to have been studied when associated with boundary condition . In fact,
if the Stokes resolvent equation instead of is supplemented by , Grubb [14])
constructed LP-solutions by means of the theory of pseudodifferential operators. Shibata,
Shimizu [21I] and Shibata [22] obtained similar results by reducing this boundary value
problem to the half-space case. The time-dependent Stokes system with prescribed as
boundary condition has also been solved in an LP-framework; see [I5] and [19]. However,
an LP-theory for problem , does not seem to be a corollary of these results on
the Stokes resolvent or on the evolutionary Stokes system. And to our knowledge, no such
LP-theory has been derived in literature.

Our aim here is to fill this gap. To this end we will use the method of integral equations
in a similar way as in [18]. This method yields a solution to , , and at the same
time an integral representation of that solution. By deriving suitable estimates of the
integrals appearing in this representation, we then reduce LP-estimates of our solution
in respectively 2 and Q°, to LP-estimates of in bounded domains, with a Dirichlet
condition instead of prescribed on the boundary; see the proof of Theorem and
[6.3] This step is mainly based on the technical results stated as Theorem 5.1 and [5.2] the
proof of which constitutes the main difficulty of our work.

We mention that our way of solving (1.1]), (1.2]) by means of the integral equation method



is not new. A more sophisticated version of this approach was presented by Starita,
Tartaglione [23], who dealt even with the case of a non-connected boundary 052, whereas
in the work at hand, as in [I§], 02 is supposed to be connected. However, in [23] classical
solutions are constructed without evaluation in any norm, except for a pointwise estimate
of | 320, (0;Ur + 0 U; — 6, P)(z+rn®(x)) n,gﬂ)(x)| with respect to x € 92 and small
k > 0. The LP-estimates which are the main feature of the present article pose a major
additional obstacle.

We will rely on [18] with respect to a number of auxiliary results on the integral operators
appearing in our proofs. However, we will not refer to [I8] directly. Instead we will draw
on results from [8], where the pertinent sections from [I8] are worked out in detail.

Let us state our main results. First consider ([1.1)) in the interior domain 2. The fol-
lowing theorem summarizes Corollary (existence and regularity) and Theorem
(uniqueness).

(theorem100.1)
Theorem 1.1 Define

o(z) == (Ojn)1<nes, 00 (@) = (23,0, —21), ¢O(z) = (29, —21,0),

¢ (x) :== (0,23, —x5) for 1<j <3, xR
Letp € (1,00), f € LP(Q), b € W/PP(9Q)3. Suppose that Joa b-¢\W) do,+ [, -9 dx =
0 for 1 < j < 6. Then there is a unique pair of functions (u,m) € W*P(Q)? x WhP(Q)
satisfying and , and such that [yu- ¢ dx =0 for 1 < j <6. In addition, the

estimate ||u|lzp + ||7]l1p < E([[fllp + 1|bll1=1/p,p) holds, with a constant € independent of
f andb.

The essential features of solutions to ((1.1)), (1.2 in the exterior domain case may be stated

as follows.
(theorem100.2) .
Theorem 1.2 Let p; € (1,3/2), f € LP(Q)3, b € WI=V/ruri(9Q)3. Then there is a

unique pair (v, 0) € WEPH(Q)? x WL (Q) such that

loc
vl /pi—2/3)-1 + 1100 (1/pr-173)-1 + 2l /pi—1/3)-1 + [[0mO0 ]|y, + [|Or0lp,
< E([fllpy + 10li-1/prpy)  for 1< 5,1,m <3,

and such that the pair (v, p) satisfies equation in Q with F = f, as well as
with B = 0.

If in addition there is py € (1,3) such that f € LP2(Q°)® and b € W=1/P2P2(9Q)3, then
10wl (1 /po-1/3)- + [l pa=173)-1 + [10mOlpy + 0i0llpy < €[ fllps + 10l1-1/p2.2)

forl, m as above. Under the further assumptions that f € L¥* ()3, b e Wi-1/psps(9Q)3
for some ps € (1,00), and R € (0,00) with 2 C Bg, the estimate

Hamalvnm + ”alQHps < €(Hf”pa + ||f|B§RHp2 + ||b||1—1/p37p3) (13>

1s valid for [, m as before. The constants € in these estimates are independent of f and

b.



More details may be found in Corollary [6.4] and for the case f = 0 in Theorem [6.2] A
uniqueness result stronger than the one in the preceding theorem is given in Theorem 7.2

Concerning the strange-looking term || f|Bsp ||y, in (1.3)), we think an estimate of the form
10m010]|ps + 10101 ps < € (|| fllps +116l]1=1/ps, ps) cannot hold with the same constant € for all
functions f € LP*(Q°)? and b € W'~1/P%r3(9Q)3. This is indicated by a similar situation
in the Dirichlet case. In fact, the inequality ||0,,,0,U||p, < €| F|p, does not hold with the
same constant € for all F € LP*(Q2°)3, even if an associated solution (U, P) to in Q°
with U|0€2 = 0 is subject to rather restrictive regularity conditions; see [4, Theorem 1.3].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of R" for any n € N, and we use it when
we write || for the length oy + ... + @, of a multi-index a € Nf, as well as |A| for
the Borel measure of a measurable subset A of R3. For R € (0,00), # € R? put
Bgr(z) :={y € R® : |z — y| < R}. In the case x = 0, we write Bg instead of Bg(0). An
open ball in R? with radius R > 0 and centered in ¢ € R? is denoted by B%(p).

The set 2 C R3 and the parameter 7 € (0, 00) introduced in Section 1 will be kept fixed
throughout. Recall that €2 is open and bounded, with connected Lipschitz boundary, and
that n¥ denotes the outward unit normal to Q. We put Qz := Bg\Q.

For n € N, I C R", let x stand for the characteristic function of I in R™. If A C R3, we
denote by A¢ the complement R*\ A of A in R?. Put ¢, := (0;1)1<j<3 for 1 <1 < 3 (unit
vector in R3). If A is some nonempty set and v : A — R™ a function for some n € N, we
set [V|oo == sup{|y(x)| : = € A}.

Let o € (0,1). For any B C R?, we write C%(B) for the set of all Holder continuous
functions on B, that is, ¢ € C*(B) iff ¢ : B — R with

[¥la = [Yloo +sup{l(z) =9 (y)[ |z —y[™* : @,y € B, x # y} < o0,

If B C R? is open, the space C1%(B) is to consist of all functions ¢ € C'(B) with || <
oo and |9|, < 0o for 1 <1 < 3. We further define C*(9Q) := {40 : ¢ € CV*(R3)}.

Let p € [1,00), m € N. For A C R? open, the notation || ||, stands for the norm of the
Lebesgue space LP(A), and || ||m, for the usual norm of the Sobolev space W™P(A) of
order m and exponent p. If A C R? possesses a bounded C%-boundary, the Sobolev space
WrP(9A) with r € (0,2) is to be defined as in [I1], Section 6.8.6].

If A and B are vector spaces and T : A +— B is a linear operator, we write ker T for the
kernel of T" and ran T for the range of T'.

Numerical constants are denoted by C', and constants depending exclusively on parameters
My ooy Yo € [0,00), for some n € N, take the form C(7, ..., 7,). In most cases it is not
worthwhile to list all such parameters, in particular if they are related to 9€2. Then we
use the symbol € for constant whose dependencies — or more importantly, their non-
dependency — on certain parameters should be clear from context. Sometimes, in order



to insist that the constant in question depends on 7y, ..., 7, among other quantities, we
use the notation €(7, ..., V).

In the following theorem, we reproduce the Calderon-Zygmund inequality for even kernels.
This well known estimate is restated here because we will need some details on how the
upper bound given by this inequality relates to the structure of the kernel.

(theorem0. 10) ) )
Theorem 2.1 Let n € N and K : R" — R a function with K(z) = |z|™ K(|]z|™ 2)

and K(—z) = K(z) for z € R"\{0}. Put A(z) := K(z) for z € 0B; and suppose that
A € LY0B)).

Let p € (1,00). Then fRn\Bg(x)lK(x —y) f(y)|dy < oo for z € R", € € (0,00) and
f € LP(R™). Define (K. x f)(z) := fRn\Bg(Z) K(x —vy) f(y)dy for x, €, f as before.

Then there is a constant C(p,n) > 0 such that || Kexf|, < C(p,n) ||All1 || fll, for e € (0, 00)
and f € LP(R™).

Proof: [20, p.89, Theorem 2 a) |. O

We state a lemma which is convenient to handle weakly singular integral operators.

(lemma3. 2)
Lemma 2.1 Letn € N, A, B C R” nonempty, A et v measures on o-algebras over A and

B, respectively. Further assume that the function K : A x B — [0,00) is measurable and
the upper bounds A := sup{ [, K (x,y)dv(y) : € A} and Ay := sup{ [, K(z,y) d\(z) :
y € B} are finite.

Then, for p € [1,00) and ¢ : B — R measurable with [,|¢[’ dv < oo, the integral
Joo K(z.y) |0(y)| doy is finite for X\-a. e. x € A, and

( / ( /B K)o () ax(@)) " < s ( /B ora)”. emml

The preceding assumptions hold true if, for example, n = 3, A = B = 02, X and v
are the usual surface measure on 0S), and if there are numbers C, k € (0,00) such that
K(z,y) <Clo—y|™2*" fora,y €Q, x #y.

These assumptions are also valid if A, B C R? are open, bounded and nonempty, if X and
v are the usual Borel measure on A and B respectively, and if K(o0,m) < C'|o—n|~*™ for
o€ A, ne B, o#mn, with C and k given as before.

Proof: Inequality (2.1)) is a simple application of Holder’s inequality and Fubini’s theo-
rem; see [20, p. 7], for example. The first claim of the lemma follows from ([2.1)). O

We do not know a precise reference of the following theorem. For the reader’s convenience,
and since this theorem is a key tool and not so obvious to derive, we give some details of
a proof.

(theorem5. 10)
Theorem 2.2 Let J C R? be open, bounded and convex, and L : J x J — C a measurable

function with L( - ,n) € C'(J\{n}) for n € J. Suppose there is co > 0 with [05L(0,n)| <
colo—n|~t71el for 0, m € J with 0 # 1, o € N2 with o] < 1.



Let p € (1,00) and define L(v = [, L( n) dn forp € LP(J), o € J; see Lemma
2.1 Then L(¢) € Wlfl/pp( ) cmd HE( )||1_1/p,p S ||, for ¢ as before.

Proof: Let o, ¢/, n € Jwith o #n, o #n.1f|o—n| < 2|o—0'|, we have |o'—n| < 3|o—¢/|,
SO

IL(0,n) — L(d',n)| < co(lo—n|"" + 1o —n|™") < Clco) (lo—n>+1d —n|7?) o — ¢

In the case |0 —n| > 2|0 — (|, we get for ¥ € [0,1] that [0+ (¢ —0) —n| > |0 —nl/2.
. . 1

Thus, using the equation [L(0,n) — L(¢/,n)| = | [; (VL) (o + 9 (¢' — 0), n) dV - (0 = )],

we get in any case that

‘L(Q, n) — L(Q’,n)) <Clco)(lo—nI2+d —n?)Jo—d| foro,d,neJ  (2.2)[15.10.6]

with n ¢ {0, 0'}. Let r € (1,2), 0, o' € J,and put J,py :={ne€J :|o—n| <2]o— 1}
By splitting the set J into the parts J, , and J\.J, », it may be shown that the inequality
J;1L(0,n) — L(d',n)|["dn < €|o — ¢'|7"*? holds, where the estimate of the integral over
J\ Ty, is based on (2.2)). Put e := min{1/(2p'), 1/(4p)}. Note that 1 +ep’ < 2. Let ¢ €
LP(J). Then we get by Holder’s inequality and by the previous estimate with r = 1+ € p/
that

L(6)(0) — LW < ¢ / L(am) — L(e )" (Jo — /=7 PP [(m)|? dn

for o, o' € J. Set A(o,0') := |L()(0) — L()(d)|P |0 — /| P~ . Tt follows that

2A(p, 0 <¢/\L 0,m) — L&', n)|'=P |o— | > P |¢(n)|P dn.

We integrate both sides of the preceding inequality with respect to o € J and ¢’ € J, then
apply (2.2 . and change the order of integration. In this way we arrive at the estimate
[, [, %0, ¢) dodo < € (B1 + B,), where

Al ::///@—nl‘z(l‘e” o — &7 2P dodg' | ()P dn.
JJJJJT

and where term B; is to be defined in the same way as 281, except that the difference |0—1)|
is replaced by |¢ — 7|, and the order of integration with respect to ¢ and ¢’ is exchanged.
Now we use that —2 (1 —ep) and —1—2¢ep belong to (—2,0), and —2 (1 —€ep) —1—2¢€p =
—3 < —2. Thus we get that [, |o—n|207P) |o— o|172Pdp < €| —p| ' for o/, € J
with ¢ # n, as follows by splitting .J into four sets according to four cases, three of them
given by the inequalities [0 —n| < |0 —n[/2, |o—¢'| < [¢' —nl/2, [e—n| = 2]|¢"—n], and
the fourth consisting of the requirement that none of the three preceding conditions holds;
compare [10, Lemma 1.4.2]. Tt follows that B; < €||)||>. An analogous argument yields
that By < €|[|¢|P. Therefore the theorem follows from the estimate [, [, A(o, ¢') dodo’ <
¢ (B; + B5) shown above, and from Lemma [2.1] O



(lemmal.40) , .
Lemma 2.2 Let L : 0Q x 09 — C be measurable. Suppose there is Cp € (0,00) with

|L(z,y)| < Cplz—y|™" forz,ye 89 x 7£ Y. Letp € (1 oo) We may define an operator
L: LP(OQ) — LP(OY) by setting L(¢p = [0 L( ¢(y) doy for ¢ € LP(0Q2), x € O%;
see Lemma 2.1

Then L : LP(0Q2) — LP(0N) is linear, bounded and compact.

Proof: Obviously L is linear. The boundedness of L holds according to Lemma [2.1]
As for compactness, we remark that for any € € (0,00), the operator L, . : LP(02)
LP09), L,(0)(®) = [y X2 — ) Lz, ) 6(y)doy (= € 02, & € L2(0Q)) is
compact ([I7, p. 275, Theorem 11.6]). On the other hand,

sup{/ X0z —y]) |z — y|_1d0y cx € 0N} —0(el0),
o0

so it follows by Lemma that L. converges to £ with respect to the operator norm of

the space of linear bounded operators from LP(02) into LP(0S2). As a consequence, L is

compact as well. O
(lemma2.10)
Lemma 2.3 Let L € CY(R3\{0}) and Cr, € (0,00) such that |8°‘L( )| < C’L |z]’1’|a‘ for
z € R\{0}, a € N}, |a| < 1. Let ¢ € C°(09) and put A(¢p = [0 L( ) d(y) do,
for x € R®. Then A(¢) € C*(R?) for a € [0,1).

Proof: [8, Lemma 6.1]. O

(lemma3.21) R
Lemma 2.4 Letp € (1,00), a € (0,2/(3p)), R € (0,00) with @ C B. Then

(1/p—a/2)! 1/p—a/2
([ ([ Jo=si1601d0,) do.) """ < elp.a. B ol Jor L7(0).

o0

Proof: See [6, Lemma 3.2]. O

We will use the fact that a function v defined in a 3D exterior domain and whose gradient
is L%-integrable for some ¢ € (1, 3) takes a constant boundary value at infinity:

theorem100.81)
Theorem 2.3 Let U C R? be open and bounded, with Lipschitz boundary. Let q € (1,3).

(1,
Then, for any v € WENTY) with Vo € LUU°)?, there is c(v) € R with v + c(v) €
L= (T, If such a function v satisfies the additional condition v € L*(U°) for
some s € (1,00), then c(v) = 0.

The estimate ||v + c(v)||1/q-1/3)-1 < €||Vv||g holds for this class of functions v.

Proof: See [12, Theorem I1.6.1], except as concerns the (rather obvious) criterion for the

equation ¢(v) = 0, which is treated in [5, Lemma 2.4]. O
The role of the functions ¢V, ..., »® from Theorem becomes clear by the following
theorem.



theorem100.90)
Theorem 2.4 Let U C R? be a domain. Put

£:={veCYU)? : dju,+ v =0 for1 < j k <3}
Then the family (¢WW|U, ..., O|U) is a basis of £.
Proof: [8, Satz 6.1]. O

We end this section by recalling some properties of solutions to either the Poisson equation
or the Stokes system. In particular we state an LP-theory for the Stokes system in bounded
domains under Dirichlet boundary conditions (Theorem [2.5)).

(lemma100.30) )
Lemma 2.5 Let U C R® be open and bounded, with C*-boundary. Let n'Y) denote the

outward unit normal to U. Suppose that u € CY(U)* NW>H(U)* N C*(U)?, = € C°(U) N
W) N CYU), uw e COUP N WH(U)3 N CHU)3. Alternatively, let p € (1,00), u €
W2P(U)3, 7 e Wh(U), uw € W' (U)3. In both cases suppose that divii = 0. Then

3
/ (Au— Vr + Vdivu) - Gde + (1/2) [ > (Ojur, + Opuy) (01, + Oply) dar
U

U jk=1

3
— / Z n,iU) (6kuj + 8juk — 5jk 7'(') EL/]' dOw.
1o}

U k=1

Proof: Divergence theorem; see |8, Lemma 3.1]. O

(lemmal0.40) .
Lemma 2.6 Let U C R? be open and bounded, with C*-boundary. Letr € (3/2, o), b €

W2=1rr(9U), f e L"(U), u e C%U) with u|U € C*(U), A(u|U) = f and u|0U = b.
Then u|U € W2 (U) and (u|U)|0U = b in the trace sense.

Proof: This theorem is a special case of [0, Lemma 3.4], which, in turn, is based on the
W?24-theory of the Poisson equation and on the maximum principle. (]

theorem100. 30)
Theorem 2.5 Let U C R? be a bounded domain with C?*-boundary. Let p € (1,00), F €

L(U)*, B e W Ypr(U)* with [, B-n'Y) do, =0, where n\¥) denotes the outward unit
normal to U.

Then there are functions w € W*P(U)3, m € W'P(U) such that —Au+ Vr = F, divu =
0, u|oU = B, fUde = 0. Moreover there is Cy > 0 such that for F, B, u and 7 as
before, the estimate [ullay + 71y < C (1Fllp + [ Blls-1/p.p) holds.

Proof: [12, Theorem IV.6.1].

th 100.40
soren >Theorem 2.6 LetU, p, n'Y) be given as in Theorem. Assume thatu € WYP(U)3, m €

LP(U) such that [ (Vu -V +ndive)de = 0 for ¢ € C°(U)>. Further suppose that
divu =0, u|oU = 0. Then u = 0.

Proof: [12, Lemma IV.6.2].



3 Some results on local coordinates of 0f).

In this section, we specify the type of local coordinates we will use in what follows

(lemmal.5)
Lemma 3.1 There are numbers k(Q2) € N, a(Q2) € (0,00), and for any t € {1, ..., ()}

a function a, € C*([—a(Q),a(Q)]?) with |Va,|o < 1/4, an orthonormal matriz D, €
R3*3 and a vector C, € R3 such that the following properties hold:

Put A, = (—oca(Q), ca(Q)) foro € (0,1], v,(n) :== Dy (n, a,(n) ) +C, forn € Ay, t €
{17 Xy k<Q)}v and At,a = {%(77) tne Ao}a

Uy :={D; - (7], ay(n) —|—s) nEN,, sE (—aa(Q), Ua(Q))}

for o, t as before. Then

k()
Gl DI omlAsll < € Ifly for f € LY09), 6 € [1/4, 1, (3.1)[L1.5.100]
t=1

with constants €;, & independent of 6 and f. The function vy, : Ay = A, is bijective,
continuous and with continuous inverse, the set Uy, is open in R3, and Ao =U,N0ON
fort € {1, ..., k(Q)}, o € (0,1]. Moreover dist(OQ\A,,,, A;,,) > 0 fort as before and
o1, 09 € (0,1] with o1 < o3.

Define J,(n) == (1+ 25:1 8jat(n)2)l/2 form € Ay, t as before. Then for such t and
for functions F : A, — C, the relation F € L'(A,;) holds iff (F o~,)J, € L*'(A)). In
addition

| Fdo= [ (Fortmaman for Fe L), (32) 1157

t,1 1

Proof: All the statements of the lemma are standard results except perhaps that the
local charts -, may be chosen in such a way that |Va,|. < 1/4 for 1 <t < k(). In order
to satisfy this condition, the boundary 02 has to be split into sufficiently small parts.

Details of this procedure are rather technical but straightforward. OJ
(lemmal.1) ~
Lemma 3.2 There are constants 6(Q2), D, D € (0,00) such that
y+ 0Dy e, y—rn e for ke (0,0(Q)], y € o, (3.3)[L1.1.8]
2+ k0@ () — ' — K nD()| = D(Je - o] + 5 — K]), (3.4)[L1.1.10

(z—2') - n (@) <Dz -2 for x, 2 €0Q, kK €[-5(Q),5(Q)]. (3.5)[L1.5.10]
For 6 € (0,6(Q)], put
Us :={z € R® : dist(z,Q) < D3/2}, U 5:={x R : dist(x,Q°) <D§/2}.
Note that Us and _s are open and Q C s, Q° C U_gs for & as before. The estimates
o= (y+3nP(y))| = D)2, |o' = (y—0nP(y))| > D5/ (3.6)[L1.1.9]
hold for such 6, for y € 0, x € Us and =’ € U_s.



Proof: See [8, (2.24), (2.22)] for (3.3)), (3.5), respectively, [0, Lemma 2.1] for (3.4), and
the proof of [0, Lemma 5.3] for the properties of s and $1_;. O

4 Simple and double layer potentials related to the
Stokes system or the Poisson equation.

The solutions to (|1.1)), (1.2)) we will consider are given by a sum of simple layer, double
layer and volume potentials. The first two types of potentials are introduced and studied
in this section. We begin by defining some kernel functions, among them a fundamental

solution to (L.1)). Put

N:) = @A) Epl2) = (87l G+ 2 212172, (4.1)[10.29. def]
Sipt = =0 ON — OEjy — 0;Ey  for 2 € R3\{0}, 1<k, 1<3.  (4.2)[10.30.def]
The matrix-valued function E = (Eji)1<; k<3 is the velocity part of a fundamental solution
to the Stokes system ([1.1]), with its associated pressure part given by —V1.

In the next lemma, as in similar situations below, the restrictions on |a| (order of dif-
ferentiation) may of course be dropped if the constants may depend on |«|. We will not
need this fact, opting instead for such restrictions.

(lemma10.30) )
Lemma 4.1 The relations Eji., Sji, Mt € C*(R*\{0}) and

3
—AEj — ;0N =0, Y 0,E;, =0, AN =0 (4.3)[L1.30.31]

p=1

hold for 1 < j,k,1 < 3. In addition
0°B(2)| + 10°0(=)]| < € 2771, (4.4)[£1.30.50)

for j, k as before, z € R3\{0}, a € N} with |«| < 3. Moreover

3
Sjkl(z) = 3/(4 7T) Zj Rk 2l |Z|_5, —ASjkl + 2 6]@@‘)1 = O, Z aijkl =0 (45)
=1
for 4, k,l, z as before.

Proof: Inequality (4.4) is an obvious consequence of (4.1). The equations in (4.3]) follow
from from (4.1]), the first equation in (4.5) is a consequence of the same reference and of
(4.2), whereas the other equations in (4.5)) may be deduced from (4.3)). O

The pair (V(gf)), Qo) ) defined in the following lemma for any ¢ € L'(9Q)? is the simple
layer potential associated with the Stokes system (|1.1]).

10



(lemmal.50)
Lemma 4.2 Let ¢ € L'(09). For x € R¥\0Q, put

V(g)(a) = / Bz =) 9o, Qo)(w) = / (=Y =) - oly) do,

The integral [, |E(z —y)- ¢(y)| doy is finite for a. e. x € Q. In particular, for x € O,
the term V(¢)(z) may be defined in the same way as for x € R*\0Q.

The restrictions of V(¢); and Q(¢) to R3\IQ belong to C>(R3\IN), for 1 < j < 3, with
WV (¢)(x) = [,o(0°E)(xz —y) - ¢(y) doy for x € R\OQ, a € Nj, and with an analogous
formula being valid for Q(¢).

The pair (U,11) = (V(¢)|R3\0Q, Q(¢)|R¥\0Q) satisfies the Stokes system in R3\ 0N
with F' = 0.

If € C°(00)3, then V(¢) € C*(R?)? for a € [0,1).

Proof: The term V (¢)(z) is well defined also for « € 99 according to Lemma [2.1] The
claims related to the differential properties in R3\0Q follow from Lebesgue’s theorem,
Lemma and . The statement on Holder continuity of V(¢) in R? if ¢ is continuous
follows from and Lemma . This means in particular that for such ¢, the continuous
extension of V(¢)|R*\09 to 99 is given by the definition of V(¢)|0f in the lemma. Note
that Q(¢) is not defined on 0f2 because its kernel is singular with respect to integrals on

o0f. OJ
rollary100.40)
Corollary 4.1 Let p € (1,00) and R € (0,00) with Qg C Bg. Then, if r € [1, 3p/2), the

estimate

IV (6)|BR\OQ1,r + [Q()| Br\OQ, < €|, for & € LP(9Q)*. (4.6)[c100.40.10]

is valid. In particular V(¢)|Q € W (Q)3, V(4)|Qr € WY (Qr)? for r, ¢ as above, and
V(9)|Q and V(9)|Qr have a trace on 0. Moreover

IV(e)oQll, < €, for ¢ € LP(0Q)*. (4.7)[€100.40.20]

Proof: Let r € (p, 3p/2). Then we obtain from Lemma [2.4| with a = 2 (1/p — 1/r) that
100 (V(9)| BR\OQ)[I: + |Q(0)| BR\OQl- < €llgll, (1 <m <3, ¢ € LP(Q)?).

It follows that even if r € [1, 3p/2), the preceding inequality still holds uniformly in
m and ¢, but, of course, with a different constant €. Since |z — y|™! < €|z — y|™2
for , y € Br with x # y, the same argument implies that if » € [1, 3p/2), we have
V()| Br\OY|, < €||¢]|, for m, ¢ as before. This proves ([4.6). As concerns inequality
(4.7)), we refer to Lemma . O

Next we introduce double layer potentials related to the Stokes system. The function Sjy,
was introduced in (4.2)).
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1 3.10
(1emna >Lemma 4.3 Let ¢ € LY(0Q)3. Then for x € R3\0Q, | € {1, 2, 3}, put

W (o)) = / =3 Sl — 1) )0 do,

Jk=1
3

() (x) == / (2) 30 00w = ) 85(0) i () do,

jk=1

Then W (), I1(¢) belong to C*(R3\ON) for 1 < I < 3, and any derivative commutes
with the integration over 02 appearing in the definition of these functions. Moreover the

pair (W(¢), 11(¢) ) solves in R3\OQ with F = 0.

Proof: Lebesgue’s theorem and the relation Eji,, 9 € C°(R*\{0}) for 1 < j,k < 3 yield
yield the lemma except its last claim, which follows from (4.5]). 0

(lemma-decay)

Lemma 4.4 Let R € (0,00) with Q C Bg. Then

0°V (¢) ()] < € |||y |21, 10°W () (2)] < €|y || 7>7! (4.8)[7.32a]
for ¢ € LY(00)?, x € B, a € N3 with |a] < 2,
10°Q(8) ()] < € ||gll1 2|71, |9°TL(¢) (2)] < € |||y [ar| (4.9)[7.320]

for ¢, T as before, and for a € N3 with |a| < 1.
Consequently, if 11 € (1,00), 19 € (3/2, 00), 3 € (3,00), then for 1 <Il,m < 3,

10mOV ()| Billr, + 10m Q)| Billr, + 10W (0)|Bgllr,
HITL(@) | Bgllr, + [[0mI1(0)| Bgllr, < €(R, 11) {911,

W (O)IBzllr, + 10mV ()(Br) Il + [|Q(&)| Billr, < E(R, 12) [|9]1,

V()| Billrs < €(R, 73) ||l

Proof: Obviously § := dist(Q2, BS) > 0. Let y € 9Q\{0} and put z := |y|~! Ry. Then
ly| + 1]z —y| < |z| = R, and |z —y| > 6, so |y] < R — 4. Hence for = € B§, we get
v —yl = (6/R) |z[ + (1 = 6/R)|x| = [y| = (6/R) |z| + R =6 — |y| = (6/R) |x|. Now the
lemma follows from (|4.4)). 0
In the following lemma, we define the double layer potential also on 0f2, instead of only
on R3\99. The key fact in this respect is the estimate at the beginning of Lemma . It
will turn out that in general, the double layer potential is not continuous in R3, even if
the layer function ¢ is smooth; see Theorem [£.4] and [4.5]

<1enlma1 . 60> 3 (Q)
Lemma 4.5 The inequality | >, Sim(x — y)ny, " (2)| < €z —y|™ holds for x,y € 0N

with © # y, 1 < 5,0 < 3. The preceding estimate remains valid if the term n,(:))(x) 18

replaced by nl({m (y).
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theorem100. 10)

rollary100.10)

If p € LY(00)3, 1 < j < 3, we may define

T (9); /a ZSgkzﬂf— ”k '(z) du(y ) doy

Q=1

for x € 9Q. Then, for any p € (1,00), ¢ € LP(0N)3, the relation T (¢) € LP(ON)?
valid, and the operator Ty : LP(9Q)* — LP(9Q)%, Tr(¢) = T(¢) (p € LP(9Q)?) is
linear, bounded and compact.

Define the function T(¢p) by replacing the term n,(C (x) by nkﬂ)(y) in the definition of
T(p). An operator T,, may be associated with T in the same way as T is associated with
T, forp € (1,00). Then T, is equally linear, bounded and compact.

Let I, : LY(0)* — L1(0Q)* denote the identity mapping of L1(O). Then the operators
+1, + T, and £1, + T are Fredholm with index zero.

For q € (1,00), the operator T, is dual to Ty

Proof: For the estimate of | 32°_, Sjx(x —y) nk ( )| stated in the lemma see .

In the case that the term n,(:)) (x) is replaced by —n,(c )( ), the same references may be

used.

Lemmal2.1]yields that T*(¢) and T(¢) are well defined for ¢ € L'(92)%, and T*(¢), T(¢) €
LP(9Q)% if p € (1,00) and ¢ € LP(92)*. Moreover it follows from Lemma [2.2| that T, and
T, are linear, bounded and compact. The general theory of Fredholm operators now
implies that +1, + T}, and £}, + T are Fredholm with index zero. The last statement of
the lemma is a consequence of Fubini’s theorem; see [8, Satz 5.1]. 0

Theorem 4.1 Let p € (1,00). Then with the notations of Lemma[{.5,
ker(=I, +T)) = {(kn®  keRY, ker(I,+T,) = {¢(j)|8Q :je{l, ..., 6}},
with 99 (1 < j < 6) introduced in Theorem
Proof: [8, Lemma 6.7, 6.5, 6.10]. O
Corollary 4.2 Let p € (1,00). Then dimker(I, +T;) =6 and dim ker(—1, +T,) = 1,

ran(l, +T;) = {v € LP(0R)* - / v-¢Wdo, =0 for1 < j < 6}, (4.10)[C100.10.10]
o9

ran(—I, +T;) = {v € LP(0Q)? / v-ydo, for~y € ker(—Iy+Ty)}, (4.11)[c100.10.20]
o0N

where the functions V) for 1 < j < 6 were introduced in Theorem .

Proof: By Lemma , we know that the operator [, + 77 is Fredholm with index zero,
so dimker(I, +T;) = codimran(Il, + Ty). On the other hand, the fact that I, + T
is Fredholm means in particular this operator has closed range. We further recall that
Iy + Ty is dual to [, + T (Lemma . It follows with the closed range theorem and
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Riesz’ representation theorem in LP-spaces that dim ker (I, +1Ty) = codimran(I, +T)) =
dim ker(Iy + T,) and

ran(l, + T;) = {v € LP(0Q)® : / v-vydo, =0 forvy € ker(Iy +Ty)}.
o)

Equation (4.10) now is a consequence of Theorem , and the equation dim ker(I,+Ty) =
6 follows with Theorem [4.I] An analogous reasoning based on Lemma [£.5] and Theorem
yields that dim ker(—1I,+T,) = 1 and that equation (4.11]) holds. O

Theorem 4.2 Letp € (1,00), a € [0,1), b € C*(IN)3, ¥ € LP(IN)® with +¢p+F(Y) = b
or ¢ + T (¢) = b. Then 1p € C*(IN)3.

This means in particular that ker(+I, + T,) = ker(£l, + T,) and ker(xI, + T;) =
ker(xl, +Ty) for g € (1,00).

theorem100. 20)

Proof: See [8, Lemma 5.4]. O

rollary100.20)
Corollary 4.3 Letp € (1,00). Then there is a topological complement E of ker(£I,+

Ty) in LP(0S2)°.

The estimate ||6|l, < €||(£¢ + T2)(8)||, holds for ¢ € ES®.

If b € LP(O0)? with f b-¢U) do, =0 for 1 < j <6, there is a unique function F)(b) €
ESY with (1/2) [F D) + T(FH (b)) | =b. (See Theoremfor the definition of the
functions ¢, ..., ¢© )

Fiz a function ¢\© € ker(—I, + Ty)\{0}. (In view of Theorem |4.9, this function ¢©
belongs to ker(—1I.+T,) for any r € (1 oo) ) Ifb € LP(OQ)? with f b qb(o) do, = 0, then
there is a unique function F()(b) € E ) with (1/2) [-FO ) +T(F(b)) ] =».

Proof: Since dim ker(+1, + 1)) < oo by Corollary , the existence of a complement
E}(,i) as described in Corollary follows by general theory. Obviously +1, + 7T} |E,(,i) is a

bijective operator from E}f) onto ran(+1l,+T). On the other hand, -1, + T} is Fredholm
(Lemma , and thus has closed range. It follows by the open mapping theorem that

loll, < €N(EL +T)(8)l, for ¢ € ESY, hence [|8]l, < €| £ ¢+ T(¢)]], for such ¢.

For any b € LP(0Q)* with [,,b- ¢ do, = 0 for 1 < j < 6, we know by (4.10) that b €
ran(I,+T). Thus, since [,+T; |E,(,+) is a bijective operator from E5" onto ran(lp—i-Tp(Jr)),
there is a unique function F(*)(b) with the properties stated in the corollary.

Since dim ker(—1Iy + Ty) = 1, any function b € LP(9Q)* with [, b+ ¢¥ do, = 0 verifies
the equation |, 89 b y dox =0 for any 'y E ker( I, +Ty). Thus an analogous reasoning as

in the case of F'*)(b), but based on instead of - ), yields existence of a unique
function F(7)(b) with properties as descrlbed in the corollary. 0

(Llemma100.60) , — ,
Lemma 4.6 Put M = ([, 970" do,)1<jr<s and M := ([, ¢V - o) dx)1<; k<5, where

oW ... O were introduced in Theorem . Then the matrices M and M are invertible.

14



Proof: The functions ¢M[9Q, ..., ¢®|0Q are linearly independent ([8, Lemma 6.5]).
Let o € R with M - a = 0. Then 2?:1 a; 30 Joq @9 - ¢W do, ), = 0, that is,
Joa | SO ¢ do, = 0,50 S0 oy = 0, and finally o = 0. This means that M
is invertible. Obviously the functions ¢(V|Q, ..., $(9|Q are linearly independent as well.

Thus the same argument as for M yields that M is invertible, too. 0

1 100.20 .
emna >Lemma 4.7 Let p € (1,00), b € WVrr(9Q)* with [,, ¢V - bdo, =0 for 1 < j < 6;

see Theorem for the definition of ¢V, ..., ¢®. Then there exists a sequence (by,) in
C°(00) such that for n € N, the function b, belongs to C*(9Q)* for a € (0,1), hence
b, € WI=Vmr(9Q)3 for r € (1,00), faQ ®Y) . b,do, = 0 for 1 < j <6, and such that
16— bnll1-1/p,p — 0.

Suppose that faﬂ # - bdo, = 0, where 9 was introduced in Corollary . Then there

is a sequence (b,) i C°(ON)® with the same properties as before, except that the relation
Jo ¢ - b, do, =0 (1 <7 <6, neN) is replaced by Jo0 ¢ - b, do, =0 (n € N).

Proof: Since b € W'=1/PP(9Q)3, there is B € WP(Q)? with B|02 = b. We may choose a
sequence (B,,) in C§°(R?)? with || B,, — B||1,, — 0, and thus || B, —bl|1-1/,, — 0. Obviously
b, = B,|0Q € C*(00)? for n € N, a € (0,1).

Let n € N and set ¢, := M- (fangn - ¢V do,)1<j<6, With the matrix M introduced in
Lemma. Then [, by-¢\¥ do, = SO Joq @0 do, ¢, for 1 < j < 6. Thus, putting
b, :=b, — 22:1 e 0W) we thain a function b, belonging to C“(@Q)j for a € (0,1) and
verifying the relation [, ¢ - b,do, = 0 for 1 < j < 6. Since [|b, — b[|, — 0 and
Joq bn - 0V doy = [, (b, — b) - 19 do, for 1 < j <6, n € N by our assumptions on b, we
get in addition that ||b, — bl[, = 0

The second part of the lemma may be proved in the same way as the first, but the
reasoning is somewhat simpler because no matrix is involved. Note that by Theorem [4.2]
we have ¢(0) € C*(09)? for a € (0,1). O

(theorem3. 14) )
Theorem 4.3 Let p € (1,00). If ¢ € C*(9Q)* for some a € (0,1) and if +¢ + T(¢) €

CH(OQ)ENWE e (90)3, then ¢ belongs to W /PP(0Q)3 and the inequality ||¢||a—1/p,p <
C(| £+ Z(D)l2=1/p,p + ||®]lp) holds.

Proof: [8, Lemma 7.8]. O

th 2.50
(theoren >Theorem 4.4 Recall the parameter §(2) from Lemma . Let ¢ € C°(0Q)* and put

= V()|R3N\OQ, II := Q(v), where V(¢b) and Q(v)) were introduced in Lemma .
Then

3

> i (@) (QUk + 0kU; — 0 ) (2 £ en@(x) ) = (1/2) (F + T (1)) ,(2)  (4.12)

k=1
fore =0, €€ (0, 5(92) } , uniformly with respect to x € 0, 1 < j < 3 ("jump relation”).
Proof: The relation in (4.12)) holds according to [8, Lemma 4.8]. Note that the definition
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of T(¢) in [8] (see [8, Definition 4.2 and 5.1]) coincides with ours in Lemma This
follows from (4.5)); compare [8, p. 100, last line]. O

We turn to the question of how to approximate V' (¢)[Q2 and V(¢)|Q by functions which
are C'™ in open sets somewhat larger than € and ¢, respectively.

(lemmal.?2)
Lemma 4.8 Recall the parameter §(2) and the sets Us and _s for § € (0, 5(Q)] intro-

duced in Lemma. Further recall that Us and $1_s are open sets in R® with Q C Us, Q° C
U_s, for § as before. Let ¢ € L'(0Q)® and define VO () : Us — C3, Q¥ (¢) : Us — C by
setting

VO (4) () = / E(z—[y+5n@)]) - 6(y) do,,

o0

QD (9)(z) := / (V) (2= [+ 50 0)]) - 90) do,

for x € Us, 6 € (0,8(Q)]. In addition, we introduce the functions V=0 (¢) : U_5 —
C%, QU : 8_s5 +— C by replacing s with YU_s and the term y + 6 nY with y — sn® in
the respective definitions of VO (¢) and Q©(¢).

Then VE)(¢);, QFD(¢) belong to C®(Uss) for 1 < j < 3 and for § as above. Any
derivative of these functions commutes with the integration over 02 appearing in their
definition. The pair (V(i5)(¢), Q(i‘s)(@) is a solution of in Uyps with FF = 0. In
addition

VO(p)(z) = V(@) (x) forz € Q, VEI(@)(x) = V(o)(z) ifd 10, for € Q. (4.13)[1.2.43]

Suppose that p € (1,00), ¢ € LP(0Q)?, R € (0,00) with Q C Bg. Then
(0 - V@) @rdes o (4.14)
/Q 105 (VO (p) =V (9))(x)Pdo, — 0 if510, for a€Njwith|a| <1. (4.15)[1.2.45]
If € C°(00N)3, then forx € 00, 1 < j <3,
VED(9)(x) = V(9) (@), (4.16)
n (@) (OVEN (@) + OV (); — 6. QHV(9) ) (a) (4.17)

e
Il w
—

= (1/2) (£6+T(9) ),(x) (1< <3),

for 6 | 0, with the convergence in and being uniform with respect to x € 0f).

The function V(¢)|0Q as defined in Lemmal{.2 and the trace of V(¢)|Q and V(¢)|Qr on
OQ (see Corollary[4.1) coincide.
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Proof: We only consider V(=9 (¢) and Q=% (¢). If —§ is replaced by §, an analogous
reasoning is valid.

The differential properties of V(=9 (¢) and Q=% (¢) are a consequence of (3.6)), the relation
Eji, M e C*(R*\{0}) for 1 < j,k < 3, the equations satisfied by E and 9 (see Lemma
and Lebesgue’s theorem.

Let v € Q°. For y € 09, § € (0, §(Q) |, the relation |z — [y — é nY(y)]| = D §/2 holds by
(3.6). Since E € C=(R*\{0})**%, we may conclude that the claim on V(=9 (¢) in (4.13))
follows from Lebesgue’s theorem. For the proof of and , we refer to the proof
of [6, Lemma 5.4,

As concerns the proof of respectively (4.16) and 1} we refer to [8, Lemma 6.3] and
[8, (6.20), (4.72)], respectively, as concerns V(- (qb) When V©®(¢) is considered, the
relevant references are [8, (6.10)] and [8| (6. 19) (4.71)]

The last claim of the lemma follows from the regularity properties of
V=9 (¢) and VO (¢), and the uniform Convergence in O

(lemma5.20) ) ,
Lemma 4.9 The inequality

D (V()RNOQ) (2 £+ 0D (2)) = 4V TV (9)(2)] < €[p]od?
holds for ¢ € C°(9Q)3, z € 9Q, § € (0, 6(Q)].

Proof: This lemma follows from (3.4); see the proof of [6, Corollary 5.3] or [8, (6.21),
(6.22)]. O

Theorem 4.5 Let ¢ € C°(00)®. Then the function W(¢)|Q° admits a continuous exten-
sion to ¢, denoted by We.(¢) and given by We,(¢9)|02 = (—1/2) (gb + Z(o) ) Similarly
the function W ($)|Q admits a continuous extension to €0, denoted by Wi, (¢) and given
by Win(9)|0Q = (=1/2) (—¢ + T(9) ).

Proof: See [8, Theorem 4.1]. O

(theorem3.20)

theorem100.70) . .
Theorem 4.6 Recall the parameter §(S2) introduced in Lemma . Let a € (0,1), ¢ €

Ce(00), x € 09, j € {1, 2, 3}. Define the function F : [-6(S2), 6()]\{0} — C by
setting W := W(¢), Q := Q(9),

F(r) =Y ni" (@) (0;Wh + 0:W; — 6 ) (2 + 60 D(2) ) for s € [-5(2), 5(2)]\{0}.

Then the limits lim, o F(k) and lim,o F(—k) exist and coincide.

This result is well known; for example see [24, Proposition 3.31]. However, the only
justification we know of was given by Faxén [9, § 11], in a rather long (10 pages) and
in parts somewhat vague discussion. An analogous result for the Laplace double layer
potential is shown in a more precise way in [I6, Section 8.5.2], but the Stokes case is
notably more difficult to handle than the Laplace one. So, since the preceding theorem is
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a key tool in our theory, we sketch a proof in the appendix. Due to Lemma we will
not need to argue in terms of local coordinates of 0f2.

Fheorent(0.50) Theorem 4.7 Let p € (3,00), b€ W*V/rP(90)3, ¢ € LP(0N)3 such that one of the two

equations (—1/2) (=0 +%(¢)) =bor(=1/2) (¢ +F(¢)) = b holds. Take R € (0,00)

Then there is a € (0,1) with ¢ € CY*(9N)3. Moreover ¢ € W2=1/rP(9Q)3, W(¢)|U €
W2R(U), T(@)|U € WH(U) for U € {Q, Qr}, and Win(¢) € CHQ)*, We(9) €
CY(Q)3. The functions I1(¢)|Q and T1(¢)|Q° may be continuously extended to Q and QF,
respectively. These extensions are denoted by 11;,(¢) and I, (o), respectively. (The func-
tions Win(¢) and We,(¢) were introduced in Theorem[{.5)

Proof: By a trace theorem and an extension theorem, there is B € Wy*(R?)? with
B|0§2 = b. Since p > 3, a Sobolev inequality implies there is a € (0,1) such that B €
CH*(R3)3, s0 b € CH*(9Q)3. Thus ¢ € C*(9N)* by Theorem Moreover, referring
to Theorem , we see that ¢ € W2~1/PP(9Q)3. Now the same argument as used above
for b provides that ¢ € C'*(99Q)3. In addition, [8, Lemma 7.15] yields at this point that
H(¢)|U € WH2(U)? for U € {Q, Qgr}. Since p > 3, we may again refer to a Sobolev
inequality, obtaining that II(¢)|U may be continuously extended to U. Since II(¢)|Q° €
C>(Q°), this means in particular that I1(¢)|Q° may be continuously extended to Q°.

Obviously (Lemma [4.3)), we have W(¢)|U € C=(U) for U as before. Since in partic-
ular ¢ € C°(00N)3, we further know by Theorem 4.5 that W, (¢) € C°(Q)3, We.(¢) €
COQ%)3, (—1/2) (—¢+T() ) = Win(0)|0, (=1/2) (¢+T(§) ) = Wea(9)|09. Note that
(=1/2) (¢ +%(¢) ) € {b, b— ¢, b+ ¢}. But b, b— ¢, b+ ¢ € W 1/Pr(0Q)* N C°(9Q)?
by what was explained above, so Wi, (¢)|09Q, We.(¢)|0Q2 € W 1/rr(90Q)3 N C°(09Q)3.
On the other hand, W (¢)|Q° € C>(Q°)? and Q C Bg, so in particular W(¢)|0Bg €
W2 1nP(9BR)3. Since Wy (0)|Q° = W(¢)|Q° by the definition of W, (¢), we thus get
Woo(0)|0Qr € W2 1/PP(9Q)3 N CO(ANR)3. Recall that AW (¢) = VII(¢) (Lemma
and (@)U € WHP(U) for U € {Q, Qr}, as mentioned above. Further recall that
Win(0)|Q2 = W(9)|2. Altogether we see that Lemma may be applied; it yields that
W()|U € W2P(U)3 for U € {Q, Qr}. Due to the assumption p > 3 and a Sobolev in-
equality, it follows that the function W (¢)|U may be extended to a C*-function in U, for U
as before, so Win(¢) € C1(Q)* and W, (¢)|Qr € C*(QUr)?. But W, (0)|Q° = W(¢)|Q e
C=(Q°)3, s0 W () € CHQ)3. O
The next lemma indicates how for a given function b € C°(9Q2)?, a function ¢ € C°(9N)
may be chosen so that the Dirichlet boundary data of V(b)|Q2 and W (v)|€2 coincide. The
same question is answered for the boundary values of V(b)|Q° and W ()|Q".

Lemma 4.10 Let ¢, b € C°(9Q)* with (1/2) (F¢ + T¥(¢) ) = b. Then V() € C*(R?)?
for k €[0,1) and

(lemma5.10)

(1/2) [FV ()]0 + T(V ()]0

)] =
Note that the term (1/2) [ =V (¢)|0Q+T(V(4)|0Q) | coincides with the Dirichlet bound-
ary data of =W (V(¢)|0Q)|Q, and the function (1/2) [V (¢)|0Q + T(V(¢)|0Q) ] with

V()09
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those of —W(V(¢)]89)\ﬁc (Lemma Theorem .
Proof: We consider the case (1/2) (—¢ + T(¢)) = b. If (1/2) (¢ + T*(¢)) = b, an

analogous reasoning is valid.

The relation VN (¢)|0Q € C*(99)? for k € [0, 1) holds according to Lemma

Recall the parameter 6(€2) > 0, as well as the set U_s for 6 € (0, 6(2)] from Lemma
3.2, Put V9 = VEI(g), QY = Q9(¢). These functions were introduced in
Lemma . Note that the set Y_s C R? is open and Q¢ C $_s (Lemma [3.2), V(%) ¢
C>®(U_s)?, Q9 € C®(4_s), and and the pair (V=9 Q%)) satisfies (1.1)) in U_s with
F=0,forée (0,5Q)] (Lemma.

In the following we will use the Stokes fundamental solution E defined in .

Consider § € (0, §(€2)]. Choose Ry € (0,00) such that £ C Bpgy. Let R € [Ry,c0).
We write n(?®) for the outward unit normal to Qpg, that is, n(?#)(2) = —n(2) for
z € 09, n'®(2) = R™'z for = € dBg. Then it follows by a standard representation
formula for solutions to (1.1)) (see [8, (3.6)] for example) that

3
V(@) = /a > (Eala—2) @V + 0V =6, QUMY (2)  (4.18)[L6.10.11)

Jk=1
—Sju(x —2) VI (2) )0 (2) do,

for 1 <1< 3, x € Qg. Note that V(=9 is continuous, so the restriction "a. e.” on = € Qp
in [8, (3.6)] may be dropped. Fix some z € Q° and consider R € Ry, 00) with = € Bp/a.
Since Q@ C Bp,j2 C Br/2, and because y — dnV(y) € Q for y € 90 (Lemma , we
find for z € OBg, y € 0Q that [z — (y — énP(y))| > R/2 and |z — z| > R/2. As a

consequence, with (4.4), for z € OBg, a € N3 with |a] <1, 1 < 5,1,k < 3,
0°V I ()] < €RTTIN QU (2)] < €RTE 192 (Bu(x — 2) )| < € R,
|(c‘9ﬂt)(w — Z>| + |Sjkl(l‘ — Z)| < (’:R_Q.

Thus, by letting R tend to infinity in , the integral over 0BpR implicitly present in
that equation tends to zero. Hence the integral over 0{2g becomes an integral over Of),
with n(?#) replaced by —n(®. Next we use (4.13)), (4.16)), (4.17) in order to let § tend to
zero. In this way we get that

(3" —Eale =) (1/2) (=9 +T()) (2) (4.19)[£5.10.20

Jj=1

Viou = |

o0
+ 3 Siule = 2) V(6);(2) nf(2) ) do.
7,k=1

We recall that (1/2) (—¢ + T(¢) ) = b. Abbreviate w := V (¢)|0€, and note that w €
C°(99Q)3; see the first sentence of this proof. We may then rewrite (4.19)) as

V(oh(z) = =V (0)i(z) = W(w)i(x), (4.20)
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with W (w) defined in Lemma . This is true for any z € Q. Since w € C°(9Q)3,
Theorem yields that the function W (w) may be extended continuously to Q¢. This
extension is denoted by W.,(w); see Theorem [4.5] By that theorem, we know that
Wez(w)(z) = (=1/2) (w + T(w) ) (z) for z € Q. Take zo € IQ. Thus we may conclude
that W(w)(z) = (=1/2) (v + T(w ))(mo) for x — xo, z € Q°. On the other hand, since
b, p € C°(00)?, we know from Lemma |4.2] that V' (b), V(¢) € C°(R3)?. Thus, by letting
 tend to o in Q°, we may deduce from that V(¢),(zo) = =V (b)(z0) + (1/2) (w

T(w) )(zo). But V(¢)( 0) = w(xg) by the deﬁnition of w, so we finally arrive at the
equation 0 = —V(b)(zo) + (1/2) (—w + T(w) ) (o). O

5 W? lrr_regularity of V(¢).

In this section, we address the key element of our theory, that is, the fact that V(¢)|0Q €
W2=1/pr(90)3 if ¢ € W'=1/PP(9Q)3. The proof of this relation constitutes the main
difficulty we have to put up with, and is split into the proofs of the next two theorems.
The result in the first — Theorem [5.1] — amounts to an W1P-estimate of V(¢4)|09) against
the LP-norm of ¢. (The function V(¢) was introduced in Lemma [£.2])

(theorem7.10) _ _
Theorem 5.1 Fiz numbers k(Q) € N, a(Q2) € (0,00), sets A, Uy Ay, and functions

t,K?
ar, v, for k € (0,1], 1 <t < k(Q) as specified in Lemmal3.1]
Lett € {1, ..., k(Q)}. For f: A, — C3, define Z,(f) : 0 — C? as the zero extension of
fo(n)™ Ay C to0Q. Fix a function ¥, € C3°(U, 4,,) with W,|U, |, = 1.
Let p € (1,00). Then, for f € LP(A,)? , the function U, Zi(f) belongs to LP(OQ)3, the
function V(W Z,(f)) 0, is in W'P(A,)?, and

V(¥ Z(f)) o vllip < €1l (5.1)[17.10.1]

Proof: Recall there is an orthonormal matrix D, € R**?, a vector C; € R? and a function
a, € C*(Ay) with v,(n) = D, - (n, a,(n) ) + C, for n € A,, and such that |Va,|. < 1/4;
see Lemma We have ¥, € C§°(U, 3,,) by the choice of ¥, in the theorem, so W;01, €

t,
C3(Az,) by the definition of U, 5/, and v, in Lemma [3.1, In addition we will use the

function J, (surface element) introduced in Lemma [3.1} as well as the parameter §(€2),
which was fixed in Lemma . Let 0 € (0, 00) be so small that B2 (0) C A, for o € Ay

We introduce some additional notation. For o, n € A, 7€ R?, § € [07 5(€2) ], put
L(0,n,0) :=T,(0,1,6) := 7,(0) = 7(n) — & (n“ 0 ,)(m),
T(0,7,0) :=Ty(e,m, 5) =7(0) = 6 (n 05,)(0) = 7,(n),
L(o, ) :==Ty(0.m) =D, (0 =1, Va,(0) - (e — 7)),
€= (Vo) J,

Let f € CY(A)? N LP(A,)% j € {1,2, 3} and v € {1,2}. Since ¥, 07, € CF(4,,), we
have € € C&(A3/4)3, so € fe C%(As/4)3' In particular € f considered as a function with
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domain R? belongs to C*(R?)? for any x € [0,1), and to LP(R?)3, and we may define

F(f)e.,n) =€) f(n) — €(o) f(o) for o, n€R™.
In addition ()" : A,; — A, is continuous (Lemma [3.1), so ¥, Z,(f) € C°(99)* and
supp( v, Zt(f)) C At73/4. Note that (\I/t Z(f) ) o7, = (Vy07,) f, so due to equation 1'
19 Zi()llp = 11(Te o) FIP Tl < Ll (5.2)[17.10.6]

with € independent of f. We consider the function V) (¥, Z,(f) ) introduced in Lemma

. According to that reference, this function is C* in an open set {5 containing Q as a
subset, and

oV (W, Z,(f) /B Zal )@ — [y + 50 W) (V 2(f)),(v) do,  (5.3)[17.10.3]

Q=1
0 € (0, 5(9)}, r e U, 1 <1 <3, with (Ejr)1<jr<s introduced in 1' Thus
VO, Z,(f) )j 07, is a C'-function, and we get with || that

0,[VO(W Z(f)), 0% ](0)

S ome) / (OE3x)(D0,n,6)) fuln) €y = 3 FW(0,5),

k=1 p=1

for o € Ay, 6 € (0,6(Q)], with

F05) = 3 0(o) / ((OE) (T(0.n.6)) = (uE) (T(o.n.6)) ) fuln) €(n) dn,

k,l=1

F® (g, 6) ::Zam / (QEjx)(T(0,m,0) ) F(f)(0, )k dn,

k=1

F®(g,5) := ka / (0E5) (T (:,0))

k=1 Ay

((0) (T 079,)(0) = ()i (B 0 7,) () ) d,

F®(g,6) := —

M«

fr(o) Jt(@)/ Eix(T(0,1,0)) 0,(Tr0v,)(n)) dn.

k=1 Ay

Note that the definition of F*) (g, ) involves a partial integration, which is possible due
to (3.6). Let ¢ € C§°(A,). Since U, Z,(f) € C°(99Q)3, as mentioned above, we may deduce
from the uniform convergence in (4.16]) that

/A8V<(9)[V(‘”(\I'tZt(f))jO%}(Q)dy—>/A8VC(Q)[V(\IftZt(f))jO%}(@)dQ

1
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for & t O Moreover also because U, Z,(f) € C°(99)%, Lemma[4.9] yields that the integral

fA 0,0) dp tends to zero for § | 0. Since € f € Cl(A3/4) , as explained above,
there is a Constant c(f) > 0 with
IF(f)om] <e(f)le—nl for o,n€ A, (5.4)[17.10.20]
In addition, by ) and . (OF ]k T(o,n, ))| < €lo— 1|72, hence
|(01Ex) (T(e.m,0) ) F(f)(e.mkl < €lo—n|™ (5.5)[17.10.30]

foro,me Ay witho#n, 1 <k, 1<3,0¢ [0, 5(82) } We thus see by Lebesgue’s theorem
that the function F®) (., §): A, — R is well defined and integrable also for § = 0, and

/C (0,6 d@—>/< 0.0)do (6 1 0).

Since 7, belongs to C*(A;)? and has bounded derivatives, and because of (3.4)) and the
relation W, 0, € C§(4,,,), we have

(81 Ejx) (T(0,m,0) ) (8y,(0)i (e 03,)(0) — vy (m)i (Tro,)(n))] < €lo—mn|",  (5.6)[17.10.40]
1B (T(0,7,0)) 0,(¥, 079,)(0)] < €lo—n|™

for o, n € Ay witho#n, 1 <k,1<3,0¢€ [0, d(2) ] As a consequence, as in the case of
F®(.§), the function F® (- §) : A, +— R for pu € {3, 4} is well defined and integrable
also for 6 = 0, and

/ C(0) F(0,8) do — / ¢(0) F®(0,0) do (6 1 0).
A, A,

Altogether we may now conclude that the weak derivative 0, [ V( U, Z,(f) )j o %] exists
and

0, [V(WZ(f)), 0n]le) =Y F(0,0) for o€ A, (5.7)[17.10.70]

H=2

We are going to transform F®) (- 0). Recall the term f(g, n) introduced at the beginning
of this proof. We have

IT(0,7,0) — T(0,n)| = la,(0) — a,(n) — Va,(0) - (0 — n)| < €lo—nl?,

and |T(0,7,0) +9 (T(0,7,0) = T(e,n) )| = o —n| for & € [0,1], 0, n € Ay, so with (4.4),

(0Ex) (T(0,,0) ) — (@iBj) (T(e,m) )| < €lo—n| ™ (5.8)[17.10.50]
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for such o, 7 € Ay, 0 # n, and for 1 < k,I < 3. Since € f € C’l(A3/4) , we may thus
define

3

GV(g) =) fMt(@)z/ ((@Ejk)(f(p,mo)) — (2Em) (T(o, 77))) fi(n) €(n) dn,

ke l=1 Ay
G (o Z a1 (0 @3(@)/A ((3zEjk)(f(Q,?7, 0)) — (ABx)(T(e,m) )) di
k,l=1 1
for p € A,. In view of , we may further define
(o) :élaﬂt(g)l/f?%o(m(al E;i)(T(0.n)) F(f)(0.n)r dn (5.9)[17.10.59]

for o € A,. Since

sup{| (O E) (T(0,m))| : 0, m€ Ay, lo—n| > 00, 1 <k, 1 <3} < o0, (5.10)[T7.10.60]

we may set

=S oo [ @ (Tlen) fuln) €ln)dn

k=1
3

G (o) ==Y dylo) file) @5(9)/ (@ E;)(T(e.n)) dn

k=1 AN\BZ, (o)

for o € A;. Then

5
FP(0,0) =Y "G"(g) for g€ A,. (5.11)[17.10.80]

p=1

Concerning this equation, note that the domain of integration Bgo(g) in the definition
of G (p) may be replaced by A, N B2 (o), because & f € C}(As4)* and due to the
choice of gy at the beginning of this proof. In view of and , let us estimate the
terms GW(p) for p € {1, ..., 5}, as well as F®(p,0) and F™*(p,0). The function G®

by far the most difficult to handle since it hides a singular integral. Following [3, (2.1)]
(where the term (o — 1)5 (0 — 17)5”* is lacking), we write G®) as a series. To this end
we recall that |Va,|. < 1/4 by the specifications on a, in Lemma . As a consequence
|Va,(0) - (e—n)|/lo—n| <1/2for o, n € A, with p # 1. Hence for 7 € N, p, n € A, with

oF,

T(o.n)| " =lo—nl" (1 +(Vay(o) - (o —m)*/lo— 77\2) o (5.12)[T7.10.90]
> T/2
-2 ()

=0

( n ) dra,(0)" 02a,(0)*™ " (0 = )T (0 =)™ " o — 7772,

n=0

23



On the other hand by the definition in (4.1))

(OE1)(2) = (—0ju 21+ 6521+ O 25) |2] > — 325 2z 2 |2]7° (5.13)
for 1 <k,1 <3, 2 € R¥\{0}. We combine and (5.13). To this end we put
1 0
A(e):=D,- | 0 1 for p€ A,

thay(0) Daay(0)
with D, introduced in Lemma . Then T'(0,7) = A(0) - (0 — 1) (0, n € A,). Put
3(0)kir = =0 A(0)1r + 9t A(0) ker + 012 A(0) 1,
3(0)kta = —3(0)j01 A0k a2 A(0)10s(0)
for k, 1 € {1, 2,3}, r € {1, 2}, a € {1, 2}3, p € A,. Then we get from that

(@ E5)(T(o.n)) (5.14)[17.10.110]
= 3(me (0= [T+ > 3(e klaHg Ma, [F(0,n)|
r=1 ae{l 213 s=1

for k, [, o as before, and for n € R? with o # 7. Further put
B(m,n, 7 k) = ke &7 27" 6|32 Blm,n,a, k) = H/ias Ky K3 R TPTE™

for 7, a as above, m € N, n € {0, ..., 2m}, x € R*\{0},

wimn,0)i= (77) () dale) deafo

m

W(m,n, o) = (_5/2) (2:) dhay(0)" Daay(0)*™ ",

m

for m, n as before and ¢ € A,. Then by (5.9), (5.12)) and (5.14)), it follows that G®)(p) =
G (0) + GB)(g), with

G(o) (5.15)[17.10.115|
3 2 oo 2m
=> "> amle)i3(e klr/ >0 W(m,n, 0) B(m,n,r, 0= 1) F(f)(e,m)kdn,
k=1 r=1 B2,(0) ;=0 n=0
G“””(@)
oo 2m
= Z > dm(e)i3(e kla/ >N " W(m,n, 0) B(m,n,a, 0 —n) F(f)(e.n)k dn
kl=1ae{1,2}3 m 0 n=0
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for p € A,. Since |Va,|o < 1/4, we obtain with (5.4) that

> 2W(m,n, o) Blm,nr, o= ) F(F)(e )] (5.16)

<|(C¥) e S (Y le-n1E e < | (H2) @i

m
n=0

formeN, 1<k<3 1<r<2 p,nelA, with o # 7. We thus see that the integral

in the definition of G>Y(g) may be moved inside the sum with respect to m € N. In this

way we arrive at the integral [, © B(m,n,r, 0o —n) F(f)(o,n)kdn for m, k, r as before
70

and for 0 < n < 2m, ¢ € Ay. Since |B(m,n,r, 0 — 1) F(f)(o,n)| < €lo—n|™! for

m, k, r, o, n as in (5.16) and for 0 < n < 2m, as follows from ([5.4]), we obtain

B(m,n,r, 0 —n) F(f)(e,n)kdn (5.17)[17.10.130]

)\B (o)

UO(Q

S [ B o) F(emedn (o10), wiformlyin o€ A,
B2 (o)
But fBgO(Q)\Bg(Q)%(m,n,r, o—mn)dn =0 for o € R% o € (0,00), m, k, r, n as before,

so we see that the term F(f)(o,n)r may be replaced by fi(n) €(n) in the integral on the
left-hand side of (5.17)). Thus with ((5.15)) and (5.17]), we finally arrive at the equation

3 2
= Z Z&z% klr (518>
k=1 r=1
co 2m
ZZ m n, Q hm %(m,n,r, Q—U) fk(n) QE(”) dna
m=0 n=0 30 Bgo(g)\BU(g)

for p € A, with the limit in this equation being uniform with respect to such po. An
analogous reasoning yields that

Z > 0n(@)i3(0)ha (5.19) 17.10. 1310
kl=1ae{1,2}3

oo 2m _ _

D) w(m,n, o) lim B(m,n,a, 0 —1n) filn) €(n) dn

m=0 1=0 740 JB2 (0)\Bo(0)

for p as before, where the limit appearing in this equation is again uniform with respect
to o € A;. We note that faBg |B(m,n, 7, k)| do, < faB2 |k|"2do, = 27 form € N, n €

0, ...2m}, r € {1 2}, and 3%, 2 (9 (m,n, 0)] < SO ](*fn/?)‘ (1/2)>™ for ¢ €
Ap compare . As explained in the passage preceding (5 , we have € f € LP(R?)3.
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At this point Theorem allows us to deduce from that |G|, < ¢ € fll, <
¢ || fl,- Here and in the rest of this proof, constants independent of f are denoted by ¢. In
an analogous way equation @ leads to the estimate |GG, < ¢ | fll,, so we finally
arrive at the estimate |G®)|, < €| f]|,.

All the other relevant functions may be estimated in a rather straightforward way. By
(5.6) we see that the absolute value of the integral in the definition of F®(m 0) and
F@(.,0) is bounded uniformly in ¢ € A,. It follows that ||[F®W(-,0)|, < €||f||p for
w € {3, 4}. An analogous argument, based on and , respectively, instead of
(5.6), yields that |G ||, < €||f]|, for u € {2, 5}. As for G®, we may use to obtain

W (o) < € / LF )l 1€l dn < €| flly < €I,

A \Bo, (o)

for o € Ay, so that |[GW], < E||f||p Concerning GV inequality |} provides that
G (o) <€ [y lo—nl~" [f(m)]|€n)|dn for o € Ay, s0 that |G|, < €||f]], by Lemma
21

At this point it follows from the representations in ([5.7)), (5.11]) and the previous estimates
of the terms |[|[F® (-, 0)|l,, |F@(-,0)], and |G®W||, for u € {1, ..., 5} that

10, [V (¥ 2(5)), 07 ]ls < €l fll, for fe (AN NCI AN, je {123} (5.20)[17.30.55

and v € {1, 2}. Take f € LP(A;)3. Obviously inequality (5.2) remains valid for such
f, so Lemma [2.2| implies that |V (¥ Z,(f) )|, < €| Z(f)ll, < €| f]p, hence by 1'
V(0 Z:0)) onlly < IV(E 209 ) Ayl < V(9 Z0) )y < € 1], The theorem fol-
lows from this estimate, inequality(5.20)) and the density of LF(A;)3NCY(A1)3 in LP(A1)3.
UJ

In the next theorem we give a bound of V(¢)|09 in the norm of W2~1/?(9)? in terms
of the W=1/PP_norm of ¢. The proof of this inequality is based on the preceding theorem.

(theorem7.20)
Theorem 5.2 Let p € (1,00). Then V(¢)|0Q € W2=Vrr(9Q)2 and ||V (6)|02|2-1/p,p <

Cllplli-r/p,p for ¢ € WHHPP(0Q)°.

Proof: The notation introduced in Theorem [5.1} or at the beginning of the proof of this
theorem, up to inequality (|5.2)), will again be used here, without further notice.

Let t € {1, ..., k()}, 7€ {1,2,3}, feLP(A)PNCHA,)? and v € {1, 2}. Recall that
U, Z,(f) € C°(99Q). All constants € appearing in this proof are independent of f.

Let § € (0, 6(22)|. Consider the function V® (W, Z,(f)) introduced in Lemma 4.8 As
stated in that lemma, this function is C™ in an open set i[5 containing ) as a subset; see
(5.3|) as concerns its first order derivatives. Thus by 1' and because supp( U, Zi(f) ) C
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U, 54 and (U, Z,(f)) 0y, = (¥, 07,) f, we get for o € A, that
au[v(6)(‘1’t Z(f) )j O%}(@) (5.21)[T7.20.20b]
3
= Zau’yt( ) / (al ]k)( (Qﬂ?, )):|fk dﬁ_ZH(“ Q7
k=1 Ay

with

3

HM(0,6) := Z/A (OEji) (T(0,1,0)) (0:(0) — Buve(n) ), fx(n) €(n) dn,

k=1

H(p,8) == Z/ al k) (T(0,m,0) ) — (OEu) (T (97%5)))

Oy (i fr(n) €(n) dn,
= [ EalTlon.9) houe dn

5 =Y /A By (Tlom,6) ) 0, fu(n) €(n) di

The last two functions arise due to a partial integration with respect to n and because
¢ € CJ(A,). Let ¢ € C*(A,). We deduce from the relation W, Zi(f) € C°(0Q)? (see
further above) and from the uniform convergence in (4.16)) that

[ acto (v (wz(0),00)(@de > [ ake) (V¥ Z(D),0m)e)de

for o | 0 Lemma | equation (3.2)) and the relation € € C}(A,) yield that the integral

f C(o Q (5) dQ tends to zero for § } 0. The function ~, belongs to C2(A;) (Lemma
B.1), so Wlth and (3.4),
105 [ (@1E1) (T(e,n.6)) (9ui(e) = dun(n)), ]| < €lo—n| =7 (5.22)

for 1 < k,1<3, 0,n€ A witho#n, 6€[0,§Q)], o« €Njwith |a] < 1. Since € €
Ci(A)), wehave € f € C}(A,)3, in particular |€ f|, < 0o, so we may conclude from ([5.22)
with @ = 0 and from Lebesgue’s theorem that the function HW(-,§) : A, + C is well
defined and integrable also for § = 0, and [, ¢((0) H(0,8)do — fAl C(0) HM(p,0) do

for 9 | 0. We further deduce from (4.4) and ({3.4)) that

02[ Ejr(T(0,m,0)) ]| < €lo—n|77* fork, o, n, 6, o as in (5.22). (5.23)[17.20.40]

Taking into account that €9, f and 0,€ f belong to CO(A3/4) we see that due to ([5.23))
with a = 0, the function H® (. §) for u € {3, 4} is well defined and integrable also if
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5 =0, and fA 0) HW(o,6)do — fA 0) HW(0,0)dp (§ | 0) for such u. At this point

we may deduce from 5.21)) that the Weak derivative 9, [V (¥, Z,(f) )j 07, ] exists — a
fact already known from Theorem — and

O, [V(W:Zd(f)), om0 = Y, H"™(0,0) for o€ A, (5.24)[17.20.50]

pefl, 3,4}

Now consider f € LP(A;)*. Recalling that 9°€ € C§(4,),) for a € Nj with |a] < 1, we
observe that 0°€ f € LP(A))® and [|0°€ f||, < €| f]|,. It follows from (5.22)), with
a =0, 6 =0and from Lemmathat if 4 € {1, 3}, the function H®W( -, 0) is well defined
also with f as given now, that is, f € LP(A,)?, and the estimate [|[HW(-,0)|, < €| fll,
holds. We recall that according to Theorem , the weak derivative 9, | V (W, Z,(f) )joyt ]

exists also in the case f € LP(A,)? considered presently, and inequality ([5.1]) is valid for
this f. Define

HY = —HY(-,0) = HO(f)(-,0) + 8, [V (0 Z(f) ), 0 7] (5.25)[17.20.2]

In view of (5.1)) and the estimate [|[H®W(-,0)|, < €|/ f]|, for u € {1, 3} derived above, we
see that HW € LP(A))? and ||[HW ||, < €| f|,-

Next take f € Wl’P(Al)i”ﬂCQ(Al)?’. We have H® = H@(-,0) by (5.24), and H@(-,0) =
—V( U, Z(0,f) ) o7, by (3.2). At this point we may refer to Theorem to obtain that
H® e W»(A,) and ||0,H® Hp < ¢ |8, f]l, for r € {1, 2}.

Since we have now shown that |[H®|, < & |||, for f € LP(A,)? and j:l(‘l) € WhP(A))3,
| H® ||1p < €| f]l1, for f € WHP(A,)PNC3(A,)?, we may conclude that H® € WP(A,)?
and |[HD ||y, < €||fl1, for f € W'P(A,)3. Therefore interpolation implies that H® e
W=1/pp(A)* and Hﬁ(@”l—l/p,p < €|\ flh=ryp,p for e WHVPP(A).

From ([5.22)), (5.23) and Theorem [2.2/ we obtain that H® (-, 0) for u € {1, 3} belongs to
Wi=tpp(A) and |[HW (-, 0)|li-1/pp < €| fllp if f € LP(A;)3. At this point we may
refer to equation (5.25) to conclude that 9, [V (¥, Zt(f))j o] € Wi=/rP(A)) and
10, [V (¥, Zt(f))j oy hiz1/pp < €\l flliz1jp,p for any f € WVPP(A) v e {1, 2}.
It follows with Theorem ﬂ that V (¥, Zt(f)) 0, belongs to W2~1/PP(A)) for f €
Wi=1/pr(A )3, and HV(‘I% Zt(f)) °Yell2=1/p,p < € fll1-1/p,p for such f.

Now let ¢ € W'=1/P»(9€)3. The constants ¢ appearing in the following are independent of
¢. Then pov, € W=L/PP(A )3 and Zy(poy)|A, = oA, . Since supp(¥,) NN C At73/4,
we see that W, Z;(¢o7,) = U, ¢, so we now obtain that V (¥, ¢); oy, € W2"Y/PP(A|) and

||V(\I’t ¢)J © 7t||2—1/p,p <c ||¢ © 'Vt”l—l/p,p‘ (5-26)

Next we note that dist(9N\A, |/, A, 1/,) > 0 (Lemma , supp( (1 — W,)|0) C
O\A, 1, and (o) € A, ), for 0 € A, . If follows with Lebesgue’s theorem that
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V( (1 =W ¢);0 ’Yt’A1/4 € CQ(A1/4) and

V(= w)0), 05 )@= | [ S or[Ba((0)~1)] (1= 1)) 6u(s) do,

As a consequence [[V (1= ¥,)¢). 0|4, 2 < €[], and therefore

||V( (1 - \I’t) 925)] © 7t|A1/4||2—1/p7p <c ||¢||p

This estimate combined with (5.26| yields that V(¢); o 7,4, , € W?™/PP(A, ) and
V() 0 %lAyjylla-1/pp < €UG 0 vllirypp + 10llp) < €l|pll1-1/p,p- Since j, T, ¢ were
chosen arbitrarily in {1, 2, 3}, {1, ..., k} and W'=V/P?(9Q)3, respectively, the theorem
follows with (3.1)). O

The consequence of Theorem we are interested in is stated as

rollary100.50) 1—1/p, p 3 F) .
Corollary 5.1 Let p € (1,00). For b € W (0Q)3, ¢ € By with (1/2) (F¢ +

T*(¢) ) = b, the relations V(¢)|0Q € W2 HPr(0Q)* and ||V (4)|0Q2—1/p,p < € ||bll1=1/p,p
hold. (The space Ef) was introduced in Corollary )

Proof: Take b and ¢ as in the corollary, and consider the case (1/2) (¢+T*(¢)) = b. All
the constants € appearing in the following are independent of b. We have in particular
b € ran(l, +Ty), so by Corollary faQ ¢V - bdo, = 0 for 1 < j < 6. Since in addition
b € WI=1/P2(90)3, we may conclude with Lemmal[4.7] there is a sequence (b,) in C°(99)?
with b, € C*(0Q)* NW=V/rr(9Q)3, [, 89 b, do, forn €N, a € (0,1), 1 <j <6, and
such that ||b — by ||1-1/p,p — 0.

Let n € N. It follows with Corollary that b, € ran(Il, + Ty), so there is a unique

function ¢, € ES™ with (1/2) (¢n+T*(¢n) ) = by for n € N; see Corollary . Theorem
yields in particular that ¢, € C%(99)* for a € (0,1). Now we may conclude from
Lemma [.10] that

(1/2) [V(60)[09Q + T(V($a)|02) | = V(ba)|0. (5.27)[c100.50. 10]
Since ||b, — b||, = 0, we know by that||V (b,) — V(b)|0€2||, — 0. But
I$n = llp < €llgn — &+ T (0 — @)llp = €lbn = bll, for n €N (5.28)[c100.50.5]

according to Corollary .3} so ||¢, — ¢||, — 0, hence ||V (¢, — ¢)|0Q, — 0 by (£.7). Now
it follows from the boundedness of T}, (Lemma that

1V (¢ — 9)I0Q + Z(V(dn — $)[02)]], — 0.

Altogether we deduce from that (1/2) [V (4)|0Q +T(V(¢)|0Q)] = V(b)|0<.
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Since b, € W=1/PP(9Q)3 Theorem [5.2] yields that V(b,)|0Q € W2?~1/PP(9Q)3 (n € N)
and

IV (b = 010221705 < €10 = biallirppe 1V (6O -1/ < € lloull-1/pr (5.20) [C160.50.6]

for m,n € N. By Lemma [4.2] we further have V (b,)|0Q € C%(9Q)% for 0 <a < 1, n € N,
so it follows with (5.27)) and Theorem [4.3]that the functions V (¢, — ¢,,)|0€ and V (¢,,) |02
belong to W2~1/7:7(9Q)3 and

IV (¢n = 6m)10Q12-1/p,5 < € (IIV (bn = bin)|0Q|2-1/p,p + |60 — Pl ).
IV (¢a)l0QUl2-1/p,p < € (IIV (0u)|0Q|2-1/p,p + [ Gallp)  (m,n € N).

Due to (5.29) and because of (5.28]) and an analogous inequality for ||¢,||,, we thus obtain
that

1V (én — &m)|0Q|2-1/p,p < €l[bn = bmll1-1/p,p, [V (00)[0Q|2-1/p,p < €|bnll1-1/p,p (5.30)[c100.50.20]

for m,n € N. The first estimate in ((5.30) implies there is v € W2~1/P2(9Q)? such that

1V (én) = Y|l2=1/p,p — 0. Since |V (¢, — ¢)|09||, — 0, as explained following ((5.28|), we
may conclude that V()02 € W2 1/PP(9Q)? and ||V (¢n — @)|l2-1/p.p — 0. In addition

b, — bll1-1/p,» — O by the choice of the sequence (by,). At this point the second estimate
in (5.30) yields that [[V(¢)|09Q]2-1/p,p < €[|bl[1-1/p,p-

Analogous arguments are valid if (1/2)( —¢+T*(¢) ) = b if we note that the function gbg,))
introduced in Corollary [4.3| belongs to C*(92)? for a € (0,1) by Theorem O

6 Existence and W?*?-regularity of solutions to (1.1)),
1.2]).

In the ensuing theorem we consider (1.1)) with F' = 0 (homogeneous Stokes system) and
(1.2) with Neumann data satisfying a side condition. This theorem combined with Corol-
lary below state that in such a situation, problem , admits a W2P-regular
solution in the exterior domain Q°. This result is proved by reducing it to Corollary
and to the LP-theory of the Stokes system in bounded domains under Dirichlet boundary

conditions.
(theorem7.30)

Theorem 6.1 Let p € (1,00) and R € (0,00) with Q@ C B, b € W'='/P7(9Q)* with
Joq @@ - bdo, = 0. Abbreviate ¢ := F~(b), V :=V(¢)|Q°, Q := Q(¢)[X".

(The functions ¢©) and F~(b) were introduced in C’orollary and the functions V(9)
and Q(¢) in Lemma4.3.)
Then V € C=(Q)?, Q € C=(Q°), the pair (V,Q) solves in Q with F = 0. Let
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r € [1, 3p/2), re € (3,00), 13 € (3/2, 0), 14 € (1,00). Then

IVIQzr + QIR < by, (6.1)[17.30.20]
IVIQrI2p + 1QIQR]1p < € [bll1-1/p,p, (6.2)[17.30.30]
IVIBgllr, < €[lbllps 10mV|Bgllrs + 1QIBgllry < €[bll, for T <m <3, (6.3)[17.30.40]
100V [ BRllrs + 0m Q| Bgllry < €0l for 1 <1,m < 3. (6.4)[17.30.60]

In particular, if r € (3, 3p/2), then |0,V |, + Q- < €], for 1 < m < 3. All the
constants € appearing in the preceding estimates are independent of b.

Proof: The relations V € C®(Q°)3, Q € C*(Q°) and equation with (V,Q) in the
place of (U,II) and with F = 0 are valid according to Lemma [4.2] Moreover Corollary
yields that [V (¢)|Qr|l1r + |Q(#)|Qr|, < €|/¢],. Here and in the following, the
constants denoted by € do not depend on ¢ or b. By Lemma 4.4 we have

IV (9)|Bgllr, < €l|llp,  10mV (D) Bgllrs + 1Q(2)| Bl < o]y,
1010V (0)|Billrs + 10m Q@) Bgllrs < €[], for 1 <1,m < 3.

On the other hand, due to Corollary and by the definition of ¢, the relations

(1/2) (= +T°(9)) =b, ol < €llbl, (6.5)[17.30.100]

hold. The preceding inequalities imply (6.1)) and (6.3]) — (6.4)).

Let us show (6.2). From (6.5) and Corollary m, we find that V(¢)|0Q € W2~1/pr(9Q)3
and

1V ()|0Q|2-1/p,p < €[bll1-1/p,p- (6.6)[17.30.110]

Recall that V(¢)(z) for z € 9Q was given by a direct definition in Lemma 4.2l On
the other hand, inequality means in particular that that V(¢)|Qr € WHP(Qg)3,
and by the last statement in Lemma 4.8 we know that the trace of V(¢)|Q2g on 0
coincides with V(¢)|09) as defined in Lemma Moreover estimates - yield
in particular that V(¢)|B2R\% € W2P(Byg\Bg)? and ||V (¢)|Bar\Brll2p < €[9],,
so the C*-regularity of V in €2 mentioned above and a standard trace theorem yield
that V(¢)|0Br € W2=1/P2(9Bg)? and ||V (¢)|0Brll2-1/p.p < €|/¢|l,- Therefore we may
conclude with (6.6) that V(¢)|0Qr € W2 1/PP(95)? and

IV (@)0Qkl2-1/p.p < E(bll1-1/p.p + [8ll) < E[[bll1-1/p,, (6.7)[17.30.120]

where the last inequality follows from (6.5). Since div(V(¢)|R*\0Q) = 0, and again by
the relation V(¢)|2r € W'P(Qg)?, we get that [y, V(¢)(z) - n®8) (1) do, = 0, with

nH) denoting the outward unit normal to Qz. At this point we may apply Theorem

2.5 which yields functions u € W2P(Q2g)%, m € WP(Qg) with —Au+ V1 =0, u|0Qg =
V(0)|0N2g, fQR mdr =0 and [Jull2p + |71, < C[|V(0)|0QR]|2-1/p,p- The latter inequality
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and (6.7]) imply that [Ju||2p+ |71, < €|1b]l121/p,p- But u = V(¢)|Qg and 7 = Q(¢)|Qp+c,
with ¢ := —|Qp|™! fQR Q(¢)(z) dx. This follows from Theorem and the properties of
V and Q stated at the beginning of this proof, and because V(¢)|Qr € W1?(Qz)? and
Q(o)|Q2r € LP(Qr) according to (6.1)). Thus inequality (6.2)) is proved. O

Corollary 6.1 Consider the same situation as in Theorem [6.1. In particular recall the
notation V = V()| Q := Q(¢)|Q°. Moreover write (9;V)"" and Q' for the trace of
Voand Q on 092 (1 < j <3). Then

rollary100.60)

Zn@ V) + (V) —6,,Q" ) =b; for 1<j<3. (6.8)[¢100.60.80]

Proof: Since (1/2) (—¢ + T*(¢) ) = b by the definition of (;5 and the choice of F~(b), we
have ¢ € ran(—1, + Ty ), so by Corollary |4.2) and Lemma {4.7, we may choose a sequence
(b,) in C°(9Q)3 such that b, € C*(9N)* N VV1 U (0€)3 and S @@ - by do, =0 (n €
N, a € (0,1), r € (1,00)), and [|b, — bl[1-1/p,p — O.

Let n € N. Since [, ¢ - b, do, = 0, the function ¢, := F~(b,) € E; from Corollary
is well defined. By definition it satisfies the equation (1/2) ( —¢, +T*(¢n) ) = b,. Let
R € (0,00) with © C Bp/». By our choice of b, we have b, € W=1/""(9Q)3 for r € (1, 00),
so Theorem [6.1] implies that V(¢,)|Qr € W2"(Qr)3, Q(¢,)|Q2r € WLT(Qg) for such r. It
follows by a Sobolev inequality that V' (¢,,)|{2g may be continuously extended to a function
from C'(Qz)?, and Q(¢,)|Q2r admits a continuous extension to Q. Since both V (¢, ) and
Q(¢n) are C in Q° (Lemma[4.2), we may conclude there are functions V,, € C*(92¢)? and
Q. € C°(Q°) such that V(¢,)]|Q° = V,|Q" and Q(¢,)|Q° = Q,|Q°. On the other hand,
since b, € C*(90Q)3 for a € (0,1), Theorem [4.2] yields in particular that ¢, € C°(99)3.
Recalling that 9,V,, € C°(Q°)3, Q, € C°(Q°), V,|Q° = V(4,)|Q" and Q,|Q° = Q(¢,)|Q",
we may thus deduce from Theorem 4.4 and the equation (1/2) (—¢, + T*(¢,) ) = b that

3
> (@) (0 Vo + OV = 636 Qu)(x) = buy(x) forz €09, 1<j<3.  (6.9)[c100.60.10]

k=1
Here n was arbitrary from N. But by our choice of (b,) and (¢,,), Theorem [6.1| yields that

1V (¢n = 9)[Qxll2p + 1Q(dn — )[Qrll1p < Cllbn = bll1-1/p,p forn € N.

Thus, using the notation for the trace of V(¢)|Q" and Q(¢)|Q°, respectively, introduced
in the corollary, and taking into account that 9;V,, € C°(Q°)3, Q, € C°(Q°), we get that

||(ajv)tr - ajVan + HQtT - Qn”p <c ”bn - bulfl/p,p (” eN, 1<j< 3)-
Since [|b, — b||1-1/p,p — 0 by the choice of the sequence (b,), equation now follows
O

from (6.9)).

It is well known (see [23]) that the side condition imposed on the boundary data b in the
preceding corollary may be eliminated by using the double layer potentials from Lemma
[4.3] In order to check how this steps works out in our LP-theory, we give some details of
a proof.
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theorem100. 60)

Theorem 6.2 Consider the function ¢ from Corollary . There is a € (0,1) with
o0 e CT(9Q)3. Moreover [, ¢V - n®do, # 0, and there is co = co(¢”) € R3\{0}
such that

> (@) (W)W (), =6 (0 ) (2 =k 0D (z) ) = —con™ (@) (w1 0)

jk=1

for1 < j <3, o€ (The functions W () and II(¢?) were introduced in Lemma
[4.9) Let p € (1,00), b€ W=1/n2(9Q)3. Put

() =~ [ ¢ bdo, ([ ¢ -nPdo, )_1, b:=b+~(b)n.
00 20

Then [y, ¢ bdo, = 0. Put ¢ := F~(b), with F~(b) from Corollary
wi= V() +cg () WD), 7= Q(6) + ¢y 7 (b) (6 )"
(See Lemmal{.4 for the definition of V(¢) and Q(¢).)

Then u € C=(Q°)%, m € C=(Q), and the pair (u, ) solves in QO with F = 0.

Let R € (0,00) with Q C Bg, 71 € [1, 3p/3), 12 € (3,00), 73 € (3/2, 00), 74 € (1,00).
Then, with constants € independent of b,

[ul€Rllr, < bl [[wlQrll2p + I7[Qrll1p < €N0ll1-1/p,p, (6.10)[T100.60. 10a]
[ul Ballr, < €lbllp, N0nul Byllrs + 7| Bgllrs < €[lbl, for 1 <n <3, (6.11)[T100.60.30a]
|0mOnul By|lr, + (0w Bgllr, < €[|bl, for 1 < m,n <3, (6.12)[T100.60.50a]

in particular ||0mOnull, + ||On7|l, < €|l The pair (u, ) solves in the trace sense.

Proof: By the choice of ¢ in Corollary [£.3] we have —¢© + T(¢®) = 0. Thus we
may apply Theorem with b = 0 and ¢ = ¢, and with p = r for any r € (3, 00).
Abbreviating W := W (¢©), W;, := Wi, (¢©), Wep := Wee(¢©), 11 := TI(¢©), 11, :=
in (¢©) and I, := 1T, (¢©), this theorem combined with Theorem [4.6/ and Lemma,
allow us to conclude that ¢(©) € C1%(90Q)? for some a € (0,1), ¢(© € W=1/P.P(9Q)3,

Wi € CHQ)3, W, € CHQ%)?, I, € C°(Q), M., € C°(Q°), (6.13)[T100.60.10]
Winl0Q = (=1/2) (=0 +T(¢!7) ) =0, We,[092 = (=1/2) (¢ + T (¢'V)) = —¢1",

Win|Q = W|Q € W?P(Q), Wo,|Q" = W[Q°, W e C=(R3\0N)?, 1T € C®(R*\dQ),

AW + VII =0, divIW =0, II;,,|Q = TT|Q € WP(Q), I1,|Q° = |0,

W € W2P(QR)%, TI|Qz € WH2(Qp).

(The functions Wi, (¢) and W, (#?)) were introduced in Theorem 4.5, and II;,(¢(?)) and
IT,.(¢”) in Theorem . The parameter R was fixed in the theorem above.) Theorem
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and the relation ¢(*) € C*(9Q)? provide the equation

3

S0l (0, Wanot + Wi — 03¢ i) (6.14)

k=

1
3
- an(cm (ajWer,k + OWea,j — Oji Il,) for 1 <j<3.
k=1

Among the relations in , we next use that W, € CH(Q)%, Wy, |0Q = 0, W;,|Q =
WIQ € W2r(Q)3 1L, € C°Q), Hp|Q = IQ € LP(Q), W € C=(R)\oN)3, I ¢
C=(R*\9Q), AW + VII = 0, divW = 0. From this and Theorem [2.6] it follows that
Win = 0, hence 0;W;,, =0 (1 < j < 3) and VII|Q2 = 0. But Q is a domain and II is in
particular continuous, so there is ¢y = co(¢(0)) € R with IT|Q2 = ¢, hence 1I;, = ¢y. Thus

the left-hand side of (6.14) equals —cy n§ﬂ), and therefore also its right-hand side, so that

3
> o1 O Wea + 0Wea,j — 0 Tle) = —comy” (1< j < 3). (6.15)
k=1

Now suppose for a contradiction that

=0 or 0 - n do, = 0. (6.16)[T100.60.30]
o0
Then let S € [R, 00). We use Lemmawith U=Qg,u=1u= Weg|Qs, m=1Il,. This
choice is possible according to (6.13). Also according to (6.13)), we have W, |02 = —¢©).
Thus Lemma [2.5), equation ([6.15) and assumption (6.16) imply that

3 3
/ > 10 Wi + 0 W[ da = / > (wk/S) (Wi + 0y — 653, T0) () Wi() do,.
Q 0B,

S 4,k=1 S 4,k=1

But the surface integral on the right-hand side of preceding equation tends to zero for
S — oo due to , . It follows that [ Zik:l |0; Wy + 0, W;|* dz = 0. This means
that 0;Wj, + (9;61/1/]»@c =0 for 1 < j,k < 3. Turning to Theorem , we now conclude
there are numbers ay, ..., ag € R such that W|Q° = 25:1 a; ¢V Q. If there were an
index j € {1, ..., 6} with a; # 0, we might choose a sequence (z,) in Q" such that
|z,| — oo and Zgzl a; ¢V (x,) - 0. For example, if ag # 0, a suitable choice would be
z, = (0, R+ n, 0) for n € N. But on the other hand, for any sequence (z,) in Q° with
|z,| — o0, inequality implies |[W(x,)| — 0. Thus we may conclude that a; = 0
for 1 < j < 6, hence W|Q" = 0, and so W, = 0. But W,|0Q = —¢©®, s0 ¢ = 0, in
contradiction to the choice of ¢(®) in Corollary Thus none of the equations in (|6.16))
can be true. As a consequence ¢g # 0 and [, ¢ - n(% do, # 0.

Since Q is C2-bounded, we have n(® € C*(92) for any a € (0, 1). This means in particular
that nY € W=1/Pr(90)3, so b € W'=1/PP(9Q)3. (The function b was introduced in the
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theorem.) Obviously [, ¢©-bdo, = 0. Recall that ¢ = F~(b), with F~(b) from Corollary
4.3 see the definitions in the theorem. Therefore we see that all statements of of Theorem
and Corollary |6.1| are true with b in the role of b. But |y(b)| < €||b||,, so we find that

[bll, < €lfbll, (14 [n2],) < €]fbll,, (6.17)[1100.60.50]
1011175, < € (10117, + YO P11/, ) < € UBll1-1/p, + 1Bl]p) < € [1Bll1-17,p-

Thus the estimates in Theorem are valid as stated, that is, with the function b on
their right-hand side. Recall that in (6.13]) we noted in particular that

We € CHQ), Woo|Q© = WIQ e C°(Q°)3, T, € C°(Q°), T1,|Q° =|Q°  (6.18)[T100.60.60]
€ C=(Q°), —AW + VII =0, div W =0, W|Qr € W*!(Qg)%, Qg € WP(Qp).

As a first consequence, the trace of 9;(W|Q°) and TT|Q° on 99 exists and equals W,,|0S
and I1.,|09, respectively. Observing that b— v(b) n® = b, recalling that Corollary is
valid here with b in the place of b and taking into account (|6.15)), we may thus conclude
that the pair (u,7) satisfies in the trace sense. From (]6__1—8[) and Theorem - it
further follows that u € COO(Q )3, T € C®°(Q°), and the pair (u, 7T) solves in Q°

with F = O Again using that |y(b)| < € ||b||p, once more referring to Theorem [6.1]
and , and noting that Lemma 2.4 and (4.4) imply that W|Qg € L”(QR) we may

Conclude that inequality (/6.10] - - hold O

Next we turn to the interior domain case.
(theorem7.31)
Theorem 6.3 Let p € (1,00) and b € W'=1/PP(0Q)3 with [,, ¢V -bdo, =0 for1 < j <

6. Abbreviate ¢ := F1(b), V :=V(¢)|Q, Q := Q(¢)|.

(The functions ¢, ..., ¢ were introduced in Theorem the function F*(b) in Corol-
lary 4.3, and the functions V(¢) and Q(¢) in Lemmal[4.3.)

Then V € C*(Q)3, Q € C>(Q), the pair (V,Q) solves in Q with F = 0. More-
over equation holds with (0;V)" and Q' again denoting the trace of 0;V and @Q,

respectively, on OS2 (but with a different meaning of V- and Q compared to Corollary ,
and

Ve + QI < €fbll,  forr e [1,3p/2),  ([Vizp + Q1 < €bll1-1/p.p-

The constants € appearing in the preceding estimates are independent of b.

Proof: Theorem [6.3]is proved by an analogous reasoning as Theorem [6.1] and Corollary
6.1} with only that part of the proof of Theorem being relevant which relates to {2g.
0

Corollary below shows that the condition on b in Theorem is necessary. The
ensuing lemma is needed for the proof of this corollary.

(lemma100.50)
Lemma 6.1 Let p € (1,00), u € W?P(Q)3, 7 € WhP(Q). Then

/ Zgb(l) Zn (Ojug + Opuj — O, ) do, = /Z¢() (O;divu + Au; — Ojm) dx
89

k=1
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for1 <1<6.

Proof: The lemma follows from the Divergence theorem and the fact that
Zam (Ojup, + Ohu; — 0;m) =0 for1 < j <6. O

rollary100.55)
Corollary 6.2 Let p € (1,00), f € LP(Q)3, b € WITVPP(9Q)3, v € W?P(Q)3, 7 €
WhP(Q) such that the pair (u, ) satisfies in Q as well as (1.3). Then the equation
faﬂ &Y - bdo, + Jo oW . fdx =0 holds for 1 <1< 6.

Proof: Combine Lemma [6.1] with (1.2)) and (L.IJ). O

In the rest of this section, we consider solutions to ((1.1]), (1.2)) in the case F' # 0.

theorem100.71) .
Theorem 6.4 Let A C R? be measurable and p € (1, 3/2). If f € LP(A)3, the integral

[0 [(0°E) (x — ) fu(y)| dy is finite for o € N with |a| < 1 and for a. e. x € R?,
so we may define

3
R(f) (@) = (/AZEjk(JJ =) fe(y) dy)1<j<3 (z € R?).
k=1 SIS
For such f, the relations R(f) € vmiz’<R3>3, BR() = 0 and IR0 p-as
C(p) || fll, hold, and in addition OR(f) = fA Zk VO Ex)(x —y) fuly)dy for z €
R3, 1<4,1<3.

Let g € (1,3). If f € LY(A)?, the integral [, 22:1 10N (x — ) fx(y)| dy is finite for a. e.

x € R3, s0 we may define

IN

/Z —0M)(x —y) fu(y)dy  for x € R?,
A

k=1

and we have &(f) € Wi (R, 16(F)lla g1/ < C(a) ||f||q-
If A=TR3 and f € LP(A)3, we have —AR(f) + VS(f) =

In the case f € LP(A)* N LI(A)? the estimate ||OR(f)]|(1/q-1/3-1 < C(q) || fllq s valid.
Letr € (1,00). If f € LP(A3NL"(A)3, then ||0,0,R ()|l < C(r) | f]l- (1 < 1,m < 3), and
in the case f € LY(A)>NL"(A)3, the estimate ||0,S(f)|. < C(r) || f|l- holds for 1 <1 < 3.

v\./

Proof: The theorem follows from the Hardy-Littlewood-Sobolev inequality and from the
Calderon-Zygmund inequality; see [8, Satz 1.4] and compare the proof of [I2] Theorem
IV.2.1]. O

rollary100.24) ; 3
Corollary 6.3 Let r € (1,00), R, S € (0,00), f € L"(Bgr)’. Then [|R(f)|Bsll2, +

IS()Bsllir < C(r, B, S) [ ]l

36



Proof: Obviously f € LP(Bg)? for any p € (1, min{r, 3/2}), so R(f) and &(f) are well
defined. Holder’s inequality and (4.4) yield for o € N3 with || <1 that

9°%(5)1Bsl. < ( / ( /B o~y ) /B o=yl ) dy )

The integral [ [z —y[™'" ol dy is bounded uniformly in z € Bg, and Jo e —yl7t" ol dg
uniformly in y € Bg. In view of the last estimate in Theorem [6.4] - it follows that
I1R(f)|Bsll2r < C(r, R, S) || f|l-- An analogous reasoning is valid for &(f). O

Now we are in a position to give a more detailed version of the existence and regularity

results in Theorem [1.2l
rollary100.25) .
Corollary 6.4 Let p; € (1, 3/2), po € (1,3), p3s € (1,00), and let f belong to L5(Q)?

and b to W'=1/5(0Q)3 for s € {p1, p2, ps}. Put

Z Dk +0R(f); =0 6(f)) for je{l,2, 3}

k=1

Then b € W'=1/%5(9Q)% for s € {p1, pa, p3}. Further define

—_ 1 ~ —_ —

Yo+b) =~ ¢ (b+b)do, ([ ¢ -nPdo,), bi=b+b+~(b+b)n,
oN oN

with ¢ from Corollary ' see Theorem for the fact that [,, ¢© - n(? do, # 0.
Then [y, ¢*) bdo, = 0, so ¢ = F~(b) € Lm>prr2ps}(90)3 (Corollary n) is well
defined. Finally put

(o

wi=V(9) +cg (b +b) W(Q", 7:=Q(¢) + 5" (b +b) ()|,
vi=u+R(f), o:=71+6S(f),

where cq was introduced in Theorem The functions V(¢) and Q(¢) are from Lemma

W(¢®) and TI(¢) from Lemma and R(f) and &(f) from Theorem . Note
that the functions u and w coincide with the corresponding functions in Theorem

except that b is replaced here by b+ b.
Then (v, 0) € WP (Q°)3 x WP (QF) and

loc loc
v E L(/P1=2/3)" 1( ) 810] o€ L/s= 1/3)7 ( ) 0 8111], alQ € LT(Q )

for s € {p1, pa}, 7 € {p1, P2, p3}, 1 < j,I,m < 3, in particular v|Q2g € W2PL(QRr)? and
0|Qr € WEPL(QR) for R € (0,00) with Q C Bg, so ;v (1 < j < 3) and o have a trace on
0Q. The pair (v, o) satisfies equation (u) in Q wzth F=Ff, and (1.2 (.) with B = b.

Morcover [V 1/pn-2/s-1 < € (1l + [bli-1/p1.00)- 1F 5 € {p, pa}. then

10l ys-1/8)-1 + llellass-1/z-1 + 10mdwlls + |0iells < €([f]ls + [10ll1-1/s,5)
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for 1 <1,m < 3. In addition, if R € (0,00) with Q C Bg, then

Hamalvnpa + ||al9||p3 < Q:( ) (||f||p3 + ||f|B R||p2 + ”le 1/ps3, p3)
for L, m as before. The constants € in these estimates are independent of f and b.

A comment of the term || f|BSg||p, in the preceding estimate may be found in the passage
following Theorem [1.2]

Proof of Corollary [6.4: All the constants € appearing in the following are independent
of fand b. Let s € {p1, p2, p3}. Theorem , applied with p = g = py, r = s, yields that

10:0mR(f)ls + [0S (f)ls < C(s) 1 flls for 1<1,m <3 (6.19)[c100.25.5]
Let R € (0,00) with Q C Bg. By a trace inequality and the preceding estimate we get

e < € (3 1082l + 1602l (6.20) c100.25.20

=1
(Z [9RDIlls + 1Sl +11£1L ).

Consider the case s = p3. The estimate

10R(f122 1) [ Qrllps + 16122 1) | Qrllps < €[ f1Q22Rllps < €1 ]p

holds by Corollary Moreover, for x € Bg and y € BS 5, we have |z —y| > |y|/2, so

||8lm(f|B§R)|QRHp3+||6(f|B§R)|QR”p3§€|QR|1/Z)3/ [yl | £ () dy.  (6.21)[c100.25.25]

c
B2R

Since py < 3, we have pj) > 3/2, so ch ly| 722 dy < oo. Therefore, due to Holder’s

inequality, the left-hand side of (6.21)) may be bounded by €| f|BSzl/p,- Altogether, if
G € 1OR(f) L1 < 3 or G = 8(7) we get Gy, < €1l + 1155 ).
it follows from that b € W1 Yrs23(90)3 and [[B]1-1,ps, n < @(Hfupg F1F 1B g o).
This inequality combmed with (6.12]) the second estimate in 0) yield that

1OmOrullps + 107]]p, < € ||b+5||171/p3,p3 S (|| fllps + 1 B2rllps + [1bll1-1/ps,ps)-

(Recall that uw and 7 are taken from Theorem @l with b replaced by b+ b.) The estimate
at the end of Corollary thus follows with (6.19)).

Now suppose that s € {p1, p2}. We know from Theorem that
1OR( ) 1ss—1/3)-1 + 1S (Ol ass—1/3-1 < CGs) I f[ls (1 <T<3). (6.22)[c100.25.26]

Thus for G as above, we have ||G|Qg|[s < C(R,s) ||G|Qr|a/s-1/31 < C(R,5s) | flls: so
we may conclude from (6.20)) that b € W'=1/52(9Q)? and

1811175, s < €I£]ls- (6.23)[C100.25.27]
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The second inequality in (6.10) and the preceding estimate imply that

Qa2 + 171QRN1s < €[]+ blli-1/s,s < EUF s+ 1blli-1/s,5)- (6.24)[c100.25.30]

Inequality (6.24) combined with (6.19)) and (6.22)) show in particular that O; |Qg and o|Qr
—and hence also Ovjand o — have a trace on (9Q Due to the definition of b and by Theorem
2| with b replaced by b+ b, the pair (v, o) satisfies with B = b. Moreover we may

conclude from Theorem |6.2| and |6.4] that the pair (v ) belongs to WP (Q )3 x WP (QF)
613"

and satisfies (1.1) with F = f. Due to (6.24), (6.12) with b replaced by b + b, (6.23)) and
(6.19), we obtain that ||0,0v||s + [|Oiolls < C(|| flls + [|blli=1/s,s) for 1 < I,m < 3. Since
s < 3, a Sobolev inequality and inequality ((6.24)) yield that

0ul 2l o1 + 17192l ey < €l + 1Blhoajes) (1< T<3).  (6.25)[CIo00.25.30a]

Again because s < 3, hence (1/s —1/3)~" > 3/2, and in view of the second inequality in
(6.11) with b+ b instead of b, we get ||Gju| BE||(1/s-1/3)-1 + [|7|B&|l1/s—1/3-1 < €[|b+ bl
for [ as before. The preceding estimate, (6.25)), (6.23]) and (6.22)) yield that

10wl (1/5=1/3)1 + [lollays—1/3-1 < E(|flls + 1bll1-1/s,5) (1 < T <3).

Takmg into account that p; < 3/2, hence (1/p; —2/3)~" > 3, and by the first inequality in

.6 11)), as well as inequality (6.24] - with s = p1, a Sobolev inequality, (6.23) and Theorem
[6.4) we obtain in an analogous way that [|v]/1/p,—2/3-t < € (|| fllpy + [1blli=1/ps,pr ), SO the

proof of Corollary [6.4] is complete. O

The ensuing corollary elaborates the existence and regularity results in Theorem [I.1]

rollary100.26) P(ON3 1 1/pp 5
Corollary 6.5 Letp € (1,00), f € LP(Q)°, be W (082)* with

/ ¢(l).bd0x+/¢(”-fd:p:0 for 1<1<6.
oQ Q

Putb; = -3, n(m (OR()e+WR(f);— 01 S(f)) for 1 < j < 3. Then forl as above
the equation faﬂ¢ - (b+b)do, = 0 holds, so the function ¢ == F*(b+b) € El(f)(@Q)
Corollary[4.9) is well defined. Put v :=V(§)+R(f)|Q, 0:=Q(¢)+&(f)[2 (see Lemma
and Theorem ca=MT([yv- oY) dx)1<jcq, U= v — Z?:1 a; ¢V, = o, with
from Lemma .
Then u € W?P(Q)3, = € WIP(Q), the pair (u,7) satisfies in Q with F = f,
as well as with B = b. In addition fQu W dr = 0 for 1 < j < 6. Moreover
llullop + |mllip < €U fllp + |0lli=1/p,p), with a constant € independent of f and b.

Proof: By Corollary , we have R(f)|Q € W2P(Q)3, &(f)|Q € W'P(Q), so b €
W1=1/PP(9Q)3. Let [ € {1, ..., 6}. Then we find by Theorem [6.4 and Lemma [6.1] that

oV - (b4 D) do, = | oV -bdoz—k/gé(l)-fdx,
o0 Q

o0
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so by our assumptions on f and b, fm #® - (b + b)do, = 0. Therefore the function
¢ = F*(b+b) (Corollary is in fact well defined, and we may apply Theorem
with b replaced by b+ b, to obtain that V(¢)|Q € W2P(Q)3, Q(¢)|Q € WP(Q), the pair
(V(9)|Q, Q()|Q2) solves in Q with F = 0 and (1.2) with B = b+ b. In addition
this theorem implies that ||V (¢)|Q2, + |Q(0)|Q]1, < €|+ bll1,. On the other hand,
with a trace estimate,

15011, <¢(Z %, RDIDNp + IS(Rl1p) < € IRy + S 1p).

Since |R(f)|Q]2p + S(f)IQ1, < €| f]l, again by Corollary [6.3] we thus arrive at the
inequality [[v|l2p + [|0]l1p < €| fllp + |blli=1/p,p)- Due to Theorem and by what was
stated above on the pair (V(¢)|Q, Q((b)]Q) the pair (v, o) solves | 1.1)), . ) with F, B
replaced by f and b, respectively.

For any j € {1, ..., 6}, the function $()|Q2 belongs to C*°(Q)?, and the pair (¢, 0) is a
solution of (1.1] , . with ' = 0 and B = 0. Recall the vector a € R® introduced in
Corollary Since |o;| < €Jjv], for 1 < j < 6, and by the properties of v and p and

the definition of M , the pair (u, ) fulfills the claims stated in that corollary. O

7 Some uniqueness results.

The claims on uniqueness in this section imply what is stated on uniqueness in Theorem

.1l and [[.2] First we consider the interior domain case.
theorem100.91)
Theorem 7.1 Let p € (1,00), v € W?P(Q)3, o0 € W'P(Q) such that the pair (v, )

satisfies (n) (-) with F =0 and B = 0, and such thatf v-¢pW) dr =0 for1 < j <6.
Then v and o vanish.

Proof: In the case p > 2, we could use Lemma [2.5] with p = 2 and Theorem [2.4] But
Theorem |7 1s not restricted to that case. For a proof of this fact, let g € C5°(Q)3, and
put o := M~! f g - oW dzr)i<j<e., with the matrix M defined in Lemma ﬁ Define
f=9qg- Z; La; - oY, Then f e C°Q)* c L' (Q)% and [, f-¢®) dz =0for 1 <k <6.
Therefore, by Corollary |6.5) - there are functions w € W*P(Q)3, o € WP(Q) such that
the pair (w, o) satisfies (1.1)), (1.2)) with FF = f, B =0.

In this situation we twice use the formula in Lemma once with (u,7) = (v, 0), u = w,
and then with (u,7) = (w,0), U = v. It follows that [, f-vdz = [,(Av—Vp)-wdz = 0.
But by our assumptions, v is orthogonal to the functions ¢\/). Therefore [, g-vdz = 0.
Since g was an arbitrary function from COO(Q) we may conclude that v = 0, hence there
is c € R with 9o = c a. e. Equation ((1.2)) and the assumption o € W1P(Q2) now yield that
0=0. H

Now we turn to solutions in the exterior domain Q°. The uniqueness result we show in
this case is more general than the one in Theorem [1.2]

40



theorem100. 80) -
Theorem 7.2 Take R € (0,00) with Q C Bpg. For j € {1,2}, let pj, q;, 7j,s; €

(1,00), ul) € W2H ()3, 79 € WEHQ) such that u)|BS, € LPi(B%)?, 7U)|Bg €
L%(B%), VrW|Bs € Li(B$)3, and u9|Qr € W25 (Qp)3, 79|Qr € Whi(Qy) for
T € (0,00) with Q C By. Put v :=u) —u® 7 :=70 — 7@ Suppose in addition that
the pair (u, ) satisfies with F = 0 as well as with B = 0. Then u =0 and

T =0.

Note that the condition 7 |B$ € L%(B$) for j € {1, 2} is necessary. In fact, let
(u, 7)) be the solution of with ' = 0 and with B = n® provided by
Theorem 6.2, and put u® := 0, 7® := 1. Then the pairs (uV, 7(V), (u®, 7)) verify
all the assumptions of Theorem except the relation 7(?|B$, € L%(B) for some ¢, €
(1,00) and R € (0,00) with Q C Bg. These two pairs cannot coincide because 7| B$, €
L"(B$,) for any r € (3/2, c0).

Proof of Theorem : Put 7 := min{ry, ro}. By the proof of [4, Theorem 1.1], where
Dirichlet boundary conditions are considered, we know that Vr|B§ , € L*(B%4)* for
s € (1,7]. Boundary conditions play no role in the argument leading to that result.
Theorem [2.3] then implies there is ¢(7) € R such that 7+ c(7)| B, € LY*~/3 (B )
for s € (1,r] if r < 3, and for any s € (1, 3) else. Note that ¢(m) is independent of p, as
follows from the criterion for the case ¢(v) = 0 in Theorem [2.3]

Let us show that ¢(m) = 0. To this end put A,, := B, \B,, for n € N. Take s € (1,r) with
s < min{qi, g2, 3}. Then for n € N with n > R + 1, because |A,| = 28n3/3,

2
(28 |e(m)| mn®[3)'/* = |le(m) xa, lls < llm + e(m)|Aulls + Y 179 Aulls  (7.1)[T100.80.10]
j=1

2
< |An|1/3 |7+ e(m) | Anll @ s-1/3)-1 + Z |An|1/8_1/pj ||7T(j)|An||pj'

j=1

Recall that s € (1,7) by the choice of s, and 7 + ¢(m)|Bry1 € LO/*~1V37(Bg, ), as
explained above above. In addition 7\)|B% € LPi(B$) by our assumptions. Thus, after
dividing both sides of by n3/%, we get a left-hand side which is independent of n,
and a right-hand side tending to zero for n tending to infinity. Therefore the assumption
c(m) # 0 would lead to a contradiction, hence ¢(m) = 0. As a consequence, in view of
the integrability properties of m + ¢(m) proved above, there is p € (3/2, co] such that
m|Bfy, € LP(B§.,) for any p € (3/2, p). In fact, we may choose p := (1/r —1/3)"! in
the case r < 3, and p = oo else.

Fix a function ¢ € C5°(By) with p|B; = 1 and 0 < ¢ < 1. Put ¢,(z) := p(n~'z) for
r € R3 n € N. Then ¢, € C(Bay), ¢|B, =1, 0 < ¢, < 1, supp(Ve,) C Byn\Bn
for n € N, |[Voul|l, = 0(n — oo0) for p € (3,00), and ||0;0m¢nlp, — 0(n — o0) for
peE(3/2, ), 1<Il,m<3.

Let ® € C3°(Q°)?, and choose the pair (v,0) € W (Q)? x W2H(Q) as in Corollary

loc loc

with f = ® and b = 0. This means in particular that v; € LP(Q°), Ow;, m €
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L (Q), OmOkv;, O € L3 (Q) for any py € (3,00), p2 € (3/2, ), p3 € (1,00), 1 <
I,m < 3. This further means that (v, ) solves (1.1) in Q° with F = ®, as well as (1.2)
with B =0. For n € N, put v,, := ¢, v, 0, := ¢, 0. We claim that

|lu- (—Av, + Vo, — ®)|1 =0, ||[u-Vdive,|; = 0, ||[7divo,]s =0 (n — 00). (7.2)[T100.80.20]

In fact, concerning the first of these relations, recall that supp(Ve,) C By, \B,, C B for
n € N, n > R, and () C Bg, so by Holder’s inequality

i Orvr Aupalls < N [Blly, 100k ls 1 /2 |1 9rpullsy,  for m as before, j € {1, 2},

1 < k,1 < 3. Further recall that ul?)|B$, € LPi(B%)?, o € LP(Q)? for p € (3/2, o0), and
IVénllsp, — 0 when n tends to oo. It follows that Hug) Ok Oponlli — 0 (n — o0) for

4, k and [ as before. Similarly ||u") - v Ag,|li — 0 and [|u") o V,|; — 0 for n — oo.
Altogether, since —Av 4+ Vo = ®, we get that ||u - (Av, + Vo, — ®)||[1 — 0 (n — o).
Moreover divv = 0, so a variant of the preceding argument yields that ||u - Vdivv,|; —
0 (n — o0). Since 7|Bg,, € LP(B%,,) for p € (3/2, p), as shown above, and because
v|B§, € L¥(B%,,)? for s € (3,00), we may choose p € (3/2, p) and s € (3,00) so close
to respectively 3/2 and 3 that 1 — 1/p —1/s < 1/3, hence (1 —1/p —1/s)™! > 3. As
a consequence ||[V@y|[1-1/p-1/s-1 — 0 (n — 00), hence we get in view of the equation
div = 0 that || divu,|; = 0 (n — o). This completes the proof of (7.2). Recalling the
first and second relation in (7.2)), as well as the fact that the pair (v, o) satisfies with
B = 0, and noting that divu = 0 by , ¢n|Bn = 1, supp(¢n) C By, and Q C B, for
n € N with n > R, we obtain by Lemma that

/ u-ddr = lim u - (—Av, + Vo, — Vdivu,) dx (7.3)[T100.80.30]
a¢ n—oo Jqe

Q

3
= lim / Z (8kuj Gkvn,j + (9kuj 8jvn7k) de.
ﬁc

n—00
k=1

Next we use the third relation in ([7.2) and then the assumption that the pair (u,7) is a
solution of (1.1) with /' =0 and ((1.2) with B = 0. It follows from (7.3)) that

3
/ w-®dr = lim / > Oy + Ojur — G ) iy v dog = 0.
1o}

ﬁc n—00 Q k=1
At this point we may conclude that u = 0, hence 7 = 0 by (1.1 and ([1.2)). OJ

8 Appendix: Indications on the proof of Theorem
4.0

We only consider the limit lim, o F'(—«). The limit lim, o F'(k) is easier to determine
because the integrals on (2r appearing below can be replaced by integrals on €2, so the
parameter R and the difficulties related to it do not arise.
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Let k € (0, 6(22)] and put z := z — k n™(z). Note that z € Q (see (3.3)) and |z — b >
Dk/2for b e U, (see (3.6])), where the open set 4_,, and the constant D were introduced
in Lemma [3.2]

It follows that for n € N, the function |z — y|™ (y € {_,) is C® in Y _,. Since Qp C
Q° C U_, for R € (0,00) (see Lemma [3.2)), this C*°-regularity in $(_, will allow us in the
following to apply the Divergence theorem in 2g.

Let j c {1, 2, 3} and put Kklm = —@Sklm — 8ijlm—|—25jk alﬁm‘ﬁ for ]i‘, l, m € {1, 2, 3},
where Sy, for v € {1, 2, 3} and 0N were introduced at the beginning of Section 4; see

(4.1) and (4.2). Then by the definitions in Lemma [4.3]

F(=r)j= Y n2@) [ Kum(z =) ni” (y) dm(y) do, (8.4)[Ap10]

k,lm=1 9

Let R € (0,00) with Q C B, and let n*®) denote the outward unit normal to Qp, that
is, n(27)|0Q = —nD|0Q, n#)(y) = R~y for y € OBR. By the definition of C1*(9£2)3
(see at the beginning of Section 2), there is ¢ € C1*(R3)? with ¢|0Q = ¢. We will write ¢
instead of ¢ in the following. Then we get from |) that F'(—k); =24 +B1(R) + A+,
where 2l is given by the right-hand side of (8.4]), but with the term ¢,,(y) replaced by
Om(Y) — dm(x) — 25:1 Oydm(x) (y — ), for 1 < m < 3. Moreover

BiR) = Y Sm@) (@) | Kum(z—y)u/Rdo,,

k,lm=1 OBr

A= Y Aon@) (@) [ Km(z = 9) 0¥ () (y — 2), doy.

k,l,m,v=1 o0

The term 2 differs from B, (R) insofar as the integration extends over 0€2x instead of
0Bpg, and —n(QR)(y) takes the place of y;/R, for 1 <1 < 3. Due the Divergence theorem,
and , we get that 2 = 0. Next we observe that 2 = s + By (R) + B3(R) + 2,
where 25 is defined in the same way as 2, but with n,gg)(x) nl(m(y) for 1 < k,1 <3
replaced by n,(fg)(x) nl(ﬂ)(y) - n,(gﬂ) (y) nl(Q) (x). Moreover

3
A=~ Y 0obu@) @) | Kumlz =) (y — 2)uni™(y)do,, (8.5)[kpao]

k,lm,v=1 QR

By(R) = Y Ouom(@) V(@) | Kiam(—y) v /R doy,

k,l,m,v=1 9BR

and with By(R) chosen as B3(R), but with Kyn(z —y) (v — 2), — Kim(—y) v, in the
role of Kyym(—vy)y,, where 1 < k,I,m,v < 3. Now the Divergence theorem is applied
to 2, transforming the integral over 9€g in 1) into an integral over (2. Note that

due to 1' 1' the sum 22:1 3yk(Kk,lm(z —y) (y— x)y) reduces to K, (z — y); see
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the definition of K, at the beginning of this proof (v,l,m as before). In view of this
definition, we may again apply the Divergence theorem, this time in order to retransform

the integral over (g into an integral over d{2r, which we split according to the equation
A=A+ B, with

> 20u(@ (@) [ (Sanl =) 1)+ Synlz = )0

lm,v=1

25, (AN (= — 1) D (y) ) do,

S Om(a) (@) / (=S =90/ R= Sy~ )/ R

l,m,v=1

+26,; (M) (2 = y) ym/R) doy,.

As a consequence A = A3 + By(R) + Bs(R) + A, where ng Coincides with 2 except
that nl(Q)(x) nl()ﬂ)(y) - nl(Q)(y) nl()m(:v) takes the role of nl(Q)(x) nb ( ), for b1 € {1, 2, 3}.
Moreover B4(R) and B5(R) correspond to B(R), but we put —Sy,,(z — y) + Sblm( Y)
and (9,0)(z —y) — (0N)(—y) in the place of —Sy,,(z —y) and (ON)(z — y), respectively,
in the case of B,(R), whereas B5(R) arises from B(R) by substituting —Sy,,(—y) and
(O (—y) for —Spm(z —y) and (OM)(z — y), respectively (1 < b,1,m < 3). The term A
is given by

> 2 (@) (17@) [ (Suanlz =)0l ) o,

I,m,v=1

#1200 [ Sl =) () do, ~ 20, 00) [ @ —0)n(0) o).

o

We finally observe that 2 = Bs(R) + Br(R) + A, where 2 differs from 2A insofar as the
domain of integration now is d{2x instead of 02, and the term —nl(QR)(y) is substituted
for nl(m(y) (1 <1 < 3). As for Bg(R) and B7(R), they are also defined in a way
analogous to the definition of A. In their case integration extends over dBg, and y;/R
stands in for nl(Q) (y). In addition the terms Sy (z — y) and (0,91)(z — y) are replaced by
Spim (2 —Y) — Spim (—y) and (M) (z —y) — (ON)(—y) as concerns Bg(R), and by Sym(—y)
and (M) (—y) as for B(R) (b,l,m € {1, 2, 3}). By (L) and ([4.3)) we see that A = 0.

The splitting of F'(—k);, 2, A and 2 considered above, and the equations 2 = 2A = 0
may be subsumed into a single equation, that is, F(—r); = 2 + Ay +As + > _ B, (R).
Since Q C Bgjs and 2 € Q (see , we have |192 —y| > |y|/2 for ¥ € [0,1], y € OBg, so
By(R)| < €[5 ly|~*do, < CR™for b€ {1, 2, 4, 6}, with € independent of R.

Moreover we indicate that Zi’ L O faBl Yj Y1 Ym Yo doy = (aj O + Qv O, + iy ]l) 47 /15

for « € R3, I,m € {1, 2, 3}. The factor 4 /15 arises due to the equation faB y? y2, do, =
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(14+201m) 4m/15 for I, m as before. It follows that » ;s 5 - By(12) = 0. Up to this point
the parameter R was fixed. Letting R tend to infinity, we may conclude from the preceding
results on By(R) that S25_, By(R) — 0 (R — 00), hence F(—r); = Ay + Ay + As.

By the definition of ;, 2, and 23, it is obvious that for b € {1, 2, 3}, there is a function
3 = gj’z’”) : 9Q — R such that A, = [,, 3,(y) do,. Since by , we further have
|z —y| > D|z —y| for y € 0N, with the constant D introduced in Lemma [3.2] and
because ¢ € CH*(R3) and n¥ is in particular Lipschitz continuous on 02, we further
get that |3,(y)| < €|z — y| 2 for y € 9Q, 1 < b < 3, where € > 0 does not depend on
y. But fm |z — y| 72T do, < oo, so it follows by Lebesgue’s theorem and the equation
F(—k); =24 + A+ A3 that F(—k),; converges for k | 0, with the limit being the integral
arising if in the definition of 2, (1 < b < 3) the parameter & is set equal to zero. A similar
but markedly simpler reasoning (see the remark at the beginning of this proof) yields that
the limit of F'(k); for k | 0 exists as well, and its value coincides with lim, o F(—k);. O
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