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Dynamics of a non-linear Jeffcott rotor in supercritical regime

Roberto Alcortaa,∗, Benjamin Chouviona, Olivier Montagniera

aCentre de Recherche de l’Ecole de l’air (CREA), Ecole de l’air et de l’espace, 13661 Salon-de-Provence, France

Abstract

This work is concerned with the prediction and simulation of limit cycles of a nonlinear Jeffcott rotor.

Geometrical nonlinearity (related to large flexural displacements) in both stiffness and internal damping is

considered. Classical instabilities due to linear internal damping occurring in the supercritical range are mod-

ified by nonlinear effects and lead to oscillating limit cycles at a radius whose value is found analytically as

a function of the rotating speed. If the rotor is additionally excited by unbalance, the response spectrum also

contains the excitation frequency, and the bifurcation leads to quasi-periodic limit cycles. The dynamics of

this system is studied numerically via the harmonic balance method, path continuation and bifurcation track-

ing. In particular, an original procedure for switching to a branch of quasi-periodic solutions is proposed.

To preserve the integrity of the machine post bifurcation, one then considers the possibility of constraining

the transverse displacement of the shaft. Such possible rotor stator interaction generates three-frequency

quasi-periodic oscillations. Frequency response curves show that the quasi-periodic solutions created by the

bouncing rotor are mainly driven by the friction coefficient.

Keywords: Bifurcation tracking, Branch switching, Geometrical nonlinearities, Quasi-periodic solutions,

Rotor stator contact

1. Introduction

The Jeffcott rotor (or Laval rotor) is a reference case useful to understand essential phenomena in rotor-

dynamics. It is well known that linear analysis of a Jeffcott rotor with internal damping leads to unstable

forward modes in the supercritical regime (rotating nominal speed higher than first critical speed) [1, 2].

This instability can cause fatal damage to the rotor. It is one of the reasons why engineers avoid the super-5

critical regime, for instance on helicopter rear drive shafts. However, in that case, letting the rotor turn in this
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regime has been shown to allow for increased shaft lengths and reduced number of supports, consequently

reducing maintenance costs [3, 4]. Moreover, rotor shafts with pinned end conditions are also subjected to

nonlinear geometric effects due to mid-plane stretching. As these are only prominent for large-amplitude

motions, they are often ignored in rotordynamics models. Nevertheless, they are important for ensuring10

bounded amplitudes in the case of linearly unstable regimes. Genta [5] conducted a thorough analytical and

numerical study of a nonlinear rotor with ’Duffing-like’ cubic stiffness, and deduced conditions for stable

circular whirling. Recently, two frequency quasi-periodic cycles were reported in the unbalance response of

a simple Jeffcott rotor with nonlinear damping [6] in the supercritical regime. If these kinds of high ampli-

tude modes appear in this regime, for example with a sudden increase in the unbalance of the shaft due to an15

impact, one way of preserving the integrity of the rotor could be to constrain the transverse displacement of

the shaft with a static ring or stator.

Rubbing between the rotor and stator can be found in many applications, ranging from turbomachine

designs where the gap between blades and stator is so narrow that abradable wear removal is now seriously

considered [7] to drill string systems in which the extremely long rotating part with flexible joints will20

inevitably generate interaction between the drill string and an outer shell [8]. In particular, Chipato et al. have

demonstrated friction plays a major role in shaping the dynamics of unbalanced, overhung rotors through

numerical [9] and experimental [10] means. Their results show different quasi-periodic bouncing regimes,

whose frequency content is interpreted in relation to the rotor’s forward and backward whirl frequencies,

and which in some cases require the presence of friction to exist.25

It stands to reason that rotors designed to operate at high rotation speeds will be subjected to a combina-

tion of the aforementioned phenomena, which are often considered individually in the literature. Hence, this

contribution deals with the study of a supercritical, nonlinear Jeffcott rotor with possible rotor stator interac-

tion. A shaft with pinned ends is considered, whose large transverse displacements provide both a nonlinear

stiffness and a nonlinear internal damping. The corresponding equations of motion are consistently derived30

from an energetic approach and then approximated to the third order to obtain a Duffing-type oscillator with

two degrees of freedom. Furthermore, rotor stator interactions are introduced as a penalty formulation of

contact with Coulomb friction [11]. The detailed mathematical description of the rotor model is given in

Sect. 2 and numerical tools employed for its simulation are detailed in Sect. 3. These include, in particular,

an original procedure to switch from periodic to quasi-periodic branches at a Neimark-Sacker bifurcation.35

The case of a balanced, unconstrained rotor is first presented in Sect. 4. Either beyond stability or near the

resonant frequency of the rotor excited by an unbalanced mass, the structure can undergo transverse dis-
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placement such that it makes contact with the surrounding stator. The study of the full system and its limit

cycles, including unbalance and contact, is the subject of Sect. 5. The presence of the dissipative friction

force at the rotor-stator interface leads to complex nonlinear phenomena with the creation of a quasi-periodic40

regime. This paper focuses on the simulation and understanding of such strongly nonlinear behavior. The

consistent incorporation of nonlinear effects into the rotor model, along with the use of Neimark-Sacker

bifurcation tracking to explore the parameter space, are additional novelties of the present work.

2. Nonlinear Jeffcott rotor model

The structural model is based on the classical Jeffcott rotor [2] on top of which geometrical nonlinearities45

and possible rotor stator contact are considered, see Fig. 1.

Figure 1: Jeffcott rotor with large transverse displacement, pinned-ends, and possible rotor stator interaction

2.1. Equations of motion of the unconstrained rotor

The structure studied consists of an unbalanced disk mounted on a massless, axisymmetric shaft. The

disk is modeled as a lumped mass m in G located at a distance e from the centre of rotation C (see Fig. 1).

Without gravity forces and without rotation, the centre of rotation is located in O. The disk inertia in the50

axial direction is noted I. The rotating frame linked to the disk (O, y⃗r, z⃗r) turns relatively to the fixed frame

(O, y⃗,⃗z) with a rotating speed ω . The length of the shaft is l. Its stiffness and internal viscous damping

corresponding to flexural (transverse) movement are denoted k f and ci f . In case of large displacement,

shaft stiffening related to membrane tension effects is accounted for with a constant stiffness equal to kt for
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the half-length. Internal viscous damping is also considered in that direction, along the shaft length, and55

is denoted cit . An important source of external dissipation in rotordynamics applications is the viscoelastic

material upon which shaft bearings are mounted. Several studies model this effect in a precise way, e.g. [3, 4],

but this requires considering additional degrees of freedom for bearing displacements. Instead, for modelling

convenience, here the supports are assumed to constrain the displacements in the radial and transversal

directions but to dissipate radially with a viscous damping coefficient ce. Contact forces from possible rotor60

stator interaction are also accounted for. These exist if the structure transversal displacement is large enough

to nullify the initial gap present on the undeformed configuration. The kinetic energy of the system can be

written in the following form (with the time derivative ◦̇= d ◦/dt):

T =
1
2

m
(
ẏ2 + ż2 + e2

ω
2 −2eẏω sin(ωt)+2eżω cos(ωt)

)
+

1
2

Iω
2, (1)

where y and z are coordinates of the centre of rotation C in the fixed frame. The potential energy from

internal and external forces is equal to:65

U =
1
2

k f
(
y2 + z2)+ 1

4
kt

(√
l2 +4y2 +4z2 − l

)2
+mg(y+ esin(ωt))+Uc

cons. (2)

In Eq. (2), the geometric nonlinear effects are simply obtained with the Pythagorean theorem, and the term

Uc
cons represents the potential associated with conservative contact forces. Naturally, a beam model in large

displacements and rotations would be needed to accurately quantify the geometric nonlinearity due to shaft

deflection. However to stay in the framework of a Jeffcott rotor, the qualitative picture obtained by replacing

the shaft by springs is deemed sufficient. The global dissipation expression, which includes external and70

internal viscous dampers, and dissipation due to friction through the term Dc
diss, can be written as:

D =
1
2

ce
(
ẏ2 + ż2)+ 1

2
ci f

(
(ẏ+ωz)2 +(ż−ωy)2)+ 1

4
cit

(yẏ+ zż)2

l2 +4y2 +4z2 +Dc
diss. (3)

The term in cit of Eq. (3) was obtained noting that the internal structural dissipation along the shaft length

is proportional to the velocity of C in the frame related to the rotating disk and not in the fixed frame [1].

The internal dissipation on the AC segment, equal to the one on the BC segment, is then proportional to the

square of the velocity of C in the AC direction. This gives a dissipation term equal to 2 1
2 cit

(
v⃗C · A⃗C/||A⃗C||

)2
75

where v⃗C is the velocity of C.

Governing equations are derived from Lagrange’s equations using the energies and dissipation function

4



defined in Eqs. (1), (3) and (2). These become:

ÿ+(de +di f )ẏ+ω
2
f y+di f ωz+

1
2

dit
y2ẏ+ yzż

l2 +4y2 +4z2 +ω
2
t

(
1− l√

l2 +4y2 +4z2

)
y

= eω
2 cos(ωt)− f c

y , (4a)

z̈+(de +di f )ż+ω
2
f z−di f ωy+

1
2

dit
yzẏ+ z2ż

l2 +4y2 +4z2 +ω
2
t

(
1− l√

l2 +4y2 +4z2

)
z

= eω
2 sin(ωt)+g− f c

z , (4b)

where de = ce/m, di f = ci f /m, dit = cit/m, ω f =
√

k f /m and ωt =
√

2kt/m denote respectively the external

modal damping, the internal modal damping, the natural frequency of the undamped shaft in bending and the

natural frequency of the undamped shaft in tension. It is relatively straightforward to verify that the nonlinear

damping expressed in Eq. (4), like classical internal damping, dissipates no energy during precession or

purely circular motions. Contact forces, generically given by f c
q = ∂Uc

cons/∂q+ ∂Dc
diss/∂ q̇ , q = {y,z},

will be detailed in Sect. 2.2. Eq. (4) is then rewritten by approximating the geometric nonlinear term by

their Taylor expansion truncated at third order, and using a non-dimensional form obtained by appropriately

scaling lengths and time. The governing equations of motion become:

Y ′′+(De +Di f )Y
′+Y +Di f ΩZ +Y

[
Dit
(
YY ′+ZZ′)+2Ω

2
t (Y

2 +Z2)
]
+Fc

Y = EΩ
2 cos(Ωτ), (5a)

Z′′+(De +Di f )Z
′+Z −Di f ΩY +Z

[
Dit
(
YY ′+ZZ′)+2Ω

2
t (Y

2 +Z2)
]
+Fc

Z = EΩ
2 sin(Ωτ)+G. (5b)

with

Y =
y
l
, Z =

z
l
, De =

de

ω f
, Di f =

di f

ω f
, Dit =

dit
2ω f

, Fc
q =

f c
q

lω2
f

Ω =
ω

ω f
, Ωt =

ωt

ω f
, E =

e
l
, τ = ω f t, G =

g
lω2

f
,

and (.)′ = ˙(.)/ω f = d(.)/dτ . It shall be noted that, due to possible contact with the stator, transversal

amplitudes are severely limited. Hence, the smallness assumption is duly justified in this context and a

third-order approximation of geometric terms is consistent.

5



2.2. Contact model80

The terms Fc
Y and Fc

Z in Eqs. (5a) and (5b) are the components of the reaction force at the contact point,

resolved in fixed-frame coordinates. Considering a circular stator with radius Rc, those are defined with:

Fc(Y,Z,Y ′,Z′) =

 Fc
Y

Fc
Y

=
1
R

Ĥ(R−Rc)

 FNY −FT Z

FNZ +FTY

 , (6)

where R =
√

Y 2 +Z2 is the disk’s (non-dimensional) radial displacement and Ĥ is the Heaviside function,

indicating non-zero forces for R ≥ Rc only. The scalar functions FN and FT denote, respectively, the force

components in the normal and tangential directions to the stator circumference at the contact point. Here,85

FN is defined by the penalty law:

FN = Ω
2
c(R−Rc). (7)

The distance R−Rc may be interpreted as disk penetration into the stator or as a measure of elastic deforma-

tion of the former due to contact. The term Ωc = ωc/ω f , where ωc =
√

kc/m, serves as a non-dimensional

penalty coefficient associated to the contact stiffness kc. The tangential force, FT , is a result of friction, and

thus can be modelled in a number of ways [12]. In this paper, a simple Coulomb (dry friction) law is used:90

FT = µ|FN |sign(vr), (8)

where vr = vt +Ω
rd
l is the (non-dimensional) velocity between rotor and stator at the contact point, including

contributions from the former’s elastic motion (vt ) and rotation about its axis (Ω rd
l ), with rd being the disk

radius), and µ is the dry friction coefficient. One may remark that, in the fixed frame: vt = (Y Z′−ZY ′)/R =

θ ′R, where θ = arctan(Z/Y ) is the disk’s angular displacement. Moreover, the absolute value can be omitted

from the above equation in light of Eqs. (6) and (7).95

3. Numerical methods

In order to solve Eq. (5) and perform parametric studies, numerical continuation based on the Harmonic

Balance Method (HBM) is used. This section briefly describes this approach.

Let X = [Y,Z]T and rewrite Eq. (5) as a single vector equation, i.e.:

X′′+CX′+X+FNL(X,X′,Ω) = EΩ
2Fe(τ)+G, (9)

where Fe(τ) = [cosΩτ,sinΩτ]T , G = [0,G]T , the diagonal matrix C contains De +Di f in its diagonal, and100

all remaining terms are grouped into vector FNL. Then, the steady-state solution of (9) is approximated by a
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periodic solution and sought by expanding each term as a Fourier series truncated at the Nh-th harmonic, i.e.

X(τ) =
Nh

∑
k=0

{
X̂ck coskΩ̂τ + X̂sk sinkΩ̂τ

}
. (10)

Replacing this Fourier expansion into Eq. (9), and balancing terms with the same harmonic yields to the

following non-linear algebraic system for the Fourier coefficients

X̂ =
[
X̂0, X̂c1, X̂s1, ..., X̂cNh , X̂sNh

]
:

R(X̂) = Z(Ω̂)X̂+ F̂NL(X̂,Ω̂)−EΩ
2F̂e − Ĝ = 0, (11)

in which Z(Ω̂) = Ω̂2(∇2 ⊗ I2)+ Ω̂∇⊗C+ I2(2Nh+1) is the dynamic stiffness matrix. The notation Ω̂ above

is used to distinguish between the forced (unbalanced) and free (balanced) cases: in the former, the whirling105

frequency is equal to the rotor angular speed, so that Ω̂ = Ω; in the latter, Ω̂ is not known a priori and must

be computed along with X̂. Thus, the free case requires appending an additional equation to Eq. (11); this

is done in such a way to fix the cycle phase, which is otherwise undetermined for autonomous systems [13].

In the frequency domain, this takes the simple form: vT
phX̂ = 0, with vph a well-chosen constant vector.

The skew-symmetric operator ∇ maps the Fourier coefficients of X̂ to those of its time derivative. In the110

following numerical simulations, the state-dependent term F̂NL, that relates to the harmonic coefficients of

the non-linear force, is computed with the Alternating Frequency-Time method (AFT) [14], after which

Eq. (11) lends itself to a solution through Newton-Raphson iterations. Furthermore, a full response curve is

constructed by an arc-length continuation algorithm which includes local stability and bifurcation analysis

for each converged solution. The main difficulties are detailed next.115

3.1. Stability and bifurcation tracking

Following [11], a small perturbation p(τ) is applied to a periodic solution Xsol(τ) of Eq. (9) such that

X(τ) = Xsol(τ)+p(τ). This allows to linearize the aforementioned equation around Xsol(τ), which yields

a periodic-coefficient system for p(τ). From Floquet theory, this system admits 4 linearly independent

solutions of the form: p j(τ) = ϕ j(τ)e
λ jτ for j = {1, ...,4}, where the vector functions ϕ j(τ) are periodic.120

Applying the HBM then leads to the following quadratic eigenvalue problem for the characteristic (Floquet)

exponents λ j and their corresponding frequency-domain eigenvectors, Φ j:[
λ

2
j I2(2H+1)+λ jD1 +RX̂

]
Φ j = 0, (12)

where

D1 = 2Ω̂(∇⊗ I2)+F
{

∂FNL/∂X′}(∇⊗ I2)+ I2H+1 ⊗C and RX̂ = ∂R/∂ X̂.
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The condition ∀ j, ℜ
{

λ j
}
< 0 characterizes a stable cycle, as it describes a perturbation decaying over

time regardless of how said perturbation is applied. As the system’s parameters vary, one of more Floquet

exponents are amenable to crossing the imaginary axis. A case of particular interest is the Neimark-Sacker125

(NS) bifurcation, defined by the existence of a pure imaginary exponent pair: λ1,2 =±iη , which gives birth

to a branch of quasi-periodic solutions. Stability changes are detected along solution branches by monitoring

ℜ
{

λ j
}

. Critical values are pinpointed by using Newton iterations to solve the following extended system

characterizing a NS bifurcation [15]:

R

(RX̂ −η2I2(2H+1))ΦR −ηD1ΦI

(RX̂ −η2I2(2H+1))ΦI +ηD1ΦR

N1(ΦR,ΦI)

N2(ΦR,ΦI)


= 0, (13)

where ΦR and ΦI are the real and imaginary parts of the unstable eigenvectors Φ1,2, such that Φ1,2 =130

ΦR ± iΦI , uniquely defined through the scalar normalization conditions N1 and N2. Solving Eq. (13) for any

continuation parameter α yields to specific values (noted with subscript NS) describing the system at the NS

bifurcation point. These are the harmonic coefficient (noted X̂NS) of the degrees of freedom related to the

physical displacement with an inverse Fourier transform, the eigenvector (real ΦR, and imaginary ΦI parts),

the additional frequency created by the bifurcation (ηNS), and the continuation parameter (αNS). In the free135

case, a phase condition must be included in Eq. (13) to solve for the whirling frequency Ω̂NS. From an initial

solution, continuation can be applied to Eq. (13), thus tracking NS bifurcations in two arbitrary parameters

α and β .

3.2. Branch switching to quasi-periodic solutions

In order to switch between two periodic branches at a bifurcation point, a well-known method exists

in which the tangent vector to the emerging branch is directly computed by making use of a quadratic

equation [13]. This approach was recently applied in combination with the HBM, for instance in [16, 17, 18].

Alternatively, the parallel search methodology explained in [19] can be used to find a solution on the new

branch without explicitly computing the associated tangent vector. This section presents a procedure for

branch switching at a NS bifurcation inspired by parallel search, thus allowing to find an initial quasi-

periodic solution on an emerging branch. The key idea is that a branching point corresponds to a certain

symmetry breaking in the system, which is also reflected in the frequency-domain representation. Hence,

8



if the Fourier coefficient vector of periodic solutions is partitioned into two mutually orthogonal parts, say

a ’symmetric’ (noted X̂s) and an ’antisymmetric’ (noted X̂a) one, i.e.: X̂ = X̂s + X̂a such that X̂T
s X̂a = 0,

all solutions on the main branch satisfy X̂a = 0 whereas this is not the case for solutions on the emerging

branch. Typical examples of partitions are: even and odd harmonics, and Fourier coefficients of individual

degrees of freedom. For instance, the even/odd harmonic decomposition of a Fourier coefficient vector with

Nh = 2 simply reads:

X̂ =



X̂0

X̂c1

X̂s1

X̂c2

X̂s2


=⇒ X̂s =



X̂0

X̂c1

X̂s1

0

0


and X̂a =



0

0

0

X̂c2

X̂s2


.

Clearly, a tangent vector to the emerging branch at the bifurcation point must be a linear combination of a140

tangent vector to the main branch at the same point, ts, and a second one belonging to a subspace spanned by

X̂a. A good candidate for the latter (see, e.g., [13]) is the eigenvector Φ associated to the unstable eigenvalue

characterizing the bifurcation. The parallel search algorithm consists in finding a solution by first taking a

step along Φ at the bifurcation point and then performing Newton-Raphson corrections along the direction

of ts.145

In order to extend this idea to NS bifurcations, let us consider the expression of a quasi-periodic solution

using a two-dimensional hyper-time approach [20], in which the time scales θ1 = Ω̂τ and θ2 = ητ are

introduced in place of proper time τ within Eq. (9). The displacement is then defined by the following

two-dimensional Fourier series:

X(τ) =
Nh

∑
a=−Nh

Nh

∑
b=0

X̂c(a,b) cos(aΩ̂+bη)τ + X̂s(a,b) sin(aΩ̂+bη)τ. (14)

It is worth noting that a full description of a quasi-periodic solution requires only one of the above sums150

to cover negative values of the summing index, due to the fact that the signals we consider (displacement

time histories) are real [21]. Periodic solutions, which were expressed before as a simple Fourier series (see

Eq. (10)), may be seen as a particular case of the above equation (i.e. with b = 0). By introducing Eq. (14)

into Eq. (9) and balancing harmonics, the following algebraic system is obtained:

R(X̂,Ω̂,η) = Z(Ω̂,η)X̂+ F̂NL(X̂,Ω̂)−EΩ
2F̂e − Ĝ = 0, (15)

which differs from Eq. (11) in two crucial ways. Firstly, the dynamic stiffness matrix becomes: Z(Ω̂,η) =155
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∇̂2 ⊗ I2 + ∇̂⊗C+ I2(2Nh+1) with the new differential operator ∇̂ = Ω̂∇1 +η∇2. In turn, the linear operators

∇1 and ∇2 represent frequency-domain partial derivatives associated with time scales θ1 and θ2, respectively.

Secondly, computation of the term F̂NL now requires to use two-dimensional Fourier transforms in the AFT

procedure.

The general quasi-periodic solution (14) is next partitioned into a ’periodic part’, containing all coeffi-

cients associated with the first frequency (i.e. b = 0) and a second part containing the remaining coefficients

(b ̸= 0). These are represented by the vectors X̂P and X̂QP, respectively. Then, for instance, a periodic

solution expressed in the extended basis reads:

X̂ =

 X̂P

X̂QP

=

 X̂P

0

 ,
in which X̂P contains the subset of coefficients where a ̸= 0 and b = 0. In particular, this is the form of tp, the160

tangent vector to the periodic branch at a bifurcation point. This offers a very natural way of partitioning, and

thus a NS bifurcation may be treated as a classical branching point. From the explanation given in Sect. 3.1,

a perturbation applied in the direction of the unstable eigenvector at the NS point evolves in time as:

p(τ) = eiητF−1 [ΦR + iΦI ]+ e−iηtF−1 [ΦR − iΦI ] = 2
[
cos(ητ)ϕR(Ω̂τ)− sin(ητ)ϕ I(Ω̂τ)

]
, (16)

where F−1(·) denotes the inverse one-dimensional Fourier transform, producing the purely periodic func-

tions ϕR(Ω̂τ) and ϕ I(Ω̂τ) from the real and imaginary parts, respectively, of the unstable eigenvector com-165

puted through Eq. (13). From Eq. 16, a straightforward computation shows that the spectrum of p(τ)

consists of terms associated with the basis functions
[
cos(aΩ̂+η),sin(aΩ̂+η)

]
where a ∈ {−Nh, ...,Nh}.

Thus, if we let tNS denote the Fourier coefficient vector of p(τ) in the extended basis, it follows that tNS

and tp are mutually orthogonal. Consequently, the unit vector tangent to the emerging branch at the NS

bifurcation is a combination of both tp and tNS, which completes the setting for parallel search.170

As a final remark before introducing the branching algorithm, let note that the second frequency η has

been introduced into the system of equations, which is now under-determined and must be closed by an

additional equation. In a manner analogous to periodic solutions of autonomous systems, this indeterminacy

is a consequence of the initial phase with respect to time-scale θ2 not being imposed by the forcing terms.

One might arbitrarily choose the phase condition: (∂Y/∂θ2) |τ=0 = 0, which is readily expressed in the175

frequency domain as: vT
phX̂ = 0, where vT

ph is a constant vector.

In summary, the procedure to switch branches at a NS bifurcation during continuation is as follows:
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1. Localize a NS point by solving Eq. (13).

2. Compute tp and tNS, then express them both in the extended Fourier basis along with X̂NS.

3. Taking the values (X̂NS + εtNS,αNS,ηNS) for small ε ∈ R as a starting point, use Newton-Raphson180

iterations in a direction parallel to tp, i.e. with corrections given by:
RX̂ Rα Rη

vph 0 0

tNS 0 0




δ X̂

δα

δη

=−


R

vT
phX̂

0

 . (17)

where the residual vector R and its derivatives correspond to Eq. (15).

4. After successful convergence to a quasi-periodic solution, use standard arc-length continuation to

follow the newly obtained branch. The phase condition is kept, while the last line of (17) is replaced

by an arc-length equation.185

Whereas the tool presented in Sect. 3.1 is used to detect bifurcation points and assess the stability of

the branch being scanned with the continuation procedure, the method explained in Sect. 3.2 can be used

to initiate the path following on a detected branch of quasi-periodic solutions. Overall, the methodology

ensures that all steady-state solutions obtainable for varying α are captured by the continuation algorithm.

4. Unconstrained system190

This section focuses on the solution of the unconstrained (unbounded) rotor. Of particular interest is the

vibrational state existing at high rotating speed, after a supercritical bifurcation. A closed-form expression

is found to describe the limit cycles in the free case in Sect. 4.1. Sect. 4.2 presents numerical simulations

investigating in more details the post-bifurcation regime in both the free and forced cases.

4.1. Analytical solution195

Free vibrations (balanced rotor, i.e., E = 0) are first considered and the effect of gravity terms and contact

are neglected. Fixed points, noted X̄ = [Ȳ , Z̄]T , of the system are obtained solving Eq. (5) with ˙̄X = 0. This

gives:  Ȳ +Di f ΩZ̄ +2Ω2
t (Ȳ

2 + Z̄2)Ȳ = 0

Z̄ −Di f ΩȲ +2Ω2
t (Ȳ

2 + Z̄2)Z̄ = 0
(18)
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whose single fixed point solution is X̄0 = [0,0]T . The local stability of this fixed point is then assessed by

complex eigenvalue analysis of Eq. (18) linearized around X̄0. In this case, the closed-form expression of200

the eigenvalues becomes:

λ1,...,4 =
1
2

(
−(De +Di f )±2

√
−Ω2

d ± iDi f Ω

)
, (19)

where

Ω
2
d = 1− 1

4
(De +Di f )

2. (20)

The expansion of the complex square root is useful to separate the damping part (real part) from the fre-

quency (imaginary part) of the exponents. One then obtains two exponents and their associated complex

conjugates:205

λ1,2 =−A+B± iC and λ3,4 =−A−B± iC, (21)

with

A =
1
2
(De +Di f ), B =

1√
2

√
−Ω2

d +
√

Ω4
d +D2

i f
Ω2 and C =

1√
2

√
Ω2

d +
√

Ω4
d +D2

i f
Ω2.

These eigenvalues are generally given in an approximate form [1]. Modes 3 and 4 are unconditionally stable

because ℜ(λ3,4)< 0 ∀Ω. The others can become unstable with sufficiently large Ω. Indeed, ℜ(λ1,2)> 0 if

the rotating frequency is larger than the critical speed ΩHB given by:

ΩHB = 1+
De

Di f

. (22)

When Ω = ΩHB, The dynamical system is at a Hopf bifurcation point defined with two complex conjugate

eigenvalues having real parts changing sign [13]. Consequently, a branch of periodic solutions (limit cycles)210

emerges from this point. The remaining of this section is devoted in finding an exact analytical solution for

these limit cycles. Using R =Y + iZ, the previous system (namely, Eq. (18)) can be reformulated in the form

of a single complex equation, as in [5]:

R′′+(De +Di f )R
′+
(

1− iDi f Ω

)
R+

1
2

Dit
(
|R|2R′+R2R̄′)+2Ω

2
t |R|2R = 0. (23)

The limit cycle solution is sought after in the following form: R = |R|eiΩ̄t , where the unknowns |R| and Ω̄

are respectively the circle radius and rotating speed of the periodic cycle. Substituting this form into Eq. (23)215

gives: (
−Ω̄

2 +(De +Di f )iΩ̄+(1− iDi f Ω+2Ω
2
t |R|2

)
|R|eiΩ̄t = 0. (24)
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This equation is not affected by nonlinear internal dissipation simply because |R|2R′+R2R̄′ = 0. With Ω > 1

(condition respected after the Hopf bifurcation, see (22)), the following non-trivial solution of (24) can be

found: 
Ω̄ =

Di f

De +Di f

Ω =
Ω

ΩHB

|R|= 1√
2Ωt

√
Ω̄2 −1

. (25)

This solution (25) defines the oscillating limit cycle. From bifurcation theory, this branch of solution220

is stable while the fixed point X̄ = 0 is unstable. The evolution of the rotating speed of the limit cycle is

linear relatively to Ω. When Ω̄ gets larger, |R| → Ω̄/(
√

2Ωt) and the evolution of the cycle radius tends

also to be linear relatively to Ω. Finally, it can be remarked that this solution is not written in a normal

form [13] because the problem is here solved directly in the physical space and not on an approximated

invariant manifold.225

4.2. Parametric study

Let consider the case of a homogeneous elastic shaft with circular cross section of external radius r

and Young modulus Ea. Its stiffness in tension and in bending are respectively equal to kt = EaS/l =

Eaπr2/l and k f = 48EaI/l3 = 12Eaπr4/l3. The ratio between the tension and bending natural frequencies

is Ωt = l/(
√

6r). With r = 1cm and l = 1.2m, its order of magnitude is Ωt ≈ 50. According to [3], let230

use De = Di f = 0.1, which yields to a Hopf bifurcation at ΩHB = 2, see Eq. (22). Figure 2 illustrates

time history of the rotor dynamical behaviour for different initial positions and at Ω = 5, calculated with

numerical time integration. These converge towards a limit cycle of radius approximately 0.0331, consistent

with the analytical solution given in Eq. (25).

The Hopf bifurcation and the limit cycle can also be obtained numerically via a continuation procedure235

following the explanations given in Sect. 3. This is illustrated in Fig. 3 that shows that the amplitude of the

limit cycles is exactly evaluated by the analytical solution Eq. (25).

Investigating the analytical solution (22) and (25) more deeply can give insights on the behaviour of

the limit cycle as a function of the system configuration. For instance, one can easily show that the cycle

radius is inversely proportional to the ratio l/r for a given Ω, which means that long shaft will tend to have240

smaller cycle limit amplitude. The classical behaviour of a Jeffcott rotor with respect to damping [1] is also

confirmed by (25): external damping has a beneficial effect by delaying the appearance of the limit cycles

whereas internal damping has a destabilizing effect. It is finally worth noticing that a small De/Di f ratio

leads to a low bifurcation frequency (ΩHB → 1 for De/Di f → 0) and high limit cycle amplitude. In practical

13
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Figure 2: Temporal simulation of rotor past Hopf bifurcation point, highlighting the limit cycle. Red ( ) and blue ( ) trajectories

start from initial conditions (Y0,Ẏ0,Z0, Ż0) = (0.05,0,0,0.18) and (Y0,Ẏ0,Z0, Ż0) = (0.01,0,0,0.013)

, respectively, and converge to black ( ) cycle with radius |R|= 0.033.

applications of supercritical shafts with low De/Di f ratio, the rotating damping instability can then appear245

but not be differentiated with an oscillating forced response due to unbalance. The two of them could be

distinguished looking at the phase of the response because the limit cycle speed is different from the rotating

speed. Simulations of an unbalanced rotor are performed next.

Fig. 4 shows the radial amplitude of an nonlinear unbalanced rotor with E = 5.0× 10−4. The main

branch of solution is periodic (labelled ’P’ in Fig. 4) due to the periodic forcing (see Eq. (5)) created by250

the unbalance mass. It was obtained through numerical continuation as per Sect. 3, with H = 5. Because

of the relatively small value chosen for E, the characteristic turning points near resonance of Duffing-like

oscillators are absent from this figure; nevertheless, visual evidence of the system’s nonlinear nature lies

in the asymmetrical peak shape at Ω ≈ 1 and in the slight shift of the effective resonant frequency due to

stress stiffening. On the other hand, a branch of stable quasi-periodic solutions emerges from a supercritical255

NS bifurcation at ΩNS = 2.03. This value is remarkably close to the analytical Hopf bifurcation speed

(ΩHB = 2) of the balanced rotor. Having localized the bifurcation, parallel-search branch-switching as

described in Sect. 3.2 is applied with ε = 10−4. A first quasi-periodic solution is thus obtained in few
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Figure 3: Hopf bifurcation and limit cycles of the system obtained with continuation of Eq. (5) without applied forces – Comparison

with analytical solution (25).

iterations, allowing the whole branch (denoted QP in Fig. 4) to be computed via continuation. Results from

numerical time integration shown in Fig.4 directly performed on Eq. (4) confirmed both the third-order260

Taylor approximation of the nonlinear forces and the harmonic truncation in the Fourier expansion of the

HBM. Another illustration of such results is shown in Fig. 5, where Ω = 2.5 was fixed. At this value, the

only stable attractor is the quasi-periodic solution on the upper branch of Fig 4.

Fig. 5.a) shows the steady-state rotor trajectory in fixed-frame coordinates (Y,Z). The quasi-periodic

response to unbalance manifests as a torus centred about the underlying limit cycle, which is also shown265

for comparison. Indeed, as seen in Fig. 5.b), the radial displacement R(τ) =
√

Y 2 +Z2 is constant on the

circular orbit described by the latter, whereas it oscillates periodically for the former. Consequently, the

power spectra obtained from a Fourier Transform of these signals (i.e. Fig. 5.c)) exhibits a main peak

at zero frequency, with an additional peak corresponding to the second frequency η = 1.2487 = ΩHB in

the unbalanced case. Just as for the balanced rotor, this whirling has its origin in rotating damping. This270
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Figure 4: Radial amplitude of the unbalance response of unconstrained rotor (E = 5.0× 10−4). Markers ( ) show time integration

results.

motion is superimposed to the unbalance response, resulting in a net quasi-periodic motion since Ω/η /∈Q.

The remaining apparent peaks in the balanced case spectrum are small and due exclusively to numerical

approximations; hence, they are not relevant.

To better understand the global dynamics of the system, the evolution of its forced response for varying

E is investigated. The results are encapsulated in Figs. 6 and 7. The former of these presents four curves,275

computed for the values E = [5, 7.5, 10, 12.5]× 10−4 over the interval Ω ∈ [0.5,3.0], the first of which

coincides with Fig. 4. The effect of nonlinear stiffness is clearly seen around the resonant velocity Ω = 1

for increased E, as evidenced by the appearance of an unstable branch bordered by Limit Point (LP) bifur-

cations. This behaviour is typical of hardening (Ω2
t > 0) nonlinearities of the cubic type. At these simulated

response amplitude levels, the solutions obtained from the full and approximated models are indistinguish-280

able. Nevertheless, the amplitude of the resonant peak increases rapidly with the mass eccentricity. This

can be seen immediately by tracking LP bifurcations – as presented in this figure – and entails two conse-

quences: from a computational perspective, the third-order approximation becomes inaccurate to evaluate

the high-level LP; physically, the rotor is prone to reaching critical amplitudes if the transverse displacement

16
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Figure 5: Rotor response at fixed frequency Ω = 2.5 (no contact): a) rotor trajectory, and b) time history R(τ), and c) power spectra

of radial displacement (noted SR). Forced and free responses are represented by solid magenta ( ) and dashed black ( ) lines,

respectively.

of the rotor is not mechanically constrained. It is important to realize that this event arrives well before the285

maximum allowable value E = rd/l = 8.33× 10−3. If one assumes that only the approximate maximum

amplitude of the response near resonance is of interest and that the system is with light damping, one could

have followed the π/2 phase change occurring at resonance in the (E,Ω) space, as performed in [22]. This

alternative approach has the advantage of being easier to implement numerically than tracking the upper LP

(see Fig. 6).290

With regard to the NS bifurcations leading to quasi-periodic motions, they occur at higher rotating speeds

for increased values of E. As the mass eccentricity tends to zero, ΩNS → ΩHB. Fig. 7, which consists of a

projection of the bifurcation curves on the (Ω,E) plane, evidences this fact. Another interesting aspect that

surfaces from this figure is that, whenever E > 1.229×10−3, there exists a region where stable periodic and

quasi-periodic solutions co-exist. On this projection, such a region is made up of points simultaneously to295

the right of the NS boundary and within the cusp defined by the LP boundary.

Taking the point labelled A (see Figs. 6 and 7), corresponding to (Ω,E) = (2.08,1.25E − 3), as an

example, the steady-state solution eventually reached depends on initial conditions, see Fig. 8. Finally, the

LP curve includes a cusp point (labelled CSP in Fig. 7) located at (Ω,E) = (1.09,5.31×10−4); this defines

a minimal value of eccentricity beyond which an unstable branch will exist on the main resonance peak.300
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Figure 6: Response curves of unbalanced rotor for varying E. Also shown are stability boundaries for LP and NS bifurcations.

The vertical line at (Ω,E) = (2.08,1.25× 10−3), labelled A, indicates an example of co-existing, stable periodic and quasi-periodic

solutions.

5. Constrained rotor

In this section, the response of balanced and unbalanced rotors in the presence of a circular stator is

studied. The stator can bound the transverse displacement of the shaft when subjected to external resonance

or high-oscillating limit cycles and is located at the radial distance rd +Rc with Rc = 0.0175. The contact

parameters are initially fixed at: µ = 0.3 and Ω2
c = 50 (see Sect. 2.2 for details on the contact model). The305

numerical value for the friction coefficient µ is inspired by the value µ = 0.35 experimentally measured by

Chiapato et al. [10].
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Figure 7: Bifurcation boundaries in (Ω,E) plane: LP ( ) and NS ( ).

5.1. Frequency response

The balanced rotor’s response for varying Ω is presented in Fig. 9. An abrupt slope change as R attains Rc

clearly indicates the onset of contact. Due to the penalty formulation employed, cycle amplitudes beyond Rc310

are allowed but penetrations remain small even for the moderate value of Ω2
c used herein. A NS bifurcation

occurs immediately after R = Rc, so that all periodic solutions beyond this point are unstable. Quasi-periodic

motions then develop, a behaviour which agrees with reported results on rubbing rotors [10].

On the range Ω = [2,4.5], the unbalance response (with E = 5×10−4, in this case) follows an analogous

trend. Quasi-periodic regimes of increasing amplitude develop from a NS bifurcation as per Fig. 4, but find315

their amplitudes limited by contacts for Ω≥ 3.148. As before, a new frequency component related to contact

appears on the upper branch; thus, three-frequency quasi-periodic regimes are established. A comparison of

free and forced responses, at Ω = 3.5, is presented in Fig. 10.

The quasi-periodic nature of responses is evident from the torus-like trajectories in Fig. 10.a). From

the perspective of radial displacement R, as in Fig. 10.b), the two-frequency response of the balanced rotor320
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Figure 8: Rotor trajectory at point A for initial conditions (Y0,Ẏ0,Z0, Ż0) = (0.05,0,0,0.018) and (Y0,Ẏ0,Z0, Ż0) = (0.02,0,0,0.01),

with the former leading to a periodic cycle ( ) and the latter to a quasi-periodic response ( ).

appears as a periodic oscillation about a constant-amplitude cycle. On the other hand, these oscillations

are non-periodic for the unbalance response. Indeed, the associated power spectrum of Fig. 10.c) shows

proof of a rich frequency content, with numerous components besides the underlying cycle represented by

a peak at zero frequency. Hence, while the presence of a support has the positive effect of bounding the

response amplitudes in the super-critical regime following a Hopf or NS bifurcation, this comes with a325

strongly nonlinear behaviour with potentially many overtones and several incommensurate frequencies.

5.2. Influence of friction coefficient

It has been reported in [9] that some quasi-periodic bouncing regimes in rubbing rotors are highly depen-

dent on friction, whereas others are not. The influence of the friction coefficient µ is then worth investigated

in more details on the nonlinear model under consideration.330

Let consider the free rotor response at the values (Ω,µ) = (3.5,0.3), for which contact quasi-periodic

motions are established (see Fig. 9). Periodic solution continuation indicates an unstable cycle at this point,

whose Floquet exponents include a complex conjugate pair with positive real parts. Fixing Ω and following
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Figure 9: Free response of constrained rotor, where: µ = 0.3, Ω2
c = 50.

the solution branch (see Sect. 3) along decreasing values of µ from this initial point, the non-trivial exponents

describe the curves shown in Fig. 11. A NS bifurcation occurs at µNS = 0.0923, which is thus the minimal335

value required to induce quasi-periodic motions at this rotation speed. In the vicinity of the bifurcation,

these cycles contain a frequency component close to ηNS, the imaginary part of the corresponding unstable

eigenvalue. This brief study reveals that, in the present case, quasi-periodic motions could be avoided if

desired, by decreasing the friction coefficient through any adequate means of lubrication.

6. Conclusion340

The Jeffcott rotor with geometrical nonlinearities and internal damping studied in this paper revealed

a supercritical Hopf bifurcation leading to a limit cycle, for which a simple-form analytical solution was

obtained. Results agreed with numerical simulations obtained with both a continuation algorithm and nu-

merical time integration. The former of these, moreover, included a novel algorithm for switching from a

periodic to a quasi-periodic solution branch at a Neimark-Sacker bifurcation. A very good correlation is345
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Figure 10: Rotor response at fixed frequency Ω = 3.5 (contact): a) rotor trajectory, b) time history of radial displacement R(τ), and c)

associated power spectra. Forced (E = 5×10−4) and free responses are represented by solid magenta ( ) and dotted black ( )

lines, respectively. Stator location Rc is represented by a horizontal line in b).

found that justified the third-order approximation and (quasi-)periodic assumption.

The post-bifurcation limit cycle can however be easily mistaken in experiments with external resonance

excited by unbalance and those can be only distinguished with the mode speed. The linear unbalanced

response rotates at rotor speed whereas the limit cycle does not. The study of this limit cycle shows that

its radius can be small if the shaft is long, and its appearance may be postponed by designing significant350

external damping in comparison with internal damping.

The question of the experimental identification of instabilities due to internal damping [23, 24, 25] as

well as the appropriate model for internal damping (viscous, hysteretic, or other) [3, 4, 26, 27] remains

complex. Generally, the appearance of instability is catastrophic for the test bench. The first practical result

is that it would be possible to measure the onset of the limit cycle on long shafts using pinned-ends conditions355

generating nonlinear stiffening and guaranteeing the integrity of the system.

With the use of advanced numerical methods that include bifurcation tracking and computation of quasi-

periodic limit cycles, it was found that increasing the angular speed of an unbalanced rotor past the stability

threshold of the balanced one leads to two-frequency quasi-periodic motions whose spectra consists of an-

gular speed and the frequency of the underlying limit cycle. In such cases, there is a Neimark-Sacker rather360

than a Hopf bifurcation. The second practical result is that preserving the rotor integrity above the NS bifur-

cation necessitates to constrain the transverse displacement of the shaft. Simulations on the bounded rotor

have shown that strongly nonlinear regimes develop as rotor stator contacts begins. Limit cycles of the bal-

anced rotor become quasi-periodic in the presence of friction, in accordance with previous studies [9, 28], as
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Figure 11: Floquet exponent dependence on µ , with Ω = 3.2. NS bifurcation occurs at critical value µNS = 0.0923.

a new and friction-dependent frequency is born from contact. Similarly, limit cycles of bounded unbalanced365

rotor are three-frequency quasi-periodic. Bifurcation tracking yields a minimal value of friction coefficient

leading to such regimes. The third practical result of this study is then that it may be possible to constrain

the transverse displacement while avoiding a quasi-periodic regime by using lubricated enough rotor-stator

interfaces.
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