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Smart contracts are programs that are executed on the blockchain and can hold, manage and transfer assets in the form of cryptocurrencies. The contract's execution is then performed on-chain and is subject to consensus, i.e. every node on the blockchain network has to run the function calls and keep track of their side-effects including updates to the balances and contract's storage. The notion of gas is introduced in most programmable blockchains, which prevents DoS attacks from malicious parties who might try to slow down the network by performing time-consuming and resource-heavy computations. While the gas idea has largely succeeded in its goal of avoiding DoS attacks, the resulting fees are extremely high. For example, in June-September 2022, on Ethereum alone, there has been an average total gas usage of 2,706.8 ETH ≈ 3,938,749 USD per day. We propose a protocol for alleviating these costs by moving most of the computation off-chain while preserving enough data on-chain to guarantee an implicit consensus about the contract state and ownership of funds in case of dishonest parties. We perform extensive experiments over 3,330 real-world Solidity contracts that were involved in 327,132 transactions in June-September 2022 on Ethereum and show that our approach reduces their gas usage by 40.09 percent, which amounts to a whopping 442,651 USD.

CCS CONCEPTS

• Computer systems organization → Peer-to-peer architectures.

More explicitly, a transaction is no longer limited to transferring money between people, but it can also: (i) Deploy a contract's code on the blockchain, so that everyone knows about the code and the code is then immutable; or (ii) Call a contract's function, providing its parameters. See [START_REF] Kafshdar | Irrationality, Extortion, or Trusted Thirdparties: Why it is Impossible to Buy and Sell Physical Goods Securely on the Blockchain[END_REF] for a more detailed treatment and [START_REF] Amir Kafshdar Goharshady | Secure Credit Reporting on the Blockchain[END_REF] for examples. Moreover, each contract has its own address that can be used for sending money, in the form of the base cryptocurrency, e.g. Ether, to it. One can also send money to a contract at the same time as calling one of its functions. All nodes in the network keep track of the blockchain, which includes a specific order of all transactions [START_REF] Dameron | Beigepaper: an Ethereum technical specification[END_REF]. Therefore, it is easy to reach consensus about the state of variables in every contract. We say that a computation is performed on-chain if it has to be executed by all the nodes. Gas [START_REF] Dameron | Beigepaper: an Ethereum technical specification[END_REF]. Given that every function call has to be executed by every node of the network in order to reach a consensus about the state of the contracts and the balances of each person/contract, the whole system is vulnerable to a DoS attack such as calling a function with infinite runtime. To defend against such attacks, each basic atomic operation is assigned a specific amount of gas, roughly proportionate to its real-world cost of execution for the nodes, and the originator of each function call has to pay a transaction fee covering the overall gas usage of the call. This fee is paid to the miner, not to every node. This is so that the miners are incentivized to solve the proof-of-work problem or its variants [START_REF] Chatterjee | Hybrid mining: exploiting blockchain's computational power for distributed problem solving[END_REF]. Indeed, the miners aim to maximize their transaction fee payoffs [START_REF] Alambardar Meybodi | Optimal Mining: Maximizing Bitcoin Miners' Revenues from Transaction Fees[END_REF]. Although using gas has been successful in deterring DoS attacks, it has had the unfortunate unintended consequence of costing the blockchain users a huge amount of money in transaction fees [START_REF] Chen | Under-optimized smart contracts devour your money[END_REF] and has also been a source for many vulnerabilities [START_REF] Atzei | A Survey of Attacks on Ethereum Smart Contracts (SoK)[END_REF][START_REF] Chatterjee | Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies[END_REF][START_REF] Chatterjee | Quantitative Analysis of Smart Contracts[END_REF]. The Ethereum Foundation admits the problem of high gas fees in its official documentation [START_REF]Gas and Fees[END_REF]. Due to these prohibitive costs, many smart contracts are constrained to simple programs with limited functionality.

Our Contribution. We present a secure and trustless solution that moves most of the computations in a smart contract off-chain and ensures only a small 𝑂 (1) gas cost for every function call. Moreover, it saves enough implicit data on the blockchain to be able to reconstruct the execution and final state of the contract. Our method has the following advantages: • Our experimental results on 3,330 real-world smart contracts and 327,132 real-world transactions during June-September 2022 on Ethereum show that our approach significantly lowers gas usage by 40.09 percent, which amounts to 469.86 ETH or 442,651 USD. • Assuming that all contract parties are honest, they are guaranteed to reach a consensus about the state of the contract at the end of its implicit off-chain execution, and the protocol will succeed without any extra costly on-chain computations. If a party or parties are dishonest, our protocol simulates the run of the contract on-chain. It ensures that the dishonest party is always identified and charged for the gas. Thus, our protocol possesses the following desirable properties: (a) all parties are strictly incentivized to be honest 1 , and (b) honest participants have no risk of being penalized. • Our protocol is in principle applicable to virtually all smart contracts on any programmable blockchain, regardless of the language used to program them.

PRELIMINARIES

Smart Contracts. Ethereum smart contracts are stored on the blockchain in a stack-based assembly-like format called EVM (Ethereum Virtual Machine) bytecode [START_REF] Dameron | Beigepaper: an Ethereum technical specification[END_REF]. Various high-level languages are compiled to this bytecode, such as Solidity [START_REF]Solidity Language Documentation[END_REF], which is a stronglytyped language loosely inspired by Javascript, and Vyper [START_REF]Vyper: a contract-oriented pythonic programming language for the EVM[END_REF], which is similar to Python. Solidity is currently the most widelyused language for writing smart contracts in Ethereum [START_REF] Chatterjee | The treewidth of smart contracts[END_REF][START_REF]Smart contract languages[END_REF]. Each contract consists of a number of functions. A function can be public, meaning that it can be invoked by anyone who creates a transaction calling this function, as well as other smart contracts, or it can be private to the contract. There are two types of space for storing data in a contract: (i) a memory which is the working space of the contract and is erased after each transaction, and (ii) a persistent storage whose contents are not erased in between transactions and are permanently stored by all nodes on the network. Accordingly, there are three types of variables in a Solidity smart contract:

• State variables are the ones saved in the storage. The values of these variables collectively define the state of the contract. Every node on the blockchain keeps track of storage variables. • Local variables are available only during the execution of a single transaction, then discarded when it is ended. • Global variables [START_REF] Dameron | Beigepaper: an Ethereum technical specification[END_REF] are special variables that provide information about the current block and the state of the blockchain. Ethereum's Gas Model [START_REF] Wood | Ethereum: A secure decentralised generalised transaction ledger[END_REF]. On Ethereum, executing each EVM bytecode operation costs a well-defined number of units of gas. See [10, Appendix A] for a complete table of gas costs. Generally, operations on storage are much costlier than memory. When a user initiates a transaction, she can set two values: (a) the maximum amount 𝑔 𝑚 of gas that she is willing to pay for, and (b) the price 𝜋, in ether, that she is willing to pay for each unit of gas. Based on these, a miner can choose which transactions to include in her block and in which order. When the transaction is included in a block and mined, every node on the blockchain executes it. This execution begins by taking a deposit of 𝑔 𝑚 • 𝜋 from the initiator's account and then running the called function while keeping track of the total gas used until this point. There are three cases: (i) If the function terminates using 𝑔 units of gas and 𝑔 ≤ 𝑔 𝑚 , then the miner is paid a transaction fee of 𝑔 • 𝜋 and the rest of the deposit, i.e. (𝑔 𝑚 -𝑔) • 𝜋, is reimbursed to the initiating user. Moreover, any updates to the storage are saved by all nodes on the blockchain; (ii) If the function throws an exception/error, then all of its effects are reversed and the storage is returned to its status before this function call and the gas deposit is divided exactly as in the last case; (iii) Otherwise, an out-of-gas exception is triggered, causing the user to lose her 1 More formally, the only Quasi-strong Nash equilibrium [START_REF] Chatterjee | Probabilistic Smart Contracts: Secure Randomness on the Blockchain[END_REF] is when every participant is honest.

deposit, which is paid to the miner in its entirety, and the storage state of all affected contracts to revert to right before the current transaction. Out-of-gas errors are a common and serious security vulnerability in smart contracts [START_REF] Albert | GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts[END_REF][START_REF] Atzei | A survey of attacks on Ethereum smart contracts[END_REF]. However, avoiding them is an orthogonal issue and our approach ensures the exact same behavior in the optimized low-gas version of the contract as in the original. Blocks in Ethereum can use a maximum amount of gas called blocksize [START_REF] Dameron | Beigepaper: an Ethereum technical specification[END_REF]. The limit can change based on the demand in the network but is at most 30 million units of gas per block.

OUR PROTOCOL

Fundamental Idea. The main idea behind our approach is quite simple and elegant. Let P be the set of parties who intend to interact with the contract C. Then, it suffices to ensure that all members of P are in agreement about the current state of C and there is no need to force every other node in the network to constantly keep track of C's state, as well. Such an agreement in P can be obtained off-chain by storing only a small amount of information on-chain. More specifically, if we store C's code and a list of all function calls on-chain, without actually executing the function calls, then (i) we avoid paying gas fees for the execution of function calls, (ii) any member of P can execute all the function calls in the right order off-chain, i.e. on her own machine, and they will all reach the same final state, and (iii) this final state is uniquely determined by the information that is stored on the blockchain. So, if a party Alice ∈ P is dishonest, we can run all the function calls on-chain, identify the dishonest party Alice, and penalize her.

Our idea above is similar to the concept of lazy evaluation [START_REF] Hudak | Conception, Evolution, and Application of Functional Programming Languages[END_REF] in programming languages theory [START_REF] Maessen | Hybrid eager and lazy evaluation for efficient compilation of Haskell[END_REF]. However, in the context of smart contracts, we take lazy evaluation to the extreme and apply it (i) only to on-chain computations, and (ii) at the level of function calls. Hence, we opt for a lazy approach that triggers an on-chain execution only when two parties in Alice, Bob ∈ P have a disagreement about the current state.

Our Protocol. Our protocol is implemented as a "wrapper" contract W, also written in Solidity, which includes a slightly modified version of the code of C, as well as additional functionality. The developer should deploy W to the blockchain, instead of directly deploying C. Obtaining W from C is a well-defined algorithmic process and we provide a free and open-source tool that performs this task (See Section 4). More specifically, for every function C.𝑓 there is a corresponding function W.𝑓 with minor changes. Additionally, W allows the developer to set values for the following state variables upon its deployment on the blockchain:

• The deposit 𝑑 that each user should put down to ensure the gas costs of on-chain execution can be billed to this user in case of dishonest behavior; • A positive integer 𝑡 used as a time limit for challenges, whose use-case will become apparent in the withdrawal and challenge process described below; • The maximum amount of gas that each user is allowed to consume in executing functions of C; • The maximum amount of gas that each single function call to a function in C is allowed to consume; • The maximum number of allowed function calls of C.

By enforcing one or more of the maximum values above, the developer must ensure that all gas usage in the contract's lifetime is covered. Using the values chosen by the developer, W provides the following additional functionality: (1) Joining. Before being able to interact with C's functionality in W, a user/party Paul ∈ P has to explicitly join W by calling W.join() and providing a deposit of 𝑑 ether. This deposit will remain in the contract's custody as long as Paul is a party to the contract and will be used to compensate for gas usage if Paul's dishonest behavior triggers an on-chain execution. (2) Virtual Banking. Since W is lazy in running functions call of C and avoids running them on-chain by default, any money transfers by these calls is also not executed on-chain. To enable the functionality of money transfers between C and the participants, W acts as a bank and allows each joined user to deposit and withdraw ether to W. The balances used in C's functions will then refer to the user's balance in W, rather than her ether balance on the blockchain. These W-balances are not explicitly stored on-chain. Each party in P keeps track of them off-chain on their own machine. The contract C has a W-balance as well. (3) Ledger. W keeps track of an on-chain internal ledger (as a state variable) which is a sequence of deposits and withdrawals by the users to W's bank and also the function calls requested by the users to functions of C. (4) Depositing Ether. A party Paul can deposit ether to W at any time. The deposited ether will be under the control of W and an entry will be added to W's ledger certifying the amount that Paul deposited. This entry is added on-chain. Upon seeing this entry, all participants in P update their off-chain version of Paul's W-balance accordingly. (5) Lazy Function Call. W has a dedicated function which is named requestCall and can be utilized by a party Paul who wants to call a function in C. To call C.𝑓 , Paul has to create a transaction that calls W.requestCall containing following parameters:

• The name 𝑓 of the function that should be called,

• The maximum amount 𝑔 𝑚 of gas that may be used by 𝑓 ,

• The parameters that should be passed to 𝑓 ,

• the amount of money that should be paid from Paul's Wbalance to C's W-balance. This is only applicable if C.𝑓 is payable, i.e. if it can accept payments. Upon receiving the items above, W.requestCall first checks that Paul is not exceeding the maximum gas usage allowed by the developer. If this limit is exceeded, then the function call is ignored. Otherwise, instead of running C.𝑓 or W.𝑓 on-chain, requestCall adds an entry to the internal ledger. This entry includes all the parameters (a-d) above, as well as a record of the values of all global variables such as block.number and msg.sender = Paul. This is all the information that can possibly be needed for executing the call to 𝑓 , but the call itself is not executed on-chain. When a call request record is added to the ledger in W, every party in P performs that function call off-chain on their own machine and updates their own copy of the state variables in C and the W-balances accordingly. (6) Withdrawing Ether. The parties can decide to withdraw ether from their W-balance at any time in two steps. Although the W-balances are not explicitly stored in W, all parties have executed function calls off-chain and are aware of all W-balances.

• Step 1: The party Alice ∈ P calls W.requestWithdraw(𝑥) and specifies the amount 𝑥 she wishes to withdraw as a parameter. This request is added to the W-ledger. Note that a smart contract cannot initiate its own execution and all function calls have to be initiated by a user. Moreover, the initiator of a function call has to pay for its gas usage. However, we would like to ensure that (i) the dishonest party ultimately bears the gas costs, and (ii) the incurred gas costs are as small as possible. Hence, the wrapper W holds an auction for the role of initiator in which anyone can enter a bid for the gas price 𝜋 that they are willing to charge for the execution. More specifically, the on-chain simulation contains the following steps:

• Bidding. For 𝑡 blocks after the challenge, any party Ingrid ∈ P can call the function W.bid(𝑗, 𝜋) signifying that she is willing to initiate the on-chain execution as long as she is paid 𝜋 units of currency (ether) per unit of gas. Note that this is not necessarily the amount that she really pays the miners per unit of gas. Indeed, 𝜋 can be larger than the real unit gas cost, hence giving some profit to Ingrid who is volunteering to initiate the on-chain execution. However, this profit is unlikely to be high as parties can undercut each other. This ensures that the simulation will be successfully carried out until index 𝑗.

EXPERIMENTAL RESULTS

Implementation. We implemented our approach, i.e. an automated tool to obtain the wrapped contract W from any given contract C in Python 3. We used Slither [START_REF] Feist | Slither: a static analysis framework for smart contracts[END_REF], Web3Py [START_REF]Python library for interacting with Ethereum[END_REF], and Hardhat [START_REF]Ethereum development environment for professionals[END_REF] for parsing smart contracts written in Solidity and simulating the gas usage on our machine.

Overall Savings in Gas Usage. As benchmarks, we took all the Ethereum smart contracts that were deployed in Etherscan between June and October 2022. Some of them were removed either because they were extremely simple contracts, e.g. basic ERC 20 with no additional functionality, or because they were not parsable using our libraries. Thus, we report results over the remaining 3,330 real-world contracts with 327,132 function calls. The total gas usage was reduced from 51,845,786,705 gas units ≈ 727.09 ETH ≈ 1,261,801 USD to 31,058,348,542 gas units ≈ 469.86 ETH ≈ 819,149 USD. So, our approach provided a reduction of 40.09 percent, corresponding to a whopping 442,651 USD in a short period of only 121 days. Each contract's gas usage was, on average, reduced by 51.65 percent. This shows the significant real-world utility of our method, as well as the fact that current Ethereum smart contracts are quite wasteful in terms of gas usage. The average improvement per transaction was 63,544.49 units of gas ≈ 0.0008 ETH ≈ 1.35 USD. Figure 1 provides more detailed results. 

Figure

  Figure Improvements obtained by our approach in the gas usage of each benchmark contract.

  • Step 2: If no other party challenges the withdrawal until 𝑡 blocks after Step 1, then Alice can call the dedicated function W.withdraw and receive the desired amount of money. (7) Challenging. Suppose a party Alice ∈ P requests a withdrawal of 𝑥 ether from her W-balance. Although W-balances are not explicitly stored in W on-chain, Bob ∈ P knows whether Alice has a W-balance of at least 𝑥 because all operations (lazy function calls, deposits, withdrawals) are all simulated by every other party off-chain on his own machine. If Bob finds out that Alice is trying to withdraw more than her W-balance, then Bob can challenge the withdrawal at index 𝑗 by calling a function named W.challenge( 𝑗). When a challenge occurs, then either Alice is dishonest and trying to withdraw more than her balance or Bob is dishonest and stopping Alice from withdrawing her money. In such a case, the wrapper contract W initiates an on-chain evaluation. (8) Leaving. Any party can call W.leave() and leave W at any time to get their deposit 𝑑 back as long as they do not have an active withdrawal request. A withdraw request is active if (i) the current time is within 𝑡 blocks after the request, or (ii) the request has been challenged and the ensuing on-chain evaluation has not concluded yet. (9) On-chain Evaluation. On-chain evaluation is triggered only when there is a disagreement about the state of C and a withdrawal is challenged. Let 𝑖 be the index of the last operation in the W-ledger that is executed on-chain. Originally, we have 𝑖 = 0, but 𝑖 might have increased in case of previous challenges. Let 𝑗 be the index of the withdrawal request by Alice in the W-ledger and suppose the request is challenged by Bob. We have to simulate all the operations in the range [𝑖 + 1, 𝑗] of the W-ledger on-chain in order to find the W-balance of Alice at the time of the request. The contract W maintains a state variable 𝑏 [Paul] for every party Paul ∈ P. This is the W-balance of Paul immediately after the on-chain execution of the 𝑖-th entry in the W-ledger, i.e. his W-balance up until the last operation that is executed on-chain. It also has a state variable 𝑏 [C] which similarly tracks the W-balance of C. If we execute everything until index 𝑗 -1 on-chain, then 𝑏 [Alice] would be the W-balance of Alice at the time she requested to withdraw 𝑥 units. So, we simply have to figure out whether 𝑏 [Alice] ≥ 𝑥 .

  The potentially dishonest parties Alice and Bob cannot bid. After 𝑡 blocks, the smallest bidder becomes Ingrid and triggers on-chain simulation.• Simulating Every Entry of the W-ledger. After Ingrid is chosen in the bidding process above, she has to call W.simulate(𝑘) for every 𝑖 + 1 ≤ 𝑘 ≤ 𝑗 in order. This function simulates the execution of the 𝑘-th entry in the W-ledger on-chain. This will of course incur gas costs which are paid by Ingrid. However, W.simulate stores of how many units of gas Ingrid has paid in 𝑔𝑏[Ingrid]. If Ingrid fails to call W.simulate(𝑘) within 𝑡 blocks after she called W.simulate(𝑘 -1), she loses her deposit 𝑑. Moreover, another bidding process will begin as above to find a new initiator for the rest of the on-chain simulations.
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