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Semi-global bounded output regulation of linear
two-time-scale systems with input saturation

Yan Lei, Yan-Wu Wang, Xiao-kang Liu, and Irinel-Constantin Morărescu

Abstract—Standard output regulation design techniques can-
not be applied for linear two-time-scale systems subject to
saturated inputs. In this work, a state feedback output regulation
is first proposed based on a classical stabilizing composite state
feedback controller. Nevertheless, the corresponding design is
difficult to implement due to numerical issues. Thus, the method
of asymptotic power series expansion is applied to provide an
approximate solution to the regulator equation. Then, a time-
continuous state feedback controller is designed by combining
the Chang transformation approach and the low-gain feedback
technique, which results in a semi-global bounded output regu-
lation of the closed-loop system. Furthermore, to reduce control
updates, a dynamic event-triggered control scheme is proposed
which ensures the exclusion of Zeno behavior by maintaining
a strictly positive time between any two triggering moments,
regardless of the initial state of the system. Additionally, an
observer-based event-triggered control scheme is proposed to
cater to the practical scenario in which system state information
is unavailable. Finally, to demonstrate the effectiveness of our
proposed technique, two examples are presented.

Index Terms—Two-time-scale, output regulation, input satura-
tion, event-triggered control.

I. INTRODUCTION

TWO-TIME-SCALE systems, characterized by the coex-
istence of fast and slow time scales, are prevalent in

many practical applications such as robotics [1], biology [2]
and electric power management [3]. Traditional control design
techniques do not apply for two-time-scale systems (TTSSs)
mainly due to numerical challenges. Thus, there is a need for
methodological control tools that can handle these systems, see
e.g., [4], [5]. As far as we know, research on TTSSs mainly
focuses on the stabilization problem [6]–[10]. However, there
are only few results that address the output regulation problem,
which has been a fundamental control problem since the
1970s [11]–[13] and arises in practical applications such
as controlling a spacecraft with disturbances, controlling a
helicopter that has to lend on a moving ship and so on. In
[14], [15], the output regulation problem is addressed for a
class of nonlinear TTSSs and T-S fuzzy TTSSs, respectively.
However, in [14], [15], only the slow subsystem is affected
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by the disturbance generated by the exosystem. Meanwhile,
the output regulation error is specifically defined with respect
to the reference signal and only the slow subsystem. Thus,
further research is still needed for disturbance rejection in fast
subsystems, and output tracking related to fast states. It is also
important to note that input saturation resulting from physical
limitations of the actuators is a common issue in practical
systems. However, many existing works including [14], [15]
do not consider this limitation.

Our primary objective is to design a continuous-time state
feedback controller that achieves bounded output regulation
for linear TTSSs subject to input saturation, i.e. to address the
disturbance rejection and practical tracking problem, but also
ensure the internal stability. In the TTSS setup, the regulator
design techniques in [16]–[18] for output regulation of single
time scale linear systems subject to input saturation would
lead to numerical issues. Consequently, the aforementioned
problem is not solved yet and well adapted techniques have
to be developed.

Our first step in addressing the semi-global output regulation
problem of linear TTSSs subject to input saturation is to inves-
tigate the semi-global internal stabilization problem of these
systems. The low-gain feedback technique is a classic method
for handling input saturation nonlinearity, see for instance
[16]–[20]. However, due to the existence of a small positive
parameter, the asymptotic null controllability of the TTSSs
with bounded controls is difficult to verify. Therefore, the low-
gain feedback technique cannot be used directly. Instead, it is
combined with the Chang transformation approach to design
a composite state feedback stabilizing controller. Accordingly,
semi-global internal stability of TTSSs can be ensured under
some standard assumptions. Then, a state feedback output
regulation controller is further designed based on the solution
of corresponding regulation equation. However, since the con-
sidered fast subsystems is subject to external disturbance and
the output is related to fast states, the corresponding regulator
equation developed in this paper would be hard to solve due
to numerical issues. Consequently, the method of asymptotic
power series expansion is applied to provide an approximate
solution to the regulator equation. On top of this, the closed-
loop system can be guaranteed to be practically stable, with
the ultimate bound on the output regulation error determined
by the bound on the states of the exosystem and the regulator
equation error.

Afterwards, we investigate the case where communication
between the controller and the plant occurs only at certain sam-
pling instants. To reduce the number of the control updates,
we employ an event-triggered mechanism (ETM) instead of
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the traditional periodic sampling mechanism. Since the event-
triggered approach generates transmissions between the plant
and the controller only when necessary, we theoretically con-
clude that this yields a reduced energy consumption for data
transmissions. However, designing the triggering mechanism
to ensure a strictly positive minimum inter-event time presents
a challenge in this context. Several event-triggered control
techniques are now available, including those outlined in
[21]–[23] and the references therein.. Note that, solutions for
TTSSs are limited, with their applications primarily focused
on stabilization problems. Therefore we are considering a
new challenging problem in which we have to handle the
nonlinearity introduced by the input saturation on one hand
and the numerical issues generated by the two-time-scale on
the other. The (practical) event-triggered stabilization control
problem has been studied for linear TTSSs [24] and non-
linear TTSSs [25] based on only slow dynamic, assuming
global asymptotic stability of the origin of the fast subsys-
tem. This assumption has been relaxed in subsequent works
[26]–[29]. Besides, dynamic event-triggered control schemes
have been proposed to ensure the stability for the slow-
sampling discrete-time TTSSs [30], and discrete-time TTSSs
with time-delays and sensor saturation [31]. Among these
results, the triggering conditions based on absolute threshold
[24], spatial-regularization [25], time-regularization [27] and
dynamic ETMs [28], [30], [31], inspired by the works in [32]–
[34], are respectively applied to exclude the Zeno behavior.
To the best of our knowledge, there is no existing result on
event-triggered output regulation problem of TTSSs. In this
context, inspired by [34], a dynamic ETM mixed with absolute
threshold is designed to ensure the practical semi-global output
regulation property, where the ultimate bound on the regulated
output can be adjusted by the adjustable constant parameter
in absolute threshold. Besides, the existence of a strictly
positive time between any two triggering moment is ensured
to exclude Zeno behavior, regardless of the system’s initial
state. Furthermore, considering the practical scenarios where
the state variables are unmeasurable and only the output is
available for control design, an observer-based event-triggered
control law is proposed to achieve the semi-global bounded
output regulation for TTSSs.

The main contributions of this paper are threefold.

1) An output regulator design that takes into account both the
input saturation nonlinearity and the two-time-scale dynam-
ics is proposed, while further addressing the disturbance
rejection in both the slow and fast subsystems, and output
tracking related to both the slow and fast states unlike [14],
[15].

2) A dynamic event-triggered control scheme is further pro-
posed, which offers enhanced energy efficiency compared
to the time-continuous strategy presented in [14], [15].
Besides, the proposed method excludes Zeno behavior by
guaranteeing the existence of a strictly positive interval
between any two triggering moments, regardless of the
system’s initial state.

3) In contrast to [14], [15], the investigation is also extended
to the scenario where the state variables of both the

exosystem and TTSSs are not available, and an output
based event-triggered control scheme is further proposed
for the semi-global bounded output regulation of linear
TTSSs with input saturation.

The rest of the paper is organized as follows. The problem
under consideration is formulated in Section II. The semi-
global bounded output regulation of TTSS with input satu-
ration is investigated via continuous-time control in Section
III. The dynamic event-triggered state feedback and observer-
based control scheme are further proposed in Section IV. Two
illustrative examples are presented in Section V. Conclusions
are drawn in Section VI.

Notation. The notation ‖ · ‖ denotes the Euclidean norm
for vectors or the induced 2-norm for matrices depending on
the context. For a piecewise continuous bounded function v :
[0,∞) → Rm, and T ≥ 0, ‖v(t)‖∞,T , supt≥T ‖v(t)‖∞.
The function f : [0,∞)2 → Rm×n is O(εn) if there exist
strictly positive constants k and ε∗ such that, ∀ε ∈ [0, ε∗] and
t ∈ [0,∞), ‖f(t, ε)‖ ≤ kεn.

II. PROBLEM STATEMENT

Consider the following two-time-scale system
ẋ = A11x+A12z +B1σ(u) + F1v,

εż = A21x+A22z +B2σ(u) + F2v,

y = C1x+ C2z +Qv,

(1)

where 0 < ε � 1, x ∈ Rnx and z ∈ Rnz are slow and
fast states, respectively, u ∈ Rp and y ∈ Rq are respectively
the input and output regulation error, v ∈ Rnv is the state
of the exosystem, representing both external disturbances and
time-varying references input. It is noteworthy to emphasize
that time scale separation is induced by very small positive
parameter ε. The proposed results are based on the decoupling
between the fast and slow dynamics. They are more effective
when ε is closer to 0. The dynamic of the exosystem is
described by the following form:

v̇ = Sv. (2)

The matrices S, Q, Aij , Bi, Fi, Ci, i, j = 1, 2, are constant
and known, with appropriate dimensions. σ(·) is a saturation
function with

σ(u) = (σ̂(u1), σ̂(u2), . . . , σ̂(up)), (3)

where σ̂(ui) = sign(ui) max{Υ, |ui|}, and Υ > 0 is the
saturation level. Our primary objective is to design a state-
feedback controller

u = g(x, z, v), (4)

which accomplishes the semi-global bounded output regulation
for TTSS (1), as formalized next.

Definition 1. Consider a compact set V ⊂ Rnv containing the
origin. The designed controller achieves semi-global bounded
output regulation for TTSS (1), if for any given compact
subsets X ⊂ Rnx and Y ⊂ Rnz both containing the origin,
there exists a positive constant ε̄ such that for any ε ∈ (0, ε̄],
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1) The equilibrium point (x, z) = (0, 0) of the closed-loop
system is stable with X × Y contained in its basin of
attraction, when v = 0.

2) For any initial conditions (x(0), z(0), v(0)) ∈ X × Y ×
V, the solution of the closed-loop system, consisting of
(1), (2), and (4) exists and satisfies lim

t→∞
sup ‖y(t)‖ ≤ γ,

where γ is a positive constant.

The notation of semi-global bounded output regulation in
Definition 1 is consistent with the one provided in [18],
adapted to the context of practical tracking and the two-time-
scale. Notice that Definition 1 requires that both disturbance
rejection and practical tracking are ensured by the control
design of the TTSS subject to input saturation.

Then, controller is implemented using Zeno-free event-
triggered transmission schemes. Moreover, an observer-based
control scheme is designed to achieve the bounded output
regulation for (1), which is the purpose of Section IV. To solve
these issues, the next three assumptions and one Lemma are
presented.

Assumption 1 ( [17], [18]). The eigenvalues of matrix S are
semi-simple and have zero real parts.

Assumption 1 is common and standard for ensuring the neu-
trally stability of the exosystem. It is noteworthy that when the
exosystem is unstable, achieving disturbance rejection through
the use of saturated inputs becomes highly challenging, and
in many cases, even impossible.

Assumption 2 ( [4]). The matrix A22 is invertible.

Assumption 2 is crucial for decoupling the slow and fast
dynamics, and is standard in the literature on TTSSs.

Assumption 3. The pairs (A0, B0) and (A22, B2) are asymp-
totically null controllable with bounded controls (ANCBC), i.e.

1) The pairs (A0, B0) and (A22, B2) are stabilizable.
2) All eigenvalues of A0, A22 lie in the closed left half of

the complex plane.

where A0 :=A11−A12A
−1
22 A21, B0 :=B1−A12A

−1
22 B2.

Assumption 3, which is also utilized in [19], is widely
employed and crucial for designing semi-global stabilizing
feedback gains for the boundary-layer and reduced-order sub-
systems. Under Assumptions 2-3, the eigenvalues of A22 lie
in the left half of the complex plane excluding the origin.
These assumptions on A22 are slightly less restrictive than the
Hurwitz condition presented in [35], as well as the condition
that assumes global asymptotic stability of the origin of the
fast subsystem in [24], [25].

Lemma 1. [20] Under Assumption 3, there exist unique
positive definite matrices P1 and P2 for any ε ∈ (0, 1] that
solve the algebraic Riccati equations:

AT0 P1(ε) + P1(ε)A0 − 2P1(ε)B0B
T
0 P1(ε) + εInx = 0 (5)

AT22P2(ε) + P2(ε)A22 − 2P2(ε)B2B
T
2 P2(ε) + εInz = 0. (6)

Moreover, limε→0 P1(ε) = 0nx×nx , limε→0 P2(ε) = 0nz×nz .

III. THE CONTINUOUS-TIME CONTROL

This section investigates semi-global stabilization and
bounded output regulation of TTSSs.

A. Semi-global Stabilization of TTSS

The objective here is to achieve the semi-global stabilization
as formalized in Definition 2 for the following TTSSs

Eξ̇ = Aξ +Bσ(u), (7)

where E :=diag{Inx , εInz}, A :=

(
A11 A12

A21 A22

)
, B :=

(
B1

B2

)
and ξ := (x, z). The notation of semi-global stabilization
in Definition 2 is consistent with the one provided in [19],
adapted to the context of two-time-scale.

Definition 2. The designed controller achieves semi-global
stabilization of system (7), if for any given compact subsets
X ⊂ Rnx and Y ⊂ Rnz both containing the origin, there
exists a positive constant ε̄ > 0 such that for any ε ∈ (0, ε̄]
and for any (x(0), z(0)) ∈ X×Y, the solution of the closed-
loop system exists, and lim

t→∞
‖x(t)‖ = 0, lim

t→∞
‖z(t)‖ = 0.

The controller is designed in the following manner,

u = ḡ(x, z) = K1x+K2z, (8)

where K1 :=(1−K2A
−1
22 B2)K0+K2A

−1
22 A21, K0 =BT0 P1(ε),

K2 := BT2 P2(ε), and P1(ε), P2(ε) satisfy (5) and (6).
The main point of applying the low-gain feedback technique

is to ensure that ‖u(t)‖∞ ≤ Υ, so σ(u) = u = K1x + K2z,
for all t ≥ 0. In this way, TTSS (7) can be rewritten as follows(

ẋ
εż

)
=

(
Λ11 Λ12

Λ21 Λ22

)(
x
z

)
(9)

where Λmn := Amn+BmKn, m,n = 1, 2. To enable stability
analysis, we introduce the Chang transformation for the TTSS
(9) to separate the slow and fast dynamics, as described in
Chapter 3 in [4]. The transformation is presented below,(

xs
zf

)
:= T−1

c

(
x
z

)
, T−1
c :=

(
Inx−εHL −εH
−L Inz

)
, (10)

where matrices L and H satisfy the following equations

Λ21−Λ22L+εLΛ11−εLΛ12L = 0,

Λ12−HΛ22+εΛ11H−εΛ12LH−εHLΛ12 = 0. (11)

Note that the matrices L and H exist when ε is small enough
and Λ22 is non-singular, the detail can be seen in Lemma 2.1 of
[4]. Then, the closed-loop TTSS (9) in the (xs, zf ) coordinates
is (

ẋs
żf

)
=

(
As+BsKs 0

0
Af+BfK2

ε

)(
xs
zf

)
(12)

where As := A0 − εA12A
−1
22 L(A11 − A12L), Af := A22 +

εLA12, Bs := B0− εA12A
−1
22 LB1, Ks := K1−K2L, Bf :=

B2 + εLB1. Based on the definition of L and H , it has

As +BsKs = (1 +O(ε))(A0 +B0K0),

Af +BfK2 = (1 +O(ε))(A22 +B2K2).

Now, it is ready to give the main result of this section.
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Theorem 1. Suppose Assumptions 1-3 hold. There exists a
state-feedback controller (8) achieving the semi-global stabi-
lization for the TTSS (7).

Proof. Let us define a Lyapunov function candidate as

V = xTs P1(ε)xs + zTf P2(ε)zf . (13)

Recall ξ := (x, z). Since ξ(0) belongs to the compact set
X× Y, there exists a constant c > 0 such that

sup
ε∈(0,1],ξ(0)∈X×Y

V (0) ≤ c.

Let LV (c) = {ξ : V (ξ) ≤ c}. From Lemma 1, we have
lim
ε→0
‖P1(ε)‖∞ = 0 and lim

ε→0
‖P2(ε)‖∞ = 0. Then, from the

definition of K1 and K0 in (8), one has lim
ε→0
‖K1(ε)‖∞ = 0

and lim
ε→0
‖K2(ε)‖∞ = 0. Thus, there is an ε∗ ∈ (0, 1], so

that for all ε ∈ (0, ε∗] and (x, z) ∈ Lv(c), ‖u‖∞ = ‖K1x +
K2z‖∞ ≤ Υ. Let ε ∈ (0, ε∗]. In this case, for (x, z) ∈ Lv(c),
the derivative of V along with (7) yields

V̇ =xTs (ATs P1(ε) + P1(ε)As − 2P1(ε)BsKs)xs

+
1

ε
zTf (ATf P2(ε) + P2(ε)Af − 2P2(ε)BfK2)zf

≤− (1−O(ε))(εxTs xs+
ε

ε
zTf zf ).

There exists a positive constant ε̄ such that for any ε ∈ (0, ε̄],
1
2−O(ε) > 0 and for (x, z) ∈ Lv(c),

V̇ ≤− ε

2
xTs xs−

ε

2ε
zTf zf . (14)

Therefore, if ξ(0) ∈ LV (c), then ξ(t) ∈ LV (c), ∀t ≥ 0. Con-
sequently, (14) is valid for all t ≥ 0, which in turn implies that
lim
t→∞

‖xs(t)‖ = 0, lim
t→∞

‖zf (t)‖ = 0, i.e., lim
t→∞

‖x(t)‖ = 0,
lim
t→∞

‖z(t)‖ = 0.

Remark 1. We note that the eigenvalues of E−1Aε are hard
to compute for small ε, due to the numerical issues. Thus the
assumption that the pair (E−1A,E−1B) is ANCBC cannot be
imposed as done for the single time scale system in [19]. As
an alternative, Assumption 3 is provided here, under which the
low-gain feedback technique is combined with Chang trans-
formation to design the composite stabilization controller (8).
Accordingly, the issues caused by input saturation nonlinearity
and two-time-scale feature are handled simultaneously and the
semi-global stabilization of TTSS (7) is achieved.

B. Semi-global Output Regulation of TTSS

This subsection investigates the semi-global output regula-
tion problem of TTSSs (1) when subject to input saturation.

The controller is designed in the following manner,

u = g(x, z, v) = K1x+K2z +Gv, (15)

where K1, K2 have same definition as in (8), G = Γ−KΠ,
K :=

(
K1 K2

)
and Γ, Π will be defined in next theorem.

Let F :=
(
F>1 F>2

)>
, C :=

(
C1 C2

)
. Denote ξ := (x, z),

then the closed-loop TTSS is given as follows,
Eξ̇ = Aξ +Bσ(Kξ +Gv) + Fv,

v̇ = Sv,

y = Cξ +Qv.

(16)

Following the regulator design techniques in [16]–[18], we
can design Γ and Π based on the following regulator equations,

AΠ +BΓ + F = EΠS,

CΠ +Q = 0. (17)

However, since ε is very small, it might be hard to get the
exact solution of (17). Thus, an approximate solution of (17)
is provided, and the next theorem is obtained.

Theorem 2. Consider a compact set V ⊂ Rnv containing
the origin. Suppose Assumptions 1-3 hold. There exists a
controller (15) achieving the semi-global bounded output reg-
ulation for TTSS (1) with lim

t→∞
sup ‖y(t)‖ = O(εn+1), when

there are matrices Π = Π0 +
n∑
i=1

εiΠi and Γ = Γ0 +
n∑
i=1

εiΓi

with Πj = (ΠT
j,1,Π

T
j,2)T , j = 0, 1, . . . , n, n ∈ Z, so that

• it is satisfied that

AΠ0 +BΓ0 + F = ĒΠ0S, CΠ0 +Q = 0,

AΠi+BΓi=

(
Πi,1

Πi−1,2

)
S, CΠi=0, i = 1, . . . , n, (18)

where Ē := diag{Inx , 0},
• there exist T > 0 and ∆ > 0 so that for all v with
v(0) ∈ V, it has ‖Γ0v(t)‖∞,T ≤ Υ−∆.

Proof. Define ξ̄ := (ξ̄1, ξ̄2) = ξ−Πv, We have, for ‖u‖ ≤ Υ,

˙̄ξ = E−1(Aξ +Bu+ Fv)−ΠSv

= E−1(Aξ̄ +BKξ̄ + (AΠ +BΓ + F − EΠS)v). (19)

From (18), it can be easily obtained that

AΠ +BΓ + F − EΠS =

(
0

εn+1Πn,2S

)
S, (20)

Thus, when ‖u‖ ≤ Υ,(
˙̄ξ1

ε ˙̄ξ2

)
=

(
Λ11 Λ12

Λ21 Λ22

)(
ξ̄1
ξ̄2

)
−
(

0
εn+1Πn,2S

)
v. (21)

Similarly, let (
ξ̄s
ξ̄f

)
:= T−1

c

(
ξ̄1
ξ̄2

)
, (22)

where Tc is defined in (10). Then, we have, for ‖u‖ ≤ Υ,(
˙̄ξs
˙̄ξf

)
= AD

(
ξ̄s
ξ̄f

)
−
(
εHΠ0,2S

Π0,2S

)
v. (23)

Define a Lyapunov function as

U = ξ̄Ts P1(ε)ξ̄s + ξ̄Tf P2(ε)ξ̄f . (24)

Due to the fact that (x(0), z(0), v(0)) belongs to compact set
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X× Y× V, there exists a positive constant c so that

sup
ε∈(0,1],(x(0),z(0),v(0))∈X×Y×V

U(0) ≤ c.

Let LU (c) = {(x, z, v) : U(x, z, v) ≤ c}. Since lim
ε→0

P1(ε) =

0, lim
ε→0

P2(ε) = 0, we have lim
ε→0

K1(ε) = 0, lim
ε→0

K2(ε) = 0.
Thus, there is an ε∗ ∈ (0, 1], so that for all ε ∈ (0, ε∗] and
(x, z) ∈ Lv(c),

‖K1x+K2z‖ ≤ ∆.

With the condition that ‖Γv(t)‖∞,T ≤ Υ−∆ holds, a similar
proof to that of Theorem 1 demonstrates that for all ε ∈ (0, ε∗],
‖u(t)‖∞ ≤ Υ. Then, σ(u) becomes u, for all t ≥ 0. The
internal stability is still ensured, and the solution of the closed-
loop system comprising (1) and (15) exists.

Next, it is proved that lim
t→∞

sup ‖y(t)‖ = O(εn+1). Define

Us = ξ̄Ts P1(ε)ξ̄s. The derivative of Us along with (23) yields

U̇s ≤−
ε

2
ξ̄Ts ξ̄s−2εn+1ξ̄Ts P1(ε)HΠn,2Sv

−2εn+1ξ̄Tf P2(ε)Πn,2Sv− 2εξ̄Ts P1(ε)HΠ0,2Sv. (25)

Thus, for Us ≥ 64ε2n+2‖P1(ε)‖3‖HΠn,2Sv‖2∞
ε2 ,

U̇s ≤−
ε

4‖P1(ε)‖
Us. (26)

As a result, there is a class KL function βs, so that

‖Us(t)‖ ≤
64ε2n+2‖P1(ε)‖3‖HΠn,2Sv‖2∞

ε2
+ βs(‖Us(0)‖, t).

Define Uf = ξ̄Tf P2(ε)ξ̄f . With a similar proof as before, it
can be shown that there is a class KL function βf , such that

‖Uf (t)‖ ≤64ε2n+2‖P2(ε)‖3‖Πn,2Sv‖2∞
ε2

+ βf (‖Uf (0)‖, t).

Thus, it can be obtained that

lim
t→∞

sup ‖Us(t)‖ ≤
64ε2n+2‖P1(ε)‖3‖HΠn,2Sv‖2∞

ε2
, (27)

lim
t→∞

sup ‖Uf (t)‖ ≤ 64ε2n+2‖P2(ε)‖3‖Πn,2Sv‖2∞
ε2

. (28)

Then, lim
t→∞

sup ‖ξ̄s(t)‖ = O(εn+1), lim
t→∞

sup ‖ξ̄f (t)‖ =

O(εn+1). Thus, lim
t→∞

sup ‖ξ̄(t)‖ = O(εn+1). Moreover, from

(18), we have CΠ + Q = 0, thus y = Cξ̄. Thus,
lim
t→∞

sup ‖y(t)‖ = O(εn+1). The proof is completed.

Remark 2. Let u = ut+ud with ut := K1x+K2z−KΠv =
Kξ, ud := Γv. The term ut corresponds to the standard
composite controller used to asymptotically stabilize the origin
of the tracking error system as demonstrated in Theorem 2,
while ud is introduced for the disturbance rejection.

Remark 3. In Theorem 2, the solutions of (18) can be exactly
obtained. Thus, one can compute the approximate solution Π,
Γ of (17) that also solves (20). Due to the discrepancy between
the approximate and the true solutions of (17), the output
regulation property becomes practical, i,e., lim

t→∞
sup ‖y(t)‖ =

O(εn+1). This is still acceptable, since ε is very small. It is
also worth noting that in [14], [15], the ultimate bound on y

is O(ε). In contrast, Theorem 2 could provide a more accurate
solution with n > 1.

IV. EVENT-TRIGGERED SEMI-GLOBAL BOUNDED OUTPUT
REGULATION OF TTSS

This section investigates the scenario in which the controller
communicates with the actuator through an event-triggered
transmission scheme. Specifically, we respectively propose
state and output feedback event-triggered control schemes.

A. State feedback control

Taking sampling into account, we design the following state
feedback event-triggered controller:

u = g(x̂, ẑ, v̂) = K1x̂+K2ẑ +Gv̂, (29)

where x̂, ẑ, v̂ denote the sampled states of x, z, v, respectively,
K1, K2, G have same definitions as in (15). Denote the
sequence of sampling instants as tk, k ∈ I ⊆ Y and
use zero-order holder to generate these quantities. In this
way, at t = tk, the states x, z, v are all sampled so
that (x̂(t+k ), ẑ(t+k ), v̂(t+k )) = (x(tk), z(tk), v(tk)), and for
t ∈ (tk, tk+1), ˙̂x = 0, ˙̂z = 0, ˙̂v = 0.

Dynamic event-triggering basically adapts the triggering
rule to the state of the system and helps reducing the number
of triggering instants, see [34] for details. Thus, a dynamic
variable η inspired by [34] is proposed with

η̇ = −κη +$(δ
∥∥ξ̄∥∥2 − ‖e‖2 + π), η(0) > 0, (30)

where e = g(x̂, ẑ, v̂) − g(x, z, v), $ > 0, δ > 0 and π > 0
are some constants to be designed, κ is an any given positive
constant.

To model the overall system, we adopt the hybrid formalism
of [36], where a jump corresponds to data transmission. We
introduce a new concatenated state χ := (x, z, v, x̂, ẑ, v̂, η) ∈
X =: Rnx ×Rnz ×Rnv ×Rnx ×Rnz ×Rnv × [0,∞) for this
purpose. The hybrid model is formulated using the formalism
of [36], and can be expressed as:

χ̇ = F (χ) χ ∈ C, χ+ ∈ G(χ) χ ∈ D, (31)

where

F (χ) :=


E−1
ε (Aξ +Bσ(g(x̂, ẑ, v̂)) + Fv)

Sv
0

−κη +$(δ
∥∥ξ̄∥∥2 − ‖g(x̂, ẑ, v̂)− g(x, z, v)‖2)

 ,

and G(χ) := (x, z, v, x, z, v, η). The flow set C and jump set
D will be defined later according to the triggering conditions.

By applying Schur complement conditions, there always
exist large enough $1 and $2 such that

Ms :=

(
− ε

8Inx −P1(ε)BdK
? −$1Inx+nz

)
≤0,

Mf :=

(
− ε

8Inz −P2(ε)BfK
2? −$2Inx+nz

)
≤0, (32)

where Bd := B1 − HB2 − εHLB1, Bf := B2 + εLB1,
K = (K1,K2). Define the sets C, D as below

C :=
{
χ ∈ X : ‖e‖2 − δ

∥∥ξ̄∥∥2≤αη + π
}
,
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D :=
{
χ ∈ X : ‖e‖2 − δ

∥∥ξ̄∥∥2≥αη + π
}
, (33)

where $δ < ε
8 , $ ≥ $1 +$2, α > 0, π > 0. Then, the next

theorem is presented.

Theorem 3. Consider a compact set V ⊂ Rnv containing the
origin. Suppose that Assumptions 1-3 are satisfied. Then, there
exist a controller of the form (29) and sets C, D in (33), as well
as a function γ ∈ K, such that the semi-global bounded output
regulation of TTSS (31) is achieved with lim

t→∞
sup ‖y(t)‖ =

γ(π) +O(εn+1), when there are matrices Π = Π0 +
n∑
i=1

εiΠi,

Γ = Γ0 +
n∑
i=1

εiΓi, such that

• the equations (18) are satisfied,
• there exist T > 0 and ∆ > 0 so that for all v with
v(0) ∈ V, it has ‖Γ0v(t)‖∞,T ≤ Υ−∆.

Furthermore, the TTSS (31) is capable of producing solutions
with a uniform average dwell time. Specifically, there exist
constants n0(δ) ∈ Z+ and τ > 0, such that for any (s, i),
(t, k) ∈ dom χ with χ being solution to (31) and s+i ≤ t+k,
it has k − i ≤ 1

τ (t− s) + n0.

Proof. Since (x(0), z(0)) ∈ X×Y and X, Y are both compact
sets, we can follow the same reasoning as in the proof of
Theorem 2. Thus, there exists a ε∗ ∈ (0, 1], such that for any
ε ∈ (0, ε∗], we have ‖u(t)‖∞ ≤ Υ. Then, σ(u) becomes u,
for all t ≥ 0. Let ε ∈ (0, ε∗], then, after Chang transformation
(22), it has that, for ‖u‖ ≤ Υ,(

ξ̇s
ξ̇f

)
= AD

(
ξs
ξf

)
+BDe−

(
εn+1HΠn,2S
εnΠn,2S

)
v, (34)

where AD is defined in (23), and BD := T−1
c E−1B.

Now, let us demonstrate the capability of the TTSS (31) to
produce solutions with a uniform average dwell time.

According to (30) and (33), it can be shown that

η̇ ≥ −(κ+$α)η.

This inequality implies that η ≥ η(0)e−(κ+$α)t > 0. Define
Φ = ‖e‖2

δ‖ξ̄‖2+αη+π
. Considering the definition of D, the time

duration between two consecutive transmissions is constrained
from below by the period it takes for Φ to increase from 0 to
π. Let χ denote the solution to (31), it has

D+Φ =
2eT ė

δ
∥∥ξ̄∥∥2

+ αη + π
+
‖e‖2(2δξ̄T ˙̄ξ + αη̇)

(δ
∥∥ξ̄∥∥2

+ αη + π)2

≤
‖e‖2+2‖KΛε‖2

∥∥ξ̄∥∥2
+2‖K2Π2S+ΓS‖2‖v‖2∞

δ
∥∥ξ̄∥∥2

+ αη + π
+

‖e‖2((2δ‖KΛε‖+α$δ+1)
∥∥ξ̄∥∥2

)

(δ
∥∥ξ̄∥∥2

+ αη + π)2
+

‖e‖2(δ‖K2Π2S‖2‖v‖2∞ + α$π)

(δ
∥∥ξ̄∥∥2

+ αη + π)2

≤θ1Φ + θ2, (35)

where θ1 = max{2δ‖KΛε‖+α$δ+2,
δ‖K2Π2S‖2‖v‖2∞+α$π

π },

θ2 = max{ 2‖KΛε‖2
δ ,

2‖K2Π2S+ΓS‖2‖v‖2∞
π }, Λε =

(
Λ11 Λ12
Λ21

ε
Λ22

ε

)
.

Thus, for t ∈ [tk, tk+1), Φ(t) ≤ θ2(eθ1(t−tk)−1)
θ1

. The interval
between two consecutive jumps arising from the triggering rule

is constrained from below by a positive value τ =
ln(1+

θ1
θ2

)

θ1
.

Thus, for any (s, i) and (t, k) ∈ domχ such that s+ i ≤ t+k,
we obtain the following result:

k − i ≤ t− s
τ

+ 1. (36)

Then, it is proved that the semi-global bounded output
regulation of TTSS (31) can be achieved. Define

U(χ) = ξ̄Ts P1(ε)ξ̄s + εξ̄Tf P2(ε)ξ̄f + η. (37)

Then, it has

〈∇U(χ), F (χ)〉
≤ −(1 +O(ε))ε(ξ̄Ts ξ̄s + ξ̄Tf ξ̄f )−2εn+1ξ̄Ts P1(ε)HΠn,2Sv

−2εn+1ξ̄Tf P2(ε)Πn,2Sv + 2ξ̄Ts P1(ε)Bde+2ξ̄Tf P2(ε)Bfe

−κη +$(δ
∥∥ξ̄∥∥2 − ‖e‖2). (38)

From (32) and the definition of $, δ, α, π, it has

〈∇U(χ), F (χ)〉

≤ −(
3

4
+O(ε))ε(ξ̄Ts ξ̄s + ξ̄Tf ξ̄f )−2εn+1ξ̄Ts P1(ε)HΠn,2Sv

−2εn+1ξ̄Tf P2(ε)Πn,2Sv − κη +$π. (39)

Thus, there is a certain value of ε̄ > 0, such that for any
ε ∈ (0, ε̄], O(ε) ≤ 1

4 . In accordance with the proof of Theorem
2, for any ε ∈ (0, ε̄] and for all (t, j) ∈ domχ, there exist class
KL function βs and class K function β1 such that

‖U(t, j)‖ ≤O(ε2(n+1)) + β1(π) + βs(‖U(0)‖, t). (40)

Thus, when (x(0), z(0)) ∈ X × Y, we have that for t ≥ 0,
‖ξ̄(t)‖ is bounded, and so does ‖e(t)‖. Since U(χ) =
ξ̄Ts P1(ε)ξ̄s + εξ̄Tf P2(ε)ξ̄f + η, the proof only shows the ex-
istence of a class K function β̄1, such that lim

t→∞
sup ‖ξ̄s(t)‖ ≤

β̄1(π)+O(εn+1). Next, we will prove the existence of a class
K function β̄2, such that lim

t→∞
sup ‖ξ̄f (t)‖ ≤ β̄2(π)+O(εn+1).

Denote Us(χ) = εξ̄Tf P2(ε)ξ̄f + η. Similarly, we have

〈∇Uf (χ), F (χ)〉

≤− 3

8
εξ̄Tf ξ̄f +

1

8
εξ̄Ts ξ̄s − 2εn+1ξ̄Tf P2(ε)Πn,2Sv − κη +$π

≤− 3

8
εξ̄Tf ξ̄f−2εn+1ξ̄Tf P2(ε)Π2Sv−κη+$π

+
ε

8
(β̄1(π)+O(εn+1))2.

Thus, for any (t, j) ∈ domχ, there exist a class KL function
βf and a class K function β2 such that

‖Uf (t, j)‖ ≤O(ε2(n+1)) + β2(π) + βf (‖U(0)‖, t). (41)

Then, a class K function β̄1 exists such that
lim
t→∞

sup ‖ξ̄f (t)‖ ≤ β̄2(π) + O(εn+1). Using a similar
proof technique as in Theorem 3, we can also establish
the existence of a class K function γ, such that
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lim
t→∞

sup ‖y(t)‖ ≤ γ(π) +O(εn+1).

Remark 4. As γ ∈ K, it is possible to make γ(π) arbitrarily
small by choosing a sufficiently small value of π. Thus, this
solution is still considered valid. It is important to note that
η > 0 is guaranteed, which suggests that the introduction
of the dynamic variable η should reduce data transmissions
compared to the static event-triggered mechanism. Besides, the
fact that π in (33) is strictly positive is essential, otherwise
the derivation of Φ might be unbounded and Zeno behaviour
cannot be excluded. The detail can be seen in (35). It is noted
that the obtained uniform average dwell time τ is independent
on the initial states of TTSS (1).

B. Observer-based control

This subsection presents the design of the observer-based
control scheme. Accordingly, the next assumption is needed.

Assumption 4. The pairs (Ā0, C̄0) and (A22, C2) are de-
tectable, where Ā0 = Ā11 − Ā12A

−1
22 Ā21, C̄0 = C̄1 −

C2A
−1
22 Ā21, Ā11 =

(
S 0
F1 A11

)
, Ā12 =

(
0
A12

)
, Ā21 =

(F2, A21), C̄1 = (Q,C1).

Assumption 4 is essential and standard for the design of a
full-order observer for the system (1)-(2), and it has also been
used in [37]. Under Assumption 4, there exist matrices L0 and
L2, such that Ā0 + L0C̄1 and A22 + L2C2 are both Hurwitz.
Next, we proceed to design the observer-based event-triggered
controller as follows,

u = g(x̃, z̃, ṽ) = K1x̃+K2z̃ +Gṽ, (42) ˙̄v
˙̄x
˙̄z

 = Āε

 v̄
x̄
z̄

+ B̄εu+ L̄ε(C̄

 v̄
x̄
z̄

− y), (43)

where the variables x̄, z̄ and v̄ are the estimates of x, z and
v, respectively, the variables x̃, z̃, ṽ represent the sampled

states of x̄, z̄ and v̄, respectively, Āε =

(
Ā11 Ā12
Ā21

ε
A22

ε

)
,

B̄ε =
(

0 B>1
B>2
ε

)>
, L̄ε =

(
L>1

L>2
ε

)>
, L1 =

Ā12A
−1
22 L2 +L0(1−C2A

−1
22 L2) and L0, L2 are matrices such

that Ā0 +L0C̄1 and A22 +L2C2 are Hurwitz, and K1, K2, G
have same definitions as in (29). Prior to presenting the main
result of this subsection, we provide the following lemma.

Lemma 2 ( [37]). Suppose Assumptions 2 and 4 hold. There is
a ε̄ > 0 such that, ∀ε ∈ (0, ε̄], the full-order observer (43) can
achieve the observation of the state v, x, z of TTSS (1), and
the estimation error of the observer em := (v̄, x̄, z̄)− (v, x, z)
would converge to the origin exponentially.

Regarding concatenated state (v, x) and z as the slow and
fast state respectively, the proof of Lemma 2 is similar with
the one in [37], thus it is omitted here.

Let us denote the corresponding sequence of sampling
instants as tk, k ∈ I ⊆ Y and also use zero-order holder
to generate these quantities. In this way, at t = tk, x, z, v are
all sampled so that (x̃(t+k ), z̃(t+k ), ṽ(t+k )) = (x̄, z̄, v̄), and for

t ∈ (tk, tk+1), ˙̃x = 0, ˙̃z = 0, ˙̃v = 0. Similarly, an internal
dynamic variable η̄ is designed, which satisfies

˙̄η = −κη̄ +$(δ
∥∥ζ̄∥∥2 − ‖ē‖2 + π), η̄(0) > 0, (44)

where ζ̄ := (ζ̄1, ζ̄2) = ζ − Πv̄, ζ = (x̄, z̄), e =
g(x̃, z̃, ṽ) − g(x̄, z̄, v̄), κ is an any given positive constant,
$, δ are some positive constants to be designed. Denote
χ̄ := (x, z, v, v̄, x̄, z̄, x̃, z̃, ṽ, η̄) ∈ X̄ =: Rnx × Rnz × Rnv ×
Rnv × Rnx × Rnz × Rnx × Rnz × Rnv × [0,∞). The hybrid
model can be expressed as follows,

˙̄χ = F̄ (χ̄) χ̄ ∈ C̄, χ̄+ ∈ Ḡ(χ̄) χ̄ ∈ D̄, (45)

where Ḡ(χ̄) := (x, z, v, v̄, x̄, z̄, x̄, z̄, v̄, η̄),

F̄ (χ̄) :=



E−1
ε (Aξ +Bσ(g(x̃, z̃, ṽ)) + Fv)

Sv

Āε

 v̄
x̄
z̄

+ B̄εu+ L̄ε(C̄

 v̄
x̄
z̄

− y)

0

−κη̄ +$(δ
∥∥ζ̄∥∥2 − ‖g(x̂, ẑ, v̂)− g(x, z, v)‖2)


,

and the sets C̄ and D̄ are defined as follows,

C̄ :=
{
χ ∈ X : ‖ē‖2 − δ

∥∥ζ̄∥∥2≤αη̄ + π
}
,

D̄ :=
{
χ ∈ X : ‖ē‖2 − δ

∥∥ζ̄∥∥2≥αη̄ + π
}
, (46)

where α > 0, π > 0, $δ < ε
8 , $ ≥ $1 + $2, and $1, $2

satisfy (32), Then, the next theorem is obtained.

Theorem 4. Consider a compact set V ⊂ Rnv containing the
origin. Suppose Assumptions 4-1 hold. There exist γ ∈ K, a
controller of the form (42)-(43) and C̄, D̄ in (46) solving the
semi-global bounded output regulation problem of TTSSs (45)
with lim

t→∞
sup ‖y(t)‖ = γ(π)+O(εn+1), if there exist matrices

Π = Π0 +
n∑
i=1

εiΠi and Γ = Γ0 +
n∑
i=1

εiΓi, such that

• the equations (18) are satisfied,
• there exist T > 0 and ∆ > 0 so that for all v with
v(0) ∈ V, it has ‖Γ0v(t)‖∞,T ≤ Υ−∆.

Moreover, the TTSS (45) is capable of producing solutions
with a uniform average dwell time that is independent of the
initial states.

Proof. Similar to the proof in Theorem 4, there is an ε̄∗ ∈
(0, 1], such that, ∀ε ∈ (0, ε̄∗], ‖u(t)‖∞ ≤ Υ. Let ε ∈ (0, ε̄∗].
Then, σ(u) becomes u, for all t ≥ 0. Then, after Chang
transformation (22), it has that(

ξ̇s
ξ̇f

)
= AD

(
ξs
ξf

)
+

(
Bd
Bf

)
(ē+em)−

(
εn+1HΠn,2S
εnΠn,2S

)
v, (47)

where AD is defined in (23). The proof of TTSS (45) gener-
ating solutions with an uniform average dwell time is similar
to the one presented in Theorem 3, and is therefore omitted
here. Then, it is proved that the semi-global bounded output
regulation of TTSS (45) can be achieved.

Similarly, define Lyapunov function candidate

Ū(χ̄) = ξ̄Ts P1(ε)ξ̄s + εξ̄Tf P2(ε)ξ̄f + η̄. (48)
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Utilizing the proof technique similar to that of (39), based on
Lemma 2, it can be shown that there exists a threshold value
ε̄ > 0 such that for all ε ∈ (0, ε̄], the estimation error ‖em‖
exponentially converges to zero, and〈

∇Ū(χ̄), F (χ̄)
〉

≤− 1

4
ε(ξ̄Ts ξ̄s + ξ̄Tf ξ̄f )−2εn+1ξ̄Ts P1(ε)HΠn,2Sv

− 2εn+1ξ̄Tf P2(ε)Πn,2Sv − κη̄ +$‖em‖2 +$π. (49)

Then, a class K function γ can be established using a proof
technique similar to that of Theorem 3, demonstrating that
lim
t→∞

sup ‖y(t)‖ ≤ γ(π) + O(εn+1). Thus, for all ε ∈ (0, ε̄∗],
TTSS (45) achieves semi-global bounded output regulation
with lim

t→∞
sup ‖y(t)‖ = γ(π) +O(εn+1).

V. ILLUSTRATIVE EXAMPLE

In this section, two examples are presented to demonstrate
the effectiveness of the proposed technique.

Example 1: To demonstrate the efficacy of the proposed
approach, we present an example involving system (1) with a
selected value of ε = 0.01, where

A11 =

(
−2.5 −1

1 2

)
, A12 =

(
−2 −3
0 2

)
, B1 =

(
−1
−2

)
,

A21 =

(
1 2
−1 1

)
, A22 =

(
0 2
−2 0

)
, B2 =

(
−1
2

)
,

F =

(
−0.2 0 −0.1 0
0.3 0.1 0 0.1

)T
, S=

(
0 1
−1 0

)
,

C=
(

0 0 1 1
)
, Q=

(
−0.5 0

)
.

Then, A0 =A11−A12A
−1
22 A21 =

(
0 1
0 0

)
and B0 =B1−

A12A
−1
22 B2 = (−4.5,−1)T . Assumptions 1-3 hold.

The system is initialized with the following initial condi-
tions: v(0) = (−1, 0) and (x(0), z(0)) = (−1,−5, 2, 4). Let
Υ = 1. Then, ‖Γv(t)‖∞,0 ≤ 0.13 ≤ Υ. Accordingly, let
ε = 0.01, we have

P1 =

(
0.0145 0.0055
0.0055 0.0777

)
, P2 =

(
0.0431 0.0017
0.0017 0.0468

)
.

From (18), it has

Γ0 =
(
−0.0178 0.1218

)
,

Π0 =

(
−0.4658 −0.0218 0.2042 0.2958
0.2916 −0.1178 −0.0329 0.0329

)T
.

Then controller (15) is obtained with n = 0.
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Fig. 1. The simulation results of Theorem 1 in Example 1.

Simulation results of Theorem 1 and Theorem 2 are pre-
sented in Fig. 1 and 2. Fig. 1(a) shows that the solutions have
asymptotically converged to zero when v = 0, which ensures
the internal stability and also confirms the effectiveness of
Theorem 1. Fig. 2(a) shows that lim

t→∞
sup ‖y(t)‖ < 0.002,

which confirms the effectiveness of Theorem 2. Moreover,
both Fig. 1(b) and Fig. 2(b) show that ‖u(t)‖∞,0 ≤ Υ, in
other words, the input saturation nonlinearity is avoided.
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Fig. 2. The simulation results of Theorem 2 in Example 1.

Then, the controller (15) is implemented via event-triggered
scheme. Let η(0) = 1, κ = 0.1, $ = 0.1, δ = 0.001,
π = 0.001. The sets C and D are derived. The simulation
results of Theorem 3 are presented in Fig. 3 and Fig. 4. Fig.
3(a) shows that lim

t→∞
sup ‖y(t)‖ < 0.2, in agreement with

Theorem 3. Similarly, Fig. 3(b) shows that the input saturation
nonlinearity is avoided. Fig. 4 depicts the triggering instants
and the trajectory of the measurement error.
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Fig. 3. The simulation results of Theorem 3 in Example 1.
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Fig. 4. Event-triggering time and trajectory of ‖e‖ in Example 1 using
Theorem 3.

Finally, the event-triggered controller (42)-(43) designed in
Theorem 4 is applied. Since the pairs (Ā0, C̄0) and (A22, C2)
are detectable, Assumption 4 is satisfied. Accordingly, we
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choose

L0 =
(
−0.3056 0.9521 1.3258 0.5884

)T
,

L2 =
(
−0.4690 −0.8832

)T
,

so Ā0 +L0C̄1 and A22 +L2C2 are both Hurwitz. Then L1 =(
−0.3689 1.1493 1.4207 0.2412

)T
, and observer (43)

is obtained. Let η̄(0) = 1, κ = 0.1, $ = 0.1, δ = 0.001, π =
0.001. The sets C̄ and D̄ are derived. The simulation results
of Theorem 4 are presented in Fig. 5 and 6. The simulation
results show that lim

t→∞
sup ‖y(t)‖ < 0.2 with ‖u(t)‖∞,0 ≤ Υ,

in agreement with Theorem 4.
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Fig. 5. The simulation results of Theorem 4 with v(0) = (−1, 0).

0 20 40 60 80 100

Time t (sec)

0

0.2

0.4

0.6

0.8

1
events

|e|

90 92 94 96 98 100
0

0.5

1

Fig. 6. Event-triggering time and trajectory of ‖e‖ in Example 1 using
Theorem 4.

Example 2: Adopting the DC motor model in [38] and fur-
ther considering the output regulation problems, the dynamics
is presented as follows,{

Jmω̇ = −bω + kmI + F1v,

L̄İ = −kbω −R0I + σ(u) + F2v,
(50)

where ω, I and u are the angular speed, armature current,and
control voltage, respectively. Jm = 0.093 is the equivalent
moment of inertia, b = 0.008 is the equivalent viscous
friction coefficient, L̄ = 0.006 is the inductance, kb = 0.6,
km = 0.7274 are respectively the back e.m.f. and torque
developed with constant excitation flux, R0 = 0.6 is the
resistance, F1 = (0.1,−0.2), F2 = (0.4,−0.5), and v is the

state of the exosystem (2) with S =

(
0 1
−1 0

)
. The output

regulation error is considered with y = C1ω + C2I + Qv,
where C1 = 2, C2 = 1, and Q = (−0.5, 0).

The system is initialized with the following initial condi-
tions: v(0) = (−1, 1) and (x(0), z(0)) = (−2, 8). Let Υ = 1
and ε = 0.02. Then, we have P1 = 0.0012 and P2 = 0.0162.

From (18), it has

Γ0 =
(
−0.2842 −0.0063

)
,

Π0 =

(
0.3071 −0.1562
−0.1141 0.3125

)T
.

Choose L0 =
(
−0.9425 −0.3342 −0.6694

)T
and L2 =

−0.4681, then L1 =
(
−1.6778 −0.5949 4.9106

)T
. Let

η̄(0) = 2, κ = 0.2, $ = 0.1, δ = 0.01, π = 0.005. Then,
the controller of the form (42)-(43) with n = 0 and C̄, D̄
in (46) are derived. The simulation results of Theorem 4 are
presented in Fig. 7 and 8. The simulation results show that
lim
t→∞

sup ‖y(t)‖ < 0.2 with ‖u(t)‖∞,0 ≤ Υ, in agreement
with Theorem 4.

0 20 40 60 80 100

Time t (sec)

-10

-5

0

5

10

e
rr

o
r

y

90 92 94 96 98 100
-0.4
-0.2

0
0.2
0.4

(a) Evolution of y

0 20 40 60 80 100

Time t (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

s
ta

te

|u|

(b) The controller gain

Fig. 7. The simulation results of Theorem 4 in Example 2.
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Fig. 8. Event-triggering time and trajectory of ‖e‖ in Example 2 using
Theorem 4.

VI. CONCLUSION

The semi-global bounded output regulation problem was
investigated for linear TTSSs subject to input saturation, where
the impact of the fast subsystem is further considered. The
method of asymptotic power series expansion has been applied
to provide an approximate solution to the corresponding regu-
lator equation. Accordingly, a time-continuous state feedback
control law has been proposed, such that the bounded output
regulation is achieved with lim

t→∞
sup ‖y(t)‖ = O(εn+1). Addi-

tionally, a dynamic event-triggered mechanism has been devel-
oped to reduce the control updates. In the case of unavailable
state information, an observer-based event-triggered control
law has also been proposed. Moreover, the effectiveness of the
proposed method has been tested on a practical example of a
DC motor model. Note that the control design proposed here
is vulnerable to structural uncertainty. It would be interesting
in future works to consider the robustness issues for the output
regulation of TTSSs and its application to microgrids.
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