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Abstract

We report full quantum reaction probabilities, computed within the framework of
time-independent quantum mechanics using hyperspherical coordinates, for the >N +
HNMN inelastic and reactive collision processes, restricted to total angular momentum
J = 0, for kinetic energies up to 4.5 eV. We take advantage of the nonzero (i = 1)
nuclear spin of N, leading to the existence of two nuclear spin isomers of NN,
namely ortho- and para-'*N'N; to restrict the study to the ortho molecular nitrogen
species, with even rotational quantum numbers 7 = 0,2, ... states. Specifically, we will
start with diatomic reagents ortho-"“N'N in initial rotational state j = 0. A com-
parison with similar works previously published by other groups using time-dependent
wave packet and quasi-classical trajectory methods for the N + MN!N fully sym-

metric collision is given. We find that reactive processes N + MN!N involving atom



exchange are not happening for collision energies less than 2.2 eV. Collisions at ener-
gies around 2.0 eV are most effective for populating reactants rovibrational states, i.e.
for inelastic scattering, whereas those at energies close to 5.0 eV yield newly formed

NI5N isotopologue in a wide variety of excited vibrational levels.

Introduction

Nitrogen has only two stable isotopes: N and "N, with terrestrial abundances of 99.64%
and 0.36%, respectively. As a consequence, it is not as favourable as oxygen (which has three
stable isotopes) for the separation between different kinds of isotopic anomalies in fraction-
ation processes, for example those due to nuclear processing within stars and those due to
purely chemical effects, in an astrophysical, cosmochemical and atmospheric contexts. 6

Also, the Ny molecule undergoes predissociation, to give active nitrogen N(*S) or N(?D)
in the far-UV absorption band, between 80 and 100 nm, generally in the upper part of
nitrogen-rich planetary atmospheres. The dissociation yields, starting from the respective
species NN and NN, appear somewhat different.” The chemistry of the substituted
isotopologues of Ny is thus of great importance, particularly in the hot, upper atmospheres
of Earth or Titan.

On the experimental side, some attempts to evaluate rate constants for the title N + Ny
exchange process have been made using °N isotope.®® The NN molecule has first been
explicitly considered as a test reaction product of “N + NO — “N"N + O, starting
with a sample of pure ’NO. This reaction was used for active atomic nitrogen N titration
purposes in various mixtures. As it happens, the explicit N + NN exchange process was
first investigated as a reaction occurring in this context. Already at that time, this reaction
was known to be extremely slow, even for temperatures as high as 1300 K,® with virtually no
isotope exchange happening, as stressed also by Lyon,® up to 1200-1300 K, with a different

8,10,11

method. But globally, there exist only few kinetic experimental data concerning the

N + Ny — Ny + N exchange reaction.



We can mention another early shock-tube kinetic study!! of isotope exchange reactions
BN + MNYN — BNYN + "N and "N + PNYN — “NYN + N back in 1967, which
may occur when oxygen is added to a mixture of "“*N*N and N'°N, at temperatures up to
3400 K. One reaction rate for the exchange process has been measured at 3400 K, with a
relatively large error bar.!! Yet these data are important for the study of high temperature
nitrogen plasmas, formed in electric or microwave discharge experiments.? Or, even more
typically, for the flow-field modeling at high temperatures, including reactive N radicals
chemistry, occuring when huge heat load in atmospheric gas results from a shock wave, in
the context of heat-shield design for atmospheric high-speed entry of spacecrafts or other
space objects where the temperature can reach 20000 K. 3

At least three families of potential energy surfaces (PESs) for the ground electronic
quartet state (*A”) of the N; system, with full permutation symmetry of the nuclei, have been
in use for this reaction dynamics. A first empirical LEPS-type PES, with only one adjustable
Sato parameter, was built in 1987 by the Perugia (Italy) group.!* It allows for a dominating
colinear minimum energy path (MEP) connecting to the triradical N3 complex, at the top
of a barrier 36 kcal/mol (1.56 eV) high. This first kind of PES has been improved several
times, using the LAGROBO (Largest Angle Generalized Rotation Bond Order) procedure
based on a dedicated new functional form.!® This has given the succesive versions of semi-
empirical L-PESs, which were named L0 to L3,'® L4'7 and L4w'8 PESs. This notably led
to the transition from a linear to a bent (with around 120° angle) saddle point (transition
state), as first suggested by initial tentative ab initio calculations.!®

Meanwhile and independently, a group attached to NASA Ames Research Center in
Moffett Field in California, for spacecraft atmospheric re-entry studies, has produced a new
completely ab initio PES in 2003 from more than 3300 geometries,?? which again has been
used for a variety of dynamical studies??® in subsequent years, named WSHDSP after the
authors’ names. This full PES stands as a global continuation, based on much more ab initio

data, of preliminary N — N, effective potential interaction calculations, for use in obtaining



transport properties of nitrogen mixtures.?* This WSHDSP PES presents a MEP, for 119°
bent geometry of Nj, with two barriers along (thus two transition states (TS)), of height
47 kcal/mol (2.04 eV), separated by a shallow well deep, called a 'Lake-Eyring’ structure.

Finally, a last full dimensional global ab initio PES for the N3 *A” ground electronic state,
also with three equivalent minima of C,, geometry, has been proposed by the Varandas group
in Coimbra.?® Tt is based on a mixed set of ab initio data points, from both CCSD(T) and
MRCI(+Q) methods, with complete basis set (CBS) extrapolation procedure. It is expressed
as a double many-body expansion (DMBE) functional form. It also exhibits a bent 118°
MEP, with double barrier height of 45.9 kcal/mol (1.99 e¢V), and a Lake-Eyring minimum
in between at 42.9 kcal/mol (1.86 eV) above atom-diatom dissociation limit, slightly lower
than previous computational estimates.?? We shall refer to this PES as the GV-DMBE PES.

The Perugia LEPS and L-PESs have been used in quasiclassical trajectory (QCT),
initial-value representation semiclassical (IVRSC) based on flux-correlation formalism, % full
dimensional multi-configurational time-dependent Hartree (MCTDH) and time-independent
quantum mechanics (TIQM)!® with the ABC code.?” These studies were done in partic-
ular for gaining understanding of the translation-vibration energy transfer in the "N +
UNYN(v) — YNMN(v') + "N process for highly vibrationally excited reactants.'* On the
other hand, the WSHDSP PES has been dedicated to quantum time-dependent wave packet
(TDWP) dynamics,?? with eventual use of J-shifting procedure.? In all these studies, colli-
sion energies for dynamical observables were often limited to roughly 3.0 eV, and never higher
than 4.0 eV. Interestingly, "exact” all-J full-dimensional quantum ICSs and rate constants,
based on a completely ab initio PES have never been obtained to date. QCT calculations
for the vibrational relaxation and atom exchange processes, have been realized based on the
GV-DMBE PES by the same group that has built it,?® showing a slightly higher reactivity
than revealed by previous, above mentioned studies. It is the latter PES - the GV-DMBE
PES, from the authors’ names - that we shall use in our present dynamics study.

Now, in spite of the existence of experimental measurements of concentrations of heavy



isotope substituted nitrogen molecules **N'°N in the atmosphere,® and despite explicit use
of N isotope in kinetic experiments,'? the authors are not aware of a systematic theoretical
study of the N + MN"N — N"N + N reactive process.

In the present study, we shall look at collisions involving only one N atom, and focus

on the reactive process, not studied so far:
157 (4 1N 14N 15+ 1577147y (157+ 147y (4
N(*S.) + “NUN(X)) — “NIN(CX)) + “N('S,)

We will abreviate it as 5 + 44 — 54 + 4. This isotopic process has the advantage of
eliminating the quantum ambiguity inherent to the use of three identical nuclei **N. Due to
the low abundance of '®N in Earth atmosphere (3.67 x 1073 times lower than for “N), we
shall not expect this reaction to happen significantly in the whole atmosphere, but it may
be important in the upper part. Also, as mentioned above at length, a study involving the
NN molecule presents several interests. With a view to high-temperature applications,
we decided to run calculations for collision energies as high as 4.5 eV. For integral cross
sections properly obtained up to this energy, this should yield converged rate constants for
temperatures up to 10000 K.

As explained in the Appendix Section, two nuclear spin isomers of molecular nitrogen
coexist, namely ortho (o—'*NN) and para (p—'*N''N) forms of N,, thereafter called as
044 and p44, which are susceptible to bring different resonance structures in the reaction
probabilities, or cross sections if all J computations are performed. In the present paper,
we consider the reactive process mentioned above, as well as the rovibrational excitation
induced by inelastic collision, starting from 044 as a reagent diatomic molecule, restricted to
zero total angular momentum (J = 0).

As numerous results were already presented starting from excited initial vibrational and
rotational states, for the "N + "N'"N reaction, based on various PESs,418:21-23.28 w6 have

chosen instead to focus on vibrational state-to-state transitions toward a variety of excited



vibrational levels v, among which we present the most significant and illustrative results.

Theory, modeling and computations

The process under consideration is realized at relatively high collision energy. Therefore, the
only aspect in this work where nitrogen nuclear spin intervenes is in the nuclear spin-states
statistics. The Hamiltonian is devoid of any nuclear spin-dependent components.

Our present collision system, 5 + 44, is of A + X, type, with two possible arrangements.
It exhibits two identical nuclei "N with spin i = 1 in the diatomic molecule "*N"'N (44) in
the entrance channel. The N nuclear spin, ¢ = 1 /2, is not of interest for us in this study.
We thus have to separate between the two existing nuclear spin isomers, namely para-"*N**N,
written p44 (with odd rotational states j = 1,3,...) and ortho-"*N"N, or 044 (with even
rotational states j = 0,2,...), from the begining, in treating the dynamics and calculating
the scattering and reaction probabilities (SPs and RPs). After that, we need to compute
spin isomer statistical weights of each symmetry (i.e. ortho and para) from an enumeration
of the allowed nuclear spin functions.

Finally, SPs and RPs resulting from our calculations and belonging to the appropriate
symmetry (of the S, permutation group), when compared to that of the spin function,
in accordance with the Pauli principle for the global electro-nuclear wavefunction, will be
multiplied by the corresponding spin-weights. All the details are explained in the Appendix
Section.

On the numerical side, we have performed TIQM scattering calculations to extract SPs
and RPs at total angular momentum J = 0, for both the 5 4+ 044 inelastic activation, and
reactive (with atom exchange), collisions, at high kinetic energies ranging between 1.90 and
4.50 eV. The dynamical calculations are supported by a formerly developed potential energy
surface, from the Galvao and Varandas group,?® the so-called GV-DMBE PES mentioned in

the Introduction Section. The GV-DMBE PES has already been used by the same group?®



and has proved to be accurate for scattering purposes, as found with QCT dynamics studies

of the N + “NMN collision. 28

Energy (eV)

Hyper-radius (a,)

Figure 1: The whole of 2900 adiabatic energies (or adiabats), in eV, for the BNMNMN
system, with Q@ = J = 0, as a function of the hyper-radial coordinate p, between 3.2 and
11.2 ay. The adiabat density is extremely high, with highest channels reaching 5.0 eV
asymptotically.

To obtain these observables, we have solved ”exact” close-coupled equations (in the hyper-
radial functions F\0 1(pm; p), see below for the details of notation) arising from the nuclear,
time-independent, Schrodinger equation (TISE) expressed in principal axis body-fixed demo-
cratic hyperspherical coordinates. The method has already been described in detail in the
theoretical reference,?” and has already been successfully employed, notably for the O + O,
collision. 334 Accordingly, we shall only mention the coordinates and the specific calculation

parameters we have used in this study.

The Delves-Fock hyperspherical coordinates®® may be defined from mass-scaled Jacobi



coordinates:
p=4/s3+S3

Sx
w) = arctan —-

S

where s, = [s)] et S\ = |S,[, and
(sx,Sy) = (dy'rr, dAR,)

with (ry, R,) usual Jacobi coordinates and dy the mass-scale factor.?3¢ The hyper-radius p
does not depend on the specific arrangement, while the hyper-angle wy, related to the shape
of the three-nuclei triangle, depends on the arrangement A. The four remaining angles are
spherical angles associated with Jacobi vectors: (s, ¢s,) and (8s, ¢s, )-

On the other hand, the least inertia axis, body-fixed democratic hyperspherical coordi-

36,37

nates, related to the so-called Smith-Whitten coordinates, are defined as:

VETE

P

f = arctan 4

2S,.S4
arctan

1
0=3 S2 — 52

in which the hyper-radius p is redefined in terms of ¢ = |q| and @ = |Q)|, taking the initial
arrangement A = « as a reference, and where the two orthogonal vectors q and Q are related

to sy, Sy by the kinematic transformation®® T'(¢,):

(a4, Q) = (sx, SA)T'(02)

By working in body-fixed system and orienting the moving frame along least inertia axis,

not only the number of dynamical degrees of freedom is reduced from six to three (6D to



3D), but also the arrangement dependence is lost and the coordinates are called democratic.
The three-body hamiltonian, in these coordinates, is expressed as:
110 .0 A,9)

H=— 2 29 0

where A%(6, ¢) is the square of grand angular momentum operator, including internal hamil-
tonian operator and Coriolis coupling term, p is the symmetrized rediced mass, and V' the
potential.

For a given fixed value of the hyper-radius, p = py, common eigenfunctions of operators
J? and H; (the previously mentioned internal hamiltonian) are, dropping out the reference

to po for lighter notation:

q)gijE(a ¢7 O‘ﬁ’Y) = QDkQ(‘gv ¢)N6M(a6ry)

with

T2 (0. 6, 07) = B0 " (0, ¢, 07)

and

Hovra(0, 9) = erarall, o)

This quantity is the surface hamiltonian. In these expressions, («f7) triplet is usual Euler
angles, which describe the body-fixed orientation, E is the total energy, M is the J-projection
on the space-fixed z-axis, and €2 its projection on the body-fixed least inertia axis. The
functions NgM are Wigner’s, but with definite parity. The hamiltonian Hg is a reduced
one, simply defined by replacing J? operator with its eigenvalue Q? in H;. Eigenstates ppq
and eigenvalues e (the latter being, as a function of p, the adiabatic energies represented
in Figs. 1 and 2), where k indexes the channel, are obtained from diagonalization of the
reduced hamiltonian Hgq, constructed on the basis of hyperspherical pseudo-harmonics K%,

that obey the generalized eigenvalue equation (in K (K +4) for the 6D Laplacian) for squared



angular momentum in the 5D-hypersphere case. 37

From a numerical point of view, in this sector-diabatic scheme, the range of the hyper-
radial coordinate p is divided into 110 small sectors, in which the total wavefunction is
expanded on the basis defined at the sector mid-point. The expansion coefficients, functions
of p, are solutions of a set of coupled hyper-radial equations. These have been numerically
solved using the log-derivative propagator. 3839

The 5 + 44 process presents a high energy threshold for genuine chemical rearrangement,
allowing for the transfer of °N atom, at around 2.0 eV. Therefore the dynamics of this pro-
cess becomes interesting starting from the relatively high collision energy E. = 1.90 eV. To
be useful in high temperature (up to 7" = 10000 K) applications described in the Introduc-
tion Section, the collision process has to be simulated at kinetic energies up to E. = 4.50 eV.
We note at this point that ab initio calculations have shown the existence of a D3, minimum,
147 kecal/mol (6.4 eV) above the asymptote, resulting from a conical intersection seam be-
tween the ground and first excited state of A” symmetry. So multi-surface dynamics would
be needed for collision energies higher than 5.0 eV.

We have thus decided that, to obtain results in a reasonable time at such high collision
energies, calculations should be restricted to © = 0 (which is the maximum value of the
projection of the total angular momentum .J on the least inertia axis of the ’NMN!N
or 544 complex). Then, for total angular momentum J = 0, the solution of the TISE is

expanded in the middle of each sector, p,,, as:

P (;0,0,087) = p=°* > " O (pms 0, &, aBY) Firherii(pms p)
kQ

in terms of adiabatic surface states previously described and obtained, and, computationally,
stored on disk.
In order to be able to obtain converged SPs and RPs at E. = 4.50 eV, we have included

as many as 2900 adiabatic states, or "adiabats”, at {2 = 0. Their energies, represented as a

10



function of the hyper-radial coordinate p, are shown in Fig. 1. We clearly see the very high
density of these states, appearing nearly uniform. At large p values, i.e. p &~ 11 ag, they
sediment slightly above 5.0 eV, which allow for the entry of many closed channels in the
coupled-equations. The unusual hump for the lowest adiabats at around 4.3 ag results from
the peculiar topography of the GV-DMBE PES, exhibiting a huge volcano-like structure
with a crater on top. This outcrop imprints its shape on them.

A close-up is shown in Fig. 2, revealing the very neat ordering of the adiabats, as well
as the regular variations in their density, owing to to the appearance of new rotational

sub-structure with each new vibrational state.

0Q=0, 2900 channels

Energy (eV)

0.0 T T T T T T T T T T T T T T T
8 9 10 11

Hyper-radius (a,)

Figure 2: A close-up for the lowest adiabatic energies (or adiabats), below 1 eV, for the
BNMNMN system, with @ = J = 0, as a function of hyper-radial coordinate p, between
8.0 and 11.2 ay. The regular variation in density due to the appearance of new rotational
sub-structure with each new vibrational level is clearly visible.

Asymptotically, for each arrangement, the surface states converge to (properly sym-

11



metrized) rovibrational wavefunctions of Fock internal coordinates,*® with fragmentation
quantum numbers v, j characterizing each channel for matching with the internal region.
Due to the high number of channels included at J = 0, great care has been taken, especially
with regards to two-dimensional quadratures in Fock coordinates, to accurately compute
the projections of the total wavefunction onto these asymptotic rovibrational functions re-
expressed in space-fixed coordinates. All projections have been obtained within 1% accuracy,
and 21 vibrational v numbers, as well as 80 and 159 diatom rotational j numbers have been
included, for arrangements 5 + 44 and 4 + 54, respectively, in the basis.

Finally, the reactance K and transition 7 matrices are obtained for a large value of
the hyper-radius by matching the propagated solution to its asymptotic form, respecting
the boundary conditions for the scattering problem. Numerical tests at these high collision
energies have shown that a value py.. = 11.5 a9 was sufficient for our purposes. We have
obtained I matrices at 2340 energy grid points ranging between 1.90 and 4.50 eV at total
angular momentum of Jy.x = J = 0. The SPs and RPs, noted respectively P’ and N’9,
and this in our case P% and N, are obtained by direct summation of the squared 7-matrix
elements.

The sector-by-sector construction of the surface-functions basis took a total of nearly
1100 hours of CPU time, while each sector basis computation required at most 95 GB of
RAM. The overall subsequent building of the complete K-matrix for the whole energy range
accumulated around 5000 hours of CPU time. The whole project amounts to nearly nine
months of intensive calculations, on high performance computations (HPC) resources of the

local computing center (DNUM CCUB, University of Burgundy in Dijon).

Results and discussion

In this section, we present the initial-state-selected scattering probabilities, for the 5 +

044(j = 0) inelastic (i.e., without any ®N atom exchange) and reactive (i.e., including *N

12



atom exchange) collision processes. These transitions are toward all accessible outcomes
energetically open using the TIQM method, allowing a manifold of final vibrational states
v’, while the reagents remain in the ground vibrational level v = 0 within the whole study.
By the same token, we will consider in the present paper only collisions starting from the

j = 0 level of 044. A future study will be dedicated to the 5 + p44(j = 1) collision.

Initial-state-selected SP and RP

Fig. 3 shows the initial-state-selected scattering probability PBEOJ-:O(EC) for inelastic ac-
tivation of o-"*N™N in its ground rovibrational state v = 0,5 = 0 by N, ie. 5 +
odd(v = 0,7 = 0) — 5 + od4(all v/, all 5/ even # (0,0)) as a function of the collision

energy.

toward o044 (v’ j">00) ——

Scattering probability
(@)
(o))

0.2 | | | | |
2 2.5 3 3.5 4 4.5

Collision energy (eV)

Figure 3: Initial-state-selected scattering probability for inelastic activation of o-"*N*N in
the ground rovibrational state by "N in the 5 + o44(v = 0,j = 0) — 5 + o44(all ¢/, all j’
even # (0,0)) process, as a function of collision energy in eV.

A primary feature in Fig. 3 is that collisions follow a globally monotonic decreasing pat-
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tern. We observe a first extremely high plateau at the lowest collision energies, between 1.9
and 2.3 eV, with well marked oscillation structures, the probability of rovibrational activa-
tion of o-"*N™N reaching unity at regular intervals. Then, a gentle fall happens, starting at
roughly 2.4 eV. This onset for the decreasing of the SP with collision energy coincides with
the opening of the lowest reactive channels, as can be verified with the corresponding onset,
at the same energy, for increasing behavior seen in Fig. 4 (giving the RP as a function of
collision energy), redirecting the scattering flux from inelastic collision to genuine reaction.
The oscillations during the beginning of the descent are exacerbated, until reaching nearly
0.2 units of amplitude. The global fall continues until 4.5 eV of collision energy, while oscil-
lations are gradually attenuated and begin to fade away. Between 3.7 and 4.5 eV oscillating
structures are nearly lost, giving way to a kind of background noise, closer and closer to what
looks like a high-energy asymptote value of 0.2. That is, the SP falls down until reaching
a threshold. The reason seems to be related to a saturation phenomenon. Indeed, what-
ever the energy injected to the system, inelastic scattering never vanishes but stabilizes at
a background value coming from the addition of higher and higher rovibrational channels of
the same arrangement. This can be seen clearly, making an anticipated reference, with the
behavior shown in Fig. 5, and described in the next subsection. Excitation probabilities of
lowest inelastic channels seem to decrease in amplitude; while this effect is compensated by
regular opening of higher and higher (v/, ;') channels, each contributing only a tiny value to
the probability, as E. increases. The constant background effect comes from the averaging
of these numerous small noise values. We see this way that inelastic rovibrational activation
processes, without any reactivity, still significantly occur at very high temperatures.

Fig. 4 shows the initial-state-selected genuine J = 0 reaction probability, Nz?goyjzo(Ec),
for the collision of >N with o-*N™N in its ground rovibrational state v = 0,7 = 0, i.e. 5
+ 0d4(v = 0,7 = 0) — 4 + b4(all v/, all j') process, again as a function of the collision
energy.

We see right away in Fig. 4 that the RP follows this time a globally monotonic increasing

14



toward 54 (v’ j’) —

Reaction probability
(@)
1N

O L A | | | |
2 2.5 3 3.5 4 4.5

Collision energy (eV)

Figure 4: Initial-state-selected reaction probability for atom transfer process of "N in o-
YNYN in its ground rovibrational state: the 5 + o44(v = 0,5 = 0) — 4 + 54(all ¢/, all )
process, as a function of collision energy in eV.

pattern, opposite and complementary, as can be expected, to the SP of the inelastic pro-
cess described above. First of all, the RP remains at zero up to 2.2 eV. Extremely slight
oscillations appear for higher energies, the RP dropping to zero again on a regular basis,
between 2.2 and 2.3 eV. It starts to take off from 2.3 eV, its shape taking on the appear-
ance of an exponential increase. In this regime, oscillations are strong and clearly visible.
We can see it as a kind of transition from the inelastic-dominating process to the reactive
atom exchange process. This energy regime terminates with a massif of resonances slightly
under 3 eV, where the global tendency of the curve is also changing. The exponential rise
breaks off and the RP seems to hesitate between a stabilization plateau or another definite
increase. As it happens, the RP actually keeps increasing, while oscillations attenuate, to-
ward a value of 0.77, at 4.5 eV of collision energy, the asymptote being probably reached

around 5 eV. Noteworthly, this is in contrast to the behavior obtained by Wang et al.,?%?? in
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TDWP with the WSHDSP PES, where they find a slight decrease of this quantity at around
2.7-2.8 eV. The discrepancy is most probably due to the slight difference in the topogra-
phy of the Lake-Eyring structure at the top of the outcrop, between the GV-DMBE PES
(3.0 keal/mol deep) and the WSHDSP PES (3.5 kcal/mol deep). All the resonances (which
are in fact transparencies) have been shown to be due to the Lake-Eyring feature.?!?? The
shallower minimum associated with the GV-DMBE PES, with thinner double-barrier width,
permits more effective tunneling, allowing resonances to build up on each other, yielding
a global monotonic increasing behavior. The reactive regime, as compared to the inelastic
one, clearly dominates at energies above, let’s say, 3.5 eV. We also note that the probability
for the reaction 5 + 044 is very structured, with the presence of sharp peaks and troughs
that may be associated with Feshbach resonances. These features are signatures of the pecu-
liar ”Lake-Eyring” structure at the top of the outcrop on the reaction path, and have been
discussed in details by the Moffett Field group.? They illustrate tunelling regime in the
double barrier case, as we can find in flux-correlation perfected transition state theories.*!
They have actually dedicated a study?! to the assignement of specific resonances appearing,
especially at the lowest collision energies for which reaction occurs, but for the 4 + 44 reac-
tion. In brief, many marked resonances survive the summation process over all final states,
in obtaining the initial-state-selected reaction probability, toward all energetically allowed

outcome channels.

State-to-state SPs and RPs

In order to gain additional insight into the scattering process, and to further analyse the
"low” and "high” energy regime as well as the occuring resonances, we show, in Fig. 5, some
illustrative vibrational state-to-state SPs (STS-SPs) at collision energies in the dominating
inelastic domain, E. € [1.90,2.40] eV; and in Fig. 6 vibrational state-to-state RPs (STS-RPs)
in the reactive regime energy region, E, € [4.00,4.50] eV. These are noted P(%O:O,j:()) L (Ee)
and NP9

(v=0,j=0) _(E.), respectively. We have chosen these two specific energy intervals be-
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cause some previous studies!®?3232 have already focused on the dependance, upon initial
and final (v, j) states, of thresholds for RPs in reactive N + N, scattering, at FE. starting
from 2.0 eV, with strong emphasis on the role of the initial state. We have thus decided to
focus in this study on final vibrational states. Also, for high energies, a vibrational state
analysis is more relevant than one focusing on rotational states. The vibrational STS-SPs
and STS-RPs presented here are summed over all final rotational states j'. At the high-
est collision energies, o-"'N'N rotational excitation reaches states up to j' = 136, whereas
bond-breacking reaction formed “N'N populates rotational levels as high as j' = 138. We
do not show rotationally resolved STS-SPs and STS-RPs here, but instead concentrate on

products vibrational state analysis.

State-to-state vibrational scattering probabilities
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Figure 5: Vibrational state-to-state resolved scattering probabilities for inelastic activation
processes of o-"*N*N in its ground rovibrational state by °N: the 5 + 0d44(v=10,j=0) —
5 4+ 044(v', all j" even # (0,0)) processes, as a function of collision energy in eV.

We clearly see in Fig. 5 that inelastic activation of 044 to the nearest v' = 1-level is

the largest one, and exhibits the wildest oscillations on either side of a roughly constant
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value. It contributes mostly to the high magnitude oscillating initial-state-selected averaged
SP shown in Fig. 3 and previously discussed. The SP for excitation toward the v = 2-level
presents a similar behavior, with a lower absolute mean value and amplitude. The SPs for
other v decrease as v’ increases and have a similar oscillating behavior, and therefore are
not shown. Finally, we show SPs toward v = 7 and v" = 8, which are tiny in magnitude, and
present thresholds respectively at 1.94 and 2.21 eV. Consequently, for a translational kinetic
energy of 1.9 eV, pure inelastic collisions may populate excited vibrational states only up
to v = 6. For a collision energy of 4.5 eV, we have obtained nonzero STS-SPs for inelastic

excitation up to v = 17.

State-to-state vibrational reaction probabilities
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Figure 6: Vibrational state-to-state resolved reaction probabilities for atom exchange process
of "N in o-""N"N in its ground rovibrational state: the 5 + od4d(v = 0,5 = 0) — 4 + 54(v/,
all j') processes, as a function of collision energy in eV.

We can carry out the same kind of analysis for the STS-RPs shown in Fig. 6. For these
very high collision energies, there is no clear ordering for probabilities to obtain products

BNMN in v = 0,1,2 or 3. However, going to the highest collision energy of 4.5 eV, and

18



extrapolating toward 5.0 eV, these first four RPs seem to converge to the same value of
roughly 0.14. More than that, the curve associated to v' = 4, initially well below the other
three, seems to rise toward this value at higher energies. On the contrary, the probability to
v' = 5, while nearly monotonic increasing with F., stays at values less than 0.04.

Surprisingly enough, the RP leading to products in the ground vibrational state, v' = 0,
is not the largest. At 4.05 eV, it has half the value of that leading to products with v' = 2.
Actually, it is significantly lower than RPs yielding the isotopologue NN in v/ =1, v/ = 2
and v = 3, for all the energy domain [4.0,4.5] eV. As for the inelastic case, all STS-RPs
to final vibrational states v' > 17 are found to be zero. This atom exchange reaction is
quite efficient in providing significantly high vibrational levels. The translational form of
kinetic energy is thus, for this system, very effective in promoting reaction products in
highly excited vibrational states. These results are most relevant to the difficult problem of
energy partitioning in plasma physics, in the context of spacecraft re-entry in nitrogen-rich
atmospheres. '

To obtain converged integral cross sections and rate constants at temperatures up to
10000 K would require supplementary calculations at total angular momentum J > 0, for
the same collision energies. To complete these results, we plan to perform TDWP calculations
for the same 5 + 44 reaction. Due to the demanding computational power, they are quite

challenging for this high energy range within a full coupled-channel TIQM technique.

Conclusions

We have performed the first time-independent full quantum study of the N + MNMN
inelastic activation and reactive (isotope exchange) collisions starting with spin isomer ortho-
MNMN, with even-j rotational states. This work is however restricted to zero total angular
momentum. The dynamical calculations are supported by a recently developed full ab initio

potential energy surface, the GV-DMBE PES, 2 which has already been used?® for scattering
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purposes in QCT, giving results in global good agreement with those based on other Nj
PESs. Total probabilities for this reaction have been obtained for a range of collision energies
relevant to the study of the active nitrogen chemistry, initiated in shock waves resulting from
the re-entry of spacecrafts in nitrogen-rich atmospheres. Numerous resonances are observed,
surviving the summation over all final states, giving highly structured scattering and reaction
probabilities. Collisions at energies around 2.0 eV are most effective for inelastic translation-
vibration energy transfer, while those at energies close to 4.5 eV favor the atom exchange
reaction, populating highly excited products rovibrational states. The intimate details of
the mechanisms involved would deserve a study of its own right. We plan further study
on this system, notably the influence of highly vibrationally excited *N!N reagent on the
reactivity, and the computation of dynamical observables for the counterpart collision 5 +

p44.

Appendix

In absence of spin-dependent interactions in the hamiltonian describing the dynamics, the

total wavefunction can be written as a direct product of three different parts, that is

w = welwnuc.spacewnuc.spin (1)

The first is the electronic (including spin) wavefunction. The ground state PES of Ny is 4A”,
and it is antisymmetric (but asymptotically symmetric) versus binary exchange of nuclei.
The second part describes the nuclear dynamics. The third part is the nuclear spin function.

As already mentioned, *N nuclei have nuclear spin i = 1 and as such are bosons. As a
result of the Pauli principle, the total wavefunction for the 544 system has to be symmetric
with respect to the exchange of two identical *N nuclei.

The permutation group of two particles, Ss, is also often noted C,, with character table:
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Sa(= Cy) | (D) =e (E) | (12) (0)

Y 1 |

H (A" 1 1

The two IRs of the abelian S, group are one-dimensional, and noted Dj or A" and H

or A”.
Let i, with projection m;, be the spin of YN (i = 1) nucleus and I be the total nuclear
spin of NN with projection M;. We can work in coupled representation and define the

total spin function of 44 as:

brv, = Z C(iil; My — mi, M) Gim, Dy —m; (2)

m;

where ¢y, are the individual nuclei spin functions and C'(e e e; e, e) is a Clebsch-Gordan
coefficient, with resulting spin quantum numbers taking the integer values I € [[0,2]] and
M;=—1I, —I+1, ..., +1. It exhibits a definite parity under the transposition (12) (binary

exhange of the two nuclei):
(12)¢rae, = (=) éragy = (=) érusy (3)

Neglecting any spin-rotation and spin-spin couplings, the diatom wavefunction can be writ-

ten:

D = Ge1PyjOrM, (4)

where ¢, is the 12; electronic state (of positive parity) of 1N, and ¢yj is a rovibrational

state, and thus has the parity:

(12)® = (-)/(-)'® =+ (5)
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We can construct the following table to count nuclear spin states:

I 21110

2I+1 (5|31

This permits the classification of the (2i + 1) = 32 = 9 nuclear spin states of “N''N
between 6 ortho states 044 (¢ra, € A’, I even and j even) and 3 para states p44 (¢, € A”,
I odd and j odd).

In the case where the atom in the entrance channel is distinguishable, i.e. *N, we would

be in the presence of a process of the form:

5+44 ()
5444 —

5444 (B)

with inelastic (o) SPs, P7%(E,), expressed for J = Q =0 as:

2 00,4’ Sy
00 §Pavj—>av’j’ []7j even]
Pavj%av’j’(EC) =
1 p00,A” .
gpavj%av/j/ []?j Odd]

and with correponding reactive (3) RPs, N7%(E,), given by:

00,4’
N

avj—pv g [j even]

2
3

Nc(x)%j%ﬁv’j’(EC): .
N4 [j odd]

1
3" avj—>pBv g
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