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Pockets of viscous fluid coalescing beneath an elastic plate are encountered in a wide range
of natural phenomena and engineering processes, spanning across scales. As the pockets merge, a
bridge is formed with a height increasing as the plate relaxes. We study the spatiotemporal dynamics
of such an elasto-hydrodynamic coalescence process by combining experiments, lubrication theory
and numerical simulations. The bridge height exhibits an exponential growth with time, which
corresponds to a self-similar solution of the bending-driven thin-film equation. We address this
unique self-similarity and the self-similar shape of the bridge, both of which are corroborated in
numerical simulations and experiments.

Viscous flows beneath an elastic sheet hold significant
relevance in various natural phenomena and industrial
processes. Examples include flow-driven intrusions of
elastic fronts [1–8], viscous adhesion of elastic sheets and
cell membranes [9, 10], soft viscous fingering instabilities
[11–13], as well as in geological processes such as sill or
laccolith formation [14–16].

When two fluid pockets are trapped between an elas-
tic sheet and a pre-wetted solid substrate, forming what
we refer to as blisters, they will spread and eventually
merge if they are in close proximity. As they meet, the
elastic bending of the sheet will, at short-times, relax the
system into a single blister that, at long times, flattens
by spreading [2, 17]. This situation is analogous to the
extensively studied phenomenon of capillary-driven drop
coalescence, where different flow regimes [18–21] and the
effect of liquid rheology [22, 23] have been characterized.
Hernández-Sánchez et al. [21] demonstrated that the
bridge connecting two coalescing viscous sessile droplets
grows linearly with time, which was described by a sim-
ilarity solution of the governing lubrication model. Re-
cently, also the self-similar form for the three-dimensional
bridge shape has been derived [24]. Despite the preva-
lence of elastohydrodynamic coalescence, a comprehen-
sive understanding of the underlying physical processes
involved is currently lacking. This Letter addresses this
knowledge gap by employing a combination of exper-
iments, lubrication theory, and numerical simulations.
We reveal that the short-time asymptotic relaxation dy-
namics can be described by a universal self-similar so-
lution with an anomalous exponential growth with time,
and we quantify the details of the spatiotemporal dynam-
ics.

We consider an elastic plate that is separated from
the solid substrate by a thin liquid film of height h∞,
as shown in Fig. 1. Two identical pockets, forming the
blisters, are generated by the influx of viscous liquid
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through two inlets (diameters 4 · 10−3 m) at the sup-
porting substrate, separated by a distance 2R0 = 0.15
m. We define t = 0 as the time the blisters make con-
tact, with the height of the blister peak hi. The system
is designed to have hi/d < 1, where d is the plate thick-
ness, and hi/R0 � 1. The cross-sectional height pro-
file h(x, y = 0, t) of the fluid film is obtained by passing
a laser line along the x-coordinate through the blister
peaks. A Nikon camera captures images of the laser line
every 2 s, at an angle of 25◦ relative to the horizontal
plane. The measured laser line is fitted with a Gaussian
intensity distribution along each vertical column of pix-
els. This imaging setup allows for the visualization and
measurement of the height profile with time.

The circular elastic plate of diameter D = 0.4 m and
thickness d = 5.7 · 10−3 m is made from a silicon-based
elastomer (Zhermack, Elite Double), with Young’s mod-
ulus E = 0.25 MPa and Poisson ratio ν = 0.5 [25], giving
a bending stiffness B = Ed3/[12(1− ν2)] = 5 · 10−3 N m.
Balancing elastic bending and gravity, we find the elas-
togravity length [B/(ρg)]1/4 = 28 · 10−3 m = 0.36R0,
with g the gravitational acceleration and ρ the fluid den-
sity. Therefore, we must take into account the influence
of gravity [2, 5, 8]. Different silicone oils, with viscosities
µ ∈ [0.1, 0.35, 0.5] Pa s and density ρ = 970 kg m−3, are
used as fluids. The supporting rigid plexiglass substrate
and the bottom side of the flat elastic plate are both
precoated with oil using a squeegee, before gently put in
contact. A fluid film of thickness h∞ = (40±14) ·10−6 m
hence separates the two flat solids before any fluid injec-
tion through the inlets. h∞ is determined on a smaller
plate (21×24 ·10−4 m2) by weighing it with and without
the prewetted film, with an error estimate determined
from 40 repetitions. Air bubbles trapped underneath the
elastic plate are visually identified through the transpar-
ent substrate. These bubbles are removed by squeezing
the elastic plate in the corresponding regions, transport-
ing the bubbles to the edge.

After injecting a prescribed fluid volume with a Merck-
Millipore-Sigma syringe pump, the two blisters spread
until they make contact. The experimental determina-
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FIG. 1: A cross sectional schematic (y = 0) of the studied system. Two identical pockets filled with a viscous fluid
of viscosity µ and density ρ are created by injecting prescribed fluid volumes beneath an elastic plate. The elastic
plate has a Young modulus E, a Poisson ratio ν, and a thickness d. After the fluid injection is stopped, each blister
spreads until reaching a radius R0 when they meet, which is defined as time t = 0. The fluid height profile is
h(x, y, t), while h0(t) = h(0, 0, t) is the bridge height, hi = h(±R0, 0, 0) is the initial blister height, and r(t) is the
half-width of the bridge along the y-axis.

tion of the contact point is partly limited by our spatial
resolution 0.067 mm/pixel, leading to an uncertainty in
defining the contact time t = 0. It is also worth noting
that a height difference of up to 10% between the two
blister peaks can occur. We thus define hi as the average
between the two blister heights at t = 0. Varying the
injected fluid volume, we obtain hi ∈ [1.9− 4.2] · 10−3 m.

We use the elastohydrodynamic lubrication theory
[1, 26–28] to rationalize the experimental measurements.
Assuming no-slip at the two solid boundaries, conserva-
tion of mass, and an incompressible Newtonian lubrica-
tion flow, the fluid height profile h(x, y, t) satisfies the
thin-film equation:

∂h(x, y, t)

∂t
=

1

12µ
∇ ·
[
h3(x, y, t)∇p(x, y, t)

]
, (1)

p(x, y, t) = B∇4h(x, y, t) + ρg[h(x, y, t)− h∞], (2)

where ∇ =
(

∂
∂x ,

∂
∂y

)
is the nabla operator. p(x, y, t) is

the excess hydrodynamic pressure generated by elastic
bending of the plate and gravity, neglecting any effect
from stretching the plate as the edge is free to move
and hi < d [5, 8]. To cast Eqs. ((1), (2)) and our

data in dimensionless units (̃ ), we use the scaling rela-

tions: x̃ = x/R0, ỹ = y/R0, h̃(x̃, ỹ, t̃) = h(x, y, t)/hi,

h̃∞ = h∞/hi, and t̃ = t/T with T = µR6
0/(Bh

3
i ). In-

serting these in Eqs. ((1), (2)) yields the dimensionless
thin-film equation, with a single dimensionless number
N = ρgR4

0/B in front of the gravity term, which is the
ratio between gravity and elastic bending, i.e. an elastic
equivalent of the Bond number.

Eqs. (1, 2) are solved numerically by using a finite-
element method. We discretize the equations using lin-
ear elements and use an implicit-time marching scheme
[5]. At t̃∗ = 0, the simulations are initialized with
two identical bumps centered at (x̃, ỹ) = (±1, 0), as:

h̃(x̃, ỹ, t̃∗ = 0) = h̃∞ + 0.6

[(
1− (x̃±1)2+ỹ2

0.752

)2]
for

√
(x̃± 1)2 + ỹ2 ≤ 0.75, and h̃(x̃, ỹ, t̃∗ = 0) = h̃∞ oth-

erwise. After a few time steps, the height profile be-
comes smooth and the two blisters spread a short dis-
tance before they make contact. We define the mo-
ment of contact as the new temporal origin t̃ = 0, and
rescale the profile so that h̃(±1, 0, 0) = 1. To reduce
the computational time, we only simulate a quarter of
each of blister, and therefore apply symmetry conditions:
∇h̃(x, y, t) · n = ∇3h̃(x, y, t) · n = ∇5h̃(x, y, t) · n = 0
at all boundaries, with n their normal vector. We use
a non-uniform grid, which is refined around the bridge
with minimum mesh size ∆x̃ = 1.25 · 10−4, and an
adaptive time stepping routine with maximum time step
∆t̃ = 1.6 · 10−4.

We now turn our attention to the coalescence dynam-
ics, after the blisters have made contact. An example of
temporal evolution of the height profiles is illustrated in
Fig. 2(a). The numerical solutions and the experiments
are in close agreement. The thickness h∞ = 40 · 10−6

m of the prewetted layer together with the peak height
hi = 2.55 · 10−3 m, obtained from the experiments,
give h̃∞ = 0.016, similar to the value h̃∞ = 0.019
used in the numerical simulation. From the numerical
height profiles, we extract the bridge half-width r(t) and
height h0(t) = h(0, 0, t), as shown in Fig. 2(b). The
half-width is defined as the first point along y where
h(x = 0, y > 0, t) ≤ h∞. It is striking to observe that
these two quantities (r(t), h0(t)) have very different be-
haviour with time: the half-width follows a power law
r(t) ∼ t1/2, which is reminiscent to the capillary case
[20], while the bridge height h0(t) clearly deviates from
a power law behaviour.

To understand the bridge height dynamics, we take
inspiration from the self-similar analysis of the elasto-
hydrodynamic blister growth [2], and from the capillary
coalescence case [20, 21]. We assume that the flow is pre-
dominantly oriented along the x-direction, so that we can
consider a two-dimensional problem. At the small scales
associated with the initial stages of coalescence, the dy-
namics is driven by elastic bending and gravity can be
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FIG. 2: (a) Dimensionless cross-sectional height
profiles h(x, y = 0, t)/hi, at different dimensionless
times t/T , from an experiment with µ = 0.5 Pa s and
hi = 2.55 mm, and from the numerical solutions (solid
lines) of Eq. (1) with N = 59 and h∞/hi = 0.019. (b)
Dimensionless height h0(t)/hi, and half-width r(t)/R0

of the bridge, extracted from the numerical solutions of
Eq. (1). Inset: Dimensionless height profiles h(x, y, t)/hi
from the numerical simulation of Eq. (1), at
dimensionless times t/T = 0.11 (blue) and t/T = 0.19
(red). The bridge half-width r(t) and height h0(t) are
indicated by the star and square markers, respectively.

neglected. Therefore, the dimensionless version of Eq. (1)
simplifies to:

∂h̃(x̃, t̃)

∂t̃
=

1

12

∂

∂x̃

[
h̃3(x̃, t̃)

∂5h̃(x̃, t̃)

∂x̃5

]
. (3)

Let us look for a similarity solutionH(ξ) = h̃(x̃, t̃)/f(t̃)
of Eq. (3), with ξ = x̃/g(t̃), where f(t̃) and g(t̃) are two
unknown functions [29]. At short-times, we consider the
quasi-static shape of the blister [2] as a constant outer
solution ξ →∞ for the coalescence dynamics, instead of
the interface slope (or contact angle) used for the cap-
illary case [21]. Since the quasi-static blister shape has
a non-zero dimensionless “contact curvature” κ [2], we
impose here that:

f(t̃)

g2(t̃)
H ′′(∞) = κ. (4)

For the case without gravity (N = 0), the contact curva-

ture follows from the blister shape at constant bending
pressure [2], which in the present units gives κ0 = 8. For
the case with gravity (N = 59), the contact curvature
κ = 8.8 is found to be slightly larger. For convenience,
and without loss of generality, we normalise the similarity
solution such that H ′′(∞) = 1, from which it follows that
f(t̃) = κg2(t̃). Inserting the similarity variable transform
into Eq. (3), we obtain:

1

κ3
ġ
(
t̃
)

g
(
t̃
) = α =

1

12

[
H (ξ)

3
H ′′′′′ (ξ)

]′
2H (ξ)− ξH ′ (ξ)

, (5)

where the dot and prime indicate derivatives with respect
to t̃ and ξ, respectively. Owing to the separation of vari-
ables, the parameter α must be a constant that needs
to be determined. We thus obtain two ordinary differen-
tial equations (ODEs). The solution of the ODE for g(t̃)
reads:

g(t̃) = g(0) exp
(
βt̃
)
, with β = ακ3. (6)

As a consequence, one gets f(t̃) = κg(0)2 exp
(
2βt̃
)
. To

the best of our knowledge, this is the first time that an
anomalous exponential self-similar solution is found in
the context of lubrication flow. Such self-similar solutions
have, however, been found in other physical phenomena,
e.g. in diffusion dynamics [30].

We proceed to test the prediction from Eq. (6) by using
the experimental and numerical data. The experimental
data of the temporal evolution of the bridge height h0(t),
for hi ∈ [1.9 − 4.2] · 10−3 m and µ ∈ [0.1, 0.35, 0.5] Pa s,
is shown in Fig. 3(a). It is clear that both µ and hi
affect the relaxation dynamics. As expected, increasing
the viscosity slows down the dynamics. The effect of hi is
more subtle, but consistent with the prediction β = ακ3,
as a larger hi increases the contact curvature of the blis-
ters, thereby enhancing the growth rate. In Fig. 3(b), the
same data is recast into dimensionless form that collapses
it onto a nearly single curve. The numerical solution of
Eq. (1) with N = 59 reproduces the dynamics measured
in the experiments, which at short-times corresponds to
an exponential growth with β = 13.75. For compari-
son, the numerical solution of Eq. (1) with N = 0 is also
shown, which at short-times has a β0 = 9.25. Assuming
that α is independent of N , one gets that β/β0 is given
by (κ/κ0)3, as observed within a ∼ 12% margin of error.
The error is likely stemming from uncertainties in the
exponential fits and in the extracted values for κ and κ0.
However, α does depend on the dimensionless prewetted
layer thickness h̃∞, where a smaller h̃∞ leads to a smaller
exponential growth rate (not shown). Therefore, α is not
a universal constant, and equals α = β0/κ

3
0 ≈ 0.0181 in

our case.
Finally, we investigate the self-similarity of the bridge

profile H(ξ) through Eq. (5). The latter is a sixth-order
nonlinear ODE, which is solved for α = 0.0181, using
the numerical solver bvp5c in MATLAB with boundary
conditions: H ′(0) = H ′′′(0) = H ′′′′′(0) = 0, H ′′(∞) = 1,
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FIG. 3: (a) Experimental bridge height h0(t) for different viscosities µ ∈ [0.1, 0.35, 0.5] Pa s and blister peak heights

hi ∈ [1.9− 4.2] · 10−3m. (b) Experimental dimensionless bridge height h̃0(t̃) = h0(t̃)/hi as a function of dimensionless
time t̃ = t/T . The solid and dashed lines represent the numerical solutions of Eq. (1) for N = 59 and N = 0,

respectively, and with h̃∞ = 0.019. The short-time behaviour for N = 59 is well described by
h̃0(t̃) = h̃0(0) exp

(
27.5t̃

)
; while for N = 0 it follows h̃0(t̃) = h̃0(0) exp

(
18.5t̃

)
. (c) Inset: The height profiles

h̃(x̃, ỹ = 0, t̃) (noted h̃(x̃, t̃)) from the short-time numerical solution of Eq. (1) for N = 0 and h̃∞ = 0.019. Main:
Self-similar representation of the height profiles (ỹ = 0) from Eq. (1) shown in the inset. Here, we used
f(t̃) = 1.9 · 10−3 exp

(
18.5t̃

)
and κ = 8. The black solid line is the numerical solution of Eq. (5) with κ = 8 and

α = 0.0181.

and H ′′′(∞) = H ′′′′(∞) = 0. Since the bridge is sym-
metric around ξ = 0 and has a constant far-field cur-
vature it provides the required six boundary conditions,
so we do not impose H(0) = 1 in contrast to the capil-
lary case [21]. Nevertheless, by introducing the rescaled
variables ξ∗ = ξ/H(0)1/2 and H∗(ξ∗) = H(ξ)/H(0), one
can always enforce H∗(0) = 1, without having it explic-
itly stated in the boundary conditions. The results for
the self-similar profile are shown in Fig. 3(c). The close
agreement between the numerical solution of Eq. (5) and
the numerical solution of Eq. (1) for N = 0, corroborate
the validity of the similarity solution.

In this Letter, we have demonstrated that, as two
pockets of viscous fluids merge under an elastic plate,
the connecting bridge has a height that grows exponen-
tially with time. The spatio-temporal dynamics agrees
between the experiments and the numerical solutions
of the thin-film equation. Moreover, a self-similar
exponential solution is found, which rationalises the
short-time dynamics found in the experiments and
numerical simulations. To the best of our knowledge,
this represents the first exponential self-similar solution
for lubrication flows, standing in sharp contrast to

the conventional power-law solutions. Our finding
highlights the significant and non-trivial role played by
the interaction between elastic deformations and viscous
lubrication flows.
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[11] D. Pihler-Puzović, A. Juel, G. G. Peng, J. R. Lister, and
M. Heil, Journal of Fluid Mechanics 784, 487 (2015).

[12] G. G. Peng, D. Pihler-Puzović, A. Juel, M. Heil, and
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