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Abstract

The article deals with W 2,p-estimates of solutions to the 3D stationary Stokes
system under traction boundary conditions. Existence, uniqueness andW 2,p-estima-
tes up to the boundary are established for solutions in interior and exterior domains.
The proofs are based on the method of integral equations. With this well known
approach, solutions to the boundary value problem are constructed by solving cer-
tain integral equations on the boundary of the domain under consideration. This
access simultaneously yields an integral representation of the solution of the bound-
ary value problem. The difficulty then is to derive W 2,p-estimates of the integrals
appearing in this representation. Ultimately such estimates are reduced to the
W 2,p-theory of the Stokes system in bounded domains, under Dirichlet boundary
conditions.
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1 Introduction.

We consider the Stokes system

−∆U +∇P = F, divU = 0 (1.1) 10

in a bounded domain Ω ⊂ R3 and in the exterior domain Ω
c
:= R3\Ω, where the boundary

∂Ω is connected and of class C2. System (1.1) is supplemented by traction conditions (also
called Neumann boundary conditions)

3∑
k=1

(∂jUk + ∂kUj − δjk P )n
(Ω)
k = B for 1 ≤ j ≤ 3, (1.2) 20

where n(Ω) denotes the outward unit normal to Ω. The functions F (volume force) and
B (force orthogonal to the surface) are given, and U (velocity) and P (pressure) are the
unknowns of problem (1.1), (1.2). Boundary conditions as in (1.2) arise, for example, in
incompressible linear elastostatics and in free boundary value problems for in incompress-
ible viscous fluids.
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If the Stokes system (1.1) in Ω or Ω
c
is supplemented by Dirichlet boundary conditions,

then U and P are respectively W 2,p- and W 1,p-regular up to the boundary, provided the
data satisfy suitable assumptions. In the case of the interior domain Ω, this is well known
since the beginning of the 1960s, due to the pioneering work of Cattabriga [2] and La-
dyzhenskaya [18]. These two authors chose quite different accesses to their respective
theory. Cattabriga reduced his results to the half-space case, in which a solution to (1.1),
(1.2) may be constructed in a rather explicit form. Ladyzhenskaya used the method of
integral equations. More precisely, by solving suitable integral equations whose unknowns
are functions on ∂Ω, she was able to construct a solution, in Ω and in Ω

c
, to the Dirichlet

problem associated with the Stokes system (1.1). Then she evaluated the integrals ap-
pearing in this representation in such a way that Lp-estimates for Stokes flows in Ω under
Dirichlet conditions reduce to Lp-estimates for the Poisson equation in Ω with the same
type of boundary conditions. W 2,p-regularity for exterior Stokes flows was not treated in
either [2] or [18]. To cite a more recent reference, in the monograph [12], Cattabriga’s
method is used in order to obtain W 2,p-regularity of the velocity and W 1,p-regularity for
the pressure up to the boundary for interior and exterior flows under Dirichlet boundary
conditions. Reference [7] derives the same type of regularity for the same type of problem
for exterior flows, but by applying Ladyzhenskaya’s approach.

An L2-theory for the Stokes system (1.1) under traction condition (1.2) may be found in
literature. In fact, such a theory was derived by Giaquinta, Modica [13]; see [13, Theorem
II.1.2].

Lp-theories for the Stokes system under boundary conditions other than Dirichlet ones
– but different from (1.2) – are also available in literature. As an example we mention
reference [1], where Navier conditions are considered. On the other hand, systems closely
related to (1.1) have been studied when associated with boundary condition (1.2). In fact,
if the Stokes resolvent equation instead of (1.1) is supplemented by (1.2), Grubb [14])
constructed Lp-solutions by means of the theory of pseudodifferential operators. Shibata,
Shimizu [21] and Shibata [22] obtained similar results by reducing this boundary value
problem to the half-space case. The time-dependent Stokes system with (1.2) prescribed as
boundary condition has also been solved in an Lp-framework; see [15] and [19]. However,
an Lp-theory for problem (1.1), (1.2) does not seem to be a corollary of these results on
the Stokes resolvent or on the evolutionary Stokes system. And to our knowledge, no such
Lp-theory has been derived in literature.

Our aim here is to fill this gap. To this end we will use the method of integral equations
in a similar way as in [18]. This method yields a solution to (1.1), (1.2), and at the same
time an integral representation of that solution. By deriving suitable estimates of the
integrals appearing in this representation, we then reduce Lp-estimates of our solution
in respectively Ω and Ω

c
, to Lp-estimates of (1.1) in bounded domains, with a Dirichlet

condition instead of (1.2) prescribed on the boundary; see the proof of Theorem 6.1 and
6.3. This step is mainly based on the technical results stated as Theorem 5.1 and 5.2, the
proof of which constitutes the main difficulty of our work.

We mention that our way of solving (1.1), (1.2) by means of the integral equation method
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is not new. A more sophisticated version of this approach was presented by Starita,
Tartaglione [23], who dealt even with the case of a non-connected boundary ∂Ω, whereas
in the work at hand, as in [18], ∂Ω is supposed to be connected. However, in [23] classical
solutions are constructed without evaluation in any norm, except for a pointwise estimate
of |

∑3
k=1(∂jUk + ∂kUj − δjk P )

(
x± κn(Ω)(x)

)
n
(Ω)
k (x)| with respect to x ∈ ∂Ω and small

κ > 0. The Lp-estimates which are the main feature of the present article pose a major
additional obstacle.

We will rely on [18] with respect to a number of auxiliary results on the integral operators
appearing in our proofs. However, we will not refer to [18] directly. Instead we will draw
on results from [8], where the pertinent sections from [18] are worked out in detail.

Let us state our main results. First consider (1.1) in the interior domain Ω. The fol-
lowing theorem summarizes Corollary 6.5 (existence and regularity) and Theorem 7.1
(uniqueness).

⟨theorem100.1⟩
Theorem 1.1 Define

ϕ(j)(x) := (δjk)1≤k≤3, ϕ(4)(x) := (x3, 0,−x1), ϕ(5)(x) := (x2,−x1, 0),

ϕ(6)(x) := (0, x3,−x2) for 1 ≤ j ≤ 3, x ∈ R3.

Let p ∈ (1,∞), f ∈ Lp(Ω), b ∈ W 1−1/p, p(∂Ω)3. Suppose that
∫
∂Ω
b·ϕ(j) dox+

∫
Ω
f ·ϕ(j) dx =

0 for 1 ≤ j ≤ 6. Then there is a unique pair of functions (u, π) ∈ W 2,p(Ω)3 ×W 1,p(Ω)
satisfying (1.1) and (1.2), and such that

∫
Ω
u · ϕ(j) dx = 0 for 1 ≤ j ≤ 6. In addition, the

estimate ∥u∥2,p + ∥π∥1,p ≤ C (∥f∥p + ∥b∥1−1/p, p) holds, with a constant C independent of
f and b.

The essential features of solutions to (1.1), (1.2) in the exterior domain case may be stated
as follows.

⟨theorem100.2⟩
Theorem 1.2 Let p1 ∈ (1, 3/2), f ∈ Lp1(Ω

c
)3, b ∈ W 1−1/p1, p1(∂Ω)3. Then there is a

unique pair (v, ϱ) ∈ W 2,p1
loc (Ω

c
)3 ×W 1,p1

loc (Ω
c
) such that

∥v∥(1/p1−2/3)−1 + ∥∂lv∥(1/p1−1/3)−1 + ∥ϱ∥(1/p1−1/3)−1 + ∥∂m∂lv∥p1 + ∥∂lϱ∥p1
≤ C (∥f∥p1 + ∥b∥1−1/p1, p1) for 1 ≤ j, l,m ≤ 3,

and such that the pair (v, ϱ) satisfies equation (1.1) in Ω with F = f , as well as (1.2)
with B = b.

If in addition there is p2 ∈ (1, 3) such that f ∈ Lp2(Ω
c
)3 and b ∈ W 1−1/p2, p2(∂Ω)3, then

∥∂lv∥(1/p2−1/3)−1 + ∥ϱ∥(1/p2−1/3)−1 + ∥∂m∂lv∥p2 + ∥∂lϱ∥p2 ≤ C (∥f∥p2 + ∥b∥1−1/p2, p2)

for l, m as above. Under the further assumptions that f ∈ Lp3(Ω
c
)3, b ∈ W 1−1/p3, p3(∂Ω)3

for some p3 ∈ (1,∞), and R ∈ (0,∞) with Ω ⊂ BR, the estimate

∥∂m∂lv∥p3 + ∥∂lϱ∥p3 ≤ C (∥f∥p3 + ∥f |Bc
2R∥p2 + ∥b∥1−1/p3, p3) (1.3) T100.2.10

is valid for l, m as before. The constants C in these estimates are independent of f and
b.
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More details may be found in Corollary 6.4, and for the case f = 0 in Theorem 6.2. A
uniqueness result stronger than the one in the preceding theorem is given in Theorem 7.2.

Concerning the strange-looking term ∥f |Bc
2R∥p2 in (1.3), we think an estimate of the form

∥∂m∂lv∥p3+∥∂lϱ∥p3 ≤ C (∥f∥p3+∥b∥1−1/p3, p3) cannot hold with the same constant C for all

functions f ∈ Lp3(Ω
c
)3 and b ∈ W 1−1/p3, p3(∂Ω)3. This is indicated by a similar situation

in the Dirichlet case. In fact, the inequality ∥∂m∂lU∥p3 ≤ C ∥F∥p3 does not hold with the
same constant C for all F ∈ Lp3(Ω

c
)3, even if an associated solution (U, P ) to (1.1) in Ω

c

with U |∂Ω = 0 is subject to rather restrictive regularity conditions; see [4, Theorem 1.3].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, and we use it when
we write |α| for the length α1 + ... + αn of a multi-index α ∈ Nn

0 , as well as |A| for
the Borel measure of a measurable subset A of R3. For R ∈ (0,∞), x ∈ R3, put
BR(x) := {y ∈ R3 : |x− y| < R}. In the case x = 0, we write BR instead of BR(0). An
open ball in R2 with radius R > 0 and centered in ϱ ∈ R2 is denoted by B2

R(ϱ).

The set Ω ⊂ R3 and the parameter τ ∈ (0,∞) introduced in Section 1 will be kept fixed
throughout. Recall that Ω is open and bounded, with connected Lipschitz boundary, and
that n(Ω) denotes the outward unit normal to Ω. We put ΩR := BR\Ω.
For n ∈ N, I ⊂ Rn, let χI stand for the characteristic function of I in Rn. If A ⊂ R3, we
denote by Ac the complement R3\A of A in R3. Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3 (unit
vector in R3). If A is some nonempty set and γ : A 7→ Rn a function for some n ∈ N, we
set |γ|∞ := sup{|γ(x)| : x ∈ A}.
Let α ∈ (0, 1). For any B ⊂ R3, we write Cα(B) for the set of all Hölder continuous
functions on B, that is, ψ ∈ Cα(B) iff ψ : B 7→ R with

|ψ|α := |ψ|∞ + sup{|ψ(x)− ψ(y)| |x− y|−α : x, y ∈ B, x ̸= y} <∞.

If B ⊂ R3 is open, the space C1,α(B) is to consist of all functions ψ ∈ C1(B) with |ψ|∞ <
∞ and |∂lψ|α <∞ for 1 ≤ l ≤ 3. We further define C1,α(∂Ω) := {ψ|∂Ω : ψ ∈ C1,α(R3)}.
Let p ∈ [1,∞), m ∈ N. For A ⊂ R3 open, the notation ∥ ∥p stands for the norm of the
Lebesgue space Lp(A), and ∥ ∥m,p for the usual norm of the Sobolev space Wm,p(A) of
order m and exponent p. If A ⊂ R3 possesses a bounded C2-boundary, the Sobolev space
W r,p(∂A) with r ∈ (0, 2) is to be defined as in [11, Section 6.8.6].

If A and B are vector spaces and T : A 7→ B is a linear operator, we write ker T for the
kernel of T and ran T for the range of T .

Numerical constants are denoted by C, and constants depending exclusively on parameters
γ1, ..., γn ∈ [0,∞), for some n ∈ N, take the form C(γ1, ..., γn). In most cases it is not
worthwhile to list all such parameters, in particular if they are related to ∂Ω. Then we
use the symbol C for constant whose dependencies – or more importantly, their non-
dependency – on certain parameters should be clear from context. Sometimes, in order
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to insist that the constant in question depends on γ1, ..., γn among other quantities, we
use the notation C(γ1, ..., γn).

In the following theorem, we reproduce the Calderon-Zygmund inequality for even kernels.
This well known estimate is restated here because we will need some details on how the
upper bound given by this inequality relates to the structure of the kernel.

⟨theorem0.10⟩
Theorem 2.1 Let n ∈ N and K : Rn 7→ R a function with K(z) = |z|−nK(|z|−1 z)
and K(−z) = K(z) for z ∈ Rn\{0}. Put Λ(z) := K(z) for z ∈ ∂B1 and suppose that
Λ ∈ L1(∂B1).

Let p ∈ (1,∞). Then
∫
Rn\Bn

ϵ (x)
|K(x − y) f(y)| dy < ∞ for x ∈ Rn, ϵ ∈ (0,∞) and

f ∈ Lp(Rn). Define (Kϵ ∗ f)(x) :=
∫
Rn\Bn

ϵ (x)
K(x− y) f(y) dy for x, ϵ, f as before.

Then there is a constant C(p, n) > 0 such that ∥Kϵ∗f∥p ≤ C(p, n) ∥Λ∥1 ∥f∥p for ϵ ∈ (0,∞)
and f ∈ Lp(Rn).

Proof: [20, p.89, Theorem 2 a) ]. □

We state a lemma which is convenient to handle weakly singular integral operators.
⟨lemma3.1⟩⟨lemma3.2⟩

Lemma 2.1 Let n ∈ N, A, B ⊂ Rn nonempty, λ et ν measures on σ-algebras over A and
B, respectively. Further assume that the function K : A×B 7→ [0,∞) is measurable and
the upper bounds A1 := sup{

∫
B
K(x, y) dν(y) : x ∈ A} and A2 := sup{

∫
A
K(x, y) dλ(x) :

y ∈ B} are finite.

Then, for p ∈ [1,∞) and ϕ : B 7→ R measurable with
∫
B
|ϕ|p dν < ∞, the integral∫

∂Ω
K(x, y) |ϕ(y)| doy is finite for λ-a. e. x ∈ A, and(∫

A

(∫
B

K(x, y) |ϕ(y)| dν(y)
)p

dλ(x)
)1/p

≤ A
1/p′

1 A
1/p
2

(∫
B

|ϕ|p dν
)1/p

. (2.1) T0.10.1

The preceding assumptions hold true if, for example, n = 3, A = B = ∂Ω, λ and ν
are the usual surface measure on ∂Ω, and if there are numbers C, κ ∈ (0,∞) such that
K(x, y) ≤ C |x− y|−2+κ for x, y ∈ Ω, x ̸= y.

These assumptions are also valid if A, B ⊂ R2 are open, bounded and nonempty, if λ and
ν are the usual Borel measure on A and B respectively, and if K(ϱ, η) ≤ C |ϱ−η|−2+κ for
ϱ ∈ A, η ∈ B, ϱ ̸= η, with C and κ given as before.

Proof: Inequality (2.1) is a simple application of Hölder’s inequality and Fubini’s theo-
rem; see [20, p. 7], for example. The first claim of the lemma follows from (2.1). □

We do not know a precise reference of the following theorem. For the reader’s convenience,
and since this theorem is a key tool and not so obvious to derive, we give some details of
a proof.

⟨theorem5.10⟩
Theorem 2.2 Let J ⊂ R2 be open, bounded and convex, and L : J×J 7→ C a measurable
function with L( · , η) ∈ C1(J\{η}) for η ∈ J. Suppose there is c0 > 0 with |∂αϱL(ϱ, η)| ≤
c0 |ϱ− η|−1−|α| for ϱ, η ∈ J with ϱ ̸= η, α ∈ N2

0 with |α| ≤ 1.
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Let p ∈ (1,∞) and define L(ψ)(ϱ) :=
∫
J
L(ϱ, η)ψ(η) dη for ψ ∈ Lp(J), ϱ ∈ J ; see Lemma

2.1. Then L(ψ) ∈ W 1−1/p,p(J) and ∥L(ψ)∥1−1/p, p ≤ C ∥ψ∥p for ψ as before.

Proof: Let ϱ, ϱ′, η ∈ J with ϱ ̸= η, ϱ′ ̸= η. If |ϱ−η| ≤ 2 |ϱ−ϱ′|, we have |ϱ′−η| < 3 |ϱ−ϱ′|,
so

|L(ϱ, η)− L(ϱ′, η)| ≤ c0 (|ϱ− η|−1 + |ϱ′ − η|−1) ≤ C(c0) (|ϱ− η|−2 + |ϱ′ − η|−2) |ϱ− ϱ′|.

In the case |ϱ− η| ≥ 2 |ϱ− ϱ′|, we get for ϑ ∈ [0, 1] that |ϱ + ϑ (ϱ′ − ϱ)− η| ≥ |ϱ− η|/2.
Thus, using the equation |L(ϱ, η) − L(ϱ′, η)| = |

∫ 1

0
(∇L)

(
ϱ + ϑ (ϱ′ − ϱ), η

)
dϑ · (ϱ − ϱ′)|,

we get in any case that∣∣∣L(ϱ, η)− L(ϱ′, η)
∣∣∣ ≤ C(c0) (|ϱ− η|−2 + |ϱ′ − η|−2) |ϱ− ϱ′| for ϱ, ϱ′, η ∈ J (2.2) T5.10.6

with η /∈ {ϱ, ϱ′}. Let r ∈ (1, 2), ϱ, ϱ′ ∈ J , and put Jϱ,ϱ′ := {η ∈ J : |ϱ− η| ≤ 2 |ϱ− ϱ′|}.
By splitting the set J into the parts Jϱ,ϱ′ and J\Jϱ,ϱ′ , it may be shown that the inequality∫
J
|L(ϱ, η) − L(ϱ′, η)|r dη ≤ C |ϱ − ϱ′|−r+2 holds, where the estimate of the integral over

J\Jϱ,ϱ′ is based on (2.2). Put ϵ := min{1/(2 p′), 1/(4 p)}. Note that 1 + ϵ p′ < 2. Let ψ ∈
Lp(J). Then we get by Hölder’s inequality and by the previous estimate with r = 1+ ϵ p′

that

|L(ψ)(ϱ)− L(ψ)(ϱ′)|p ≤ C

∫
J

|L(ϱ, η)− L(ϱ′, η)|1−ϵ p (|ϱ− ϱ′|1−ϵ p′)p/p
′ |ψ(η)|p dη

for ϱ, ϱ′ ∈ J. Set A(ϱ, ϱ′) := |L(ψ)(ϱ)− L(ψ)(ϱ′)|p |ϱ− ϱ′|−p−1. It follows that

A(ϱ, ϱ′) ≤ C

∫
J

|L(ϱ, η)− L(ϱ′, η)|1−ϵ p |ϱ− ϱ′|−2−ϵ p |ψ(η)|p dη.

We integrate both sides of the preceding inequality with respect to ϱ ∈ J and ϱ′ ∈ J , then
apply (2.2) and change the order of integration. In this way we arrive at the estimate∫
J

∫
J
A(ϱ, ϱ′) dϱ dϱ′ ≤ C (B1 +B2), where

B1 :=

∫
J

∫
J

∫
J

|ϱ− η|−2 (1−ϵ p) |ϱ− ϱ′|−1−2 ϵ p dϱ dϱ′ |ψ(η)|p dη.

and where termB2 is to be defined in the same way asB1, except that the difference |ϱ−η|
is replaced by |ϱ′ − η|, and the order of integration with respect to ϱ and ϱ′ is exchanged.
Now we use that −2 (1−ϵ p) and −1−2 ϵ p belong to (−2, 0), and −2 (1−ϵ p) −1−2 ϵ p =
−3 < −2. Thus we get that

∫
J
|ϱ− η|−2 (1−ϵ p) |ϱ− ϱ′|−1−2 ϵ p dϱ ≤ C |ϱ′ − η|−1 for ϱ′, η ∈ J

with ϱ′ ̸= η, as follows by splitting J into four sets according to four cases, three of them
given by the inequalities |ϱ− η| ≤ |ϱ′ − η|/2, |ϱ− ϱ′| ≤ |ϱ′ − η|/2, |ϱ− η| ≥ 2 |ϱ′ − η|, and
the fourth consisting of the requirement that none of the three preceding conditions holds;
compare [10, Lemma 1.4.2]. It follows that B1 ≤ C ∥ψ∥pp. An analogous argument yields
that B2 ≤ C ∥ψ∥pp. Therefore the theorem follows from the estimate

∫
J

∫
J
A(ϱ, ϱ′) dϱ dϱ′ ≤

C (B1 +B2) shown above, and from Lemma 2.1. □

6



⟨lemma1.40⟩
Lemma 2.2 Let L : ∂Ω × ∂Ω 7→ C be measurable. Suppose there is CL ∈ (0,∞) with
|L(x, y)| ≤ CL |x− y|−1 for x, y ∈ ∂Ω, x ̸= y. Let p ∈ (1,∞). We may define an operator
L : Lp(∂Ω) 7→ Lp(∂Ω) by setting L(ϕ)(x) :=

∫
∂Ω
L(x, y)ϕ(y) doy for ϕ ∈ Lp(∂Ω), x ∈ ∂Ω;

see Lemma 2.1.

Then L : Lp(∂Ω) 7→ Lp(∂Ω) is linear, bounded and compact.

Proof: Obviously L is linear. The boundedness of L holds according to Lemma 2.1.
As for compactness, we remark that for any ϵ ∈ (0,∞), the operator Lp,ϵ : Lp(∂Ω) 7→
Lp(∂Ω), Lp,ϵ(ϕ)(x) :=

∫
∂Ω
χ(ϵ,∞)(|x − y|)L(x, y)ϕ(y) doy

(
x ∈ ∂Ω, ϕ ∈ Lp(∂Ω)

)
is

compact ([17, p. 275, Theorem 11.6]). On the other hand,

sup{
∫
∂Ω

χ(0,ϵ)(|x− y|) |x− y|−1 doy : x ∈ ∂Ω} → 0 (ϵ ↓ 0),

so it follows by Lemma 2.1 that Lϵ converges to L with respect to the operator norm of
the space of linear bounded operators from Lp(∂Ω) into Lp(∂Ω). As a consequence, L is
compact as well. □

⟨lemma2.10⟩
Lemma 2.3 Let L ∈ C1(R3\{0}) and CL ∈ (0,∞) such that |∂αL(z)| ≤ CL |z|−1−|α| for
z ∈ R3\{0}, α ∈ N3

0, |α| ≤ 1. Let ϕ ∈ C0(∂Ω) and put A(ϕ)(x) :=
∫
∂Ω
L(x − y)ϕ(y) doy

for x ∈ R3. Then A(ϕ) ∈ Ca(R3) for a ∈ [0, 1).

Proof: [8, Lemma 6.1]. □
⟨lemma3.21⟩

Lemma 2.4 Let p ∈ (1,∞), a ∈
(
0, 2/(3 p)

)
, R ∈ (0,∞) with Ω ⊂ BR. Then(∫

BR

(∫
∂Ω

|x− y|−2 |ϕ(y)| doy
)(1/p−a/2)−1

dox

)1/p−a/2

≤ C(p, a, R) ∥ϕ∥p for Lp(∂Ω).

Proof: See [6, Lemma 3.2]. □

We will use the fact that a function v defined in a 3D exterior domain and whose gradient
is Lq-integrable for some q ∈ (1, 3) takes a constant boundary value at infinity:

⟨theorem100.81⟩
Theorem 2.3 Let U ⊂ R3 be open and bounded, with Lipschitz boundary. Let q ∈ (1, 3).
Then, for any v ∈ W 1,1

loc (U
c
) with ∇v ∈ Lq(U

c
)3, there is c(v) ∈ R with v + c(v) ∈

L(1/q−1/3)−1
(U

c
). If such a function v satisfies the additional condition v ∈ Ls(U

c
) for

some s ∈ (1,∞), then c(v) = 0.

The estimate ∥v + c(v)∥(1/q−1/3)−1 ≤ C ∥∇v∥q holds for this class of functions v.

Proof: See [12, Theorem II.6.1], except as concerns the (rather obvious) criterion for the
equation c(v) = 0, which is treated in [5, Lemma 2.4]. □

The role of the functions ϕ(1), ..., ϕ(6) from Theorem 1.1 becomes clear by the following
theorem.
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⟨theorem100.90⟩
Theorem 2.4 Let U ⊂ R3 be a domain. Put

L := {v ∈ C1(U)3 : ∂jvk + ∂kvj = 0 for 1 ≤ j, k ≤ 3}.

Then the family (ϕ(1)|U, ..., ϕ(6)|U) is a basis of L.

Proof: [8, Satz 6.1]. □

We end this section by recalling some properties of solutions to either the Poisson equation
or the Stokes system. In particular we state an Lp-theory for the Stokes system in bounded
domains under Dirichlet boundary conditions (Theorem 2.5).

⟨lemma100.30⟩
Lemma 2.5 Let U ⊂ R3 be open and bounded, with C2-boundary. Let n(U) denote the
outward unit normal to U . Suppose that u ∈ C1(U)3 ∩W 2,1(U)3 ∩ C2(U)3, π ∈ C0(U) ∩
W 1,1(U) ∩ C1(U), ũ ∈ C0(U)3 ∩W 1,1(U)3 ∩ C1(U)3. Alternatively, let p ∈ (1,∞), u ∈
W 2,p(U)3, π ∈ W 1,p(U), ũ ∈ W 1,p′(U)3. In both cases suppose that div ũ = 0. Then∫

U

(∆u−∇π +∇divu) · ũ dx+ (1/2)

∫
U

3∑
j,k=1

(∂juk + ∂kuj) (∂jũk + ∂kũj) dx

=

∫
∂U

3∑
j,k=1

n
(U)
k (∂kuj + ∂juk − δjk π) ũj dox.

Proof: Divergence theorem; see [8, Lemma 3.1]. □
⟨lemma10.40⟩

Lemma 2.6 Let U ⊂ R3 be open and bounded, with C2-boundary. Let r ∈ (3/2, ∞), b ∈
W 2−1/p, p(∂U), f ∈ Lr(U), u ∈ C0(U) with u|U ∈ C2(U), ∆(u|U) = f and u|∂U = b.

Then u|U ∈ W 2,r(U) and (u|U)|∂U = b in the trace sense.

Proof: This theorem is a special case of [6, Lemma 3.4], which, in turn, is based on the
W 2,q-theory of the Poisson equation and on the maximum principle. □

⟨theorem100.30⟩
Theorem 2.5 Let U ⊂ R3 be a bounded domain with C2-boundary. Let p ∈ (1,∞), F ∈
L(U)3, B ∈ W 2−1/p, p(U)3 with

∫
∂U
B · n(U) dox = 0, where n(U) denotes the outward unit

normal to U .

Then there are functions u ∈ W 2,p(U)3, π ∈ W 1,p(U) such that −∆u+∇π = F, div u =
0, u|∂U = B,

∫
U
π dx = 0. Moreover there is C1 > 0 such that for F, B, u and π as

before, the estimate ∥u∥2,p + ∥π∥1,p ≤ C1 (∥F∥p + ∥B∥2−1/p, p) holds.

Proof: [12, Theorem IV.6.1].
⟨theorem100.40⟩

Theorem 2.6 Let U, p, n(U) be given as in Theorem 2.5. Assume that u ∈ W 1,p(U)3, π ∈
Lp(U) such that

∫
U
(∇u · ∇φ + π div φ) dx = 0 for φ ∈ C∞

0 (U)3. Further suppose that
div u = 0, u|∂U = 0. Then u = 0.

Proof: [12, Lemma IV.6.2].
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3 Some results on local coordinates of ∂Ω.

In this section, we specify the type of local coordinates we will use in what follows
⟨lemma1.5⟩

Lemma 3.1 There are numbers k(Ω) ∈ N, α(Ω) ∈ (0,∞), and for any t ∈ {1, ..., k(Ω)}
a function at ∈ C2

(
[−α(Ω), α(Ω)]2

)
with |∇at|∞ < 1/4, an orthonormal matrix Dt ∈

R3×3 and a vector Ct ∈ R3 such that the following properties hold:

Put ∆σ :=
(
−σ α(Ω), σ α(Ω)

)
for σ ∈ (0, 1], γt(η) := Dt ·

(
η, at(η)

)
+Ct for η ∈ ∆1, t ∈

{1, ..., k(Ω)}, and Λt,σ := {γt(η) : η ∈ ∆σ},

Ut,σ := {Dt ·
(
η, at(η) + s

)
: η ∈ ∆σ, s ∈

(
−σ α(Ω), σ α(Ω)

)
}

for σ, t as before. Then

C1∥f∥1 ≤
k(Ω)∑
t=1

∥f ◦ γt|∆δ∥1 ≤ C2 ∥f∥1 for f ∈ L1(∂Ω), δ ∈ [1/4, 1], (3.1) L1.5.100

with constants C1, C2 independent of δ and f . The function γt : ∆1 7→ Λt,1 is bijective,
continuous and with continuous inverse, the set Ut,σ is open in R3, and Λt,σ = Ut,σ ∩ ∂Ω
for t ∈ {1, ..., k(Ω)}, σ ∈ (0, 1]. Moreover dist(∂Ω\Λt,σ2

, Λt,σ1
) > 0 for t as before and

σ1, σ2 ∈ (0, 1] with σ1 < σ2.

Define Jt(η) :=
(
1 +

∑2
j=1 ∂jat(η)

2
)1/2

for η ∈ ∆1, t as before. Then for such t and

for functions F : Λt,1 7→ C, the relation F ∈ L1(Λt,1) holds iff (F ◦ γt) Jt ∈ L1(∆1). In
addition ∫

Λt,1

F dox =

∫
∆1

(F ◦ γt)(η) Jt(η) dη for F ∈ L1(Λt,1). (3.2) L1.5.7

Proof: All the statements of the lemma are standard results except perhaps that the
local charts γt may be chosen in such a way that |∇at|∞ < 1/4 for 1 ≤ t ≤ k(Ω). In order
to satisfy this condition, the boundary ∂Ω has to be split into sufficiently small parts.
Details of this procedure are rather technical but straightforward. □

⟨lemma1.1⟩
Lemma 3.2 There are constants δ(Ω), D, D̃ ∈ (0,∞) such that

y + κn(Ω)(y) ∈ Ω
c
, y − κn(Ω) ∈ Ω for κ ∈ (0, δ(Ω)], y ∈ ∂Ω, (3.3) L1.1.8

|x+ κn(Ω)(x)− x′ − κ′ n(Ω)(x′)| ≥ D (|x− x′|+ |κ− κ′|), (3.4) L1.1.10

|(x− x′) · n(Ω)(x)| ≤ D̃ |x− x′|2 for x, x′ ∈ ∂Ω, κ, κ′ ∈ [−δ(Ω), δ(Ω)]. (3.5) L1.5.10

For δ ∈
(
0, δ(Ω)

]
, put

Uδ := {x ∈ R3 : dist(x,Ω) < D δ/2}, U−δ := {x ∈ R3 : dist(x,Ωc) < D δ/2}.

Note that Uδ and U−δ are open and Ω ⊂ Uδ, Ω
c ⊂ U−δ for δ as before. The estimates

|x−
(
y + δ n(Ω)(y)

)
| ≥ D δ/2, |x′ −

(
y − δ n(Ω)(y)

)
| ≥ D δ/2 (3.6) L1.1.9

hold for such δ, for y ∈ ∂Ω, x ∈ Uδ and x′ ∈ U−δ.
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Proof: See [8, (2.24), (2.22)] for (3.3), (3.5), respectively, [6, Lemma 2.1] for (3.4), and
the proof of [6, Lemma 5.3] for the properties of Uδ and U−δ. □

4 Simple and double layer potentials related to the

Stokes system or the Poisson equation.

The solutions to (1.1), (1.2) we will consider are given by a sum of simple layer, double
layer and volume potentials. The first two types of potentials are introduced and studied
in this section. We begin by defining some kernel functions, among them a fundamental
solution to (1.1). Put

N(z) := (4 π |z|)−1, Ejk(z) := (8 π |z|)−1 (δjk + zj zk |z|−2), (4.1) 10.29.def

Sjkl := −δjk ∂lN− ∂kEjl − ∂jEkl for z ∈ R3\{0}, 1 ≤ j, k, l ≤ 3. (4.2) 10.30.def

The matrix-valued function E = (Ejk)1≤j,k≤3 is the velocity part of a fundamental solution
to the Stokes system (1.1), with its associated pressure part given by −∇N.

In the next lemma, as in similar situations below, the restrictions on |α| (order of dif-
ferentiation) may of course be dropped if the constants may depend on |α|. We will not
need this fact, opting instead for such restrictions.

⟨lemma10.30⟩
Lemma 4.1 The relations Ejk, Sjkl, N ∈ C∞(R3\{0}) and

−∆Ejk − ∂j∂kN = 0,
3∑

µ=1

∂µEjµ = 0, ∆N = 0 (4.3) L1.30.31

hold for 1 ≤ j, k, l ≤ 3. In addition

|∂αEjk(z)|+ |∂αN(z)| ≤ C |z|−1−|α|, (4.4) L1.30.40

for j, k as before, z ∈ R3\{0}, α ∈ N3
0 with |α| ≤ 3. Moreover

Sjkl(z) = 3/(4 π) zj zk zl |z|−5, −∆Sjkl + 2 ∂j∂k∂lN = 0,
3∑

j=1

∂jSjkl = 0 (4.5) L1.30.50

for j, k, l, z as before.

Proof: Inequality (4.4) is an obvious consequence of (4.1). The equations in (4.3) follow
from from (4.1), the first equation in (4.5) is a consequence of the same reference and of
(4.2), whereas the other equations in (4.5) may be deduced from (4.3). □

The pair
(
V (ϕ), Q(ϕ)

)
defined in the following lemma for any ϕ ∈ L1(∂Ω)3 is the simple

layer potential associated with the Stokes system (1.1).
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⟨lemma1.50⟩
Lemma 4.2 Let ϕ ∈ L1(∂Ω). For x ∈ R3\∂Ω, put

V (ϕ)(x) :=

∫
∂Ω

E(x− y) · ϕ(y) doy, Q(ϕ)(x) :=

∫
∂Ω

(−∇N)(x− y) · ϕ(y) doy.

The integral
∫
∂Ω

|E(x− y) · ϕ(y)| doy is finite for a. e. x ∈ ∂Ω. In particular, for x ∈ ∂Ω,
the term V (ϕ)(x) may be defined in the same way as for x ∈ R3\∂Ω.
The restrictions of V (ϕ)j and Q(ϕ) to R3\∂Ω belong to C∞(R3\∂Ω), for 1 ≤ j ≤ 3, with
∂αxV (ϕ)(x) =

∫
∂Ω
(∂αE)(x − y) · ϕ(y) doy for x ∈ R3\∂Ω, α ∈ N3

0, and with an analogous
formula being valid for Q(ϕ).

The pair (U,Π) =
(
V (ϕ)|R3\∂Ω, Q(ϕ)|R3\∂Ω

)
satisfies the Stokes system (1.1) in R3\∂Ω

with F = 0.

If ϕ ∈ C0(∂Ω)3, then V (ϕ) ∈ Ca(R3)3 for a ∈ [0, 1).

Proof: The term V (ϕ)(x) is well defined also for x ∈ ∂Ω according to Lemma 2.1. The
claims related to the differential properties in R3\∂Ω follow from Lebesgue’s theorem,
Lemma 4.1 and (4.3). The statement on Hölder continuity of V (ϕ) in R3 if ϕ is continuous
follows from (4.4) and Lemma 2.3. This means in particular that for such ϕ, the continuous
extension of V (ϕ)|R3\∂Ω to ∂Ω is given by the definition of V (ϕ)|∂Ω in the lemma. Note
that Q(ϕ) is not defined on ∂Ω because its kernel is singular with respect to integrals on
∂Ω. □

⟨corollary100.40⟩
Corollary 4.1 Let p ∈ (1,∞) and R ∈ (0,∞) with ΩR ⊂ BR. Then, if r ∈ [1, 3 p/2), the
estimate

∥V (ϕ)|BR\∂Ω∥1,r + ∥Q(ϕ)|BR\∂Ω∥r ≤ C ∥ϕ∥p for ϕ ∈ Lp(∂Ω)3. (4.6) C100.40.10

is valid. In particular V (ϕ)|Ω ∈ W 1,r(Ω)3, V (ϕ)|ΩR ∈ W 1,r(ΩR)
3 for r, ϕ as above, and

V (ϕ)|Ω and V (ϕ)|ΩR have a trace on ∂Ω. Moreover

∥V (ϕ)|∂Ω∥p ≤ C ∥ϕ∥p for ϕ ∈ Lp(∂Ω)3. (4.7) C100.40.20

Proof: Let r ∈ (p, 3 p/2). Then we obtain from Lemma 2.4 with a = 2 (1/p− 1/r) that

∥∂m(V (ϕ)|BR\∂Ω)∥r + ∥Q(ϕ)|BR\∂Ω∥r ≤ C ∥ϕ∥p (1 ≤ m ≤ 3, ϕ ∈ Lp(Ω)3).

It follows that even if r ∈ [1, 3 p/2), the preceding inequality still holds uniformly in
m and ϕ, but, of course, with a different constant C. Since |x − y|−1 ≤ C |x − y|−2

for x, y ∈ BR with x ̸= y, the same argument implies that if r ∈ [1, 3 p/2), we have
∥V (ϕ)|BR\∂Ω∥r ≤ C ∥ϕ∥p for m, ϕ as before. This proves (4.6). As concerns inequality
(4.7), we refer to Lemma 2.1. □

Next we introduce double layer potentials related to the Stokes system. The function Sjkl

was introduced in (4.2).
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⟨lemma3.10⟩
Lemma 4.3 Let ϕ ∈ L1(∂Ω)3. Then for x ∈ R3\∂Ω, l ∈ {1, 2, 3}, put

W (ϕ)l(x) :=

∫
∂Ω

−
3∑

j,k=1

Sjkl(x− y)ϕj(y)n
(Ω)
k (y) doy,

Π(ϕ)(x) :=

∫
∂Ω

(−2)
3∑

j,k=1

(∂j∂kN)(x− y)ϕj(y)n
(Ω)
k (y) doy.

Then W (ϕ)l, Π(ϕ) belong to C∞(R3\∂Ω) for 1 ≤ l ≤ 3, and any derivative commutes
with the integration over ∂Ω appearing in the definition of these functions. Moreover the
pair

(
W (ϕ), Π(ϕ)

)
solves (1.1) in R3\∂Ω with F = 0.

Proof: Lebesgue’s theorem and the relation Ejk, N ∈ C∞(R3\{0}) for 1 ≤ j, k ≤ 3 yield
yield the lemma except its last claim, which follows from (4.5). □

⟨lemma-decay⟩
Lemma 4.4 Let R ∈ (0,∞) with Ω ⊂ BR. Then

|∂αV (ϕ)(x)| ≤ C ∥ϕ∥1 |x|−1−|α|, |∂αW (ϕ)(x)| ≤ C ∥ϕ∥1 |x|−2−|α| (4.8) 7.32a

for ϕ ∈ L1(∂Ω)3, x ∈ Bc
R, α ∈ N3

0 with |α| ≤ 2,

|∂αQ(ϕ)(x)| ≤ C ∥ϕ∥1 |x|−2−|α|, |∂αΠ(ϕ)(x)| ≤ C ∥ϕ∥1 |x|−3−|α| (4.9) 7.32b

for ϕ, x as before, and for α ∈ N3
0 with |α| ≤ 1.

Consequently, if r1 ∈ (1,∞), r2 ∈ (3/2, ∞), r3 ∈ (3,∞), then for 1 ≤ l,m ≤ 3,

∥∂m∂lV (ϕ)|Bc
R∥r1 + ∥∂mQ(ϕ)|Bc

R∥r1 + ∥∂mW (ϕ)|Bc
R∥r1

+∥Π(ϕ)|Bc
R∥r1 + ∥∂mΠ(ϕ)|Bc

R∥r1 ≤ C(R, r1) ∥ϕ∥1,

∥W (ϕ)|Bc
R∥r2 + ∥∂mV (ϕ)|(BR)

c∥r2 + ∥Q(ϕ)|Bc
R∥r2 ≤ C(R, r2) ∥ϕ∥1,

∥V (ϕ)|Bc
R∥r3 ≤ C(R, r3) ∥ϕ∥1.

Proof: Obviously δ := dist(Ω, Bc
R) > 0. Let y ∈ ∂Ω\{0} and put z := |y|−1Ry. Then

|y| + |z − y| ≤ |z| = R, and |z − y| ≥ δ, so |y| ≤ R − δ. Hence for x ∈ Bc
R we get

|x − y| ≥ (δ/R) |x| + (1 − δ/R) |x| − |y| ≥ (δ/R) |x| + R − δ − |y| ≥ (δ/R) |x|. Now the
lemma follows from (4.4). □

In the following lemma, we define the double layer potential also on ∂Ω, instead of only
on R3\∂Ω. The key fact in this respect is the estimate at the beginning of Lemma 4.5. It
will turn out that in general, the double layer potential is not continuous in R3, even if
the layer function ϕ is smooth; see Theorem 4.4 and 4.5.

⟨lemma1.60⟩
Lemma 4.5 The inequality |

∑3
k=1 Sjkl(x− y)n

(Ω)
k (x)| ≤ C |x− y|−1 holds for x, y ∈ ∂Ω

with x ̸= y, 1 ≤ j, l ≤ 3. The preceding estimate remains valid if the term n
(Ω)
k (x) is

replaced by n
(Ω)
k (y).
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If ϕ ∈ L1(∂Ω)3, 1 ≤ j ≤ 3, we may define

T∗(ϕ)j(x) := (−2)

∫
∂Ω

3∑
k,l=1

Sjkl(x− y)n
(Ω)
k (x)ϕl(y) doy

for x ∈ ∂Ω. Then, for any p ∈ (1,∞), ϕ ∈ Lp(∂Ω)3, the relation T∗(ϕ) ∈ Lp(∂Ω)3 is
valid, and the operator T ∗

p : Lp(∂Ω)3 7→ Lp(∂Ω)3, T ∗
p (ϕ) := T∗(ϕ)

(
p ∈ Lp(∂Ω)3

)
is

linear, bounded and compact.

Define the function T(ϕ) by replacing the term n
(Ω)
k (x) by −n(Ω)

k (y) in the definition of
T∗(ϕ). An operator Tp may be associated with T in the same way as T ∗

p is associated with
T∗, for p ∈ (1,∞). Then Tp is equally linear, bounded and compact.

Let Iq : L
q(∂Ω)3 7→ Lq(∂Ω)3 denote the identity mapping of Lq(∂Ω)3. Then the operators

±Ip + Tp and ±Ip + T ∗
p are Fredholm with index zero.

For q ∈ (1,∞), the operator T ∗
q is dual to Tq′ .

Proof: For the estimate of |
∑3

k=1 Sjkl(x−y)n(Ω)
k (x)| stated in the lemma see (3.5), (4.5).

In the case that the term n
(Ω)
k (x) is replaced by −n(Ω)

k (y), the same references may be
used.

Lemma 2.1 yields that T∗(ϕ) and T(ϕ) are well defined for ϕ ∈ L1(∂Ω)3, and T∗(ϕ), T(ϕ) ∈
Lp(∂Ω)3 if p ∈ (1,∞) and ϕ ∈ Lp(∂Ω)3. Moreover it follows from Lemma 2.2 that T ∗

p and
Tp are linear, bounded and compact. The general theory of Fredholm operators now
implies that ±Ip + Tp and ±Ip + T ∗

p are Fredholm with index zero. The last statement of
the lemma is a consequence of Fubini’s theorem; see [8, Satz 5.1]. □

⟨theorem100.10⟩
Theorem 4.1 Let p ∈ (1,∞). Then with the notations of Lemma 4.5,

ker(−Ip + T ∗
p ) = {k n(Ω) : k ∈ R}, ker(Ip + Tp) =

{
ϕ(j)|∂Ω : j ∈ {1, ..., 6}

}
,

with ϕ(j) (1 ≤ j ≤ 6) introduced in Theorem 1.1

Proof: [8, Lemma 6.7, 6.5, 6.10]. □
⟨corollary100.10⟩

Corollary 4.2 Let p ∈ (1,∞). Then dimker(Ip + T ∗
p ) = 6 and dimker(−Ip + Tp) = 1,

ran(Ip + T ∗
p ) = {v ∈ Lp(∂Ω)3 :

∫
∂Ω

v · ϕ(j)dox = 0 for 1 ≤ j ≤ 6}, (4.10) C100.10.10

ran(−Ip + T ∗
p ) = {v ∈ Lp(∂Ω)3 :

∫
∂Ω

v · γ dox for γ ∈ ker(−Ip′ + Tp′)}, (4.11) C100.10.20

where the functions ϕ(j) for 1 ≤ j ≤ 6 were introduced in Theorem 1.1.

Proof: By Lemma 4.5, we know that the operator Ip + T ∗
p is Fredholm with index zero,

so dimker(Ip + T ∗
p ) = codim ran(Ip + T ∗

p ). On the other hand, the fact that Ip + T ∗
p

is Fredholm means in particular this operator has closed range. We further recall that
Ip′ + Tp′ is dual to Ip + T ∗

p (Lemma 4.5). It follows with the closed range theorem and
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Riesz’ representation theorem in Lp-spaces that dimker(Ip+T
∗
p ) = codim ran(Ip+T

∗
p ) =

dimker(Ip′ + Tp′) and

ran(Ip + T ∗
p ) = {v ∈ Lp(∂Ω)3 :

∫
∂Ω

v · γ dox = 0 for γ ∈ ker(Ip′ + Tp′)}.

Equation (4.10) now is a consequence of Theorem 4.1, and the equation dimker(Ip+T
∗
p ) =

6 follows with Theorem 4.1. An analogous reasoning based on Lemma 4.5 and Theorem
4.1 yields that dimker(−Ip + Tp) = 1 and that equation (4.11) holds. □

⟨theorem100.20⟩
Theorem 4.2 Let p ∈ (1,∞), a ∈ [0, 1), b ∈ Ca(∂Ω)3, ψ ∈ Lp(∂Ω)3 with ±ψ+T(ψ) = b
or ±ψ + T∗(ψ) = b. Then ψ ∈ Ca(∂Ω)3.

This means in particular that ker(±Ip + Tp) = ker(±Iq + Tq) and ker(±Ip + T ∗
p ) =

ker(±Iq + T ∗
q ) for q ∈ (1,∞).

Proof: See [8, Lemma 5.4]. □
⟨corollary100.20⟩

Corollary 4.3 Let p ∈ (1,∞). Then there is a topological complement E
(±)
p of ker(±Ip+

T ∗
p ) in L

p(∂Ω)3.

The estimate ∥ϕ∥p ≤ C ∥(±ϕ+ T ∗
p )(ϕ)∥p holds for ϕ ∈ E

(±)
p .

If b ∈ Lp(∂Ω)3 with
∫
∂Ω
b ·ϕ(j) dox = 0 for 1 ≤ j ≤ 6, there is a unique function F (+)(b) ∈

E
(+)
p with (1/2)

[
F (+)(b) + T∗(F (+)(b)

) ]
= b. (See Theorem 1.1 for the definition of the

functions ϕ(1), ..., ϕ(6).)

Fix a function ϕ(0) ∈ ker(−Ip′ + Tp′)\{0}. (In view of Theorem 4.2, this function ϕ(0)

belongs to ker(−Ir +Tr) for any r ∈ (1,∞).) If b ∈ Lp(∂Ω)3 with
∫
∂Ω
b ·ϕ(0) dox = 0, then

there is a unique function F (−)(b) ∈ E
(−)
p with (1/2)

[
−F (−)(b) + T∗(F (−)(b)

) ]
= b.

Proof: Since dimker(±Ip + T ∗
p ) < ∞ by Corollary 4.2, the existence of a complement

E
(±)
p as described in Corollary 4.3 follows by general theory. Obviously ±Ip+T ∗

p |E
(±)
p is a

bijective operator from E
(±)
p onto ran(±Ip+T ∗

p ). On the other hand, ±Ip+T ∗
p is Fredholm

(Lemma 4.5), and thus has closed range. It follows by the open mapping theorem that

∥ϕ∥p ≤ C ∥(±Ip + T ∗
p )(ϕ)∥p for ϕ ∈ E

(±)
p , hence ∥ϕ∥p ≤ C ∥ ± ϕ+ T∗(ϕ)∥p for such ϕ.

For any b ∈ Lp(∂Ω)3 with
∫
∂Ω
b · ϕ(j) dox = 0 for 1 ≤ j ≤ 6, we know by (4.10) that b ∈

ran(Ip+T
∗
p ). Thus, since Ip+T

∗
p |E

(+)
p is a bijective operator from E

(+)
p onto ran(Ip+T

(+)
p ),

there is a unique function F (+)(b) with the properties stated in the corollary.

Since dimker(−Ip′ + Tp′) = 1, any function b ∈ Lp(∂Ω)3 with
∫
∂Ω
b · ϕ(0) dox = 0 verifies

the equation
∫
∂Ω
b ·γ dox = 0 for any γ ∈ ker(−Ip′ +Tp′). Thus an analogous reasoning as

in the case of F (+)(b), but based on (4.11) instead of (4.10), yields existence of a unique
function F (−)(b) with properties as described in the corollary. □

⟨lemma100.60⟩
Lemma 4.6 Put M := (

∫
∂Ω
ϕ(j) ·ϕ(k) dox)1≤j,k≤3 and M̃ := (

∫
Ω
ϕ(j) ·ϕ(k) dx)1≤j,k≤3, where

ϕ(1), ..., ϕ(6) were introduced in Theorem 1.1. Then the matrices M and M̃ are invertible.
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Proof: The functions ϕ(1)|∂Ω, ..., ϕ(6)|∂Ω are linearly independent ([8, Lemma 6.5]).
Let α ∈ R6 with M · α = 0. Then

∑6
j=1 αj

∑6
k=1

∫
∂Ω
ϕ(j) · ϕ(k) dox αk = 0, that is,∫

∂Ω
|
∑6

l=1 αl ϕ
(l)|2 dox = 0, so

∑6
l=1 αl ϕ

(l) = 0, and finally α = 0. This means that M

is invertible. Obviously the functions ϕ(1)|Ω, ..., ϕ(6)|Ω are linearly independent as well.

Thus the same argument as for M yields that M̃ is invertible, too. □
⟨lemma100.20⟩

Lemma 4.7 Let p ∈ (1,∞), b ∈ W 1−1/p, p(∂Ω)3 with
∫
∂Ω
ϕ(j) · b dox = 0 for 1 ≤ j ≤ 6;

see Theorem 1.1 for the definition of ϕ(1), ..., ϕ(6). Then there exists a sequence (bn) in
C0(∂Ω)3 such that for n ∈ N, the function bn belongs to Ca(∂Ω)3 for a ∈ (0, 1), hence
bn ∈ W 1−1/r, r(∂Ω)3 for r ∈ (1,∞),

∫
∂Ω
ϕ(j) · bn dox = 0 for 1 ≤ j ≤ 6, and such that

∥b− bn∥1−1/p, p → 0.

Suppose that
∫
∂Ω
ϕ(0) · b dox = 0, where ϕ(0) was introduced in Corollary 4.3. Then there

is a sequence (bn) in C
0(∂Ω)3 with the same properties as before, except that the relation∫

∂Ω
ϕ(j) · bn dox = 0 (1 ≤ j ≤ 6, n ∈ N) is replaced by

∫
∂Ω
ϕ(0) · bn dox = 0 (n ∈ N).

Proof: Since b ∈ W 1−1/p, p(∂Ω)3, there is B ∈ W 1,p(Ω)3 with B|∂Ω = b.We may choose a
sequence (Bn) in C

∞
0 (R3)3 with ∥Bn−B∥1,p → 0, and thus ∥Bn−b∥1−1/p, p → 0. Obviously

b̃n := Bn|∂Ω ∈ Ca(∂Ω)3 for n ∈ N, a ∈ (0, 1).

Let n ∈ N and set cn := M−1 · (
∫
∂Ω
b̃n · ϕ(j) dox)1≤j≤6, with the matrix M introduced in

Lemma 4.6. Then
∫
∂Ω
b̃n·ϕ(j) dox =

∑6
k=1

∫
∂Ω
ϕ(j)·ϕ(k) dox cn,k for 1 ≤ j ≤ 6. Thus, putting

bn := b̃n −
∑6

k=1 cn,k ϕ
(k), we obtain a function bn belonging to Ca(∂Ω)3 for a ∈ (0, 1) and

verifying the relation
∫
∂Ω
ϕ(j) · bn dox = 0 for 1 ≤ j ≤ 6. Since ∥b̃n − b∥p → 0 and∫

∂Ω
b̃n · ϕ(j) dox =

∫
∂Ω
(b̃n − b) · ϕ(j) dox for 1 ≤ j ≤ 6, n ∈ N by our assumptions on b, we

get in addition that ∥bn − b∥p → 0

The second part of the lemma may be proved in the same way as the first, but the
reasoning is somewhat simpler because no matrix is involved. Note that by Theorem 4.2,
we have ϕ(0) ∈ Ca(∂Ω)3 for a ∈ (0, 1). □

⟨theorem3.14⟩
Theorem 4.3 Let p ∈ (1,∞). If ϕ ∈ Ca(∂Ω)3 for some a ∈ (0, 1) and if ±ϕ + T(ϕ) ∈
Ca(∂Ω)3∩W 2−1/p, p(∂Ω)3, then ϕ belongs toW 2−1/p, p(∂Ω)3 and the inequality ∥ϕ∥2−1/p, p ≤
C (∥ ± ϕ+ T(ϕ)∥2−1/p, p + ∥ϕ∥p) holds.

Proof: [8, Lemma 7.8]. □
⟨theorem2.50⟩

Theorem 4.4 Recall the parameter δ(Ω) from Lemma 3.2. Let ψ ∈ C0(∂Ω)3 and put
U := V (ψ)|R3\∂Ω, Π := Q(ψ), where V (ψ) and Q(ψ) were introduced in Lemma 4.2.
Then

3∑
k=1

n
(Ω)
k (x) (∂jUk + ∂kUj − δjk Π)

(
x± ϵ n(Ω)(x)

)
→ (1/2)

(
∓ψ + T∗(ψ)

)
j
(x) (4.12) T2.50.10

for ϵ→ 0, ϵ ∈
(
0, δ(Ω)

]
, uniformly with respect to x ∈ ∂Ω, 1 ≤ j ≤ 3 (”jump relation”).

Proof: The relation in (4.12) holds according to [8, Lemma 4.8]. Note that the definition
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of T∗(ψ) in [8] (see [8, Definition 4.2 and 5.1]) coincides with ours in Lemma 4.5. This
follows from (4.5); compare [8, p. 100, last line]. □

We turn to the question of how to approximate V (ϕ)|Ω and V (ϕ)|Ωc
by functions which

are C∞ in open sets somewhat larger than Ω and Ωc, respectively.
⟨lemma1.2⟩

Lemma 4.8 Recall the parameter δ(Ω) and the sets Uδ and U−δ for δ ∈
(
0, δ(Ω)

]
intro-

duced in Lemma 3.2. Further recall that Uδ and U−δ are open sets in R3 with Ω ⊂ Uδ, Ω
c ⊂

U−δ, for δ as before. Let ϕ ∈ L1(∂Ω)3 and define V (δ)(ϕ) : Uδ 7→ C3, Q(δ)(ϕ) : Uδ 7→ C by
setting

V (δ)(ϕ)(x) :=

∫
∂Ω

E
(
x− [y + δ n(Ω)(y)]

)
· ϕ(y) doy,

Q(δ)(ϕ)(x) :=

∫
∂Ω

−(∇N)
(
x− [y + δ n(Ω)(y)]

)
· ϕ(y) doy

for x ∈ Uδ, δ ∈
(
0, δ(Ω)

]
. In addition, we introduce the functions V (−δ)(ϕ) : U−δ 7→

C3, Q(δ) : U−δ 7→ C by replacing Uδ with U−δ and the term y + δ n(Ω) with y − δ n(Ω) in
the respective definitions of V (δ)(ϕ) and Q(δ)(ϕ).

Then V (±δ)(ϕ)j, Q
(±δ)(ϕ) belong to C∞(U±δ) for 1 ≤ j ≤ 3 and for δ as above. Any

derivative of these functions commutes with the integration over ∂Ω appearing in their
definition. The pair

(
V (±δ)(ϕ), Q(±δ)(ϕ)

)
is a solution of (1.1) in U±δ with F = 0. In

addition

V (δ)(ϕ)(x) → V (ϕ)(x) for x ∈ Ω, V (−δ)(ϕ)(x) → V (ϕ)(x) if δ ↓ 0, for x ∈ Ω
c
. (4.13) 1.2.43

Suppose that p ∈ (1,∞), ϕ ∈ Lp(∂Ω)3, R ∈ (0,∞) with Ω ⊂ BR. Then∫
ΩR

|∂αx
(
V (−δ)(ϕ)− V (ϕ)

)
(x)|p dox → 0, (4.14) 1.2.44∫

Ω

|∂αx
(
V (δ)(ϕ)− V (ϕ)

)
(x)|p dox → 0 if δ ↓ 0, for α ∈ N3

0 with |α| ≤ 1. (4.15) 1.2.45

If ϕ ∈ C0(∂Ω)3, then for x ∈ ∂Ω, 1 ≤ j ≤ 3,

V (±δ)(ϕ)(x) → V (ϕ)(x), (4.16) L1.2.20

3∑
k=1

n
(Ω)
k (x)

(
∂jV

(±δ)(ϕ)k + ∂kV
(±δ)(ϕ)j − δjkQ

(±δ)(ϕ)
)
(x) (4.17) L1.2.21

→ (1/2)
(
±ϕ+ T∗(ϕ)

)
j
(x) (1 ≤ j ≤ 3),

for δ ↓ 0, with the convergence in (4.16) and (4.17) being uniform with respect to x ∈ ∂Ω.

The function V (ϕ)|∂Ω as defined in Lemma 4.2 and the trace of V (ϕ)|Ω and V (ϕ)|ΩR on
∂Ω (see Corollary 4.1) coincide.

16



Proof: We only consider V (−δ)(ϕ) and Q(−δ)(ϕ). If −δ is replaced by δ, an analogous
reasoning is valid.

The differential properties of V (−δ)(ϕ) and Q(−δ)(ϕ) are a consequence of (3.6), the relation
Ejk, N ∈ C∞(R3\{0}) for 1 ≤ j, k ≤ 3, the equations satisfied by E and N (see Lemma
4.1) and Lebesgue’s theorem.

Let x ∈ Ω
c
. For y ∈ ∂Ω, δ ∈

(
0, δ(Ω)

]
, the relation |x− [y− δ n(Ω)(y)]| ≥ D δ/2 holds by

(3.6). Since E ∈ C∞(R3\{0})3×3, we may conclude that the claim on V (−δ)(ϕ) in (4.13)
follows from Lebesgue’s theorem. For the proof of (4.14) and (4.15), we refer to the proof
of [6, Lemma 5.4],

As concerns the proof of respectively (4.16) and (4.17), we refer to [8, Lemma 6.3] and
[8, (6.20), (4.72)], respectively, as concerns V (−δ)(ϕ). When V (δ)(ϕ) is considered, the
relevant references are [8, (6.10)] and [8, (6.19), (4.71)].

The last claim of the lemma follows from (4.14), (4.15), the regularity properties of
V (−δ)(ϕ) and V (δ)(ϕ), and the uniform convergence in (4.16). □

⟨lemma5.20⟩
Lemma 4.9 The inequality

|∂l
(
V (ϕ)|R3\∂Ω

)(
x± δ n(Ω)(x)

)
− ∂lV

(∓δ)(ϕ)(x)| ≤ C |ϕ|∞δ1/2

holds for ϕ ∈ C0(∂Ω)3, x ∈ ∂Ω, δ ∈
(
0, δ(Ω)

]
.

Proof: This lemma follows from (3.4); see the proof of [6, Corollary 5.3] or [8, (6.21),
(6.22)]. □

⟨theorem3.20⟩
Theorem 4.5 Let ϕ ∈ C0(∂Ω)3. Then the function W (ϕ)|Ωc

admits a continuous exten-
sion to Ωc, denoted by Wex(ϕ) and given by Wex(ϕ)|∂Ω = (−1/2)

(
ϕ + T(ϕ)

)
. Similarly

the function W (ϕ)|Ω admits a continuous extension to Ω, denoted by Win(ϕ) and given
by Win(ϕ)|∂Ω = (−1/2)

(
−ϕ+ T(ϕ)

)
.

Proof: See [8, Theorem 4.1]. □

⟨theorem100.70⟩
Theorem 4.6 Recall the parameter δ(Ω) introduced in Lemma 3.2. Let a ∈ (0, 1), ϕ ∈
C1,a(∂Ω)3, x ∈ ∂Ω, j ∈ {1, 2, 3}. Define the function F : [−δ(Ω), δ(Ω)]\{0} 7→ C by
setting W := W (ϕ), Q := Q(ϕ),

F (κ) :=
3∑

k=1

n
(Ω)
k (x) (∂jWk + ∂kWj − δjk Π)

(
x+ κn(Ω)(x)

)
for κ ∈ [−δ(Ω), δ(Ω)]\{0}.

Then the limits limκ↓0 F (κ) and limκ↓0 F (−κ) exist and coincide.

This result is well known; for example see [24, Proposition 3.31]. However, the only
justification we know of was given by Faxén [9, § 11], in a rather long (10 pages) and
in parts somewhat vague discussion. An analogous result for the Laplace double layer
potential is shown in a more precise way in [16, Section 8.5.2], but the Stokes case is
notably more difficult to handle than the Laplace one. So, since the preceding theorem is
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a key tool in our theory, we sketch a proof in the appendix. Due to Lemma 3.2, we will
not need to argue in terms of local coordinates of ∂Ω.

⟨theorem100.50⟩
Theorem 4.7 Let p ∈ (3,∞), b ∈ W 2−1/p, p(∂Ω)3, ϕ ∈ Lp(∂Ω)3 such that one of the two
equations (−1/2)

(
−ϕ + T(ϕ)

)
= b or (−1/2)

(
ϕ + T(ϕ)

)
= b holds. Take R ∈ (0,∞)

with Ω ⊂ BR.

Then there is a ∈ (0, 1) with ϕ ∈ C1,a(∂Ω)3. Moreover ϕ ∈ W 2−1/p, p(∂Ω)3, W (ϕ)|U ∈
W 2,p(U)3, Π(ϕ)|U ∈ W 1,p(U) for U ∈ {Ω, ΩR}, and Win(ϕ) ∈ C1(Ω)3, Wex(ϕ) ∈
C1(Ωc)3. The functions Π(ϕ)|Ω and Π(ϕ)|Ωc

may be continuously extended to Ω and Ωc,
respectively. These extensions are denoted by Πin(ϕ) and Πex(ϕ), respectively. (The func-
tions Win(ϕ) and Wex(ϕ) were introduced in Theorem 4.5.)

Proof: By a trace theorem and an extension theorem, there is B ∈ W 2,p
0 (R3)3 with

B|∂Ω = b. Since p > 3, a Sobolev inequality implies there is a ∈ (0, 1) such that B ∈
C1,α(R3)3, so b ∈ C1,α(∂Ω)3. Thus ϕ ∈ Ca(∂Ω)3 by Theorem 4.2. Moreover, referring
to Theorem 4.3, we see that ϕ ∈ W 2−1/p, p(∂Ω)3. Now the same argument as used above
for b provides that ϕ ∈ C1,α(∂Ω)3. In addition, [8, Lemma 7.15] yields at this point that
Π(ϕ)|U ∈ W 1,p(U)3 for U ∈ {Ω, ΩR}. Since p > 3, we may again refer to a Sobolev
inequality, obtaining that Π(ϕ)|U may be continuously extended to U. Since Π(ϕ)|Ωc ∈
C∞(Ω

c
), this means in particular that Π(ϕ)|Ωc

may be continuously extended to Ωc.

Obviously (Lemma 4.3), we have W (ϕ)|U ∈ C∞(U) for U as before. Since in partic-
ular ϕ ∈ C0(∂Ω)3, we further know by Theorem 4.5 that Win(ϕ) ∈ C0(Ω)3, Wex(ϕ) ∈
C0(Ωc)3, (−1/2)

(
−ϕ+T(ϕ)

)
= Win(ϕ)|∂Ω, (−1/2)

(
ϕ+T(ϕ)

)
= Wex(ϕ)|∂Ω. Note that

(−1/2)
(
±ϕ+ T(ϕ)

)
∈ {b, b− ϕ, b+ ϕ}. But b, b− ϕ, b+ ϕ ∈ W 2−1/p, p(∂Ω)3 ∩ C0(∂Ω)3

by what was explained above, so Win(ϕ)|∂Ω, Wex(ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 ∩ C0(∂Ω)3.
On the other hand, W (ϕ)|Ωc ∈ C∞(Ω

c
)3 and Ω ⊂ BR, so in particular W (ϕ)|∂BR ∈

W 2−1/p, p(∂BR)
3. Since Wex(ϕ)|Ω

c
= W (ϕ)|Ωc

by the definition of Wex(ϕ), we thus get
Wex(ϕ)|∂ΩR ∈ W 2−1/p, p(∂ΩR)

3 ∩ C0(∂ΩR)
3. Recall that ∆W (ϕ) = ∇Π(ϕ) (Lemma 4.3)

and Π(ϕ)|U ∈ W 1,p(U) for U ∈ {Ω, ΩR}, as mentioned above. Further recall that
Win(ϕ)|Ω = W (ϕ)|Ω. Altogether we see that Lemma 2.6 may be applied; it yields that
W (ϕ)|U ∈ W 2,p(U)3 for U ∈ {Ω, ΩR}. Due to the assumption p > 3 and a Sobolev in-
equality, it follows that the functionW (ϕ)|U may be extended to a C1-function in U, for U
as before, so Win(ϕ) ∈ C1(Ω)3 and Wex(ϕ)|ΩR ∈ C1(ΩR)

3. But Wex(ϕ)|Ω
c
= W (ϕ)|Ωc ∈

C∞(Ω
c
)3, so Wex(ϕ) ∈ C1(Ωc)3. □

The next lemma indicates how for a given function b ∈ C0(∂Ω)3, a function ψ ∈ C0(∂Ω)
may be chosen so that the Dirichlet boundary data of V (b)|Ω and W (ψ)|Ω coincide. The
same question is answered for the boundary values of V (b)|Ωc

and W (ψ)|Ωc
.

⟨lemma5.10⟩
Lemma 4.10 Let ϕ, b ∈ C0(∂Ω)3 with (1/2)

(
∓ϕ + T∗(ϕ)

)
= b. Then V (ϕ) ∈ Cκ(R3)3

for κ ∈ [0, 1) and

(1/2)
[
∓V (ϕ)|∂Ω + T

(
V (ϕ)|∂Ω

) ]
= V (b)|∂Ω.

Note that the term (1/2)
[
−V (ϕ)|∂Ω+T

(
V (ϕ)|∂Ω

) ]
coincides with the Dirichlet bound-

ary data of −W
(
V (ϕ)|∂Ω

)
|Ω, and the function (1/2)

[
V (ϕ)|∂Ω + T

(
V (ϕ)|∂Ω

) ]
with
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those of −W
(
V (ϕ)|∂Ω

)
|Ωc

(Lemma 4.3, Theorem 4.5).

Proof: We consider the case (1/2)
(
−ϕ + T∗(ϕ)

)
= b. If (1/2)

(
ϕ + T∗(ϕ)

)
= b, an

analogous reasoning is valid.

The relation V (λ)(ϕ)|∂Ω ∈ Cκ(∂Ω)3 for κ ∈ [0, 1) holds according to Lemma 4.2.

Recall the parameter δ(Ω) > 0, as well as the set U−δ for δ ∈
(
0, δ(Ω)

]
from Lemma

3.2. Put V (−δ) := V (−δ)(ϕ), Q(−δ) := Q(−δ)(ϕ). These functions were introduced in
Lemma 4.8. Note that the set U−δ ⊂ R3 is open and Ωc ⊂ U−δ (Lemma 3.2), V (−δ) ∈
C∞(U−δ)

3, Q(−δ) ∈ C∞(U−δ), and and the pair (V (−δ), Q(−δ)) satisfies (1.1) in U−δ with
F = 0, for δ ∈

(
0, δ(Ω)

]
(Lemma 4.8).

In the following we will use the Stokes fundamental solution E defined in (4.1).

Consider δ ∈
(
0, δ(Ω)

]
. Choose R0 ∈ (0,∞) such that Ω ⊂ BR0/2. Let R ∈ [R0,∞).

We write n(ΩR) for the outward unit normal to ΩR, that is, n(ΩR)(z) = −n(Ω)(z) for
z ∈ ∂Ω, nΩR(z) = R−1 z for z ∈ ∂BR. Then it follows by a standard representation
formula for solutions to (1.1) (see [8, (3.6)] for example) that

V
(−δ)
l (x) =

∫
∂ΩR

3∑
j,k=1

(
Ejl(x− z) (∂kV

(−δ)
j + ∂jṼ

(−δ)
k − δjkQ

(−δ))(z) (4.18) L5.10.11

−Sjkl(x− z)V
(−δ)
j (z)

)
n
(ΩR)
k (z) doz

for 1 ≤ l ≤ 3, x ∈ ΩR. Note that V
(−δ) is continuous, so the restriction ”a. e.” on x ∈ ΩR

in [8, (3.6)] may be dropped. Fix some x ∈ Ω
c
and consider R ∈ [R0,∞) with x ∈ BR/2.

Since Ω ⊂ BR0/2 ⊂ BR/2, and because y − δ n(Ω)(y) ∈ Ω for y ∈ ∂Ω (Lemma 3.2), we
find for z ∈ ∂BR, y ∈ ∂Ω that |z −

(
y − δ n(Ω)(y)

)
| ≥ R/2 and |x − z| ≥ R/2. As a

consequence, with (4.4), for z ∈ ∂BR, α ∈ N3
0 with |α| ≤ 1, 1 ≤ j, l, k ≤ 3,

|∂αV (−δ)(z)| ≤ CR−1−|α|, |Q(−δ)(z)| ≤ CR−2, |∂αz
(
Ejl(x− z)

)
| ≤ CR−1−|α|,

|(∂lN)(x− z)|+ |Sjkl(x− z)| ≤ CR−2.

Thus, by letting R tend to infinity in (4.18), the integral over ∂BR implicitly present in
that equation tends to zero. Hence the integral over ∂ΩR becomes an integral over ∂Ω,
with n(ΩR) replaced by −n(Ω). Next we use (4.13), (4.16), (4.17) in order to let δ tend to
zero. In this way we get that

V (ϕ)l(x) =

∫
∂Ω

( 3∑
j=1

−Ejl(x− z) (1/2)
(
−ϕ+ T∗(ϕ)

)
j
(z) (4.19) L5.10.20

+
3∑

j,k=1

Sjkl(x− z)V (ϕ)j(z)n
(Ω)
k (z)

)
doz.

We recall that (1/2)
(
−ϕ + T∗(ϕ)

)
= b. Abbreviate w := V (ϕ)|∂Ω, and note that w ∈

C0(∂Ω)3; see the first sentence of this proof. We may then rewrite (4.19) as

V (ϕ)l(x) = −V (b)l(x)−W (w)l(x), (4.20) L5.10.30
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with W (w) defined in Lemma 4.3. This is true for any x ∈ Ω
c
. Since w ∈ C0(∂Ω)3,

Theorem 4.5 yields that the function W (w) may be extended continuously to Ωc. This
extension is denoted by Wex(w); see Theorem 4.5. By that theorem, we know that
Wex(w)(x) = (−1/2)

(
w + T(w)

)
(x) for x ∈ ∂Ω. Take x0 ∈ ∂Ω. Thus we may conclude

that W (w)(x) → (−1/2)
(
w + T(w)

)
(x0) for x → x0, x ∈ Ω

c
. On the other hand, since

b, ϕ ∈ C0(∂Ω)3, we know from Lemma 4.2 that V (b), V (ϕ) ∈ C0(R3)3. Thus, by letting
x tend to x0 in Ω

c
, we may deduce from (4.20) that V (ϕ)l(x0) = −V (b)(x0) + (1/2)

(
w+

T(w)
)
(x0). But V (ϕ)(x0) = w(x0) by the definition of w, so we finally arrive at the

equation 0 = −V (b)(x0) + (1/2)
(
−w + T(w)

)
(x0). □

5 W 2−1/p, p-regularity of V (ϕ).

In this section, we address the key element of our theory, that is, the fact that V (ϕ)|∂Ω ∈
W 2−1/p, p(∂Ω)3 if ϕ ∈ W 1−1/p, p(∂Ω)3. The proof of this relation constitutes the main
difficulty we have to put up with, and is split into the proofs of the next two theorems.
The result in the first – Theorem 5.1 – amounts to an W 1,p-estimate of V (ϕ)|∂Ω against
the Lp-norm of ϕ. (The function V (ϕ) was introduced in Lemma 4.2.)

⟨theorem7.10⟩
Theorem 5.1 Fix numbers k(Ω) ∈ N, α(Ω) ∈ (0,∞), sets ∆κ, Ut,κ, Λt,κ and functions
at, γt for κ ∈ (0, 1], 1 ≤ t ≤ k(Ω) as specified in Lemma 3.1.

Let t ∈ {1, ..., k(Ω)}. For f : ∆1 7→ C3, define Zt(f) : ∂Ω 7→ C3 as the zero extension of
f ◦ (γt)−1 : Λt,1 7→ C3 to ∂Ω. Fix a function Ψt ∈ C∞

0 (Ut, 3/4) with Ψt|Ut, 1/2 = 1.

Let p ∈ (1,∞). Then, for f ∈ Lp(∆1)
3 , the function Ψt Zt(f) belongs to Lp(∂Ω)3, the

function V
(
Ψt Zt(f)

)
◦ γt is in W 1,p(∆t)

3, and

∥V
(
Ψt Zt(f)

)
◦ γt∥1,p ≤ C ∥f∥p. (5.1) T7.10.1

Proof: Recall there is an orthonormal matrix Dt ∈ R3×3, a vector Ct ∈ R3 and a function
at ∈ C2(∆1) with γt(η) = Dt ·

(
η, at(η)

)
+ Ct for η ∈ ∆t, and such that |∇at|∞ < 1/4;

see Lemma 3.1. We have Ψt ∈ C∞
0 (Ut, 3/4) by the choice of Ψt in the theorem, so Ψt ◦ γt ∈

C2
0(∆3/4) by the definition of Ut, 3/4 and γt in Lemma 3.1. In addition we will use the

function Jt (surface element) introduced in Lemma 3.1, as well as the parameter δ(Ω),
which was fixed in Lemma 3.2. Let σ0 ∈ (0,∞) be so small that B2

σ0
(ϱ) ⊂ ∆1 for ϱ ∈ ∆3/4.

We introduce some additional notation. For ϱ, η ∈ ∆1, η̃ ∈ R2, δ ∈
[
0, δ(Ω)

]
, put

Γ(ϱ, η, δ) := Γt(ϱ, η, δ) := γt(ϱ)− γt(η)− δ (n(Ω) ◦ γt)(η),

Γ(ϱ, η, δ) := Γt(ϱ, η, δ) := γt(ϱ)− δ (n(Ω) ◦ γt)(ϱ)− γt(η),

Γ̃(ϱ, η̃) := Γ̃t(ϱ, η̃) := Dt ·
(
ϱ− η̃, ∇at(ϱ) · (ϱ− η̃)

)
,

E := (Ψt ◦ γt) Jt.

Let f ∈ C1(∆1)
3 ∩ Lp(∆1)

3, j ∈ {1, 2, 3} and ν ∈ {1, 2}. Since Ψt ◦ γt ∈ C2
0(∆3/4), we

have E ∈ C1
0(∆3/4)

3, so E f ∈ C1
0(∆3/4)

3. In particular E f considered as a function with

20



domain R2 belongs to Cκ(R2)3 for any κ ∈ [0, 1), and to Lp(R2)3, and we may define

F (f)(ϱ, η) := E(η) f(η)− E(ϱ) f(ϱ) for ϱ, η ∈ R2.

In addition (γt)
−1 : Λt,1 7→ ∆1 is continuous (Lemma 3.1), so Ψt Zt(f) ∈ C0(∂Ω)3 and

supp
(
Ψt Zt(f)

)
⊂ Λt, 3/4. Note that

(
Ψt Zt(f)

)
◦γt = (Ψt◦γt) f, so due to equation (3.2),

∥ΨtZt(f)∥p = ∥|(Ψt ◦ γt) f |p Jt∥1 ≤ C ∥f∥p, (5.2) T7.10.6

with C independent of f . We consider the function V (δ)
(
Ψt Zt(f)

)
introduced in Lemma

4.8. According to that reference, this function is C∞ in an open set Uδ containing Ω as a
subset, and

∂lV
(δ)
(
ΨtZt(f)

)
j
(x) =

∫
∂Ω

3∑
k=1

(∂lEjk)(x− [y + δ n(Ω)(y)])
(
ΨtZt(f)

)
k
(y) doy (5.3) T7.10.3

for δ ∈
(
0, δ(Ω)

]
, x ∈ Uδ, 1 ≤ l ≤ 3, with (Ejk)1≤j,k≤3 introduced in (4.1). Thus

V (δ)
(
Ψt Zt(f)

)
j
◦ γt is a C1-function, and we get with (3.2) that

∂ν
[
V (δ)

(
ΨtZt(f)

)
j
◦ γt

]
(ϱ)

=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

)
fk(η)E(η) dη =

4∑
µ=1

F (µ)(ϱ, δ),

for ϱ ∈ ∆1, δ ∈
(
0, δ(Ω)

]
, with

F (1)(ϱ, δ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, δ)

)
− (∂lEjk)

(
Γ(ϱ, η, δ)

))
fk(η)E(η) dη,

F (2)(ϱ, δ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

)
F(f)(ϱ, η)k dη,

F (3)(ϱ, δ) :=
3∑

k,l=1

fk(ϱ) Jt(ϱ)

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

)
(
∂νγt(ϱ)l (Ψt ◦ γt)(ϱ)− ∂νγt(η)l (Ψt ◦ γt)(η)

)
dη,

F (4)(ϱ, δ) := −
3∑

k=1

fk(ϱ) Jt(ϱ)

∫
∆1

Ejk

(
Γ(ϱ, η, δ)

)
∂ν(Ψt ◦ γt)(η)

)
dη.

Note that the definition of F (4)(ϱ, δ) involves a partial integration, which is possible due
to (3.6). Let ζ ∈ C∞

0 (∆1). Since Ψt Zt(f) ∈ C0(∂Ω)3, as mentioned above, we may deduce
from the uniform convergence in (4.16) that∫

∆1

∂νζ(ϱ)
[
V (δ)

(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) dϱ→

∫
∆1

∂νζ(ϱ)
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) dϱ
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for δ ↓ 0. Moreover, also because Ψt Zt(f) ∈ C0(∂Ω)3, Lemma 4.9 yields that the integral∫
∆1
ζ(ϱ)F (1)(ϱ, δ) dϱ tends to zero for δ ↓ 0. Since E f ∈ C1

0(∆3/4)
3, as explained above,

there is a constant c(f) > 0 with

|F(f)(ϱ, η)| ≤ c(f) |ϱ− η| for ϱ, η ∈ ∆1. (5.4) T7.10.20

In addition, by (4.4) and (3.4), |(∂lEjk)
(
Γ(ϱ, η, δ)

)
| ≤ C |ϱ− η|−2, hence

|(∂lEjk)
(
Γ(ϱ, η, δ)

)
F(f)(ϱ, η)k| ≤ C |ϱ− η|−1 (5.5) T7.10.30

for ϱ, η ∈ ∆1 with ϱ ̸= η, 1 ≤ k, l ≤ 3, δ ∈
[
0, δ(Ω)

]
.We thus see by Lebesgue’s theorem

that the function F (2)( · , δ) : ∆1 7→ R is well defined and integrable also for δ = 0, and∫
∆1

ζ(ϱ)F (2)(ϱ, δ) dϱ→
∫
∆1

ζ(ϱ)F (2)(ϱ, 0) dϱ (δ ↓ 0).

Since γt belongs to C2(∆1)
3 and has bounded derivatives, and because of (3.4) and the

relation Ψt ◦ γt ∈ C2
0(∆3/4), we have

|(∂lEjk)
(
Γ(ϱ, η, δ)

) (
∂νγt(ϱ)l (Ψt ◦ γt)(ϱ)− ∂νγt(η)l (Ψt ◦ γt)(η)

)
| ≤ C |ϱ− η|−1, (5.6) T7.10.40

|Ejk

(
Γ(ϱ, η, δ)

)
∂ν(Ψt ◦ γt)(ϱ)| ≤ C |ϱ− η|−1

for ϱ, η ∈ ∆1 with ϱ ̸= η, 1 ≤ k, l ≤ 3, δ ∈
[
0, δ(Ω)

]
. As a consequence, as in the case of

F (2)( · , δ), the function F (µ)( · , δ) : ∆1 7→ R for µ ∈ {3, 4} is well defined and integrable
also for δ = 0, and∫

∆1

ζ(ϱ)F (µ)(ϱ, δ) dϱ→
∫
∆1

ζ(ϱ)F (µ)(ϱ, 0) dϱ (δ ↓ 0).

Altogether we may now conclude that the weak derivative ∂ν
[
V
(
ΨtZt(f)

)
j
◦ γt

]
exists

and

∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) =

4∑
µ=2

F (µ)(ϱ, 0) for ϱ ∈ ∆1. (5.7) T7.10.70

We are going to transform F (2)( · , 0). Recall the term Γ̃(ϱ, η) introduced at the beginning
of this proof. We have

|Γ(ϱ, η, 0)− Γ̃(ϱ, η)| = |at(ϱ)− at(η)−∇at(ϱ) · (ϱ− η)| ≤ C|ϱ− η|2,

and |Γ(ϱ, η, 0) + ϑ
(
Γ(ϱ, η, 0)− Γ̃(ϱ, η)

)
| ≥ |ϱ− η| for ϑ ∈ [0, 1], ϱ, η ∈ ∆1, so with (4.4),

|(∂lEjk)
(
Γ(ϱ, η, 0)

)
− (∂lEjk)

(
Γ̃(ϱ, η)

)
| ≤ C |ϱ− η|−1 (5.8) T7.10.50
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for such ϱ, η ∈ ∆1, ϱ ̸= η, and for 1 ≤ k, l ≤ 3. Since E f ∈ C1
0(∆3/4)

3, we may thus
define

G(1)(ϱ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, 0)

)
− (∂lEjk)

(
Γ̃(ϱ, η)

))
fk(η)E(η) dη,

G(2)(ϱ) := −
3∑

k,l=1

∂νγt(ϱ)l fk(ϱ)E(ϱ)

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, 0)

)
− (∂lEjk)

(
Γ̃(ϱ, η)

))
dη

for ϱ ∈ ∆1. In view of (5.5), we may further define

G(3)(ϱ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
B2

σ0
(ϱ)

(∂lEjk)
(
Γ̃(ϱ, η)

)
F(f)(ϱ, η)k dη (5.9) T7.10.59

for ϱ ∈ ∆1. Since

sup{|(∂lEjk)
(
Γ̃(ϱ, η)

)
| : ϱ, η ∈ ∆1, |ϱ− η| ≥ σ0, 1 ≤ k, l ≤ 3} <∞, (5.10) T7.10.60

we may set

G(4)(ϱ) :=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1\B2

σ0
(ϱ)

(∂lEjk)
(
Γ̃(ϱ, η)

)
fk(η)E(η) dη,

G(5)(ϱ) := −
3∑

k,l=1

∂νγt(ϱ)l fk(ϱ)E(ϱ)

∫
∆1\B2

σ0
(ϱ)

(∂lEjk)
(
Γ̃(ϱ, η)

)
dη

for ϱ ∈ ∆1. Then

F (2)(ϱ, 0) =
5∑

µ=1

G(µ)(ϱ) for ϱ ∈ ∆1. (5.11) T7.10.80

Concerning this equation, note that the domain of integration B2
σ0
(ϱ) in the definition

of G(3)(ϱ) may be replaced by ∆1 ∩ B2
σ0
(ϱ), because Et f ∈ C1

0(∆3/4)
3 and due to the

choice of σ0 at the beginning of this proof. In view of (5.7) and (5.11), let us estimate the
terms G(µ)(ϱ) for µ ∈ {1, ..., 5}, as well as F (3)(ϱ, 0) and F (4)(ϱ, 0). The function G(3) is
by far the most difficult to handle since it hides a singular integral. Following [3, (2.1)]
(where the term (ϱ − η)s1 (ϱ − η)2 ν−s

2 is lacking), we write G(3) as a series. To this end
we recall that |∇at|∞ ≤ 1/4 by the specifications on at in Lemma 3.1. As a consequence
|∇at(ϱ) · (ϱ− η)|/|ϱ− η| ≤ 1/2 for ϱ, η ∈ ∆1 with ϱ ̸= η. Hence for τ ∈ N, ϱ, η ∈ ∆1 with
ϱ ̸= η,

|Γ̃(ϱ, η)|−τ = |ϱ− η|−τ
(
1 +

(
∇at(ϱ) · (ϱ− η)

)2
/|ϱ− η|2

)−τ/2

(5.12) T7.10.90

=
∞∑

m=0

(
−τ/2
m

) 2m∑
n=0

(
2m

n

)
∂1at(ϱ)

n ∂2at(ϱ)
2m−n (ϱ− η)n1 (ϱ− η)2m−n

2 |ϱ− η|−τ−2m.

23



On the other hand by the definition in (4.1)

(∂lEjk)(z) = (−δjk zl + δjl zk + δkl zj) |z|−3 − 3 zj zk zl |z|−5 (5.13) T7.10.100

for 1 ≤ k, l ≤ 3, z ∈ R3\{0}. We combine (5.12) and (5.13). To this end we put

A(ϱ) := Dt ·

 1 0

0 1

∂1at(ϱ) ∂2at(ϱ)

 for ϱ ∈ ∆1,

with Dt introduced in Lemma 3.1. Then Γ̃(ϱ, η) = A(ϱ) · (ϱ− η) (ϱ, η ∈ ∆t). Put

Z(ϱ)klr := −δjk A(ϱ)lr + δjl A(ϱ)kr + δkl A(ϱ)jr,

Z̃(ϱ)klα := −3A(ϱ)j α1 A(ϱ)k α2 A(ϱ)l α3(ϱ)

for k, l ∈ {1, 2, 3}, r ∈ {1, 2}, α ∈ {1, 2}3, ϱ ∈ ∆t. Then we get from (5.13) that

(∂lEjk)
(
Γ̃(ϱ, η)

)
(5.14) T7.10.110

=
2∑

r=1

Z(ϱ)klr (ϱ− η)r |Γ̃(ϱ, η)|−3 +
∑

α∈{1, 2}3
Z̃(ϱ)klα

3∏
s=1

(ϱ− η)αs |Γ̃(ϱ, η)|−5

for k, l, ϱ as before, and for η ∈ R2 with ϱ ̸= η. Further put

B(m,n, r, κ) := κr κ
n
1 κ

2m−n
2 |κ|−3−2m, B̃(m,n, α, κ) :=

3∏
s=1

καs κ
n
1 κ

2m−n
2 |κ|−5−2m

for r, α as above, m ∈ N, n ∈ {0, ..., 2m}, κ ∈ R2\{0},

W(m,n, ϱ) :=

(
−3/2

m

)(
2m

n

)
∂1at(ϱ)

n ∂2at(ϱ)
2m−n,

W̃(m,n, ϱ) :=

(
−5/2

m

)(
2m

n

)
∂1at(ϱ)

n ∂2at(ϱ)
2m−n,

for m, n as before and ϱ ∈ ∆t. Then by (5.9), (5.12) and (5.14), it follows that G(3)(ϱ) =
G(3,1)(ϱ) +G(3,2)(ϱ), with

G(3,1)(ϱ) (5.15) T7.10.115

=
3∑

k,l=1

2∑
r=1

∂νγt(ϱ)l Z(ϱ)klr

∫
B2

σ0
(ϱ)

∞∑
m=0

2m∑
n=0

W(m,n, ϱ)B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη,

G(3,2)(ϱ)

=
3∑

k,l=1

∑
α∈{1, 2}3

∂νγt(ϱ)lZ̃(ϱ)klα

∫
B2

σ0
(ϱ)

∞∑
m=0

2m∑
n=0

W̃(m,n, ϱ) B̃(m,n, α, ϱ− η)F(f)(ϱ, η)k dη

24



for ϱ ∈ ∆1. Since |∇at|∞ ≤ 1/4, we obtain with (5.4) that

∣∣∣ 2m∑
n=0

W(m,n, ϱ)B(m,n, r, ϱ− η)F(f)(ϱ, η)k

∣∣∣ (5.16) T7.10.120

≤
∣∣∣(−3/2

m

)∣∣∣ (1/4)2m 2m∑
n=0

(
2m

n

)
|ϱ− η|−2 |F(f)(ϱ, η)k| ≤ C

∣∣∣(−3/2

m

)∣∣∣ (1/2)2m |ϱ− η|−1

for m ∈ N, 1 ≤ k ≤ 3, 1 ≤ r ≤ 2, ϱ, η ∈ ∆1 with ϱ ̸= η. We thus see that the integral
in the definition of G(3,1)(ϱ) may be moved inside the sum with respect to m ∈ N. In this
way we arrive at the integral

∫
B2

σ0
(ϱ)

B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη for m, k, r as before

and for 0 ≤ n ≤ 2m, ϱ ∈ ∆1. Since |B(m,n, r, ϱ − η)F(f)(ϱ, η)k| ≤ C |ϱ − η|−1 for
m, k, r, ϱ, η as in (5.16) and for 0 ≤ n ≤ 2m, as follows from (5.4), we obtain∫

B2
σ0(ϱ)

\B2
σ(ϱ)

B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη (5.17) T7.10.130

→
∫
B2

σ0
(ϱ)

B(m,n, r, ϱ− η)F(f)(ϱ, η)k dη (σ ↓ 0), uniformly in ϱ ∈ ∆1.

But
∫
B2

σ0
(ϱ)\B2

σ(ϱ)
B(m,n, r, ϱ − η) dη = 0 for ϱ ∈ R2, σ ∈ (0, σ0), m, k, r, n as before,

so we see that the term F(f)(ϱ, η)k may be replaced by fk(η)E(η) in the integral on the
left-hand side of (5.17). Thus with (5.15) and (5.17), we finally arrive at the equation

G(3,1)(ϱ) =
3∑

k,l=1

2∑
r=1

∂νγt(ϱ)l Z(ϱ)klr (5.18) T7.10.131

∞∑
m=0

2m∑
n=0

W(m,n, ϱ) lim
σ↓0

∫
B2

σ0
(ϱ)\Bσ(ϱ)

B(m,n, r, ϱ− η) fk(η)E(η) dη,

for ϱ ∈ ∆1, with the limit in this equation being uniform with respect to such ϱ. An
analogous reasoning yields that

G(3,2)(ϱ) =
3∑

k,l=1

∑
α∈{1, 2}3

∂νγt(ϱ)l Z̃(ϱ)klα (5.19) T7.10.131b

∞∑
m=0

2m∑
n=0

W̃(m,n, ϱ) lim
σ↓0

∫
B2

σ0
(ϱ)\Bσ(ϱ)

B̃(m,n, α, ϱ− η) fk(η)E(η) dη

for ϱ as before, where the limit appearing in this equation is again uniform with respect
to ϱ ∈ ∆1. We note that

∫
∂B2

1
|B(m,n, r, κ)| doκ ≤

∫
∂B2

1
|κ|−2 doκ = 2π for m ∈ N, n ∈

{0, ..., 2m}, r ∈ {1, 2}, and
∑∞

m=0

∑2m
n=0 |W(m,n, ϱ)| ≤

∑∞
m=0

∣∣∣(−3/2
m

)∣∣∣ (1/2)2m for ϱ ∈
∆1; compare (5.16). As explained in the passage preceding (5.2), we have E f ∈ Lp(R2)3.
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At this point Theorem 2.1 allows us to deduce from (5.18) that ∥G(3,1)∥p ≤ C̃ ∥E f∥p ≤
C̃ ∥f∥p. Here and in the rest of this proof, constants independent of f are denoted by C̃. In

an analogous way equation (5.19) leads to the estimate ∥G(3,2)∥p ≤ C̃ ∥f∥p, so we finally

arrive at the estimate ∥G(3)∥p ≤ C̃ ∥f∥p.
All the other relevant functions may be estimated in a rather straightforward way. By
(5.6) we see that the absolute value of the integral in the definition of F (3)(m, 0) and

F (4)( · , 0) is bounded uniformly in ϱ ∈ ∆1. It follows that ∥F (µ)( · , 0)∥p ≤ C̃ ∥f∥p for
µ ∈ {3, 4}. An analogous argument, based on (5.8) and (5.10), respectively, instead of

(5.6), yields that ∥G(µ)∥p ≤ C̃ ∥f∥p for µ ∈ {2, 5}. As for G(4), we may use (5.10) to obtain

|G(4)(ϱ)| ≤ C̃

∫
∆1\Bσ0 (ϱ)

|f(η)| |E(η)| dη ≤ C̃ ∥f∥1 ≤ C̃ ∥f∥p.

for ϱ ∈ ∆1, so that ∥G(4)∥p ≤ C̃ ∥f∥p. Concerning G(1), inequality (5.8) provides that

|G(1)(ϱ)| ≤ C̃
∫
∆1

|ϱ−η|−1 |f(η)| |E(η)| dη for ϱ ∈ ∆1, so that ∥G(1)∥p ≤ C̃ ∥f∥p by Lemma
2.1.

At this point it follows from the representations in (5.7), (5.11) and the previous estimates
of the terms ∥F (3)( · , 0)∥p, ∥F (4)( · , 0)∥p and ∥G(µ)∥p for µ ∈ {1, ..., 5} that

∥∂ν
[
V
(
ΨZt(f)

)
j
◦ γt

]
∥p ≤ C̃ ∥f∥p for f ∈ Lp(∆1)

3 ∩ C1(∆1)
3, j ∈ {1, 2, 3} (5.20) T7.10.55

and ν ∈ {1, 2}. Take f ∈ Lp(∆1)
3. Obviously inequality (5.2) remains valid for such

f , so Lemma 2.2 implies that ∥V
(
ΨZt(f)

)
∥p ≤ C̃ ∥ΨZt(f)∥p ≤ C̃ ∥f∥p, hence by (3.2),

∥V
(
ΨZt(f)

)
◦γt∥p ≤ ∥V

(
ΨZt(f)

)
|Λt,1∥p ≤ ∥V

(
ΨZt(f)

)
∥p ≤ C̃ ∥f∥p. The theorem fol-

lows from this estimate, inequality(5.20) and the density of Lp(∆1)
3∩C1(∆1)

3 in Lp(∆1)
3.

□

In the next theorem we give a bound of V (ϕ)|∂Ω in the norm of W 2−1/p, p(∂Ω)3 in terms
of theW 1−1/p, p-norm of ϕ. The proof of this inequality is based on the preceding theorem.

⟨theorem7.20⟩
Theorem 5.2 Let p ∈ (1,∞). Then V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 and ∥V (ϕ)|∂Ω∥2−1/p, p ≤
C ∥ϕ∥1−1/p, p for ϕ ∈ W 1−1/p, p(∂Ω)3.

Proof: The notation introduced in Theorem 5.1 or at the beginning of the proof of this
theorem, up to inequality (5.2), will again be used here, without further notice.

Let t ∈ {1, ..., k(Ω)}, j ∈ {1, 2, 3}, f ∈ Lp(∆1)
3 ∩ C1(∆1)

3 and ν ∈ {1, 2}. Recall that
ΨtZt(f) ∈ C0(∂Ω). All constants C appearing in this proof are independent of f .

Let δ ∈
(
0, δ(Ω)

]
. Consider the function V (δ)

(
Ψt Zt(f)

)
introduced in Lemma 4.8. As

stated in that lemma, this function is C∞ in an open set Uδ containing Ω as a subset; see
(5.3) as concerns its first order derivatives. Thus by (3.2) and because supp

(
Ψt Zt(f)

)
⊂
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Ut, 3/4 and
(
Ψt Zt(f)

)
◦ γt = (Ψt ◦ γt) f , we get for ϱ ∈ ∆1 that

∂ν
[
V (δ)

(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) (5.21) T7.20.20b

=
3∑

k,l=1

∂νγt(ϱ)l

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

) ]
fk(η)E(η) dη =

4∑
µ=1

H(µ)(ϱ, δ),

with

H(1)(ϱ, δ) :=
3∑

k,l=1

∫
∆1

(∂lEjk)
(
Γ(ϱ, η, δ)

) (
∂νγt(ϱ)− ∂νγt(η)

)
l
fk(η)E(η) dη,

H(2)(ϱ, δ) :=
3∑

k,l=1

∫
∆1

(
(∂lEjk)

(
Γ(ϱ, η, δ)

)
− (∂lEjk)

(
Γ(ϱ, η, δ)

))
∂νγt(η)l fk(η)E(η) dη,

H(3)(ϱ, δ) := −
3∑

k=1

∫
∆1

Ejk

(
Γ(ϱ, η, δ)

)
fk(η) ∂νE(η) dη,

H(4)(ϱ, δ) := −
3∑

k=1

∫
∆1

Ejk

(
Γ(ϱ, η, δ)

)
∂νfk(η)E(η) dη.

The last two functions arise due to a partial integration with respect to η and because
E ∈ C1

0(∆1). Let ζ ∈ C∞
0 (∆1). We deduce from the relation ΨtZt(f) ∈ C0(∂Ω)3 (see

further above) and from the uniform convergence in (4.16) that∫
∆1

∂νζ(ϱ)
(
V (δ)

(
Ψt Zt(f)

)
j
◦ γt

)
(ϱ) dϱ→

∫
∆1

∂νζ(ϱ)
(
V
(
Ψt Zt(f)

)
j
◦ γt

)
(ϱ) dϱ

for δ ↓ 0. Lemma 4.9, equation (3.2) and the relation E ∈ C1
0(∆1) yield that the integral∫

∆1
ζ(ϱ)H(2)(ϱ, δ) dϱ tends to zero for δ ↓ 0. The function γt belongs to C

2(∆1) (Lemma

3.1), so with (4.4) and (3.4),

|∂αϱ
[
(∂lEjk)

(
Γ(ϱ, η, δ)

) (
∂νγt(ϱ)− ∂νγt(η)

)
l

]
| ≤ C |ϱ− η|−1−|α| (5.22) T7.20.30

for 1 ≤ k, l ≤ 3, ϱ, η ∈ ∆1 with ϱ ̸= η, δ ∈
[
0, δ(Ω)

]
, α ∈ N2

0 with |α| ≤ 1. Since E ∈
C1

0(∆1), we have E f ∈ C1
0(∆1)

3, in particular |E f |∞ <∞, so we may conclude from (5.22)
with α = 0 and from Lebesgue’s theorem that the function H(1)( · , δ) : ∆1 7→ C is well
defined and integrable also for δ = 0, and

∫
∆1
ζ(ϱ)H(1)(ϱ, δ) dϱ →

∫
∆1
ζ(ϱ)H(1)(ϱ, 0) dϱ

for δ ↓ 0. We further deduce from (4.4) and (3.4) that

|∂αϱ
[
Ejk

(
Γ(ϱ, η, δ)

) ]
| ≤ C |ϱ− η|−1−|α| for k, ϱ, η, δ, α as in (5.22). (5.23) T7.20.40

Taking into account that E ∂νf and ∂νE f belong to C0
0(∆3/4)

3, we see that due to (5.23)

with α = 0, the function H(µ)( · , δ) for µ ∈ {3, 4} is well defined and integrable also if
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δ = 0, and
∫
∆1
ζ(ϱ)H(µ)(ϱ, δ) dϱ →

∫
∆1
ζ(ϱ)H(µ)(ϱ, 0) dϱ (δ ↓ 0) for such µ. At this point

we may deduce from (5.21) that the weak derivative ∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
exists – a

fact already known from Theorem 5.1 – and

∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
(ϱ) =

∑
µ∈{1, 3, 4}

H(µ)(ϱ, 0) for ϱ ∈ ∆1. (5.24) T7.20.50

Now consider f ∈ Lp(∆1)
3. Recalling that ∂αE ∈ C0

0(∆3/4) for α ∈ N2
0 with |α| ≤ 1, we

observe that ∂αE f ∈ Lp(∆1)
3 and ∥∂αE f∥p ≤ C ∥f∥p. It follows from (5.22), (5.23) with

α = 0, δ = 0 and from Lemma 2.1 that if µ ∈ {1, 3}, the functionH(µ)( · , 0) is well defined
also with f as given now, that is, f ∈ Lp(∆1)

3, and the estimate ∥H(µ)( · , 0)∥p ≤ C ∥f∥p
holds. We recall that according to Theorem 5.1, the weak derivative ∂ν

[
V
(
Ψt Zt(f)

)
j
◦γt

]
exists also in the case f ∈ Lp(∆1)

3 considered presently, and inequality (5.1) is valid for
this f . Define

H̃(4) := −H(1)( · , 0)−H(3)(f)( · , 0) + ∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
. (5.25) T7.20.2

In view of (5.1) and the estimate ∥H(µ)( · , 0)∥p ≤ C ∥f∥p for µ ∈ {1, 3} derived above, we

see that H̃(4) ∈ Lp(∆1)
3 and ∥H̃(4)∥p ≤ C ∥f∥p.

Next take f ∈ W 1,p(∆1)
3∩C2(∆1)

3. We have H̃(4) = H(4)( · , 0) by (5.24), andH(4)( · , 0) =
−V

(
ΨtZt(∂νf)

)
j
◦γt by (3.2). At this point we may refer to Theorem 5.1 to obtain that

H̃(4) ∈ W 1,p(∆1) and ∥∂rH̃(4)∥p ≤ C ∥∂νf∥p for r ∈ {1, 2}.

Since we have now shown that ∥H̃(4)∥p ≤ C ∥f∥p for f ∈ Lp(∆1)
3 and H̃(4) ∈ W 1,p(∆1)

3,

∥H̃(4)∥1,p ≤ C ∥f∥1,p for f ∈ W 1,p(∆1)
3∩C2(∆1)

3, we may conclude that H̃(4) ∈ W 1,p(∆1)
3

and ∥H̃(4)∥1,p ≤ C ∥f∥1,p for f ∈ W 1,p(∆1)
3. Therefore interpolation implies that H̃(4) ∈

W 1−1/p, p(∆1)
3 and ∥H̃(4)∥1−1/p, p ≤ C ∥f∥1−1/p, p for f ∈ W 1−1/p, p(∆1)

3.

From (5.22), (5.23) and Theorem 2.2 we obtain that H(µ)( · , 0) for µ ∈ {1, 3} belongs to
W 1−1/p, p(∆1)

3 and ∥H(µ)( · , 0)∥1−1/p, p ≤ C ∥f∥p if f ∈ Lp(∆1)
3. At this point we may

refer to equation (5.25) to conclude that ∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
∈ W 1−1/p, p(∆1) and

∥∂ν
[
V
(
Ψt Zt(f)

)
j
◦ γt

]
∥1−1/p, p ≤ C ∥f∥1−1/p, p for any f ∈ W 1−1/p, p(∆1)

3, ν ∈ {1, 2}.
It follows with Theorem 5.1 that V

(
ΨtZt(f)

)
j
◦ γt belongs to W 2−1/p, p(∆1) for f ∈

W 1−1/p, p(∆1)
3, and ∥V

(
Ψt Zt(f)

)
j
◦ γt∥2−1/p, p ≤ C ∥f∥1−1/p, p for such f .

Now let ϕ ∈ W 1−1/p, p(∂Ω)3. The constants C appearing in the following are independent of
ϕ. Then ϕ◦γt ∈ W 1−1/p, p(∆t)

3 and Zt(ϕ◦γt)|Λt,1 = ϕ|Λt,1. Since supp(Ψt)∩∂Ω ⊂ Λt, 3/4,

we see that Ψt Zt(ϕ ◦ γt) = Ψt ϕ, so we now obtain that V (Ψt ϕ)j ◦ γt ∈ W 2−1/p, p(∆1) and

∥V (Ψt ϕ)j ◦ γt∥2−1/p, p ≤ C ∥ϕ ◦ γt∥1−1/p, p. (5.26) T7.20.80

Next we note that dist(∂Ω\Λt, 1/2, Λt, 1/4) > 0 (Lemma 3.1), supp
(
(1 − Ψt)|∂Ω

)
⊂

∂Ω\Λt, 1/2 and γt(ϱ) ∈ Λt, 1/4 for ϱ ∈ ∆1/4. If follows with Lebesgue’s theorem that
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V
(
(1−Ψt)ϕ)j ◦ γt|∆1/4 ∈ C2(∆1/4) and

|∂α
[
V
(
(1−Ψt)ϕ

)
j
◦ γt

]
(ϱ)| =

∣∣∣∫
∂Ω

3∑
k=1

∂αϱ
[
Ejk

(
γt(ϱ)− y

) ]
(1−Ψt)(y)ϕk(y) doy

∣∣∣
≤ C ∥ϕ∥1 for ϱ ∈ ∆1/4, α ∈ N2

0 with |α| ≤ 2.

As a consequence ∥V
(
(1−Ψt)ϕ

)
j
◦ γt|∆1/4∥2,p ≤ C ∥ϕ∥p, and therefore

∥V
(
(1−Ψt)ϕ

)
j
◦ γt|∆1/4∥2−1/p, p ≤ C ∥ϕ∥p.

This estimate combined with (5.26 yields that V (ϕ)j ◦ γt|∆1/4 ∈ W 2−1/p, p(∆1/4) and

∥V (ϕ)j ◦ γt|∆1/4∥2−1/p, p ≤ C (∥ϕ ◦ γt∥1−1/p, p + ∥ϕ∥p) ≤ C ∥ϕ∥1−1/p, p. Since j, t, ϕ were

chosen arbitrarily in {1, 2, 3}, {1, ..., k} and W 1−1/p, p(∂Ω)3, respectively, the theorem
follows with (3.1). □

The consequence of Theorem 5.2 we are interested in is stated as
⟨corollary100.50⟩

Corollary 5.1 Let p ∈ (1,∞). For b ∈ W 1−1/p, p(∂Ω)3, ϕ ∈ E
(∓)
p with (1/2)

(
∓ϕ +

T∗(ϕ)
)
= b, the relations V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 and ∥V (ϕ)|∂Ω∥2−1/p, p ≤ C ∥b∥1−1/p, p

hold. (The space E
(∓)
p was introduced in Corollary 4.3.)

Proof: Take b and ϕ as in the corollary, and consider the case (1/2)
(
ϕ+T∗(ϕ)

)
= b. All

the constants C appearing in the following are independent of b. We have in particular
b ∈ ran(Ip + T ∗

p ), so by Corollary 4.2
∫
∂Ω
ϕ(j) · b dox = 0 for 1 ≤ j ≤ 6. Since in addition

b ∈ W 1−1/p, p(∂Ω)3, we may conclude with Lemma 4.7 there is a sequence (bn) in C
0(∂Ω)3

with bn ∈ Ca(∂Ω)3 ∩W 1−1/p, p(∂Ω)3,
∫
∂Ω
ϕ(j) · bn dox for n ∈ N, a ∈ (0, 1), 1 ≤ j ≤ 6, and

such that ∥b− bn∥1−1/p, p → 0.

Let n ∈ N. It follows with Corollary 4.2 that bn ∈ ran(Ip + T ∗
p ), so there is a unique

function ϕn ∈ E
(+)
p with (1/2)

(
ϕn +T∗(ϕn)

)
= bn for n ∈ N; see Corollary 4.3. Theorem

4.2 yields in particular that ϕn ∈ Ca(∂Ω)3 for a ∈ (0, 1). Now we may conclude from
Lemma 4.10 that

(1/2)
[
V (ϕn)|∂Ω + T

(
V (ϕn)|∂Ω

) ]
= V (bn)|∂Ω. (5.27) C100.50.10

Since ∥bn − b∥p → 0, we know by (4.7) that∥V (bn)− V (b)|∂Ω∥p → 0. But

∥ϕn − ϕ∥p ≤ C ∥ϕn − ϕ+ T∗(ϕn − ϕ)∥p = C ∥bn − b∥p for n ∈ N (5.28) C100.50.5

according to Corollary 4.3, so ∥ϕn − ϕ∥p → 0, hence ∥V (ϕn − ϕ)|∂Ω∥p → 0 by (4.7). Now
it follows from the boundedness of Tp (Lemma 4.5) that

∥V (ϕn − ϕ)|∂Ω + T
(
V (ϕn − ϕ)|∂Ω

)
∥p → 0.

Altogether we deduce from (5.27) that (1/2)
[
V (ϕ)|∂Ω + T

(
V (ϕ)|∂Ω

) ]
= V (b)|∂Ω.
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Since bn ∈ W 1−1/p, p(∂Ω)3, Theorem 5.2 yields that V (bn)|∂Ω ∈ W 2−1/p, p(∂Ω)3 (n ∈ N)
and

∥V (bn − bm)|∂Ω∥2−1/p, p ≤ C ∥bn − bm∥1−1/p, p, ∥V (bn)|∂Ω∥2−1/p, p ≤ C ∥bn∥1−1/p, p, (5.29) C100.50.6

for m,n ∈ N. By Lemma 4.2 we further have V (bn)|∂Ω ∈ Ca(∂Ω)3 for 0 < a < 1, n ∈ N,
so it follows with (5.27) and Theorem 4.3 that the functions V (ϕn−ϕm)|∂Ω and V (ϕn)|∂Ω
belong to W 2−1/p, p(∂Ω)3 and

∥V (ϕn − ϕm)|∂Ω∥2−1/p, p ≤ C
(
∥V (bn − bm)|∂Ω∥2−1/p, p + ∥ϕn − ϕm∥p

)
,

∥V (ϕn)|∂Ω∥2−1/p, p ≤ C
(
∥V (bn)|∂Ω∥2−1/p, p + ∥ϕn∥p

)
(m,n ∈ N).

Due to (5.29) and because of (5.28) and an analogous inequality for ∥ϕn∥p, we thus obtain
that

∥V (ϕn − ϕm)|∂Ω∥2−1/p, p ≤ C ∥bn − bm∥1−1/p, p, ∥V (ϕn)|∂Ω∥2−1/p, p ≤ C ∥bn∥1−1/p, p (5.30) C100.50.20

for m,n ∈ N. The first estimate in (5.30) implies there is γ ∈ W 2−1/p, p(∂Ω)3 such that
∥V (ϕn) − γ∥2−1/p, p → 0. Since ∥V (ϕn − ϕ)|∂Ω∥p → 0, as explained following (5.28), we
may conclude that V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3 and ∥V (ϕn − ϕ)∥2−1/p, p → 0. In addition
∥bn − b∥1−1/p, p → 0 by the choice of the sequence (bn). At this point the second estimate
in (5.30) yields that ∥V (ϕ)|∂Ω∥2−1/p, p ≤ C ∥b∥1−1/p, p.

Analogous arguments are valid if (1/2)
(
−ϕ+T∗(ϕ)

)
= b if we note that the function ϕ

(0)
p′

introduced in Corollary 4.3 belongs to Ca(∂Ω)3 for a ∈ (0, 1) by Theorem 4.2. □

6 Existence and W 2,p-regularity of solutions to (1.1),

(1.2).

In the ensuing theorem we consider (1.1) with F = 0 (homogeneous Stokes system) and
(1.2) with Neumann data satisfying a side condition. This theorem combined with Corol-
lary 6.1 below state that in such a situation, problem (1.1), (1.2) admits a W 2,p-regular
solution in the exterior domain Ω

c
. This result is proved by reducing it to Corollary 5.1

and to the Lp-theory of the Stokes system in bounded domains under Dirichlet boundary
conditions.

⟨theorem7.30⟩
Theorem 6.1 Let p ∈ (1,∞) and R ∈ (0,∞) with Ω ⊂ BR, b ∈ W 1−1/p, p(∂Ω)3 with∫
∂Ω
ϕ(0) · b dox = 0. Abbreviate ϕ := F−(b), V := V (ϕ)|Ωc

, Q := Q(ϕ)|Ωc
.

(The functions ϕ(0) and F−(b) were introduced in Corollary 4.3, and the functions V (ϕ)
and Q(ϕ) in Lemma 4.2.)

Then V ∈ C∞(Ω
c
)3, Q ∈ C∞(Ω

c
), the pair (V,Q) solves (1.1) in Ω

c
with F = 0. Let

30



r1 ∈ [1, 3 p/2), r2 ∈ (3,∞), r3 ∈ (3/2, ∞), r4 ∈ (1,∞). Then

∥V |ΩR∥1,r1 + ∥Q|ΩR∥r1 ≤ C ∥b∥p, (6.1) T7.30.20

∥V |ΩR∥2,p + ∥Q|ΩR∥1,p ≤ C ∥b∥1−1/p, p, (6.2) T7.30.30

∥V |Bc
R∥r2 ≤ C ∥b∥p, ∥∂mV |Bc

R∥r3 + ∥Q|Bc
R∥r3 ≤ C ∥b∥p for 1 ≤ m ≤ 3, (6.3) T7.30.40

∥∂l∂mV |Bc
R∥r4 + ∥∂mQ|Bc

R∥r4 ≤ C ∥b∥p for 1 ≤ l,m ≤ 3. (6.4) T7.30.60

In particular, if r ∈ (3, 3 p/2), then ∥∂mV ∥r + ∥Q∥r ≤ C ∥b∥p for 1 ≤ m ≤ 3. All the
constants C appearing in the preceding estimates are independent of b.

Proof: The relations V ∈ C∞(Ω
c
)3, Q ∈ C∞(Ω

c
) and equation (1.1) with (V,Q) in the

place of (U,Π) and with F = 0 are valid according to Lemma 4.2. Moreover Corollary
4.1 yields that ∥V (ϕ)|ΩR∥1,r1 + ∥Q(ϕ)|ΩR∥r1 ≤ C ∥ϕ∥p. Here and in the following, the
constants denoted by C do not depend on ϕ or b. By Lemma 4.4, we have

∥V (ϕ)|Bc
R∥r2 ≤ C ∥ϕ∥p, ∥∂mV (ϕ)|Bc

R∥r3 + ∥Q(ϕ)|Bc
R∥r3 ≤ C ∥ϕ∥p,

∥∂l∂mV (ϕ)|Bc
R∥r4 + ∥∂mQ(ϕ)|Bc

R∥r4 ≤ C ∥ϕ∥p for 1 ≤ l,m ≤ 3.

On the other hand, due to Corollary 4.3 and by the definition of ϕ, the relations

(1/2)
(
−ϕ+ T∗(ϕ)

)
= b, ∥ϕ∥p ≤ C ∥b∥p (6.5) T7.30.100

hold. The preceding inequalities imply (6.1) and (6.3) – (6.4).

Let us show (6.2). From (6.5) and Corollary 5.1, we find that V (ϕ)|∂Ω ∈ W 2−1/p, p(∂Ω)3

and

∥V (ϕ)|∂Ω∥2−1/p, p ≤ C ∥b∥1−1/p, p. (6.6) T7.30.110

Recall that V (ϕ)(x) for x ∈ ∂Ω was given by a direct definition in Lemma 4.2. On
the other hand, inequality (6.1) means in particular that that V (ϕ)|ΩR ∈ W 1,p(ΩR)

3,
and by the last statement in Lemma 4.8, we know that the trace of V (ϕ)|ΩR on ∂Ω
coincides with V (ϕ)|∂Ω as defined in Lemma 4.2. Moreover estimates (6.3) – (6.4) yield
in particular that V (ϕ)|B2R\BR ∈ W 2,p(B2R\BR)

3 and ∥V (ϕ)|B2R\BR∥2,p ≤ C ∥ϕ∥p,
so the C∞-regularity of V in Ω

c
mentioned above and a standard trace theorem yield

that V (ϕ)|∂BR ∈ W 2−1/p, p(∂BR)
3 and ∥V (ϕ)|∂BR∥2−1/p, p ≤ C ∥ϕ∥p. Therefore we may

conclude with (6.6) that V (ϕ)|∂ΩR ∈ W 2−1/p, p(∂ΩR)
3 and

∥V (ϕ)|∂ΩR∥2−1/p, p ≤ C (∥b∥1−1/p, p + ∥ϕ∥p) ≤ C ∥b∥1−1/p, p, (6.7) T7.30.120

where the last inequality follows from (6.5). Since div
(
V (ϕ)|R3\∂Ω

)
= 0, and again by

the relation V (ϕ)|ΩR ∈ W 1,p(ΩR)
3, we get that

∫
∂ΩR

V (ϕ)(x) · n(Ω,R)(x) dox = 0, with

n(Ω,R) denoting the outward unit normal to ΩR. At this point we may apply Theorem
2.5, which yields functions u ∈ W 2,p(ΩR)

3, π ∈ W 1,p(ΩR) with −∆u+∇π = 0, u|∂ΩR =
V (ϕ)|∂ΩR,

∫
ΩR
π dx = 0 and ∥u∥2,p+∥π∥1,p ≤ C ∥V (ϕ)|∂ΩR∥2−1/p, p. The latter inequality
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and (6.7) imply that ∥u∥2,p+∥π∥1,p ≤ C ∥b∥1−1/p, p. But u = V (ϕ)|ΩR and π = Q(ϕ)|ΩR+c,
with c := −|ΩR|−1

∫
ΩR
Q(ϕ)(x) dx. This follows from Theorem 2.6 and the properties of

V and Q stated at the beginning of this proof, and because V (ϕ)|ΩR ∈ W 1,p(ΩR)
3 and

Q(ϕ)|ΩR ∈ Lp(ΩR) according to (6.1). Thus inequality (6.2) is proved. □
⟨corollary100.60⟩

Corollary 6.1 Consider the same situation as in Theorem 6.1. In particular recall the
notation V := V (ϕ)|Ωc

, Q := Q(ϕ)|Ωc
. Moreover write (∂jV )tr and Qtr for the trace of

V and Q on ∂Ω (1 ≤ j ≤ 3). Then

3∑
k=1

n
(Ω)
k

(
(∂jV )trk + (∂kV )trj − δjkQ

tr
)
= bj for 1 ≤ j ≤ 3. (6.8) C100.60.80

Proof: Since (1/2)
(
−ϕ+ T∗(ϕ)

)
= b by the definition of ϕ and the choice of F−(b), we

have ϕ ∈ ran(−Ip + T ∗
p ), so by Corollary 4.2 and Lemma 4.7, we may choose a sequence

(bn) in C0(∂Ω)3 such that bn ∈ Ca(∂Ω)3 ∩W 1−1/r, r(∂Ω)3 and
∫
∂Ω
ϕ(0) · bn dox = 0 (n ∈

N, a ∈ (0, 1), r ∈ (1,∞)), and ∥bn − b∥1−1/p, p → 0.

Let n ∈ N. Since
∫
∂Ω
ϕ(0) · bn dox = 0, the function ϕn := F−(bn) ∈ E−

p from Corollary

4.3 is well defined. By definition it satisfies the equation (1/2)
(
−ϕn +T∗(ϕn)

)
= bn. Let

R ∈ (0,∞) with Ω ⊂ BR/2. By our choice of bn, we have bn ∈ W 1−1/r, r(∂Ω)3 for r ∈ (1,∞),
so Theorem 6.1 implies that V (ϕn)|ΩR ∈ W 2,r(ΩR)

3, Q(ϕn)|ΩR ∈ W 1,r(ΩR) for such r. It
follows by a Sobolev inequality that V (ϕn)|ΩR may be continuously extended to a function
from C1(ΩR)

3, and Q(ϕn)|ΩR admits a continuous extension to ΩR. Since both V (ϕn) and
Q(ϕn) are C

∞ in Ω
c
(Lemma 4.2), we may conclude there are functions Vn ∈ C1(Ωc)3 and

Qn ∈ C0(Ωc) such that V (ϕn)|Ω
c
= Vn|Ω

c
and Q(ϕn)|Ω

c
= Qn|Ω

c
. On the other hand,

since bn ∈ Ca(∂Ω)3 for a ∈ (0, 1), Theorem 4.2 yields in particular that ϕn ∈ C0(∂Ω)3.
Recalling that ∂jVn ∈ C0(Ωc)3, Qn ∈ C0(Ωc), Vn|Ω

c
= V (ϕn)|Ω

c
and Qn|Ω

c
= Q(ϕn)|Ω

c
,

we may thus deduce from Theorem 4.4 and the equation (1/2)
(
−ϕn + T∗(ϕn)

)
= b that

3∑
k=1

n
(Ω)
k (x) (∂jVn,k + ∂kVn,j − δjkQn)(x) = bn,j(x) for x ∈ ∂Ω, 1 ≤ j ≤ 3. (6.9) C100.60.10

Here n was arbitrary from N. But by our choice of (bn) and (ϕn), Theorem 6.1 yields that

∥V (ϕn − ϕ)|ΩR∥2,p + ∥Q(ϕn − ϕ)|ΩR∥1,p ≤ C ∥bn − b∥1−1/p, p for n ∈ N.

Thus, using the notation for the trace of V (ϕ)|Ωc
and Q(ϕ)|Ωc

, respectively, introduced
in the corollary, and taking into account that ∂jVn ∈ C0(Ωc)3, Qn ∈ C0(Ωc), we get that

∥(∂jV )tr − ∂jVn∥p + ∥Qtr −Qn∥p ≤ C ∥bn − b∥1−1/p, p (n ∈ N, 1 ≤ j ≤ 3).

Since ∥bn − b∥1−1/p, p → 0 by the choice of the sequence (bn), equation (6.8) now follows
from (6.9). □

It is well known (see [23]) that the side condition imposed on the boundary data b in the
preceding corollary may be eliminated by using the double layer potentials from Lemma
4.3. In order to check how this steps works out in our Lp-theory, we give some details of
a proof.
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⟨theorem100.60⟩
Theorem 6.2 Consider the function ϕ(0) from Corollary 4.3. There is a ∈ (0, 1) with
ϕ(0) ∈ C1,a(∂Ω)3. Moreover

∫
∂Ω
ϕ(0) · n(Ω) dox ̸= 0, and there is c0 = c0(ϕ

(0)) ∈ R3\{0}
such that

3∑
j,k=1

n
(Ω)
k (x)

(
∂jW (ϕ(0))k+∂kW (ϕ(0))j−δjk Π(ϕ(0))

)(
x−κn(Ω)(x)

)
→ −c0 n(Ω)

j (x) (κ ↓ 0)

for 1 ≤ j ≤ 3, x ∈ ∂Ω. (The functions W (ϕ(0)) and Π(ϕ(0)) were introduced in Lemma
4.3.) Let p ∈ (1,∞), b ∈ W 1−1/p, p(∂Ω)3. Put

γ(b) := −
∫
∂Ω

ϕ(0) · b dox
( ∫

∂Ω

ϕ(0) · n(Ω) dox
)−1

, b̃ := b+ γ(b)n(Ω).

Then
∫
∂Ω
ϕ(0) · b̃ dox = 0. Put ϕ := F−(̃b), with F−(̃b) from Corollary 4.3,

u := V (ϕ) + c−1
0 γ(b)W (ϕ(0))|Ωc

, π := Q(ϕ) + c−1
0 γ(b)Π(ϕ(0))|Ωc

.

(See Lemma 4.2 for the definition of V (ϕ) and Q(ϕ).)

Then u ∈ C∞(Ω
c
)3, π ∈ C∞(Ω

c
), and the pair (u, π) solves (1.1) in Ω

c
with F = 0.

Let R ∈ (0,∞) with Ω ⊂ BR, r1 ∈ [1, 3 p/3), r2 ∈ (3,∞), r3 ∈ (3/2, ∞), r4 ∈ (1,∞).
Then, with constants C independent of b,

∥u|ΩR∥r1 ≤ C ∥b∥p, ∥u|ΩR∥2,p + ∥π|ΩR∥1,p ≤ C ∥b∥1−1/p, p, (6.10) T100.60.10a

∥u|Bc
R∥r2 ≤ C ∥b∥p, ∥∂nu|Bc

R∥r3 + ∥π|Bc
R∥r3 ≤ C ∥b∥p for 1 ≤ n ≤ 3, (6.11) T100.60.30a

∥∂m∂nu|Bc
R∥r4 + ∥∂nπ|Bc

R∥r4 ≤ C ∥b∥p for 1 ≤ m,n ≤ 3, (6.12) T100.60.50a

in particular ∥∂m∂nu∥p+ ∥∂nπ∥p ≤ C ∥b∥p. The pair (u, π) solves (1.2) in the trace sense.

Proof: By the choice of ϕ(0) in Corollary 4.3, we have −ϕ(0) + T(ϕ(0)) = 0. Thus we
may apply Theorem 4.7 with b = 0 and ϕ = ϕ(0), and with p = r for any r ∈ (3,∞).
Abbreviating W := W (ϕ(0)), Win := Win(ϕ

(0)), Wex := Wex(ϕ
(0)), Π := Π(ϕ(0)), Πin :=

Πin(ϕ
(0)) and Πex := Πex(ϕ

(0)), this theorem combined with Theorem 4.6 and Lemma 4.3
allow us to conclude that ϕ(0) ∈ C1,a(∂Ω)3 for some a ∈ (0, 1), ϕ(0) ∈ W 2−1/p, p(∂Ω)3,

Win ∈ C1(Ω)3, Wex ∈ C1(Ωc)3, Πin ∈ C0(Ω), Πex ∈ C0(Ωc), (6.13) T100.60.10

Win|∂Ω = (−1/2)
(
−ϕ(0) + T(ϕ(0))

)
= 0, Wex|∂Ω = (−1/2)

(
ϕ(0) + T(ϕ(0))

)
= −ϕ(0),

Win|Ω = W |Ω ∈ W 2,p(Ω)3, Wex|Ω
c
= W |Ωc

, W ∈ C∞(R3\∂Ω)3, Π ∈ C∞(R3\∂Ω),

∆W +∇Π = 0, divW = 0, Πin|Ω = Π|Ω ∈ W 1,p(Ω), Πex|Ω
c
= Π|Ωc

,

W |ΩR ∈ W 2,p(ΩR)
3, Π|ΩR ∈ W 1,p(ΩR).

(The functionsWin(ϕ
(0)) andWex(ϕ

(0)) were introduced in Theorem 4.5, and Πin(ϕ
(0)) and

Πex(ϕ
(0)) in Theorem 4.7. The parameter R was fixed in the theorem above.) Theorem
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4.5 and the relation ϕ(0) ∈ C1,a(∂Ω)3 provide the equation

3∑
k=1

n
(Ω)
k (∂jWin, k + ∂kWin, j − δjk Πin) (6.14) T100.60.20

=
3∑

k=1

n
(Ω)
k (∂jWex, k + ∂kWex, j − δjk Πex) for 1 ≤ j ≤ 3.

Among the relations in (6.13), we next use that Win ∈ C1(Ω)3, Win|∂Ω = 0, Win|Ω =
W |Ω ∈ W 2,p(Ω)3, Πin ∈ C0(Ω), Πin|Ω = Π|Ω ∈ Lp(Ω), W ∈ C∞(R3\∂Ω)3, Π ∈
C∞(R3\∂Ω), ∆W + ∇Π = 0, divW = 0. From this and Theorem 2.6, it follows that
Win = 0, hence ∂jWin = 0 (1 ≤ j ≤ 3) and ∇Π|Ω = 0. But Ω is a domain and Π is in
particular continuous, so there is c0 = c0(ϕ

(0)) ∈ R with Π|Ω = c0, hence Πin = c0. Thus

the left-hand side of (6.14) equals −c0 n(Ω)
j , and therefore also its right-hand side, so that

3∑
k=1

n
(Ω)
k (∂jWex, k + ∂kWex, j − δjk Πex) = −c0 n(Ω)

j (1 ≤ j ≤ 3). (6.15) T100.60.25

Now suppose for a contradiction that

c0 = 0 or

∫
∂Ω

ϕ(0) · n(Ω) dox = 0. (6.16) T100.60.30

Then let S ∈ [R,∞). We use Lemma 2.5 with U = ΩS, u = ũ = Wex|ΩS, π = Πex. This
choice is possible according to (6.13). Also according to (6.13), we have Wex|∂Ω = −ϕ(0).
Thus Lemma 2.5), equation (6.15) and assumption (6.16) imply that∫

ΩS

3∑
j,k=1

|∂jWk + ∂kWj|2 dx =

∫
∂BS

3∑
j,k=1

(xk/S) (∂jWk + ∂kWj − δjk Π)(x)Wj(x) dox.

But the surface integral on the right-hand side of preceding equation tends to zero for
S → ∞ due to (4.8), (4.9). It follows that

∫
Ω

c

∑3
j,k=1 |∂jWk + ∂kWj|2 dx = 0. This means

that ∂jWk + ∂kWj|Ω
c
= 0 for 1 ≤ j, k ≤ 3. Turning to Theorem 2.4, we now conclude

there are numbers α1, ..., α6 ∈ R such that W |Ωc
=

∑6
j=1 αj ϕ

(j)|Ωc
. If there were an

index j ∈ {1, ..., 6} with αj ̸= 0, we might choose a sequence (xn) in Ω
c
such that

|xn| → ∞ and
∑6

j=1 αj ϕ
(j)(xn) ↛ 0. For example, if α6 ̸= 0, a suitable choice would be

xn = (0, R + n, 0) for n ∈ N. But on the other hand, for any sequence (xn) in Ω
c
with

|xn| → ∞, inequality (4.8) implies |W (xn)| → 0. Thus we may conclude that αj = 0
for 1 ≤ j ≤ 6, hence W |Ωc

= 0, and so Wex = 0. But Wex|∂Ω = −ϕ(0), so ϕ(0) = 0, in
contradiction to the choice of ϕ(0) in Corollary 4.3. Thus none of the equations in (6.16)
can be true. As a consequence c0 ̸= 0 and

∫
∂Ω
ϕ(0) · n(Ω) dox ̸= 0.

Since Ω is C2-bounded, we have n(Ω) ∈ Ca(∂Ω)3 for any a ∈ (0, 1). This means in particular

that n(Ω) ∈ W 1−1/p, p(∂Ω)3, so b̃ ∈ W 1−1/p, p(∂Ω)3. (The function b̃ was introduced in the
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theorem.) Obviously
∫
∂Ω
ϕ(0) ·b̃ dox = 0. Recall that ϕ = F−(̃b), with F−(̃b) from Corollary

4.3; see the definitions in the theorem. Therefore we see that all statements of of Theorem
6.1 and Corollary 6.1 are true with b̃ in the role of b. But |γ(b)| ≤ C ∥b∥p, so we find that

∥b̃∥p ≤ C ∥b∥p (1 + ∥n(Ω)∥p) ≤ C ∥b∥p, (6.17) T100.60.50

∥b̃∥1−1/p, p ≤ C
(
∥b∥1−1/p, p + |γ(b)| ∥n(Ω)∥1−1/p, p

)
≤ C (∥b∥1−1/p, p + ∥b∥p) ≤ C ∥b∥1−1/p, p.

Thus the estimates in Theorem 6.1 are valid as stated, that is, with the function b on
their right-hand side. Recall that in (6.13) we noted in particular that

Wex ∈ C1(Ωc)3, Wex|Ω
c
= W |Ωc ∈ C∞(Ω

c
)3, Πex ∈ C0(Ωc), Πex|Ω

c
= Π|Ωc

(6.18) T100.60.60

∈ C∞(Ω
c
), −∆W +∇Π = 0, div W = 0, W |ΩR ∈ W 2,p(ΩR)

3, Π|ΩR ∈ W 1,p(ΩR).

As a first consequence, the trace of ∂j(W |Ωc
) and Π|Ωc

on ∂Ω exists and equals Wex|∂Ω
and Πex|∂Ω, respectively. Observing that b̃− γ(b)n(Ω) = b, recalling that Corollary 6.1 is

valid here with b̃ in the place of b, and taking into account (6.15), we may thus conclude
that the pair (u, π) satisfies (1.2) in the trace sense. From (6.18) and Theorem 6.1, it
further follows that u ∈ C∞(Ω

c
)3, π ∈ C∞(Ω

c
), and the pair (u, π) solves (1.1) in Ω

c

with F = 0. Again using that |γ(b)| ≤ C ∥b∥p, once more referring to (6.18), Theorem 6.1
and (6.17), and noting that Lemma 2.4 and (4.4) imply that W |ΩR ∈ Lr1(ΩR)

3, we may
conclude that inequality (6.10) – (6.12) hold. □

Next we turn to the interior domain case.
⟨theorem7.31⟩

Theorem 6.3 Let p ∈ (1,∞) and b ∈ W 1−1/p, p(∂Ω)3 with
∫
∂Ω
ϕ(j) · b dox = 0 for 1 ≤ j ≤

6. Abbreviate ϕ := F+(b), V := V (ϕ)|Ω, Q := Q(ϕ)|Ω.
(The functions ϕ(1), ..., ϕ(6) were introduced in Theorem 1.1, the function F+(b) in Corol-
lary 4.3, and the functions V (ϕ) and Q(ϕ) in Lemma 4.2.)

Then V ∈ C∞(Ω)3, Q ∈ C∞(Ω), the pair (V,Q) solves (1.1) in Ω with F = 0. More-
over equation (6.8) holds with (∂jV )tr and Qtr again denoting the trace of ∂jV and Q,
respectively, on ∂Ω (but with a different meaning of V and Q compared to Corollary 6.1),
and

∥V ∥1,r + ∥Q∥r ≤ C ∥b∥p for r ∈ [1, 3p/2), ∥V ∥2,p + ∥Q∥1,p ≤ C ∥b∥1−1/p, p.

The constants C appearing in the preceding estimates are independent of b.

Proof: Theorem 6.3 is proved by an analogous reasoning as Theorem 6.1 and Corollary
6.1, with only that part of the proof of Theorem 6.1 being relevant which relates to ΩR.
□

Corollary 6.2 below shows that the condition on b in Theorem 6.3 is necessary. The
ensuing lemma is needed for the proof of this corollary.

⟨lemma100.50⟩
Lemma 6.1 Let p ∈ (1,∞), u ∈ W 2,p(Ω)3, π ∈ W 1,p(Ω). Then∫

∂Ω

3∑
j=1

ϕ
(l)
j

3∑
k=1

n
(Ω)
k (∂juk + ∂kuj − δjk π) dox =

∫
Ω

3∑
j=1

ϕ
(l)
j (∂jdivu+∆uj − ∂jπ) dx
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for 1 ≤ l ≤ 6.

Proof: The lemma follows from the Divergence theorem and the fact that

3∑
k=1

∂kϕ
(l)
j (∂juk + ∂kuj − δjk π) = 0 for 1 ≤ j ≤ 6. □

⟨corollary100.55⟩
Corollary 6.2 Let p ∈ (1,∞), f ∈ Lp(Ω)3, b ∈ W 1−1/p, p(∂Ω)3, u ∈ W 2,p(Ω)3, π ∈
W 1,p(Ω) such that the pair (u, π) satisfies (1.1) in Ω as well as (1.2). Then the equation∫
∂Ω
ϕ(l) · b dox +

∫
Ω
ϕ(l) · f dx = 0 holds for 1 ≤ l ≤ 6.

Proof: Combine Lemma 6.1 with (1.2) and (1.1). □

In the rest of this section, we consider solutions to (1.1), (1.2) in the case F ̸= 0.
⟨theorem100.71⟩

Theorem 6.4 Let A ⊂ R3 be measurable and p ∈ (1, 3/2). If f ∈ Lp(A)3, the integral∫
A

∑3
k=1 |(∂αEjk)(x− y) fk(y)| dy is finite for α ∈ N3

0 with |α| ≤ 1 and for a. e. x ∈ R3,
so we may define

R(f)(x) :=
(∫

A

3∑
k=1

Ejk(x− y) fk(y) dy
)
1≤j≤3

(x ∈ R3).

For such f , the relations R(f) ∈ W 2,p
loc (R3)3, divR(f) = 0 and ∥R(f)∥(1/p−2/3)−1 ≤

C(p) ∥f∥p hold, and in addition ∂lR(f)j(x) =
∫
A

∑3
k=1(∂lEjk)(x − y) fk(y) dy for x ∈

R3, 1 ≤ j, l ≤ 3.

Let q ∈ (1, 3). If f ∈ Lq(A)3, the integral
∫
A

∑3
k=1 |∂kN(x− y) fk(y)| dy is finite for a. e.

x ∈ R3, so we may define

S(f)(x) :=

∫
A

3∑
k=1

(−∂jN)(x− y) fk(y) dy for x ∈ R3,

and we have S(f) ∈ W 1,q
loc (R3)3, ∥S(f)∥(1/q−1/3)−1 ≤ C(q) ∥f∥q.

If A = R3 and f ∈ Lp(A)3, we have −∆R(f) +∇S(f) = f .

In the case f ∈ Lp(A)3 ∩ Lq(A)3 the estimate ∥∂lR(f)∥(1/q−1/3)−1 ≤ C(q) ∥f∥q is valid.

Let r ∈ (1,∞). If f ∈ Lp(A)3∩Lr(A)3, then ∥∂l∂mR(f)∥r ≤ C(r) ∥f∥r (1 ≤ l,m ≤ 3), and
in the case f ∈ Lq(A)3∩Lr(A)3, the estimate ∥∂lS(f)∥r ≤ C(r) ∥f∥r holds for 1 ≤ l ≤ 3.

Proof: The theorem follows from the Hardy-Littlewood-Sobolev inequality and from the
Calderon-Zygmund inequality; see [8, Satz 1.4] and compare the proof of [12, Theorem
IV.2.1]. □

⟨corollary100.24⟩
Corollary 6.3 Let r ∈ (1,∞), R, S ∈ (0,∞), f ∈ Lr(BR)

3. Then ∥R(f)|BS∥2,r +
∥S(f)|BS∥1,r ≤ C(r, R, S) ∥f∥r.
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Proof: Obviously f ∈ Lp(BR)
3 for any p ∈ (1, min{r, 3/2}), so R(f) and S(f) are well

defined. Hölder’s inequality and (4.4) yield for α ∈ N3
0 with |α| ≤ 1 that

∥∂αR(f)|BS∥r ≤
(∫

BS

(∫
BR

|x− y|−1−|α| dy
)r−1

∫
BR

|x− y|−1−|α| |f(y)|r dy dx
)1/r

.

The integral
∫
BR

|x− y|−1−|α| dy is bounded uniformly in x ∈ BS, and
∫
BS

|x− y|−1−|α| dx
uniformly in y ∈ BR. In view of the last estimate in Theorem 6.4, it follows that
∥R(f)|BS∥2,r ≤ C(r, R, S) ∥f∥r. An analogous reasoning is valid for S(f). □

Now we are in a position to give a more detailed version of the existence and regularity
results in Theorem 1.2.

⟨corollary100.25⟩
Corollary 6.4 Let p1 ∈ (1, 3/2), p2 ∈ (1, 3), p3 ∈ (1,∞), and let f belong to Ls(Ω

c
)3

and b to W 1−1/s, s(∂Ω)3 for s ∈ {p1, p2, p3}. Put

bj := −
3∑

k=1

n
(Ω)
k

(
∂jR(f)k + ∂kR(f)j − δjk S(f)

)
for j ∈ {1, 2, 3}.

Then b ∈ W 1−1/s, s(∂Ω)3 for s ∈ {p1, p2, p3}. Further define

γ(b+ b) := −
∫
∂Ω

ϕ(0) · (b+ b) dox
( ∫

∂Ω

ϕ(0) · n(Ω) dox
)−1

, b̃ := b+ b+ γ(b+ b)n(Ω),

with ϕ(0) from Corollary 4.3; see Theorem 6.2 for the fact that
∫
∂Ω
ϕ(0) · n(Ω) dox ̸= 0.

Then
∫
∂Ω
ϕ(0) · b̃ dox = 0, so ϕ := F−(̃b) ∈ Lmax{p1, p2, p3}(∂Ω)3 (Corollary 4.3) is well

defined. Finally put

u := V (ϕ) + c−1
0 γ(b+ b)W (ϕ(0))|Ωc

, π := Q(ϕ) + c−1
0 γ(b+ b)Π(ϕ(0))|Ωc

,

v := u+R(f), ϱ := π +S(f),

where c0 was introduced in Theorem 6.2. The functions V (ϕ) and Q(ϕ) are from Lemma
4.2, W (ϕ(0)) and Π(ϕ(0)) from Lemma 4.3, and R(f) and S(f) from Theorem 6.4. Note
that the functions u and π coincide with the corresponding functions in Theorem 6.2,
except that b is replaced here by b+ b.

Then (v, ϱ) ∈ W 2,p1
loc (Ω

c
)3 ×W 1,p1

loc (Ω
c
) and

v ∈ L(1/p1−2/3)−1

(Ω
c
)3, ∂lvj, ϱ ∈ L(1/s−1/3)−1

(Ω
c
), ∂m∂lvj, ∂lϱ ∈ Lr(Ω

c
)

for s ∈ {p1, p2}, r ∈ {p1, p2, p3}, 1 ≤ j, l,m ≤ 3, in particular v|ΩR ∈ W 2,p1(ΩR)
3 and

ϱ|ΩR ∈ W 1,p1(ΩR) for R ∈ (0,∞) with Ω ⊂ BR, so ∂jv (1 ≤ j ≤ 3) and ϱ have a trace on
∂Ω. The pair (v, ϱ) satisfies equation (1.1) in Ω with F = f , and (1.2) with B = b.

Moreover ∥v∥(1/p1−2/3)−1 ≤ C (∥f∥p1 + ∥b∥1−1/p1, p1). If s ∈ {p1, p2}, then

∥∂lv∥(1/s−1/3)−1 + ∥ϱ∥(1/s−1/3)−1 + ∥∂m∂lv∥s + ∥∂lϱ∥s ≤ C (∥f∥s + ∥b∥1−1/s, s)
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for 1 ≤ l,m ≤ 3. In addition, if R ∈ (0,∞) with Ω ⊂ BR, then

∥∂m∂lv∥p3 + ∥∂lϱ∥p3 ≤ C(R) (∥f∥p3 + ∥f |Bc
2R∥p2 + ∥b∥1−1/p3, p3)

for l, m as before. The constants C in these estimates are independent of f and b.

A comment of the term ∥f |Bc
2R∥p2 in the preceding estimate may be found in the passage

following Theorem 1.2

Proof of Corollary 6.4: All the constants C appearing in the following are independent
of f and b. Let s ∈ {p1, p2, p3}. Theorem 6.4, applied with p = q = p1, r = s, yields that

∥∂l∂mR(f)∥s + ∥∂lS(f)∥s ≤ C(s) ∥f∥s for 1 ≤ l,m ≤ 3. (6.19) C100.25.5

Let R ∈ (0,∞) with Ω ⊂ BR. By a trace inequality and the preceding estimate we get

∥b∥1−1/s, s ≤ C
( 3∑

l=1

∥∂lR(f)|ΩR∥1,s + ∥S(f)|ΩR∥1,s
)

(6.20) C100.25.20

≤ C
( 3∑

l=1

∥∂lR(f)|ΩR∥s + ∥S(f)|ΩR∥s + ∥f∥s
)
.

Consider the case s = p3. The estimate

∥∂lR(f |Ω2R) |ΩR∥p3 + ∥S(f |Ω2R) |ΩR∥p3 ≤ C ∥f |Ω2R∥p3 ≤ C ∥f∥p3

holds by Corollary 6.3. Moreover, for x ∈ BR and y ∈ Bc
2R, we have |x− y| ≥ |y|/2, so

∥∂lR(f |Bc
2R) |ΩR∥p3 + ∥S(f |Bc

2R) |ΩR∥p3 ≤ C |ΩR|1/p3
∫
Bc

2R

|y|−2 |f(y)| dy. (6.21) C100.25.25

Since p2 < 3, we have p′2 > 3/2, so
∫
Bc

2R
|y|−2 p′2 dy < ∞. Therefore, due to Hölder’s

inequality, the left-hand side of (6.21) may be bounded by C ∥f |Bc
2R∥p2 . Altogether, if

G ∈ {∂lR(f) : 1 ≤ l ≤ 3} or G = S(f), we get ∥G|ΩR∥p3 ≤ C (∥f∥p3 + ∥f |Bc
2R∥p2), so

it follows from (6.20) that b ∈ W 1−1/p3, p3(∂Ω)3 and ∥b∥1−1/p3, p3 ≤ C (∥f∥p3 + ∥f |Bc
2R∥p2).

This inequality combined with (6.12) the second estimate in (6.10) yield that

∥∂m∂lu∥p3 + ∥∂lπ∥p3 ≤ C ∥b+ b∥1−1/p3, p3 ≤ C (∥f∥p3 + ∥f |B2R∥p2 + ∥b∥1−1/p3, p3).

(Recall that u and π are taken from Theorem 6.2 with b replaced by b+ b.) The estimate
at the end of Corollary 6.4 thus follows with (6.19).

Now suppose that s ∈ {p1, p2}. We know from Theorem 6.4 that

∥∂lR(f)∥(1/s−1/3)−1 + ∥S(f)∥(1/s−1/3)−1 ≤ C(s) ∥f∥s (1 ≤ l ≤ 3). (6.22) C100.25.26

Thus for G as above, we have ∥G|ΩR∥s ≤ C(R, s) ∥G|ΩR∥(1/s−1/3)−1 ≤ C(R, s) ∥f∥s, so
we may conclude from (6.20) that b ∈ W 1−1/s,s(∂Ω)3 and

∥b∥1−1/s, s ≤ C ∥f∥s. (6.23) C100.25.27
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The second inequality in (6.10) and the preceding estimate imply that

∥u|ΩR∥2,s + ∥π|ΩR∥1,s ≤ C ∥b+ b∥1−1/s, s ≤ C (∥f∥s + ∥b∥1−1/s, s). (6.24) C100.25.30

Inequality (6.24) combined with (6.19) and (6.22) show in particular that ∂lvj|ΩR and ϱ|ΩR

– and hence also ∂lvj and ϱ – have a trace on ∂Ω. Due to the definition of b and by Theorem
6.2 with b replaced by b + b, the pair (v, ϱ) satisfies (1.2) with B = b. Moreover we may
conclude from Theorem 6.2 and 6.4 that the pair (v, ϱ) belongs to W 2,p1

loc (Ω
c
)3×W 1,p1

loc (Ω
c
)

and satisfies (1.1) with F = f . Due to (6.24), (6.12) with b replaced by b+ b, (6.23) and
(6.19), we obtain that ∥∂m∂lv∥s + ∥∂lϱ∥s ≤ C (∥f∥s + ∥b∥1−1/s, s) for 1 ≤ l,m ≤ 3. Since
s < 3, a Sobolev inequality and inequality (6.24) yield that

∥∂lu|ΩR∥(1/s−1/3)−1 + ∥π|ΩR∥(1/s−1/3)−1 ≤ C (∥f∥s + ∥b∥1−1/s, s) (1 ≤ l ≤ 3). (6.25) C100.25.30a

Again because s < 3, hence (1/s− 1/3)−1 > 3/2, and in view of the second inequality in
(6.11) with b+ b instead of b, we get ∥∂lu|Bc

R∥(1/s−1/3)−1 + ∥π|Bc
R∥(1/s−1/3)−1 ≤ C ∥b+ b∥s

for l as before. The preceding estimate, (6.25), (6.23) and (6.22) yield that

∥∂lv∥(1/s−1/3)−1 + ∥ϱ∥(1/s−1/3)−1 ≤ C (∥f∥s + ∥b∥1−1/s, s) (1 ≤ l ≤ 3).

Taking into account that p1 < 3/2, hence (1/p1−2/3)−1 > 3, and by the first inequality in
(6.11), as well as inequality (6.24) with s = p1, a Sobolev inequality, (6.23) and Theorem
6.4, we obtain in an analogous way that ∥v∥(1/p1−2/3)−1 ≤ C (∥f∥p1 + ∥b∥1−1/p1, p1), so the
proof of Corollary 6.4 is complete. □

The ensuing corollary elaborates the existence and regularity results in Theorem 1.1.
⟨corollary100.26⟩

Corollary 6.5 Let p ∈ (1,∞), f ∈ Lp(Ω)3, b ∈ W 1−1/p,p(∂Ω)3 with∫
∂Ω

ϕ(l) · b dox +
∫
Ω

ϕ(l) · f dx = 0 for 1 ≤ l ≤ 6.

Put bj := −
∑3

k=1 n
(Ω)
k

(
∂jR(f)k+∂kR(f)j−δjk S(f)

)
for 1 ≤ j ≤ 3. Then for l as above

the equation
∫
∂Ω
ϕ(l) · (b + b) dox = 0 holds, so the function ϕ := F+(b + b) ∈ E

(+)
p (∂Ω)

(Corollary 4.3) is well defined. Put v := V (ϕ)+R(f)|Ω, ϱ := Q(ϕ)+S(f)|Ω (see Lemma

4.2 and Theorem 6.4), α := M̃−1 (
∫
Ω
v · ϕ(j) dx)1≤j≤6, u := v −

∑6
j=1 αj ϕ

(j), π := ϱ, with

M̃ from Lemma 4.6.

Then u ∈ W 2,p(Ω)3, π ∈ W 1,p(Ω), the pair (u, π) satisfies (1.1) in Ω with F = f ,
as well as (1.2) with B = b. In addition

∫
Ω
u · ϕ(j) dx = 0 for 1 ≤ j ≤ 6. Moreover

∥u∥2,p + ∥π∥1,p ≤ C (∥f∥p + ∥b∥1−1/p, p), with a constant C independent of f and b.

Proof: By Corollary 6.3, we have R(f)|Ω ∈ W 2,p(Ω)3, S(f)|Ω ∈ W 1,p(Ω), so b ∈
W 1−1/p, p(∂Ω)3. Let l ∈ {1, ..., 6}. Then we find by Theorem 6.4 and Lemma 6.1 that∫

∂Ω

ϕ(l) · (b+ b) dox =

∫
∂Ω

ϕ(l) · b dox +
∫
Ω

ϕ(l) · f dx,
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so by our assumptions on f and b,
∫
∂Ω
ϕ(l) · (b + b) dox = 0. Therefore the function

ϕ := F+(b + b) (Corollary 4.3) is in fact well defined, and we may apply Theorem 6.3
with b replaced by b+ b, to obtain that V (ϕ)|Ω ∈ W 2,p(Ω)3, Q(ϕ)|Ω ∈ W 1,p(Ω), the pair(
V (ϕ)|Ω, Q(ϕ)|Ω

)
solves (1.1) in Ω with F = 0 and (1.2) with B = b + b. In addition

this theorem implies that ∥V (ϕ)|Ω∥2,p + ∥Q(ϕ)|Ω∥1,p ≤ C ∥b + b∥1,p. On the other hand,
with a trace estimate,

∥b∥1−1/p, p ≤ C
( 3∑

j=1

∥∂j(R(f)|Ω)∥1,p + ∥S(f)|Ω∥1,p
)
≤ C

(
∥R(f)|Ω∥2,p +S(f)|Ω∥1,p

)
.

Since ∥R(f)|Ω∥2,p + S(f)|Ω∥1,p ≤ C ∥f∥p again by Corollary 6.3, we thus arrive at the
inequality ∥v∥2,p + ∥ϱ∥1,p ≤ C (∥f∥p + ∥b∥1−1/p, p). Due to Theorem 6.4 and by what was
stated above on the pair

(
V (ϕ)|Ω, Q(ϕ)|Ω

)
, the pair (v, ϱ) solves (1.1), (1.2) with F, B

replaced by f and b, respectively.

For any j ∈ {1, ..., 6}, the function ϕ(j)|Ω belongs to C∞(Ω)3, and the pair (ϕ(j), 0) is a
solution of (1.1), (1.2) with F = 0 and B = 0. Recall the vector α ∈ R6 introduced in
Corollary 6.5. Since |αj| ≤ C ∥v∥p for 1 ≤ j ≤ 6, and by the properties of v and ϱ and

the definition of M̃, the pair (u, π) fulfills the claims stated in that corollary. □

7 Some uniqueness results.

The claims on uniqueness in this section imply what is stated on uniqueness in Theorem
1.1 and 1.2. First we consider the interior domain case.

⟨theorem100.91⟩
Theorem 7.1 Let p ∈ (1,∞), v ∈ W 2,p(Ω)3, ϱ ∈ W 1,p(Ω) such that the pair (v, ϱ)
satisfies (1.1), (1.2) with F = 0 and B = 0, and such that

∫
Ω
v ·ϕ(j) dx = 0 for 1 ≤ j ≤ 6.

Then v and ϱ vanish.

Proof: In the case p ≥ 2, we could use Lemma 2.5 with p = 2 and Theorem 2.4. But
Theorem 7.1 is not restricted to that case. For a proof of this fact, let g ∈ C∞

0 (Ω)3, and

put α := M̃−1 (
∫
Ω
g · ϕ(j) dx)1≤j≤6., with the matrix M̃ defined in Lemma 4.6. Define

f := g −
∑6

j=1 αj · ϕ(j). Then f ∈ C0(Ω)3 ⊂ Lp′(Ω)3 and
∫
Ω
f · ϕ(k) dx = 0 for 1 ≤ k ≤ 6.

Therefore, by Corollary 6.5, there are functions w ∈ W 2,p(Ω)3, σ ∈ W 1,p(Ω) such that
the pair (w, σ) satisfies (1.1), (1.2) with F = f, B = 0.

In this situation we twice use the formula in Lemma 2.5, once with (u, π) = (v, ϱ), ũ = w,
and then with (u, π) = (w, σ), ũ = v. It follows that

∫
Ω
f · v dx =

∫
Ω
(∆v−∇ϱ) ·w dx = 0.

But by our assumptions, v is orthogonal to the functions ϕ(j). Therefore
∫
Ω
g · v dx = 0.

Since g was an arbitrary function from C∞
0 (Ω)3, we may conclude that v = 0, hence there

is c ∈ R with ϱ = c a. e. Equation (1.2) and the assumption ϱ ∈ W 1,p(Ω) now yield that
ϱ = 0. □

Now we turn to solutions in the exterior domain Ω
c
. The uniqueness result we show in

this case is more general than the one in Theorem 1.2.
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⟨theorem100.80⟩
Theorem 7.2 Take R ∈ (0,∞) with Ω ⊂ BR. For j ∈ {1, 2}, let pj, qj, rj, sj ∈
(1,∞), u(j) ∈ W 2,1

loc (Ω
c
)3, π(j) ∈ W 1,1

loc (Ω
c
) such that u(j)|Bc

R ∈ Lpj(Bc
R)

3, π(j)|Bc
R ∈

Lqj(Bc
R), ∇π(j)|Bc

R ∈ Lrj(Bc
R)

3, and u(j)|ΩT ∈ W 2,sj(ΩT )
3, π(j)|ΩT ∈ W 1,sj(ΩT ) for

T ∈ (0,∞) with Ω ⊂ BT . Put u := u(1) − u(2), π := π(1) − π(2). Suppose in addition that
the pair (u, π) satisfies (1.1) with F = 0 as well as (1.2) with B = 0. Then u = 0 and
π = 0.

Note that the condition π(j)|Bc
R ∈ Lqj(Bc

R) for j ∈ {1, 2} is necessary. In fact, let
(u(1), π(1)) be the solution of (1.1) with F = 0 and (1.2) with B = n(Ω) provided by
Theorem 6.2, and put u(2) := 0, π(2) := 1. Then the pairs (u(1), π(1)), (u(2), π(2)) verify
all the assumptions of Theorem 7.2 except the relation π(2)|Bc

R ∈ Lq2(Bc
R) for some q2 ∈

(1,∞) and R ∈ (0,∞) with Ω ⊂ BR. These two pairs cannot coincide because π(1)|Bc
R ∈

Lr(Bc
R) for any r ∈ (3/2, ∞).

Proof of Theorem 7.2: Put r := min{r1, r2}. By the proof of [4, Theorem 1.1], where
Dirichlet boundary conditions are considered, we know that ∇π|Bc

R+1 ∈ Ls(Bc
R+1)

3 for
s ∈ (1, r]. Boundary conditions play no role in the argument leading to that result.
Theorem 2.3 then implies there is c(π) ∈ R such that π+ c(π)|Bc

R+1 ∈ L(1/s−1/3)−1
(Bc

R+1)
for s ∈ (1, r] if r < 3, and for any s ∈ (1, 3) else. Note that c(π) is independent of p, as
follows from the criterion for the case c(v) = 0 in Theorem 2.3.

Let us show that c(π) = 0. To this end put An := B2n\Bn for n ∈ N. Take s ∈ (1, r) with
s < min{q1, q2, 3}. Then for n ∈ N with n ≥ R + 1, because |An| = 28n3/3,

(28 |c(π)| π n3/3)1/s = ∥c(π)χAn∥s ≤ ∥π + c(π)|An∥s +
2∑

j=1

∥π(j)|An∥s (7.1) T100.80.10

≤ |An|1/3 ∥π + c(π)|An∥(1/s−1/3)−1 +
2∑

j=1

|An|1/s−1/pj ∥π(j)|An∥pj .

Recall that s ∈ (1, r) by the choice of s, and π + c(π)|BR+1 ∈ L(1/s−1/3)−1
(Bc

R+1), as
explained above above. In addition π(j)|Bc

R ∈ Lpj(Bc
R) by our assumptions. Thus, after

dividing both sides of (7.1) by n3/s, we get a left-hand side which is independent of n,
and a right-hand side tending to zero for n tending to infinity. Therefore the assumption
c(π) ̸= 0 would lead to a contradiction, hence c(π) = 0. As a consequence, in view of
the integrability properties of π + c(π) proved above, there is p̃ ∈ (3/2, ∞] such that
π|Bc

R+1 ∈ Lp(Bc
R+1) for any p ∈ (3/2, p̃). In fact, we may choose p̃ := (1/r − 1/3)−1 in

the case r < 3, and p̃ = ∞ else.

Fix a function φ ∈ C∞
0 (B2) with φ|B1 = 1 and 0 ≤ φ ≤ 1. Put φn(x) := φ(n−1 x) for

x ∈ R3, n ∈ N. Then φn ∈ C∞
0 (B2n), φ|Bn = 1, 0 ≤ φn ≤ 1, supp(∇φn) ⊂ B2n\Bn

for n ∈ N, ∥∇φn∥p → 0 (n → ∞) for p ∈ (3,∞), and ∥∂l∂mφn∥p → 0 (n → ∞) for
p ∈ (3/2, ∞), 1 ≤ l,m ≤ 3.

Let Φ ∈ C∞
0 (Ω

c
)3, and choose the pair (v, ϱ) ∈ W 2,1

loc (Ω
c
)3 × W 1,1

loc (Ω
c
) as in Corollary

6.4 with f = Φ and b = 0. This means in particular that vj ∈ Lp1(Ω
c
), ∂kvj, π ∈
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Lp2(Ω
c
), ∂m∂kvj, ∂lπ ∈ Lp3(Ω

c
) for any p1 ∈ (3,∞), p2 ∈ (3/2, ∞), p3 ∈ (1,∞), 1 ≤

l,m ≤ 3. This further means that (v, ϱ) solves (1.1) in Ω
c
with F = Φ, as well as (1.2)

with B = 0. For n ∈ N, put vn := φn v, ϱn := φn ϱ. We claim that

∥u · (−∆vn +∇ϱn − Φ)∥1 → 0, ∥u · ∇div vn∥1 → 0, ∥π div vn∥1 → 0 (n→ ∞). (7.2) T100.80.20

In fact, concerning the first of these relations, recall that supp(∇φn) ⊂ B2n\Bn ⊂ Bc
R for

n ∈ N, n ≥ R, and Ω ⊂ BR, so by Hölder’s inequality

∥u(j)k ∂lvk ∂lφn∥1 ≤ ∥u(j)k |Bc
R∥pj ∥∂lvk∥3 p′j/2 ∥∂lφn∥3 p′j for n as before, j ∈ {1, 2},

1 ≤ k, l ≤ 3. Further recall that u(j)|Bc
R ∈ Lpj(Bc

R)
3, ∂lv ∈ Lp(Ω

c
)3 for p ∈ (3/2, ∞), and

∥∇φn∥3 p′j → 0 when n tends to ∞. It follows that ∥u(j)k ∂lvk ∂lφn∥1 → 0 (n → ∞) for

j, k and l as before. Similarly ∥u(j) · v∆φn∥1 → 0 and ∥u(j) ϱ∇φn∥1 → 0 for n → ∞.
Altogether, since −∆v + ∇ϱ = Φ, we get that ∥u · (∆vn + ∇ϱn − Φ)∥1 → 0 (n → ∞).
Moreover div v = 0, so a variant of the preceding argument yields that ∥u · ∇div vn∥1 →
0 (n → ∞). Since π|Bc

R+1 ∈ Lp(Bc
R+1) for p ∈ (3/2, p̃), as shown above, and because

v|Bc
R+1 ∈ Ls(Bc

R+1)
3 for s ∈ (3,∞), we may choose p ∈ (3/2, p̃) and s ∈ (3,∞) so close

to respectively 3/2 and 3 that 1 − 1/p − 1/s < 1/3, hence (1 − 1/p − 1/s)−1 > 3. As
a consequence ∥∇φn∥(1−1/p−1/s)−1 → 0 (n → ∞), hence we get in view of the equation
div = 0 that ∥π div vn∥1 → 0 (n → ∞). This completes the proof of (7.2). Recalling the
first and second relation in (7.2), as well as the fact that the pair (v, ϱ) satisfies (1.2) with
B = 0, and noting that divu = 0 by (1.1), φn|Bn = 1, supp(φn) ⊂ B2n and Ω ⊂ Bn for
n ∈ N with n ≥ R, we obtain by Lemma 2.5 that∫

Ω
c
u · Φ dx = lim

n→∞

∫
Ω

c
u · (−∆vn +∇ϱn −∇div vn) dx (7.3) T100.80.30

= lim
n→∞

∫
Ω

c

3∑
j,k=1

(∂kuj ∂kvn,j + ∂kuj ∂jvn,k) dox.

Next we use the third relation in (7.2) and then the assumption that the pair (u, π) is a
solution of (1.1) with F = 0 and (1.2) with B = 0. It follows from (7.3) that∫

Ω
c
u · Φ dx = lim

n→∞

∫
∂Ω

3∑
j,k=1

(∂kuj + ∂juk − δjk π)n
(Ω)
k vn,j dox = 0.

At this point we may conclude that u = 0, hence π = 0 by (1.1) and (1.2). □

8 Appendix: Indications on the proof of Theorem

4.6.

We only consider the limit limκ↓0 F (−κ). The limit limκ↓0 F (κ) is easier to determine
because the integrals on ΩR appearing below can be replaced by integrals on Ω, so the
parameter R and the difficulties related to it do not arise.
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Let κ ∈
(
0, δ(Ω)

]
and put z := x− κn(Ω)(x). Note that z ∈ Ω (see (3.3)) and |z − b| ≥

D κ/2 for b ∈ U−κ (see (3.6)), where the open set U−κ and the constant D were introduced
in Lemma 3.2.

It follows that for n ∈ N, the function |z − y|−n (y ∈ U−κ) is C∞ in U−κ. Since ΩR ⊂
Ωc ⊂ U−κ for R ∈ (0,∞) (see Lemma 3.2), this C∞-regularity in U−κ will allow us in the
following to apply the Divergence theorem in ΩR.

Let j ∈ {1, 2, 3} and put Kklm := −∂jSklm − ∂kSjlm +2 δjk ∂l∂mN for k, l, m ∈ {1, 2, 3},
where Sνlm for ν ∈ {1, 2, 3} and N were introduced at the beginning of Section 4; see
(4.1) and (4.2). Then by the definitions in Lemma 4.3,

F (−κ)j =
3∑

k,l,m=1

n
(Ω)
k (x)

∫
∂Ω

Kklm(z − y)n
(Ω)
l (y)ϕm(y) doy. (8.4) Ap10

Let R ∈ (0,∞) with Ω ⊂ BR, and let n(ΩR) denote the outward unit normal to ΩR, that
is, n(ΩR)|∂Ω = −n(Ω)|∂Ω, n(ΩR)(y) = R−1 y for y ∈ ∂BR. By the definition of C1,α(∂Ω)3

(see at the beginning of Section 2), there is ϕ̃ ∈ C1,α(R3)3 with ϕ̃|∂Ω = ϕ. We will write ϕ

instead of ϕ̃ in the following. Then we get from (8.4) that F (−κ)j = A1+B1(R)+ Å+A,
where A1 is given by the right-hand side of (8.4), but with the term ϕm(y) replaced by
ϕm(y)− ϕm(x)−

∑3
ν=1 ∂νϕm(x) (y − x)ν , for 1 ≤ m ≤ 3. Moreover

B1(R) :=
3∑

k,l,m=1

ϕm(x)n
(Ω)
k (x)

∫
∂BR

Kklm(z − y) yl/R doy,

A :=
3∑

k,l,m,ν=1

∂νϕm(x)n
(Ω)
k (x)

∫
∂Ω

Kklm(z − y)n
(Ω)
l (y) (y − x)ν doy.

The term Å differs from B1(R) insofar as the integration extends over ∂ΩR instead of

∂BR, and −n(ΩR)
l (y) takes the place of yl/R, for 1 ≤ l ≤ 3. Due the Divergence theorem,

(4.3) and (4.5), we get that Å = 0. Next we observe that A = A2 +B2(R) +B3(R) + Ã,

where A2 is defined in the same way as A, but with n
(Ω)
k (x)n

(Ω)
l (y) for 1 ≤ k, l ≤ 3

replaced by n
(Ω)
k (x)n

(Ω)
l (y)− n

(Ω)
k (y)n

(Ω)
l (x). Moreover

Ã := −
3∑

k,l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂ΩR

Kklm(z − y) (y − x)ν n
(ΩR)
k (y) doy, (8.5) Ap40

B3(R) :=
3∑

k,l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂BR

Kklm(−y) yν yk/R doy,

and with B2(R) chosen as B3(R), but with Kklm(z − y) (y − x)ν − Kklm(−y) yν in the
role of Kklm(−y) yν , where 1 ≤ k, l,m, ν ≤ 3. Now the Divergence theorem is applied

to Ã, transforming the integral over ∂ΩR in (8.5) into an integral over ΩR. Note that
due to (4.5), (4.3), the sum

∑3
k=1 ∂yk

(
Kklm(z − y) (y − x)ν

)
reduces to Kνlm(z − y); see
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the definition of Kνlm at the beginning of this proof (ν, l,m as before). In view of this
definition, we may again apply the Divergence theorem, this time in order to retransform
the integral over ΩR into an integral over ∂ΩR, which we split according to the equation
Ã = A+B, with

A :=
3∑

l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂Ω

(
Sνlm(z − y)n

(Ω)
j (y) + Sjlm(z − y)n(Ω)

ν (y)

−2 δνj (∂lN)(z − y)n(Ω)
m (y)

)
doy,

B :=
3∑

l,m,ν=1

∂νϕm(x)n
(Ω)
l (x)

∫
∂BR

(
−Sνlm(z − y) yj/R− Sjlm(z − y) yν/R

+2 δνj (∂lN)(z − y) ym/R
)
doy.

As a consequence Ã = A3 + B4(R) + B5(R) + Â, where A3 coincides with A except

that n
(Ω)
l (x)n

(Ω)
b (y)− n

(Ω)
l (y)n

(Ω)
b (x) takes the role of n

(Ω)
l (x)n

(Ω)
b (y), for b, l ∈ {1, 2, 3}.

Moreover B4(R) and B5(R) correspond to B(R), but we put −Sblm(z − y) + Sblm(−y)
and (∂lN)(z− y)− (∂lN)(−y) in the place of −Sblm(z− y) and (∂lN)(z− y), respectively,
in the case of B4(R), whereas B5(R) arises from B(R) by substituting −Sblm(−y) and

(∂lN)(−y) for −Sblm(z − y) and (∂lN)(z − y), respectively (1 ≤ b, l,m ≤ 3). The term Â
is given by

Â :=
3∑

l,m,ν=1

∂νϕm(x)
(
n
(Ω)
j (x)

∫
∂Ω

(
Sνlm(z − y)n

(Ω)
l (y) doy

+n(Ω)
ν (x)

∫
∂Ω

Sjlm(z − y)n
(Ω)
l (y) doy − 2 δνj n

(Ω)
m (x)

∫
∂Ω

(∂lN)(z − y)n
(Ω)
l (y)

)
doy

)
.

We finally observe that Â = B6(R) +B7(R) + A, where A differs from Â insofar as the

domain of integration now is ∂ΩR instead of ∂Ω, and the term −n(ΩR)
l (y) is substituted

for n
(Ω)
l (y) (1 ≤ l ≤ 3). As for B6(R) and B7(R), they are also defined in a way

analogous to the definition of Â. In their case integration extends over ∂BR, and yl/R

stands in for n
(Ω)
l (y). In addition the terms Sblm(z − y) and (∂lN)(z − y) are replaced by

Sblm(z−y)−Sblm(−y) and (∂lN)(z−y)− (∂lN)(−y) as concerns B6(R), and by Sblm(−y)
and (∂lN)(−y) as for B7(R) (b, l,m ∈ {1, 2, 3}). By (4.5) and (4.3) we see that A = 0.

The splitting of F (−κ)j, A, Ã and Â considered above, and the equations A = Å = 0
may be subsumed into a single equation, that is, F (−κ)j = A1 +A2 +A3 +

∑7
ν=1Bν(R).

Since Ω ⊂ BR/2 and z ∈ Ω (see (3.3), we have |ϑ z− y| ≥ |y|/2 for ϑ ∈ [0, 1], y ∈ ∂BR, so
|Bb(R)| ≤ C

∫
∂BR

|y|−3 doy ≤ CR−1 for b ∈ {1, 2, 4, 6}, with C independent of R.

Moreover we indicate that
∑3

ν=1 αν

∫
∂B1

yj yl ym yν doy = (αj δlm + αν δjm + αm δjl) 4π/15

for α ∈ R3, l,m ∈ {1, 2, 3}. The factor 4π/15 arises due to the equation
∫
∂B1

y2l y
2
m doy =
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(1+2 δlm) 4π/15 for l, m as before. It follows that
∑

b∈{3, 5, 7}Bb(R) = 0. Up to this point
the parameter R was fixed. Letting R tend to infinity, we may conclude from the preceding
results on Bb(R) that

∑8
b=1Bb(R) → 0 (R → ∞), hence F (−κ)j = A1 + A2 + A3.

By the definition of A1, A2 and A3, it is obvious that for b ∈ {1, 2, 3}, there is a function

Zb = Z
(j,x,κ)
b : ∂Ω 7→ R such that Ab =

∫
∂Ω

Zb(y) doy. Since by (3.4), we further have
|z − y| ≥ D |x − y| for y ∈ ∂Ω, with the constant D introduced in Lemma 3.2, and
because ϕ ∈ C1,α(R3) and n(Ω) is in particular Lipschitz continuous on ∂Ω, we further
get that |Zb(y)| ≤ C|x− y|−2+α for y ∈ ∂Ω, 1 ≤ b ≤ 3, where C > 0 does not depend on
y. But

∫
∂Ω

|x − y|−2+α doy < ∞, so it follows by Lebesgue’s theorem and the equation
F (−κ)j = A1+A2+A3 that F (−κ)j converges for k ↓ 0, with the limit being the integral
arising if in the definition of Ab (1 ≤ b ≤ 3) the parameter κ is set equal to zero. A similar
but markedly simpler reasoning (see the remark at the beginning of this proof) yields that
the limit of F (κ)j for κ ↓ 0 exists as well, and its value coincides with limκ↓0F (−κ)j. □
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