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Abstract: Drug delivery and distribution in the central nervous system (CNS) and the inner ear
represent a challenge for the medical and scientific world, especially because of the blood–brain
and the blood–perilymph barriers. Solutions are being studied to circumvent or to facilitate drug
diffusion across these structures. Using superparamagnetic iron oxide nanoparticles (SPIONs), which
can be coated to change their properties and ensure biocompatibility, represents a promising tool as a
drug carrier. They can act as nanocarriers and can be driven with precision by magnetic forces. The
aim of this study was to systematically review the use of SPIONs in the CNS and the inner ear. A
systematic PubMed search between 1999 and 2019 yielded 97 studies. In this review, we describe the
applications of the SPIONS, their design, their administration, their pharmacokinetic, their toxicity
and the methods used for targeted delivery of drugs into the ear and the CNS.

Keywords: iron oxide nanoparticles; drug delivery; blo-od–brain barrier; central nervous system;
blood–perilymph barrier; inner ear

1. Introduction

Administration and diffusion of drugs in the central nervous system (CNS) is a
technical and pharmacological challenge, since 3 physiological barriers control the diffusion
of all substances into the CNS: the blood–brain barrier (BBB), which is the main barrier,
the arachnoid barrier, which is formed by the arachnoid close to the sagittal sinus, and the
blood–cerebrospinal fluid barrier, which is located in the choroid plexus (Figure 1) [1–3].
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Figure 1. Central Nervous System Barriers. The blood–brain barrier (BBB) is present between the cerebral capillaries and
the brain parenchyma (A). Endothelial cells with tight junctions, basal lamina, pericytes and astrocyte endfeet separate
the blood compartment from the extracellular fluid. The blood–cerebrospinal fluid (CSF) barrier lies at choroid plexus in
the lateral, 3rd, and 4th ventricles of the brain (B). The arachnoid barrier (C), close to the sagittal sinus, is formed by a
multilayer epithelial structure with tight junctions. Arachnoid villi cross the dura, project into the sinus, and drain CSF into
the blood (according to Abbott et al. 2010; Haines DE 1991 [2,3]).

Generally, a high systemic drug concentration is necessary to obtain an intracerebral
concentration in the therapeutic range. This exposes the patient to the risk of serious
systemic complications, especially those related to chemotherapy. The same challenges
exist for drug administration in the inner ear due to the presence of a blood–perilymphatic
barrier (BPB, Figure 2), similar in many aspects to the CNS barriers [4,5]. The necessity to
obtain a stable concentration in the therapeutic range in these compartments requires a
kinetic of the delivery adapted to the elimination rate during the therapeutic period and
this may require multiple daily administrations. Moreover, depending on the disease and
the targets, the delivery should insure a homogeneous concentration in the organ, or on
the contrary, a targeted delivery inside the compartment. Indeed, applying a drug to the
vestibular organ without affecting the cochlear function to treat chronic vertigo has been
one of the most important challenges in otoneurology which has not been still won [6].
Finally, the delivery method should entail minimal morbidity, especially considering the
fact that the organ is already fragilized by the disease.



Brain Sci. 2021, 11, 358 3 of 24

Figure 2. The blood–inner-ear barriers. Drugs reach the inner ear via the vascular compartment, cerebrospinal fluid or
the labyrinthine windows (round, oval, A). The inner ear is vascularized by terminal branches of the anterior-inferior
cerebellar artery (AICA, A). Perilymph contained in scalae vestibuli and tympani (B) is secreted and absorbed through the
scala vestibuli vessels, the subarachnoid space, the modiolar vessels (MV), the capillary region in scala tympani, and the
cochlear aqueduct (A,B, light blue arrows). Endolymph in the scala media is secreted and absorbed via stria vascularis (SV),
Reissners’s membrane (RM), spiral limbus (SL), spiral prominence (SP), external sulcus (ES), endolymphatic sac (A,B, dark
blue arrows). (C) Vessels in the inner ear epithelia are surrounded by endothelial cells with tight junctions, a double-layer
basement membrane, pericytes and perivascular-resident macrophage-like melanocytes (PVMM) also called intermediate
cells (according to Juhn & Ryback, 1991, Nyberg et al. 2019 [7,8]).

1.1. Characteristics of Blood–Brain Barrier and Blood–Perilymphatic Barrier

The BBB is the largest barrier between the brain and the endothelial system (Figure 1) [1].
The BBB mainly consists of brain microvascular endothelial cells (Bmecs), neuronal peri-
cytes, and perivascular astrocyte foot-processes which work very closely together [1,2,7,9,10].
Bmecs and pericytes are encompassed by a basal membrane that allows them to be in an
independent perivascular extracellular matrix [2]. The BBB has tight endothelial junctions
(zonulae occludentes) with very high resistance (>1.8 kΩ/cm2) and a weak endothelial
pinocytosis activity [11]. Hence, it shows low permeability, except for lipophilic molecules
smaller than 400–600 Da [1,2]. Three transport mechanisms have been identified in the
BBB: (1) passive diffusion following a concentration gradient and restricted to small li-
posoluble molecules; (2) transporter mediated and facilitated by epithelial proteins such as
glucose transporters, ion channels, or exchangers; and (3) catalyzed, carrier-mediated or
receptor-mediated transport by the endocytosis/transcytosis system, corresponding to an
internalization of molecules by receptors through the BBB such as lectin or by electrostatic
interaction [2,9]. The BBB is also active and produces enzymes to activate, inactivate or de-
stroy many molecules (e.g., aminopeptidases, carboxypeptidases) [1]. These characteristics
procure the BBB with several dynamic functions such as the regulation of ion composition
in cerebrospinal fluid. Indeed, the potassium concentration is lower in the cerebrospinal
fluid than in the serum (2.5 mM versus 4.5 mM) [12]. In addition, BBB protects the brain
against certain macromolecules with potential proinflammatory and proapoptotic effects
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(i.e., albumin) [13] and neurotoxins circulating in the blood [2]. It contributes to brain
metabolism by allowing water-soluble nutrients enter the brain passively [2].

Similarly, BPB plays a major role in the homeostasis of the inner ear and allows only small
liposoluble or hydrosoluble molecules to pass into the perilymph (Figure 2) [4,5,7,8,14,15].
The main structures taking part in the exchanges between the blood and the inner ear
are: the epithelia of the scala vestibuli, and scala tympani, the cochlear aqueduct, the
subarachnoid space, the neuronal structures in the modiolus (for the absorption and secretion
of the perilymph) and the stria vascularis, the Reissner’s membrane, the spiral limbus, the
spiral prominence, the external sulcus and the endolymphatic sac for the endolymph [7,16].
The BPB is composed of anatomical elements resembling BBB, except for the vessels of
the cochlear plexus and those of the stria vascularis [4,5,14]. BPB capillaries are mainly
composed of an endothelium that has the particularity of being continuous with tight
junctions. Cells contain intracytoplasmic microvesicles (700 A◦ diameter) [5] and rare
micropinocytotic vesicles indicating a low transcellular vesicular transport activity. This
disposition allows small molecules (<100 Daltons) to diffuse passively [8].

1.2. Solutions to Bypass CNS and Inner Ear Anatomical Barriers in Clinical Practice

Several procedures are employed in routine clinical practice to bypass the BBB and
increase the intracerebral concentration of drugs without increasing systemic concentra-
tion [17]. Intrathecal injection can be used to deposit drugs directly into the cerebrospinal
fluid. Conventional intrathecal administration requires multiple lumbar punctures and re-
sults in unsteady drug concentrations, inherent morbidity, and risk of infection. Convection-
enhanced delivery diffuses a continuous intracerebral concentration of medication through
microcatheters but does not avoid the risks of an in situ foreign body [18].

To circumvent some of these drawbacks, pumps have been developed. These pumps
limit the risk of neural and meningeal tissue damage and reduce the risk of infection by
avoiding multiple punctures. They also provide a more stable drug concentration in the
CNS compartment. However, they can create a drug concentration gradient from the
pump to the administration site due to the distance of diffusion, and the device could be
responsible for infections in the long term [17,19]. These pumps are activated by manual
pressure (Ommaya®, New York, NY, USA; Infusaid®, Norwood, MA, USA) or by an
osmotic gradient (SynchroMed®, Dublin, Ireland).

Implants which gradually diffuse drugs from an intrathecal or an intraparenchymal
site are also an interesting option to maintain sufficient local concentrations for several
weeks, but they have the disadvantage of not being rechargeable. Gliadel®(7.7 mg Car-
mustine, Gliadel Wafer, Arbor Pharmaceuticals, LLC, Atlanta, GA, USA) is an implant for
intracranial use, containing carmustine, a nitrosourea alkylating agent, and polifeprosan, a
biodegradable copolymer used to control the release of carmustine. After resection, 1 to
8 implants can be placed in the brain tumor site, diffusing therapeutic levels of the drug
for 5 days [20].

For inner ear diseases, local drug administration is routinely performed in 2 major
indications: Mnière’s disease and sudden sensorineural hearing loss (SSNHL) [21,22].
The most widely employed technique for local administration for the inner ear is the
transtympanic injection [23]. Under local anesthesia, the drug is injected into the middle
ear cavity through a puncture in the tympanic membrane. The patient generally lies in a
supine position for several minutes. The therapeutic agent in contact with the round and
oval windows can bypass the BPB and enter the perilymphatic compartment, but most of
the drug is evacuated by the auditory tube into the rhinopharynx. The second obstacle
before reaching the inner ear is the round window membrane (RWM). This membrane is
hidden in the round window niche and can be covered by a false membrane. It is ovoid
with an average surface of 2.3 mm × 1.87 mm [24], and a thickness of 50–100 µm [25]. A
fibrous ring attaches this membrane to the surrounding promontory bone [25]. The RWM
separates the perilymph of the scala tympani from the air in the middle ear, and its size,
form and accessibility are highly variable in humans [26]. It is semi-permeable and made of
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3 layers: internal and external epithelial layers separated by connective tissue [25,27]. The
external epithelial layer contains tight junctions and a basal lamina [25,27]. In this layer, the
epithelial cells are equipped for active transepithelial transport (microvilli, mitochondria,
rough endoplasmic reticulum). However, the internal epithelium lacks continuity. Its
cells are connected with loose junctions and pinocytotic vesicles are present, indicating
transepithelial transport [27]. These characteristics allow only lipophilic molecules or
those with a low molecular charge to cross the RWM [27]. Hence, the perilymphatic
concentration of dexamethasone-21-dihydrogen-phosphate, the most frequently employed
drug, varies from less than 0.01 to 6% of the solution applied to the RWM [28]. Because of
the interindividual variability of this gateway, drug diffusion to the inner ear is difficult
to evaluate [29]. Moreover, the perilymphatic flow inside the inner ear is negligible, and
drugs penetrating through the RWM accumulate in the basal turn of the cochlea, creating a
base-apex concentration gradient (base/apex concentration ratio of 17,000 in rats) [28].

To circumvent the limitations of an intratympanic injection, several solutions have been at-
tempted at a clinical stage. In 23 patients with an idiopathic SSNHL resistant to systemic steroid
therapy, a silicon microcatheter (Round Window mCathTM, Durect Corp., Cupertino, CA, USA)
was placed through the RWM a few mm into the basal turn and methylprednisolone-hydrogen
succinate sodium salt or dexamethasone–dihydrogenphosphate were injected continuously by
an external electronic pump (Panomat C5, Disetronic Medical Systems, Burgdorf, Switzer-
land) for 4 weeks [30]. Complications such as catheter dislocation, granulation tissue in
the middle ear, ear canal skin defects, and small defects of the tympanic membrane were
frequent (78%). This intracochlear mode of administration was highly effective since no
further hearing deterioration was noted, and the improvement of the audiometric pure-
tone-threshold ranged from 16 to 87 dB (pure-tone-average 103 dB before treatment versus
87 dB after).

Another approach aimed at increasing the bioavailability of the drug at the RWM with-
out perforating it. Dexamethasone was mixed with poloxamer 304 (Otovidex, Otonomy,
San Diego, CA, USA) and injected into the middle ear [31]. Poloxamer 304, which is liquid
at ambient temperature, solidifies at 37◦ in the middle ear cleft and progressively liberates
the drug in contact with the RWM for several days. The poloxamer 304 was injected in
a single transtympanic injection. The use of this drug has been attempted in 44 patients
with unilateral Ménière’s disease with few minor complications (tympanic membrane
perforation, pain), with no impact of hearing function and fair efficacy on vertigo frequency
(73% reduction in vertigo frequency with 12 mg of poloxamer 304-dexamethosone mix,
56% with 3 mg of the mix, versus 42% with placebo) with a 3-month follow-up [31].

In cochlear implants, dexamethasone was added to the silicone surrounding the
electrode carrier. The aim of this device was to obtain a passive diffusion of the drug into
the scala tympani and to limit inflammation due to surgery [32]. In vitro assessment of
these electrode arrays showed that 1–5 µg of dexamethasone were released during the
first 24 h. The diffusion followed 2 phases: a rapid burst during the first 50 days and
a steady release period from day 50 to 700. This type of array has not been evaluated
in a clinical trial. Deep-seated catheters into the cochlea could be another method of
administration close to the target structures with no intracochlear gradient [32]. They could
be combined to a cochlear implant and imbedded in the electrode array. As a proof of
concept, a flexible microcannula (0.5–0.8 mm diameter) was introduced 15 to 20 mm in the
scala tympani to allow the administration of 10 µL of a contrast agent [33]. The limitations
of this technique are the possible physical modifications of electrode characteristics (larger
diameter) and consequent trauma, potential increase in intracochlear hydrostatic pressure,
and the necessity to resupply the pump.

1.3. Why Use Superparamagnetic Iron Oxide Nanoparticles (SPIONs) to Bypass
Biological Barriers?

SPIONs are a promising option since their superparamagnetic properties allow them
to be guided by magnetic forces to deliver the drug to the target with precision. In addition,
they can be designed to include theranostic properties. Their surface-to-volume ratio can be
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significantly increased by the use of shells, and the number of ligands (targeting antibody or
peptide), surface charge, hydrophobicity and biocompatibility can also be modified [34,35].

The main application of SPIONs is in diagnostic imaging [36,37]. SPIONs are used as
contrast agents in MRI. Several molecules are approved by the Food and Drug Administration
(FDA) for routine clinical use: Dextran-coated Iron-oxide (Ferumoxtran), Carboxydextran-
coated Iron-oxide (Ferucabotran), and Polyglucose sorbitol carboxymethylether-coated iron
oxide (Ferumoxytol) in lymph node, hepatocellular carcinoma cell, monocellular phagocyte
system labeling and imaging [38].

More importantly, SPIONs can represent an efficient means of drug delivery as we
will develop in this review [39,40]. SPIONs are particularly interesting for drug deliv-
ery in CNS and inner ear since both structures are guarded by a blood–organ barrier,
contain deep-seated, functionally sensitive, and fragile structures [41], and can benefit
from targeted deliveries using an external magnetic field (EMF) [42–45]. Modifying their
surface charge, combining them to hydrophile molecules (e.g., Polyethylene Glycol, PEG;
Polyethylenimine, PEI; Polylactic-co-glycolic acid, PGLA) [40,46] or coupling them to an-
tibodies (transferrin receptor antibodies or lactoferrin) [47,48] can further facilitate their
diffusion through BBB [49,50].

2. Materials and Methods

In this double-blind systematic review study, we initially included 213 studies pub-
lished between 1999 and 2019 in English on the PubMed website, using the keywords:
“Superparamagnetic iron oxide nanoparticles”, “Ear”, “Central Nervous System” or “Cere-
bral” (Figure 3).

Figure 3. Systematic review flow diagram.

Articles studying only the use of SPIONs as a magnetic resonance imaging (MRI)
contrast agent were not included in the study. From the titles and abstracts, 136 studies
were selected by the 2 reviewers. Reviews were excluded. After reading these 136 articles,
97 reports on the application of SPIONs to drug administration were finally included in
the review. Additional articles concerning SPIONs shell characteristics, BBB and BPB were
also added to this work to clarify the purpose.

3. SPIONs Characteristics

The SPIONs’ cores are composed of magnetite (Fe3O4) or maghemite (γ-Fe2O3), and
are encapsulated in organic or inorganic shells, to increase their biocompatibility and
enhance their in vivo applications (Figure 4) [35]. In some studies, SPIONs were used
naked or their shells were not specified [44,51–55].
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Figure 4. Schematic structures of SPIONs and other types of therapeutic nanoparticles (NPs).

The composition of the shells is important because it influences the interaction between
SPIONs and the medium in which they are placed [34,35]. These interactions may lead
to the formation of SPION clusters, cellular and tissular adhesion, barrier crossing, and
indirectly their magnetic susceptibility.

3.1. Organic Shells

Polymer coatings are mainly used to limit the agglomeration of SPIONs due to the
magnetic and Van der Waals forces (Table 1).
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Table 1. Different kind of polymer shell using to coat SPIONs. A: core size with shell (Transmission Electron Microscopy), B:
hydrodynamic size with shell (Dynamic Light Scattering), An: naked core size, Bn: naked hydrodynamic size.

Shell Composition Size (nm) Experimental Model Drugs, Agent

Polyethylene-glycol
(PEG)
[18,40,47,50,56–72]

4–101.6 (A)
8–1000 (B)
7.5–2-10.3 (An)
22 (Bn)

In vitro
In vivo (rat, mouse)

Methotrexate, Transferrin, Anti- Transferin receptor ab,
Bacterial nanocellulose, anti-IL-1beta-mab, nutlin-3a,
Cisplatin, anti-Ape1 siRNA, Temozolomine, anti-nestin
ab, Rituximab, Doxorubicin, folic acid, Indocyanine
green, O6-benzylguanine, Chlorotoxin-RNAi,
Transactivating-transduction protein

Polyethylenimine (PEI)
[40,56–59,73,74]

4–10.3 (A),
11.6–186.5 (B)
10 (An)

In vitro
In vivo (rat)

Complementary DNA, Paclitaxel, Bacterial
nanocellulose, anti-Ape1 siRNA, Chlorotoxin-RNAi

Poly(lactide-co-
glycolide), (PLGA)
[43,46,63,74–79]

8.4–178.6 (A)
71.8–482.8 (B)
11.5–84.4 (An)
36.8 (Bn)

In vitro
In vivo (guinea pig,
mouse, rat)

Methotrexate, Paclitaxel, Adipose-derived stem cells,
Temozolomide, Doxorubicin, anti-Nestin ab, Transferrin,
polysorbate-80, 5-iodo-2-deoxyuridine, Paclitaxel

Polyvinyl alcohols,
PVA [80–82]

8–12 (A)
30–99.3 (B)
5–10 (An)

In vitro
In vivo (mouse) No

Aniline-co-N-(1-one-
butyric acid) aniline
(SPAnH) [83]

- In vitro
In vivo (rat) 1,3-bis(2-chloroethyl)-1-nitrosourea

Poly(γ-glutamic
acid-co-distearyl
γ-glutamate) [76]

106.5 (A)
110 (B)

In vitro
In vivo (mouse) Paclitaxel, Adipose-derived stem cells

Polybutulcyanoacrylate,
PBCA [84] 124.5–148.7 (A) In vitro Brain-derived neurotrophic factor

Poly-L-lysine [85] 443.4 (B) In vitro No

Poly-(dimethylamine-
co-epichlorhydrin-co-
ethylendiamine),
PEA [86]

10 (A)
47.5 (B) In vitro No

Chitosan [36,40,59,68,87]
4–6 (A),
40–300 (B),
6–10 (An)

In vitro
In vivo (mouse,
zebrafish, rat)

anti-Ape1 siRNA, Prednisolone,
Chlorotoxin-RNAi, O6-benzylguanine

Dextran,
Carboxydextran
[80,88–104]

4–130 (A),
23–150 (B)
4.7–10 (An)
144.2–181.2 (Bn)

In vitro
In vivo (mouse,
zebrafish, rat)
Routine clinical use

Quercetin, Transferrin, lipolysaccharide,
Folate-Paclitaxel, Rhodamine 123, Epirubicin,
cmHsp70.1 mab, recombinant Interleukin-1 receptor
antagonist, Doxorubicin,
Monocyte-derived-macrophage, Cyclic
pentapeptide c-chlorotoxin

Cationic polymers are privileged since they are biocompatible and have a good
absorption capacity. They are interesting for drug delivery in brain, especially for anti-
tumor drugs, because they lead to negative charges at the surface of nanoparticles (NPs)
to promote their intratumoral absorption or facilitate the passage of BBB via mediated
adsorptive transcytosis [105]. Most cationic polymers, such as chitosan or polyethyleneimine
(PEI), have amino groups in their structures that can be protonated at acidic pH.
They can also be conjugated by various ligands with amine or carboxyl groups for
targeted administrations.

PEI has an electrostatic repulsion effect which decreases the hydrodynamic size of
SPIONs modified with this molecule and their dispersity index [40,56–59,73,74,106]. The
efficacy of fluorescent magnetic PEI-poly(lactic-co-glycolic-acid) (PLGA) NPs loaded with
paclitaxel (PEI-PLGA-PTX-SPIONs) was studied by assessing apoptosis of human glioblas-
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toma (GBM) cell line U251 in vitro with different concentrations for 12 h. It has been
showed that autophagy and cell apoptosis were more important with the higher con-
centration (400 µg/mL) and with PEI-PLGA-PTX-MNPs (70% of rate apoptosis) versus
PLGA-PTX-MNPs (50%) or PEI-PLGA-MNPs (0%) [74]. The results indicated that PEI
increased the drug effect by enhancing the intracellular drug bioavailability.

Polyethylene glycol (PEG) provides both hydrosoluble and liposoluble characteris-
tics to the particles, maintains electroneutrality, and avoids recognition by the reticulo-
endothelial system to increase blood circulation time [107]. These properties have been
exploited in multiple studies [18,40,47,50,56–72]. The efficiency of doxorubicin (DOX) and
indocyanine green loaded on 1,2- distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG-
SPIONS (SPION@DSPE-PEG/DOX/ICG) was compared to free DOX and SPION@DSPE-
PEG NPs on glioma tumors in rats (n = 38) after the confirmation of their in vitro biocom-
patibility [66]. The NPs were administered with a tail vein injection with any external
magnetic field. At 8 h, the signal on fluorescence imaging and MRI was increased in the
tumor site with SPION@DSPE-PEG/DOX/ICG in comparison to the free indocyanine
green. This was in favor of a better diffusion through the BBB. From days 7 to 21, the tumor
size decreased significantly with SPION@DSPE-PEG/DOX/ICG compared to other groups.
These results confirmed the efficiency of SPION@DSPE-PEG/DOX/ICG on glioma tumor
on rats.

Like PEG, PLGA is also used as a shell for SPIONs and can carry at the same
time both hydrophobic and hydrophilic molecules. It is biodegradable and FDA-appro-
ved [43,46,63,74–78,108]. Small variations in particle sizes of PLGA lead to changes in
the efficacy of NPs in delivering drugs [75]. This combination with PEG and transferrin
enhances the transport through BBB and increases intracerebral bioavailability [63]. Obser-
vations in nude mice with GBM injected with SPIONs delivering temozolomide show that
the addition of antibodies against nestin receptors on the same coating allows the NPs to
increase their intracellular penetration and drug efficacy [63].

Dextran and carboxy-dextran were also considered as constituents of the SPIONs’
shell [80,88–104]. Dextran is a very high-molecular-weight branched polymer of dex-
trose (glucose) with colloid properties. It can be used with other coatings (including
surfactant and oleic acid) to increase blood circulation time and loaded in monocyte-
derived macrophages to increase biocompatibility and transport through BBB without
toxic effects on brain cells in a mouse model [102]. Cross-linked aminated dextran
(CLIO-NH2) was also assessed as a potential SPION coating. The SPIONs with such
coating elicited no side effect in zebrafish below 200 mg/kg during 24 h, suggesting good
biocompatibility [88].

Other polymers derived from glucose such as D-mannose [85] rhamnose (mannose
deoxyhexose) [109], arabic gum (sap exudate) [110] and hydrophilic polysaccharide matrix
of starch [111] also showed promising results in vitro (Table 2). SPIONs coated with a
rhamnose derivative on 2 GBM cell lines (T98G and U251) and other tumor cells such as
human urinary bladder carcinoma cell line (ECV304) and fibroblast cell line (BALB/3T3)
showed an increased cellular uptake and dose-dependent cell death after incubation for
24 h (e.g., for T98G cells: 12% of death at 1 µg.Fe−1.mL versus 35% at 100 µg.Fe−1.mL) [109].
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Table 2. Polymer SPIONs shells derived from amino acids, sugar, and lipids. A: core size with shell (Transmission
Electron Microscopy), B: hydrodynamic size with shell (Dynamic Light Scattering), An: naked core size, Bn: naked
hydrodynamic size.

Shell Composition Size (nm) Experimental Model Drugs

Amino-Acid

Glutathione [58,62] 6.8 (A)
11.8–97.8 (B)

In vitro
In vivo (rat) Cisplatin

Glycine [82] 5–10 (An)
75.7–192.1 (B) In vitro No

Glutamic Acid [82] 5–10 (An)
75.7–192.1 (B) In vitro No

Human Serum Albumin [18,82] 5 (An)
17–192.1 (B)

In vitro
In vivo (rat) Methotrexate

Collagen [82] 5–10 (An)
17–105.8 (B) In vitro No

Aminosilane [86] 10 (A)
45.3 (B) In vitro No

Spermine [90] 74–110 (B) In vitro
In vivo (mouse) Transferrin

Sugar

D-mannose [85] 101.1 (B) In vitro No

Hydrophilic polysaccharide matrix of starch
(α-D-glucose units) [111] 117.4 (B) In vitro

In vivo (rat) No

Rhamnose [109] 19.4 (A) In vitro No

nGum arabic [110] 14 (A)
100 (B)

In vitro
In vivo (rat) Rhodamine B

Lipid

Oleic acid [76,82,112] 5.2–106.5 (A)
110 (B)

In vitro
In vivo (mouse)

Paclitaxel, Adipose-derived and
mesenchymal stem cells,
Rhodamine B

Micelles [48,62] 5–6.8 (A)
7–100 (B)

In vitro
In vivo (rat) Cisplatin, Lactoferrin

1,2-Distearoyl-sn-glycero-3-
phosphoethanolamine,
DSPE [50,113]

36–80 (A)
20 (An)
94.7 (B)

In vitro
In vivo (mouse)

Epigallocatechin gallate,
Temozolomine, anti-transferin
receptor ab

Phospholipid [66] 9.8–22.9 (B) In vitro
In vivo (rat, mouse) Doxorubicin, Indocyanine green

Dimyristoyl-phophatidyl-choline, DMPC [69] 31 (B) In vitro
In vivo (rat) No

Lipophilic fluorescence dye [111] 117.4 (B) In vitro
In vivo (rat) No

Chitosan is a hemocompatible, biocompatible, and hydrophilic polyoside composed
of D-glucosamine and N-acetyl-D-glucosamine (a natural cationic linear polymer) and
offers active sites for combination with PEG and PEI [36,40,59,68,87]. SPIONs coated with
chitosan-PEG copolymer and bearing O6-benzylguanine and a targeting peptide, chloro-
toxin (NPCP-BG-CTX) were used to potentiate the effect of temozolomide by decreasing
the upregulation of the DNA-repair protein O6-methylguanine-DNA methyltransferase
(MGMT) [68]. In human GBM cell lines, they decreased the MGMT activity and increased
the efficacy of temozolomide. In mice with GBM, these SPIONs co-administered with
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temozolomide led to a 3-fold increase of the survival with the convection-enhanced deliv-
ery (the administration was performed with a stereotaxic frame at the same localization
for the tumor brain implantation). Follow-up MRIs showed an enhanced intracerebral
diffusion. This type of drug delivery uses fluid convection to create a pressure gradient
during interstitial infusion, a better volume distribution, and mobilize NPCP-BG-CTX [68].

Other examples of organic shells including polyvinyl alcohol (PVA) which prevents
particles coagulation [80–82], aniline-co-N-(1-one-butyric acid) aniline (SPAnH) [83], Poly(γ-
GA-co-DSGA) [76], polybutulcyanoacrylate (PBCA) [84], and poly-(dimethylamine-co-
epichlorhydrin-co-ethylendiamine) (PEA) [86] showed promising results but the evaluation
is still at the in vitro stage.

Polymers derived from amino acids were considered as SPIONs coating to increase
their biocompatibility: gluthatione [58,62], glycine [82], glutamic acid [82], collagen [82],
human serum albumin [18,82], aminosilane [112], and spermine [90] (Table 2). The ability
to cross a model of BBB in vitro of 5 SPIONs with different coatings in this category:
1—glycine, glutamic acid, bovine serum albumin (GGB), 2—glycine, glutamic acid, collagen
(GGC), 3—glycine, glutamic acid, polyvinyl alcohol (GGP), 4—bovine serum albumin,
polyethylene glycol (BPC), 5—collagen, polyvinyl alcohol, bovine serum albumin (CPB)
showed that CPB-SPIONs, coated with collagen, have the highest in vitro cellular uptake
and the best diffusion levels through BBB (2.7 g/mL of CPB were found after 2 h in the
receiving well by a Ferrozine assay kit versus 1.9 of BPC and GGP, versus 1.5 of GGB, and
versus 1.7 of GGC) [82].

Polymers derived from lipids (oleic acid [76,81,112], micelles [48,62], DSPE [50,113],
phospholipid [66], DMPC [69], and lipophilic fluorescence dye [111]) show good biocom-
patibility and capacity to cross biological barriers (Table 2). SPIONs coated by a lipophilic
fluorescence dye were studied in vitro to evaluate their capacity to cross brain capillary
endothelial cells (BCECs) with or without an external magnet with a field strength of
0.39 tesla [111]. At 140 µg/mL, the average concentration of SPIONs passing through the
BCECs with a magnet was around 60 µg/mL versus 0 µg/mL without a magnet. No sign
of BCECs’ toxicity was observed [111].

Monomeric citrate coating on SPIONs facilitates intracellular passage and NP accu-
mulation in microglia and induces changes to the cellular morphology in vitro [114,115]
(Table 3).

Although the increased intracellular penetration is interesting to reach some targets,
intracellular accumulation of SPIONs may be toxic and its long-term effects should be mon-
itored. Surfactants limiting the aggregation of SPIONs and increasing their stability could
also be applied on SPION surface [46,49,57,64,65,75,77,84,102]. A surfactant such as Twen
80 (or polysorbate 80, water-soluble non-ionic emulsifier) confers amphiphilic properties to
SPIONs and increases their BBB crossing [46,49,57,64,77,84]. A study assessed the effect of
4 surfactants (Twen 80, Brij-35, Pluronic F68, Vitamin E- α-tocopheryl-polyetheleneglycol-
succinate, TPGS) on BBB crossing [77]. The contribution of the different types allowed a
crossing of the BBB with visualization of NPs on the MRI and a preserved toxicity of DOX
on glial cells (glioma cell lines U87 and 9L). In all cases, the NPs structure was stable at
3 months [77]. These surfactants need further investigation in animal models.
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Table 3. Miscellaneous SPIONs shells A: core size with shell (Transmission Electron Microscopy), B: hydrodynamic size
with shell (Dynamic Light Scattering), An: naked core size, Bn: naked hydrodynamic size.

Shell Composition Size (nm) Experimental Model Drugs

Molecular Ligands

Curcumin [48,116,117]
5–122.2 (A)
7–185 (B)
11 (An)

In vitro
In vivo (rat, mousse)

Lactoferrin, RGE peptide (a specific
ligand of NPR-1)

dimercaptosuccinic acid-DMSA [118] 4–9 (A)
65–70 (B)

In vitro
In vivo (rat) No

Liposome [47,64,71,101,119,120]

7–104 (A)
83.2–190 (B)
5–10 (An)
7.4 (Bn)

In vitro
In vivo (rat)

Paclitaxel,
Transactivating-transduction protein,
Doxorubicin, Rituximab, Transferrin

Surfactants

Janus [65] 90.4 (A) In vitro Doxorubicin, folic acid

Amphiphilic polymer [102] 10–30 (A)
18–40 (B)

In vitro
In vivo (rat) Monocyte-derived-macrophage

TPGS [75] 178.6 (A)
29.9 (An)

In vitro
In vivo (mouse) No

D-Alpha-Tocopheryl Polyethylene
Glycol Succinate [77]

8.4 (A)
227.9 (B) In vitro Doxorubicin

DMAB [75] 67.1 (A)
29.9 (An)

In vitro
In vivo (mouse) No

Twen 80 [46,49,57,64,77,84] 8.4–148.7 (A)
140–220 (B)

In vitro
In vivo (rat, mouse)

Clonazepam, Brain-derived
neurotrophic factor, Temozolomide,
Doxorubicin, Rituximab

Curcumin (diferuloyl methane) is a liposoluble molecule with anti-oxidant, anti-
apoptotic, anti-inflammatory, and anti-proliferative properties [48,116,117,121]. The neu-
roprotective efficacy of SPIONs coated by curcumin was studied in the cerebellum of
schizophrenic rats [116]. Curcumin-SPIONs reduced reactive oxygen species formation, in-
creased succinate dehydrogenase activity, and mitochondrial adenosine triphosphate level
in comparison to naked SPIONs. These observations were in favor of a neuroprotective
effect of curcumin-SPIONs.

Liposomes can be combined to SPIONs by covering one or several NPs [47,64,71,101,119,120].
A liposome is an artificial vesicle formed by concentric lipid bilayers, trapping aqueous
compartments between them. It is obtained from a wide variety of amphiphilic lipids, most
often phospholipids. Drugs attached to NPs can be incorporated into liposomes, increasing
the drug capacity. Liposomes can also protect SPIONs from degradation enzymes in the
blood and increase the bioavailability in circulation. It is possible to couple a protein
(e.g., receptor-specific ligand) to the liposomal bilayers for drug delivery or achieving
specific cellular recognition [122]. SPIONs with anti-CD20 (Rituximab, RTX) coated with
liposome (Lip), PEG and Twen 80 (Lip/PEG/Tween80/SPIONs-PVA/RTX) were used
and tested against primary CNS lymphoma in vitro on B cell lymphoma cells [64]. The
ratio of cellular uptake was higher for Lip/PEG/Tween80/SPIONs-PVA/RTX than in
Lip/PEG/Tween80/SPIONs-PVA in Z138C and in Granta cells line. At 7 h after incuba-
tion, the cell viability of the Grant cells line was lower with Lip/PEG/Tween80/SPIONs-
PVA/RTX (60%) than in the control group and in cells with free RTX (100%, p < 0.05).
These promising observations indicated an improvement of intracellular RTX delivery and
enhanced action.

The function of exosomes has been diverted to transport drugs [117]. Their vesicles
derive from late endosomes and allow extra-cellular transport of cellular components.
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3.2. Inorganic Shells

Silica was used in one study [123] as hydroxyapatite [124]. It is an inert shell but
allowing multiple bonds [125]. Gold has been used [103,126] for its versatility in surface
modification without damaging the BBB and for the protection of SPIONs against oxidation.
Pure carbon is also an interesting inorganic shell due to its low density, its ability to increase
magnetic flow and its solidity [125,127,128]. Certain inorganic shells such as graphene were
also evaluated for their biological effects at the in vitro stage [67,78]. Graphene, or graphene
oxide, is a two-dimensional, flat structure with a thickness of an atom, a large surface, and
excellent electrical, thermal, and mechanical properties [129]. SPIONs coated by graphene
oxide and lactoferrin and loaded with doxorubicin hydrochloride (Lf@GO@Fe3O4@DOX)
were engineered. Lactoferrin was used to increase the across of BBB in further in vivo
studies. In vitro application of 10 µg/mL DOX with or without SPIONs on C6 glioma cells
for 24 h showed encouraging results with an improvement of drug efficacy when loaded to
SPIONs: cell viability was 20% with free DOX, versus 65% with GO@Fe3O4@DOX or 60%
with Lf@GO@Fe3O4@DOX.

Fluorescence was incorporated in the shell composition of some SPIONs to control
their intracellular movements by magnetic field and to monitor them at the same time
with a fluorescence microscope [48,74,111]. These characteristics provide effective ways
of identifying the specific functions of bioactive molecules in specific areas of living cells
without disturbing other parts of the cell.

4. SPIONs Transport
4.1. Central Nervous System

The intracerebral drugs delivery by SPIONs was most often conducted through the
BBB after systemic administration. A passive diffusion to the CNS was made possible by
their liposoluble properties [65,130].

Antibodies against transferrin or lactoferrin receptors or other molecules to pro-
mote internalization were placed on the SPIONs to cross the epithelial cells by endo-
cyte/transcytosis system [47,48,50,63,91,113]. Vitamin B6 on SPIONs was used to reach
the transferrin receptor on the apex of endothelial cells [113]. Transferrin allows the en-
docytosis of NPs and the intracellular inhibition of glycoprotein P, which is responsible
for the extrusion of foreign bodies [131]. The impact of hyperthermia associated with
chemotherapy (temozolomide) on the growth of GBM cells in vitro was also studied [50].
Temozolomide was loaded with SPIONs in lipid NPs (LMNVs) with surface antibodies
against transferrin receptors in order to cross the BBB and to be internalized into GBM cells.
Hyperthermia was created, and lipophilic temperature-sensitive fluorescent dye was used
to monitor the intraparticle temperature in response to alternative magnetic field (AMF)
exposure. At 72 h, the passage of BBB was increased for NPs charged with antibodies and
subjected to AMF. A synergistic effect of the 2 phenomena may weaken the BBB.

In order to increase the permeability of BBB, NPs were covered with Twen 80 (polysor-
bate 80, a surfactant with high solubility) [46,49,57,77]. The usefulness of Twen 80 was
demonstrated in a study comparing the intracerebral concentration of PEG-PEI-SPIONS
and Twen80-SPIONS in rats with the application of EMF [57]. After IV administration
of the NPs, the intracerebral concentration of Twen80-SPIONs was higher than that of
PEG-PEI-SPIONs, even with the use of EMF. Four types of surfactant (Twen 80, Brij-35,
pluronic F68 or Vitamin E-PGS) were combined to PLGA-coated SPIONs and loaded
with doxorubicin [77]. Suspensions remained stable for 3 months; vehicles without the
drug showed no toxicity on glial cells, the NPs delivered doxorubicin to gliosarcoma cells
(9L/lacZ gliosarcoma rat cell line) and GBM cells (human GBM U-87 MG) and increased
apoptosis with SPIONs with any of the 4 surfactants [77].

Lipopolysaccharides (LPS) were also used to weaken the BBB by creating inflammation
and allowing NPs to cross it [132]. In mice, 24 h after LPS administration (3 mg/kg IV), the
amount of thioflavin S (fluorescent amyloid ß-binding small molecule) and 30 nm SPIONs
increased in the brain, suggesting an enhanced permeation effect of the LPS. However,
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these observations were only found in adult mice and not in young animals, suggesting
the effect of age on this permeation.

The use of an EMF made it possible to draw SPIONS through the BBB [42,43,47,49,
57,60,61,73,76,78,81,83,94,113,119,120,128,133,134]. EMF (with a field strength of 0.3 tesla)
were used to increase mobilization capability on SPIONs associated with the solubility of
the Twen 80 to cross the BBB and guide them in the intracerebral compartment [57].

Hyperthermia was employed to increase the size of BBB pores with alternating mag-
netic current [50,101,117], and ultrasound (US) was also employed to break barriers at
microscopic level in the BBB [52,94,135–137]. Ultrasound can change the permeability of
cellular membranes, and by extension the permeability of the entire BBB. This phenomenon
is called sonoporation. Ultrasmall SPIONs (USPIONs) surrounded by microbubbles (com-
posed of poly(n-butyl-cyanoacrylate) and FITC-Dextran) were injected intravenously into
mice and a sonoporation was conducted [137]. The microbubbles were used to amplify
the sonoporation by reducing the necessary acoustic force and at the same time allowing
the delivery of the drug. Results indicated an enhanced diffusion of the USPIONs to the
CNS compartment when combined to microbubbles and ultrasound, and an increased
permeability of BBB to large molecules (FITC-Dextran, 70 kDa).

SPIONs coated with the drug were administered directly in the targeted brain
site [18,51,54,58,69,97,103,133,138,139] or diffused through the olfactory bulb to short-
circuit the BBB (with or without EMF) [49,112]. After endonasal injection in mice, the
efficacy of these cells in free form and carried by rhodamine B-covered SPIONs were com-
pared in order to test the effectiveness of mesenchymal stem cells on olfactory bulb damage.
Cells were guided by an EMF [112]. When the EMF was applied and the mesenchymal
stem cells were transported by rhodamine B-covered SPIONs, the cell concentration in
the damaged olfactory bulb was higher than it was following free injection or without the
application of EMF. This approach is a promising means of delivering drugs to the brain
because it is able to circumvent the constraints of the BBB without noticeable side effects.

4.2. Inner Ear

In order to reach the inner ear, SPIONs could be driven by an EMF though the round
window [45,79], using a cochleostomy [44] or deposited in the middle ear for passive
diffusion through the round window [111]. In vitro, an EMF was used to increase the
migration of SPIONs in cochlear cells [62,96]. After verifying the absence of toxicity of NPs
on cells derived from the inner ear (EC5V), the NPs were injected through a cochleostomy
into the inner ear of guinea pigs [44]. At one week, no decrease in hearing was noticed
as judged by the auditory brainstem response (ABR). This indicated the short-term good
tolerance of SPIONs by the inner ear. The targeting of the inner ear with SPIONs after IV
or intrathecal injections has not been reported to our knowledge.

5. Indications
5.1. Central Nervous System

SPIONs have been mainly used to carry chemotherapy agents aimed at GBM [18,36,43,
48,50,51,55,59,61,63,65–68,70,72,74,76–78,82,83,90,92,94,95,98–101,109,110,117,119,120,125,133,
136,138,140–142], but also for cerebral lymphomas [64] and pediatric CNS tumors [40]. DOX
and temozolomide often serving as the first-line chemotherapy are the 2 main candidates
combined to SPIONs. The use of a surfactant is thought to increase the biocompatibility
of the NPs and in combination with PLC, PEG and folic acid increase the intracellular
concentration of DOX (DOX-PCL-SPION-sPEG-FA) [65]. Interleukin-1 receptor antagonist
with known anti-edematous properties coupled to SPIONs covered with dextran (SPIONS-
Il-1RA) has been studied in vitro and in vivo (rats with GBM) [99]. SPIONS-Il-1RA showed
no toxicity in vitro on C6 glioma cell lines and lymphocytes, had an anti-edematous action
in the animal brain, and increased survival. They also produced a signal inversion of the
tumor in T2-weighted MRI images indicating the presence of SPIONs in the site after IV
injection and their capacity to cross BBB.
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The chemotherapy effect delivered by SPIONs could be potentiated by proton ther-
apy [92], external ionization [98] or radiation therapy [40]. In vitro, SPIONs coated with
dextran, folates and paclitaxel (FA-PTX-D-SPIONS) combined with protontherapy ap-
peared to increase the delivery of drugs (thanks to folates), to potentiate radiosensitization
(by the presence of SPIONs) and to develop the action of paclitaxel (by protontherapy) on
C6 rat GBM cells after the low toxicity of FA-PTX-D-SPIONS was confirmed at a concentra-
tion less than 200 ng/mL in normal cells [92].

The use of SPIONs in the management of epilepsy is another interesting application
under assessment at the animal model stage [49,60,72]. In Swiss albino mice, SPIONs and
nanostructured lipid carriers incorporated to a thermosensitive mucoadhesive gel and
placed close to the olfactory bulb can deliver clonazepam to the target site effectively when
driven by an EMF [49]. In rats with chemically-induced temporal lobe epilepsy, SPIONs
carrying alpha-methyl-A-tryptophan, a surrogate marker for this disease, and inteleukin-
1 beta monoclonal antibody as the therapeutic agent were administered intravenously.
Histology, imaging, and molecular biology findings indicated a targeted effective drug
delivery [72].

SPIONs were also applied for drug delivery in CNS degenerative diseases [54,84,89,94,
113,132,139]. In rats, the ability of dextran-covered SPIONs to increase the bioavailability
of quercetin in the brain has been demonstrated [89]. Quercetin, a flavonoid with potential
protective effect against neurodegenerative diseases, was administered orally in a free
form or attached to SPIONs. Whatever the initial concentrations (50 or 100 mg/kg), the
concentration of quercetin was higher with SPIONs, suggesting better passage through
the BBB.

The treatment of aneurysms and strokes also has a place in research using SPIONs [42,56].
SPIONs can be used to guide endothelial progenitor cells with an EMF and their location
can then be identified in MRI imaging [42]. In vitro studies confirmed the angiogenic
potential of SPIONs-endothelial progenitor cells by highlighting the creation of neovascu-
larization and the secretion of growth factors (VEGF and FGF) by outgrowth endothelial
cells in mice and humans. The SPIONs were loaded into the endothelial progenitor cells
through the endosomes/lysosomes system. In mice, the nanostructure was guided in vivo
by an EMF and detectable in MRI, which confirms their potential for use in cerebrovascular
conditions. SPIONs could also be used for nerve regeneration, especially in combination
with brain-derived neurotrophic factor [143].

5.2. Inner Ear

Research on the use of SPIONs for inner ear diseases is less extensive than for CNS
pathology. Dexamethasone has potential indications in sudden sensorineural hearing loss,
Ménière’s disease and other inflammatory conditions of the inner ear such as autoimmune
diseases [21,22]. SPIONs combined to dexamethasone administered into the perilymphatic
space through the round window show no toxicity in rats and guinea pigs as judged by
hearing levels and histological observations [79,87]. Dexamethasone coupled to 500 nm
SPIONs could diffuse to the inner ear through an intact RWM [79]. This diffusion was
facilitated by a magnet (0.26 mtesla) placed on the contralateral ear [79].

The efficacy of SPIONs to reduce the ototoxicity of cisplatin was investigated in
inner ear organotypic cultures of mice [62]. This approach was based on scavenging
cisplatin by the NPs and protecting the cells against DNA damages and oxidative stress
generated by this drug and on the ability of glutathione transported by the NPs to provide
resistance to the Corti cells against cisplatin via its antioxidant properties. SPIONs were
encapsulated with polymeric micelles (a glutathione diethyl ester-conjugated amphiphilic
diblock copolymer) sequestering cisplatin and were guided by an EMF into the Corti cell
cultures. The results showed no toxicity to the cochlear hair cells when using micelles up
to 415 µM of iron concentration. The observations confirmed that the conjugated micelles
are capable of sequestering cisplatin and can protect cells from its cytotoxic effects (partial
protection of cochlear cell growth and decreased cell apoptosis).
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6. Pharmacokinetic and Toxicity

SPIONs must be able to meet the requirements to deliver drugs while remaining
biocompatible. These characteristics depend on their size, shell, charge, structure, con-
centration, biodistribution, solubility, immunogenicity, surface-to-volume ratio allowing
interaction with different body components, ability to resist biodegradation, and finally
ability to cross natural barriers [144,145]. In this review, several articles focused on the
pharmacokinetics of NPs, which is crucial for the assessment of their bioavailability, toxicity,
and adverse effects [43,66,76,83,89,90,98,113,117,118].

For in vivo applications, the optimal size of SPIONs is between 10 and 100 nm [144,145].
After subcutaneous or intratumoral administration, the NPs enter the lymphatic capillary
system, except for the hydrophilic particles which penetrate through the blood capillary
walls and to the blood circulation [145]. The route of choice in most studies targeting
CNS is the IV injection [42,43,48,57,76,78,90]. For the inner ear, intratympanic injection is
preferred since it has the advantage of delivering a large SPION quantity by a minimally
invasive route [44,45,79].

After IV injection, the reticuloendothelial system (RES) eliminates the SPIONs from
the circulation in 2 steps. Initially, opsonization (adsorption on plasma proteins) leads
SPIONs to interact with specialized membrane receptors on monocytes and macrophages,
and promotes their recognition by these cells [146,147]. The second step is the endocyto-
sis/phagocytosis of SPIONs by the RES cells removing them from blood and increasing
their concentration in organs with high phagocytic activity: 80–90% in the liver, 5–8% in
the spleen and 1–2% in the bone marrow [146]. The SPION’s size influences the elimination
route: those below 10 nm are eliminated from the circulation by renal clearance, but larger
particles (>200 nm) accumulate in the spleen [144,145]. A study using a stem-cell model
has shown that a tissue can purge itself of NPs with endosomes in one month without
perturbing cellular iron homeostasis [148]. In drug delivery applications, the shell compo-
sition is important. Circulation time increases with small particles covered with a neutral
and hydrophilic shell [147]. Using liposomes as shell has the disadvantage of being quickly
phagocytized by RES. To counteract this process, the use of PEG with liposome could
be a solution to reduce RES uptake (particularly Kupffer cells) by creating a hydrophilic
membrane [146].

Specific ligands modify the pharmacokinetics significantly. Heat-shock protein (HSP)
70 is present on the membrane of many malignant cells such as GBM. Membrane HSP 70 is
internalized in these cells providing an entry root for vehicles linked to this marker [98].
The biodistribution of SPIONs coated by dextran and HSP 70-specific antibody after a
single IV injection was evaluated in rats by histology and MRI 24h after injection. HSP 70-
specific antibody increased the SPION uptake by the glioma 7-fold compared to uncoated
SPIONs. Brain radiotherapy further increased the uptake [98]. Application of EMF can
also alter the pharmacokinetics of these drug vehicles. To assess this effect, SPIONs
with paclitaxel encapsulated by adipose-derived stem cells (ADSCs-SPIONS-PTX) were
administered intravenously in mice with GBM [76]. A high-frequency magnetic field was
applied to drive SPIONs into the lesion and generate heat inside the tumor. The efficiency
of thermo/chemotherapy combination was assessed. SPIONs were labeled with a near-
infrared fluorophore for in vivo fluorescence detection and organs (heart, liver, spleen,
kidney, tumor) were collected for ex vivo optical imaging 72 h post injection. The in vivo
fluorescence detection revealed ADSCs-SPIONS-PTX accumulation only in the tumor. At
72 h, the ex vivo optical imaging showed 45% of fluorescence intensity in brain tumor, 35%
in liver, 17% in lung and traces in kidney, heart and spleen. Moreover, SPIONs were not
the cause of systemic or organ side effects in these different studies but the follow-up was
very short.

Currently, development and study of NPs–protein corona complex could increase
biodistribution, biosafety and blood circulation time [149,150]. Protein corona is composed
by different protein layers and able to change NPs properties, which is detected by cells
(especially those of the RES). The first layer is fixed but the second could be removed.
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Protein corona is a dynamic and evolutive process which is able to adsorb proteins from
biological fluids and form bio-nano interface via a protein membrane. Protein corona could
have different physico-chemical characteristics depending on SPIONs (size, charge, surface)
and environment properties. During adsorption of proteins, conformational changes are
made: proteins have structural rearrangements resulting in NPs surface changes. This
continual modification of protein corona due to desorption/adsorption phenomena is
called the “Vroman effect” and opens new perspectives for the use of SPIONs in the field
of nanomedicine.

In this review, SPIONs neurotoxicity was the focus of numerous studies [75,85,86,88,
91,93,114,116,151]. Many authors validated the absence of in vitro toxicity of the SPIONs
(if maximal concentration was most often between 200 µg/mL and 500 µg/mL) without
cell consequences before inoculating them in animals.

Nevertheless, the risk–benefit balance must be taken into account because absorp-
tion, storage and metabolization of SPIONs by different cell types may lead to immediate
and chronic immune, inflammatory or metabolic responses [145,152]. Intracellular iron
release has potential consequences on cell function and viability. Disturbances of nuclear
activity (increased micronuclei and chromosomal condensation), membrane transport
blockage, cell membrane rupture (e.g., lactate dehydrogenase leakage through the mem-
brane), induced cell proliferation and abnormal cell growth (genotoxicity), apoptosis (cyto-
toxicity), and mitochondrial damage (oxidative stress) are among potential toxic effects
of SPIONs [152–154].

These effects have been observed in rats, 4 days after IV administration of 80 nm
SPIONs at 10 mg/kg. The histopathological evaluation showed a diffuse neural degenera-
tion, moderate in hippocampus and striatum, mild in cortex and slight in hypothalamus
and pons-medulla areas [155]. In zebrafish, the toxicity of cross-linked aminated dextran
(CLIO-NH2)-coated SPIONs at different concentrations and exposure times was evalu-
ated through the acetylcholinesterase activity and behavioral observations [88]. At doses
above 200 mg/kg for 24 h, acetylcholinesterase activity decreased, and unusual swimming
patterns appeared, suggesting a CNS toxicity. These studies underline the importance of
determining the maximum load of SPIONs used in vivo to limit the side effects related to
intracerebral iron storage.

In vitro SPIONs ototoxicity was studied in EC5V vestibular cell line [44]. SPIONs mea-
suring 100, 200 or 500 nm at concentrations ranging from 7 × 106 to 3 × 1010 particles/mL,
for 2 days, induced significant apoptosis as judged by flow cytometry analysis. Of note,
500 nm SPIONs appeared less toxic and had a lower intracellular penetration. However,
in vivo ototoxicity results were reassuring. Ototoxicity was evaluated by intracochlear
administration of SPIONs in guinea pigs and rats and monitoring of the hearing function
by auditory brainstem response threshold-shift for up to 30 days [44,45]. Results were
encouraging since these studies did not show a hearing loss. This could be related to the
quantity of SPIONs administered inside the cochlea, which was not quantified and could
be lower than in vitro studies.

Minor or no adverse reactions to SPIONs in many studies encourage further research
on their use in drug delivery. However, it is important to remain vigilant since the hetero-
geneity of materials and protocols hampers comparisons, and the results from in vitro and
animal models cannot be directly applied to human.

7. Conclusion and Futures Directions

In this review, the contribution of SPIONs for diseases of the brain and of the inner
ear are highlighted. Both systems are protected by a barrier (BBB or BPB), which filter the
incoming drugs from the blood and have common anatomical characteristics. SPIONs
have been engineered to cross these barriers and to deliver drugs to specific structures
thanks to molecular probes. The vast range of substances covering or carried by SPIONs
allows to increase the biocompatibility and the ability to cross anatomical barriers for
specific situations.
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One of the major advantages of SPIONs over other NPs is their possible guidance by
an EMF which enhances the targeted drug delivery. This increases the local bioavailability
of the drug, reduces the total amount of SPIONs required and the potential adverse effects.
Despite limited cellular toxicity of SPIONs shown in vitro and in rodents, further studies on
the long-term accumulation of SPIONs in the brain and the inner ear need to be conducted.
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