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Abstract

A very compact weighted residual formulation is proposed for the construction of periodic solutions of

oscillators subject to frictional occurrences. Coulomb’s friction is commonly expressed as a differential

inclusion which can be cast into the complementarity formalism. When targeting periodic solutions,

existing algorithms rely on a procedure alternating between the frequency domain, where the dynamics

is solved, and the time domain, where friction is dealt with. In contrast, the key idea of the present work

is to express all governing equations including friction as equalities, which are then satisfied in a weak

integral sense through a weighted residual formulation. The resulting algebraic nonlinear equations are

solved numerically using an adapted trust region nonlinear solver and basic integral quadrature schemes.

To increase efficiency, the Jacobian of the friction forces is calculated analytically in a piecewise linear

fashion. The shape functions considered in this work are the classical Fourier functions. It is shown

that periodic solutions with clear multiple sticking and sliding phases can be found with a high degree

of accuracy. The equality-based formulation is shown to be effective and efficient, convergence being

achieved in all cases considered with low computational cost, including for large numbers of harmonics.

Importantly, this new friction formulation does not suffer from the typical limitations or hypotheses of

existing frequency-time domain methods for non-smooth systems, such as regularization, penalization,

or massless frictional interfaces.
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1 Introduction

Non-smooth nonlinearities due to dry friction and unilateral contact are ubiquitous in structural engineering systems.

Turbomachinery rotors are a prime example of industrial systems that are subject to a wide variety of intermittent

contact and frictional occurrences. For example, both friction and contact can occur at the interface of neighboring

blade shrouds and as well between the blades and the casing. Friction at the blade root can lead to fretting, and

dry friction dampers are commonly used in a number of configurations to mitigate adverse vibrations, for example

under-platform or ring dampers [1, 2]. While predicting the dynamic response of non-smooth systems is of great

importance and has been the subject of much research over the years, their equations of motion can be remarkably

challenging to solve, because Signorini unilateral contact and Coulomb friction conditions are commonly formulated

as complementarity problems [3].

The most fundamental and perhaps widely used model of dry friction damping is Coulomb’s classical law, though

many variations have been developed over the years to model certain phenomena. Coulomb’s law nonlinearities are
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typically expressed as a differential inclusion which can be cast into the complementarity formalism, such that the

positive/negative parts of friction forces and the positive/negative parts of relative velocities are the complementary

variables. When sliding occurs between two bodies in contact under a normal force N, which in this work is assumed

to be constant and known, the tangential friction force is constant in magnitude and opposes the relative motion,

thus of the form ±µN where µ is a coefficient of friction. When the relative velocity is zero, then the two bodies are

sticking and the friction force is smaller or equal in absolute value to µN. Thus, in the case of sliding the friction force

is piecewise constant in the relative velocity and, importantly, in the case of sticking it is a multivalued function of

relative velocity at zero velocity. For a frictional occurrence without separation or impact, the relative displacement and

velocity at the friction interface are continuous, but the acceleration and thus the friction force can be discontinuous

functions of time [4].

The vibration of dry friction damped systems has been the subject of a very large number of studies over the years,

dating back to the early work of Den Hartog [5]. These being too numerous to cite, only representative or sample

references are listed in this paper. Many previous works focus on dry friction laws, models and attendant solution

methods and algorithms, while others center on applications to structural systems with dry friction damping. Time

domain methods are extensively used to analyze frictional occurrences, typically relying on numerical time integration

schemes to determine transitions between the different phases of motion and simulate them. Their advantages include

the ability to handle multiple transitions between sticking and sliding phases, multiple nonlinear degrees of freedom,

and complicated friction damping laws. However, the accurate detection of transitions between phases (sliding,

sticking, separation) in the time domain may require advanced time-stepping or event-driven schemes [6]. Contact

and friction between deformable bodies which are modeled by the finite element method are typically handled using

penalty or Lagrange multipliers methods. The method of augmented Lagrangians is popular for such time simulations

of contact and friction, such that the multipliers are the contact forces and the penetration between contacting surfaces

is penalized to ensure near zero penetration [7, 8, 9]. Furthermore, time-domain methods are not most suitable for

forced vibration problems, as the required time simulation of transients can result in computational costs several orders

of magnitude greater than for frequency-domain methods that directly predict steady-state responses. Also, with

frequency domain methods, frequency response curves can be generated efficiently by selecting the initial guess at a

given frequency as the steady state response at the previous frequency. Finally, unlike frequency domain methods,

the time domain formulation is not commonly used for the dynamic condensation of the linear degrees-of-freedom

of the system to the nonlinear ones, because of the very large size of the generated algebraic systems. This can

result in prohibitively large systems of equations of motion for large-scale structural systems such as dry friction

damped bladed disks, even if reduced-order order modeling is performed, e.g., using component mode synthesis.

Consequently, for the vibration of systems with frictional occurrences, a frequency domain formulation is often favored,

which is the case in the present work.

Methods to calculate the periodic solutions of non-smooth systems include shooting methods [10], which can be

effective but suffer from a high sensitivity to the initial guess used in the iterative shooting algorithm and become

prohibitively expensive when the number of degrees-of-freedom increases due to the Jacobian computation. The

most often used formulation for periodic solutions is the broad class of harmonic balance methods, which are the

subject of the present paper [11]. Due to the nature of the dry friction nonlinearity, early frequency-domain studies

of dry friction vibration were limited to single harmonic approximations of the response at the frequency of the

excitation [12, 13, 14, 15]. Essentially, in the harmonic balance method, the friction force must be expressed in closed

form in the frequency domain in terms of the relative velocity over one cycle of oscillations. This is possible only when

a single harmonic is retained, as the instants of transition between sticking and sliding states cannot be determined

analytically when multiple harmonics are included.

When sliding motion is dominant, the one-harmonic approximation leads to reasonably accurate solutions, but

sticking cannot be reproduced accurately since the friction force is then a smooth, harmonic function of time. In

order for sticking phases and transitions between sliding and sticking to be captured and to better approximate the

variation of the friction force, multiple harmonics of the response must be accounted for. However, except in the

case of a smooth, polynomial nonlinearity, the multi-harmonic balance method cannot be fully formulated in the

frequency domain, requiring the time domain calculation of the non-smooth nonlinear forces. A number of variants of

the multi-harmonic balance method have been developed for nonlinear systems [16], and only those directly relevant

to non-smooth systems are reviewed below.

Pierre et al. [17] were first to propose a multi-harmonic formulation of the periodic response of friction damped

systems, by extending Lau’s incremental harmonic balance method [18] to a non-smooth nonlinearity. They used an

approximation of Coulomb’s law in which the friction force equals the normal force times the single-valued version of

the signum function of the velocity, which can be expanded in terms of a Dirac impulse in the incremental procedure.

While the discontinuity in the friction force was captured, its multi-valued nature for zero velocity was not, since for
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zero velocity the chosen signum function and thus the friction force are zero. Therefore, here again sticking phases

were not adequately modeled. However, circumventing the difficulty posed by the non-uniqueness of the friction

force versus the sliding velocity enabled the consideration of multiple harmonics of the excitation in the response and

the reasonable approximations of motions with at least two sticking phases per cycle and the associated stick-slip

transitions.

The Alternating Frequency/Time (AFT) method subsequently developed by Cameron and Griffin [19] represented a

breakthrough for the forced vibration of systems with general nonlinearities, particularly those featuring the hysteresis

behavior caused by frictional occurrences. Recognizing that the friction force cannot be expressed in closed form in

the frequency domain, in the AFT procedure a Fourier transform of the equations of motion is first taken, resulting in a

system of nonlinear algebraic1 equations in the Fourier coefficients. At each iteration of the nonlinear Newton-Raphson

solution algorithm, the nonlinear friction force is first calculated in the time domain from the displacement and velocity

time histories, and then transformed back into the frequency domain via a DFT, until convergence is reached. The

AFT method is general and versatile and allows for the inclusion of multiple harmonics in the response. In fact, it

can be viewed as a improved variant of the original multi-harmonic balance formulation in which, at each iteration,

nonlinear forces are calculated in the time domain and transformed back into the frequency domain. In [19], the AFT

was applied successfully to an elastic-perfectly plastic damper without mass at the frictional interface, a modeling

simplification that allows for the friction force to be a continuous, piecewise linear function of the relative displacement

at the friction interface, and hence a continuous function of time. Such regularization of the friction force in terms

of the displacement preserves Coulomb’s law but removes the multi-valued nature of the damper force, henceforth

greatly facilitating convergence. In the massless frictional interface model, the friction force depends on the history of

the motion and features a hysteresis loop in terms of the damper’s relative displacement. A comprehensive discussion

of the suitability of the AFT method for non-smooth nonlinearities of contact and friction can be found in [20].

Building on the AFT method, the hybrid frequency-time (HFT) domain method was developed for structural

systems with dry friction damping, which relied on the accurate calculation of friction forces from the time histories of

the system variables based on criteria for precisely detecting sliding and sticking phases and their transitions [21].

More robust nonlinear Broyden and hybrid Powell solution algorithms were used [22]. The HFT method was shown

to handle successfully structures with large number of one-dimensional dampers and damper models with variable

normal load and separation at the contact point. However, the method was only applied to flexible dampers with a

massless interface, for which friction forces are continuous, single-valued functions of relative displacements, and one

can expect the HFT to suffer the same convergence problems as the AFT for dampers with mass.

Another major contribution was the development of the Dynamic Lagrangian Frequency/Time (DLFT) method [23].

Like the AFT and HFT, it is a multi-harmonic formulation which requires the calculation of the contact and friction

conditions in the time domain at each iteration of the nonlinear solver via a Discrete Fourier Transform. However,

the DLFT method is more advanced, as it is an adaptation to the frequency domain framework of the augmented

Lagrangians formulation used successfully in the time domain for finite element models of structures in frictional

contact. Namely, the dynamic Lagrangians are the nonlinear contact forces obtained from the equations of motion in

the frequency domain. Coulomb friction and non-penetration conditions are satisfied with the addition of a penalization

on the difference between the interface displacements calculated by the nonlinear solver in the frequency domain

and those calculated in the time domain from the nonlinear contact forces. Unlike the AFT and the HFT, the dynamic

Lagrangians-based DLFT enables the calculation of friction forces for frictional interfaces with mass. Hence the

method is the first to handle Coulomb’s law discontinuity of the friction force in the relative velocity, making it the most

effective to date.

The DLFT method has been used successfully to calculate the response of complex structures such as bladed

disks with under-platform dampers, without requiring either the regularization of the friction law or the assumption of a

flexible damper with a massless interface [24]. Also see [25] for a comparative analysis of the DLFT and the linear

complementarity problem formulation for a unilateral contact problem. However, the DLFT uses a penalty coefficient,

the value of which can influence the rate of convergence and affect the response amplitudes of the converged

solutions, such effects being greater when fewer harmonics are retained [26]. Since the adequate range of the penalty

coefficient is not known a priori, it is advisable to study its effects in terms of the number of harmonics and to validate

sample results with time integrations. Thus, while the DLFT is the most effective and advanced frequency-domain

formulation to handle Coulomb’s friction law without assumptions, selecting the penalty parameter requires attention.

The great majority of published works on the vibration of dry friction damped systems using multi-harmonic

balance methods is based on some kind of a "smoothing" procedure, in order to overcome the difficulty associated

with the non-smooth and discontinuous multi- or set-valued nature of Coulomb’s friction law. One common approach

1By algebraic, it is meant equations that are not time dependent though not necessarily polynomial functions of the unknowns.
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in vibrations is to directly approximate Coulomb’s discontinuous law with a smoother function which is continuous and

single-valuedÐand in cases, regularÐin the velocity at the frictional interface. Examples of regularized functions

include the hyperbolic tangent function [27, 28, 29] and the arctangent function [30]. Another common smoothing

approximation is to use a piecewise linear function with finite slope in the approximated sticking region [31, 32, 33].

Then, the friction force is a continuous, single-valued function of the damper relative velocity, yielding an approximation

of stickingÐwithout true stickingÐin a range of small relative velocities. The level of approximation can be adjusted

with a parameter of the regularized function, which determines how much the friction force varies versus the velocity

in the neighborhood of zero velocity. Note that strictly speaking, this is not a regularization since the friction force is

not differentiable in the velocity at the stick-slip transitions. Also see [34, 35, 36, 20] and the references therein for

a variety of other regularized friction models, and as well the interesting use of the regularizing sigmoid function in

robotics [37, 38].

For the important class of structures of bladed disks with dry friction dampers, a widely used model is to add a

contact stiffness at the friction contact point, such that the interface becomes compliant while also being effectively

massless, or equivalently to model interfaces with massless compliant finite elements. This model enables the

circumvention of the set-valuedness of Coulomb’s law. A few of the many works based on flexible, massless frictional

interfaces can be found in [14, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]; also see the comprehensive review

paper on bladed disks with frictional and contact interfaces [2]. For a frictional interface that is flexible and massless,

there is no approximation of Coulomb’s friction law and true sticking does occur. However, great simplification results

for the solution algorithms, because the friction force is piecewise linear and continuous in the relative displacement

of the neighboring degree-of-freedom, featuring a hysteresis loop, hence again eluding the challenge caused by a

multi-valued friction force. Note that if the interface model calls for the inclusion of linear damping such as viscous

damping in parallel with the interface’s stiffness element, then the friction force can no longer be expressed in closed

form in terms of the displacement. There are variations of this model, including Dahl’s model to represent micro-slip

effects [51, 52]. While the assumption of a flexible, massless frictional interface may not seem a priori physical, since

friction occurs between bodies which have mass, the introduction of a contact flexibility has been shown to account for

the rough and wavy nature of interface surfaces and thus be an appropriate model for dry friction dampers [2]. The

validity of the model should be assessed on a case by case basis. For instance, while the effect of damper mass has

received very little attention in the literature, Ferri and Heck [53] showed that it can have a significant effect on the

response of a blade with an attached friction damper.

To the authors’ knowledge, there are very few studies [24, 54] which consider Coulomb’s classical law without

either regularizing it or assuming a massless friction interface. These are based on the DLFT, which appears to be

the only method that produces converged results without requiring explicit smoothing. However, as mentioned above

the DLFT introduces a penalization at the contact point to prevent penetration.

A vast body of literature also exists in the area of mechanics of contact and friction for the numerical simulation of

non-smooth dynamical systems [55, 6], a significant part of which focuses on rigid bodies in contact. While some of

this material is not directly relevant to the present study, a very interesting approach is to convert the complementarity

formulations of unilateral contact and friction, which are governed by a system of equalities and inequalities and

complementarity conditions, into an equivalent set of non-smooth equalities. These equalities are expressed as

the zero-level set of certain functions which have been shown to exist for frictional contact problems [56, 57], and

such equivalent non-smooth equalities have been shown to lead to a simpler formulation and effective solution

method for the three-dimensional frictional contact problem [58, 59]. This approach, which expresses the non-smooth

relationships in an implicit fashion, has also been used effectively for a simplified friction problem [60]. Also see [6, 61]

for exhaustive treatments and formulations of non-smooth dynamical systems. Recently, an equivalent equality was

successfully formulated for the periodic responses and modal analysis of a one-dimensional bar with a Signorini

contact condition [62].

In this paper, the above mentioned equality-based formulations of Coulomb’s classical friction law are implemented

within the formalism of the harmonic balance method. Namely, the friction law is written as a non-smooth equality and

the equations governing the vibration response are satisfied in a weak integral sense through a weighted residual

formulation. In Section 2, equivalent equalities for Coulomb’s friction derived in the above cited references are

presented. To demonstrate the generality of the approach, equivalent equalities are presented in Section 3 for

common regularized and approximate friction laws and the single-valued signum function approximation. In Section 4,

a two-degree-of-freedom system with a one-dimensional frictional interface is considered, for which the equivalent

equality acts as a non-smooth condition in the friction force and velocity at the friction degree-of-freedom, simply

augmenting the equations of motion. Periodic responses to a single-frequency excitation are sought by performing a

Ritz-Galerkin procedure, whereby all governing equations, including the friction condition as an equality, are satisfied

in a weak integral sense in time, over one period of the external force. Contrary to existing formulations, this compact,
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weighted residual formulation does not require switching from the frequency to the time domain at each iteration

to calculate the nonlinear forces and attendant states via numerical integration. The resulting algebraic nonlinear

equations are solved numerically using an adapted trust region nonlinear solver, and at each iteration the integrals of

the non-smooth functions arising from the weak formulation are computed using a classical quadrature scheme. To

make computations efficient, the Jacobian of the nonlinear forces is expressed in an exact, piecewise linear fashion,

corresponding to the various states of the system. Results presented in Section 5.1 include frequency response

curves for various specified and constant normal force values and time histories of system displacements, velocities,

and friction force. In Section 5.2, a convergence analysis shows an improved accuracy when the number of harmonics

is increased, and results are validated with time integration in Section 5.3. To demonstrate the versatility of the

approach and assess the common smoothing assumptions of existing techniques, the effect of damper mass on

periodic responses is investigated in Section 5.4, including the common case of a massless flexible frictional interface,

and an analysis of the piecewise linear approximation of the friction force is conducted in Section 5.5. The key

features of the equality-based formulation are discussed in Section 6, and the approach is compared with existing

frequency-time domain methods for the forced vibration of friction damped systems.

2 Equality-based formulation for Coulomb friction conditions

In order to introduce the proposed formulation for non-smooth systems with frictional occurrences, the basic model of

one-dimensional Coulomb friction shown in Figure 1 is considered. The mass m rests on a horizontal surface and its

displacement in the x direction is denoted by u(t). The normal force on the mass in the downward vertical direction is

denoted by N (such that N > 0) and the tangential frictional force in the x direction, resisting the motion of the mass,

is denoted by r(t).

Coulomb’s classical friction model reads






u̇ = 0 =⇒ |r| ≤ µN
u̇ , 0 =⇒ |r| = µN and ∃α ≥ 0 | r = −αu̇

(1)

where µ is the coefficient of friction. The admissible set of points in the (u̇, r) plane for the two conditions for sticking

and sliding of the mass in Equation (1) can be classically represented as shown in Figure 1. It shows that the

relationship between r and u̇, loosely denoted r(u̇), is not single-valued but set-valued, since the set of acceptable

values of r when u̇ = 0 does not reduce to a single point. Coulomb’s conditions in Equation (1) can be recast into an

u̇(t)

r(t)

−µN

µN

m

u(t), u̇(t)

r(t)

N

Fig. 1: Coulomb friction conditions.

equivalent non-smooth equality [58, 60, 63, 6, 64, 9]. For instance, consider the two-dimensional level-set function

Ψ(u̇, r) = u̇ +min(0, ρ(r + µN) − u̇) +max(0, ρ(r − µN) − u̇) (2)

where ρ > 0 is an optional normalization parameter with default value 1, which if needed can be selected so that the

quantities ρ(r + µN), ρ(r − µN), and u̇ are of similar magnitudes in order to facilitate computations.2 The function

in Equation (2) can be expressed as

Ψ(u̇, r) =






ρ(r − µN) if ρ(r + µN) − u̇ > 0 and ρ(r − µN) − u̇ > 0,

u̇ if ρ(r + µN) − u̇ > 0 and ρ(r − µN) − u̇ < 0,

ρ(r + µN) if ρ(r + µN) − u̇ < 0 and ρ(r − µN) − u̇ < 0.

(3)

2For all cases in this paper, ρ = 1 and there were no convergence or computational issues.
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Note that the case ρ(r + µN) − u̇ < 0 and ρ(r − µN) − u̇ > 0 is never satisfied, because subtracting the latter quantity

from the former yields 2ρµN < 0, which is not possible. The zero-level set Ψ0 of the function Ψ(u̇, r) is defined as

Ψ0 ≡ {(u̇, r) |Ψ(u̇, r) = 0}. Accordingly, we have from Equation (3), for the zero-level set:

Ψ(u̇, r) = 0 =⇒ r = +µN and u̇ ≤ 0 (negative sliding)

or u̇ = 0 and − µN ≤ r ≤ µN (sticking)

or r = −µN and u̇ ≥ 0 (positive sliding)

(4)

which can be recast into

Ψ0 = (] −∞, 0] × {µN})
︸                 ︷︷                 ︸

negative sliding

∪ ({0} × [−µN, µN])
︸                ︷︷                ︸

sticking

∪ ([0,+∞[×{−µN})
︸                ︷︷                ︸

positive sliding

. (5)

Hence, it is found that the above set Ψ0 exactly describes the Coulomb friction set defined by Equation (1) and shown

in Figure 1. In other words, the non-smooth equality u̇ +min(0, ρ(r + µN) − u̇) +max(0, ρ(r − µN) − u̇) = 0 is another

version of the considered Coulomb’s friction law. Ψ(u̇, r) and Ψ0 are both plotted in Figure 2(a). For the three cases

in Equation (3), Ψ(u̇, r) reduces to two planar surfaces with slope ρ in the r direction and one planar surface with unit

slope in the u̇ direction.

There are multiple ways to implicitly represent Coulomb’s classical law as a level set. Another example of such an

equality condition proposed by Hüeber et al. [59] is

Ψ(u̇, r) = r max(µN, |r − ρu̇|) − µN(r − ρu̇), ρ > 0, (6)

a graphical representation of which is depicted in Figure 2(b). Equation (6) can be shown to be equivalent to

Equation (1), as follows. If |r − ρu̇| < µN, then Ψ(u̇, r) = µNρu̇, corresponding to the portion of the plane with positive

slope proportional to u̇ in Figure 2(b); hence Ψ = 0 yields u̇ = 0, corresponding to the sticking condition. Similarly,

if |r − ρu̇| ≥ µN, then Ψ(u̇, r) = (r ∓ µN)|r − ρu̇|, and Ψ = 0 yields r = ±µN, corresponding to the sliding conditions.

Figure 2(b) features more complicated surfaces than Figure 2(a), but the same intersection Ψ0 with the zero-level

plane.

r

u̇

(a) Ψ(u̇, r) defined in Equation (2) with ρ = 1.

r

u̇

(b) Ψ(u̇, r) defined in Equation (6) with ρ = 2.

Fig. 2: Exact implicit description of one-dimensional Coulomb’s friction law. The intersection of the surface represented by the

level-set function Ψ(u̇, r) [blue] with the zero-level plane [orange] yields the corresponding zero-level set Ψ0 [solid black line] defined

in Equation (5), for µN = 1.

Proximal points and projectors

A classical equality-based formulation of Coulomb’s friction comes from Convex Analysis and the notion of proximal
points and projection operators. Much literature exists on this topic [64] and without going into the details, the

one-dimensional Coulomb’s friction law considered in this work can be expressed as follows:

r = projD(µN)(r − ρu̇), ρ > 0 (7)
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where D(µN) ≡ {r | |r| ≤ µN} is Coulomb’s friction cone (here, the interval −µN ≤ r ≤ µN). For the considered

configuration, the projection operation explicitly reads3

projD(µN)(r − ρu̇) =






+ µN if r − ρu̇ ≥ µN
r − ρu̇ if |r − ρu̇| ≤ µN
− µN if r − ρu̇ ≤ −µN

(8)

For ρ = 1, the level-set function Ψ(u̇, r) = r − projD(µN)(r − ρu̇) and the corresponding zero-level set Ψ0 are exactly like

their counterparts in Figure 2(a).

3 Regularized and approximate laws

In order to avoid the theoretical and computational difficulties associated with the multi-valued nature of the friction

force in the case of sticking, it is common practice to use a smoothing procedure for Coulomb’s friction law, in which

the discontinuous variation of the friction force in Figure 1 is approximated with a single-valued continuous function.

These regularized or approximate laws can also be cast in terms of an equivalent equality, which is smooth in some

cases but non-smooth in others, as is shown below for commonly used regularizations.

3.1 Hyperbolic tangent and arctangent regularizations

Coulomb’s law is frequently approximated with the hyperbolic tangent function r ≈ rα = −µN tanh(αu̇) where α > 0 is

a parameter that can be chosen to adjust the rate of variation of r in terms of u̇ in the neighborhood of u̇ = 0 [28]. As

α → ∞, the regularized function rα tends to Coulomb’s classical law. Note that because rα is a single-valued and

continuous function of u̇, there is no possibility of true sticking motion, since rα , 0 except for u̇ = 0. As a result,

the degree of validity of such regularization approaches depends on the appropriate selection of the parameter α to

approximate the sticking motions, which might be case dependent. An implicit version is simply given by the zero-level

set of the function

Ψ(u̇, r) = r + µN tanh(αu̇) (9)

which in this case is smooth. The surface Ψ(u̇, r) in Equation (9) and its zero-level set are depicted in Figure 3(a) for

α = 20, which readily shows the regularized approximation of Coulomb’s law.

Another frequently used regularization of Coulomb’s law is based on the arctangent function [30], in which case

the equivalent friction equality takes the form

Ψ(u̇, r) = r + µN
2

π
arctan(αu̇). (10)

Again here the level-set function is smooth. The function and its zero-level set are depicted in Figure 3(b) for α = 20,

showing a similar yet smoother regularization than that of the hyperbolic tangent function for the same value of α.

3.2 Piecewise linear approximation

Another approach to make Coulomb’s law smoother is to approximate the discontinuity of r versus u̇ at u̇ = 0 in Figure 1

with a line of finite slope [33]:






u̇ ≤ −δ =⇒ r = µN

− δ ≤ u̇ ≤ δ =⇒ r = −µN u̇/δ

u̇ ≥ δ =⇒ r = −µN
(11)

where δ > 0 and as δ→ 0, Equation (11) tends to Coulomb’s law (1). This piecewise linear law is single valued, and

again it does not capture true sticking since r = 0 if and only if u̇ = 0. An equality that is equivalent to the approximate

law in Equation (11) can be readily formulated using the level-set function

Ψ(u̇, r) = (µN)u̇/δ + r +min(µN(1 − u̇/δ), 0) +max(−µN(1 + u̇/δ), 0) (12)
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r

u̇

(a) Ψ(u̇, r) defined in Equation (9) with α = 20.

r

u̇

(b) Ψ(u̇, r) defined in Equation (10) with α = 20.

Fig. 3: Regularized one-dimensional Coulomb’s friction law: level-set function Ψ(u̇, r) [blue], zero-level plane [orange] and

corresponding zero-level set [solid black line].

r

u̇

Fig. 4: Piecewise linear approximation of Coulomb’s one-dimensional friction, see Equation (12): function Ψ(u̇, r) [blue], zero-level

plane [orange] and corresponding zero-level set [solid black line] for δ = 1.

which in this case is not smooth since it involves min and max functions. Figure 4 shows that its zero-level set is the

piecewise linearly approximated law in Equation (11).

Note that the piecewise linear approximation is not exactly a regularization because the function r in Equation (11)

is not smooth as it is not differentiable at u̇ = ±δ, and Equation (12) is not smoother than Equation (2). However, the

resulting zero-level set is single-valued when seen in the (u̇, r) plane, rather than multi-valued as is the zero-level

set for Coulomb’s law in Figure 2(a). It is interesting that the piecewise linear approximation amounts to inserting

a linear dashpot between the mass m2 and the ground in Figure 1. In the approximate "sticking" phases of the

motion, frictional contact is replaced with a viscous damper of constant inversely proportional to the range of "sticking"

velocities −δ ≤ u̇ ≤ δ. Clearly, the smaller δ, the better the approximation of sticking. Also, since contact then occurs

between the ground and a massless viscous damping element, the piecewise linear approximation has the effect of

assuming that the friction interface is massless. While this allows for a smoother, single-valued model of the friction

force and leads to better convergence of the nonlinear solvers, it remains an approximation of Coulomb’s sticking.

3The prox operator could be used as well since the two operators are equivalent here.
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3.3 Single-valued signum function approximation

Another previously used approximation of Coulomb’s classical law [17], which does not belong to the realm of

regularization, consists of approximating the friction force with the single-valued signum function, such that it vanishes

only when the velocity is equal to zero:

r = −µN sign u̇ =






µN if u̇ < 0

0 if u̇ = 0

− µN if u̇ > 0.

(13)

Then, the corresponding level-set function is simply Ψ(u̇, r) = r + µN sign(u̇) = 0, represented in Figure 5 along with

its zero-level set. Here, the friction force is discontinuous in the velocity at u̇ = 0, but contrary to Coulomb’s law r

r

u̇

Fig. 5: Single-valued signum function approximation of Coulomb’s one-dimensional friction. Function Ψ(u̇, r) [blue], zero-level

plane [orange], and corresponding zero-level set [solid black line] showing the single-point intersection at r = 0 for u̇ = 0.

is single-valued in the velocity, such that r = 0 for u̇ = 0 only. Thus the mass is always sliding and sticking is not

captured. This is seen in Figure 5, which shows that the zero-level set consists of a single point for u̇ = 0, jumping to

r = ±µN for u̇ , 0. As a result, the sliding phases of the motion are adequately captured but the sticking phases are

not, and the mass is found to oscillate with back and forth sliding motions of small amplitudes during "sticking". This

model has significant limitations to capture stick-slip behavior, in contrast with the arctangent and hyperbolic tangent

regularizations and the piecewise linear approximation, which allow for a better approximation of sticking.

4 Weighted residual formulation for periodic solutions

In this section, periodic solutions are sought using the equality-based friction formulation presented in Section 2,

using a solution procedure based on a weak formulation and subsequent Ritz-Galerkin projection. While the weighted

residual formulation is presented here for a simple two-degree-of-freedom system with one-dimensional friction, it

is believed that from a theoretical point of view, the approach can be extended to interfaces with both contact and

two-dimensional friction and to multiple contact interfaces.

4.1 Two-degree-of-freedom system with one-dimensional friction

The system is shown in Figure 6 and features two degrees-of-freedom of mass m1 and m2, with a friction condition on

mass m2. The system is subject to external forces f1(t) and f2(t), periodic with natural frequency ω, at the first and

second degrees-of-freedom, respectively. Additionally, to limit response amplitudes, viscous damping is added to

the system in the form of two dashpots of damping constants d1 and d2, which are parallel to the springs k1 and k2,

respectively. Using the zero-level set of the function in Equation (2) at the second degree-of-freedom, and denoting

152 | doi:10.25518/2684-6500.190 Mathias Legrand , Christophe Pierre

http://dx.doi.org/10.25518/2684-6500.190


Journal of Structural Dynamics, 2, (pp. 144-170) 2024

A compact, equality-based weighted residual formulation for periodic solutions of systems undergoing frictional occurrences

m1 m2

k1

d1

k2

d2

x1(t) x2(t)

f1(t)

f2(t)

r(t)

N

Fig. 6: Two-degree-of-freedom mass-spring system with Coulomb friction at the second degree-of-freedom. Stiffness ki and

viscous damping di, i = 1, 2 are directly included in the springs.

the displacements of the two degrees-of-freedom by x1(t) and x2(t), the equations governing the dynamics of the

system are4

Ψ1(x1, x2, r) = m1 Èx1 + (d1 + d2)ẋ1 − d2 ẋ2 + (k1 + k2)x1 − k2x2 − f1 = 0 (14a)

Ψ2(x1, x2, r) = m2 Èx2 + d2 ẋ2 − d2 ẋ1 + k2x2 − k2x1 − f2 − r = 0 (14b)

Ψr(ẋ2, r) = ẋ2 +min(0, ρ(r + µN) − ẋ2) +max(0, ρ(r − µN) − ẋ2) = 0 (14c)

where the parameter ρ > 0 is specified by the user. System (14) can be read as a set of Differential Algebraic

Equations [64]. The unknowns in Equation (14) are the three functions of time x1, x2, and r. In the dry friction damping

literature, the system in Figure 6 would be regarded as a model of a one-degree-of-freedom system with an attached

friction damper of mass m2, stiffness k2, and viscous dissipation d2. Thus, in the subsequent sections, the second

degree-of-freedom may be referred to as the friction damper.

4.2 Solution procedure for periodic solutions

A solution procedure based on a weak formulation and a Ritz-Galerkin projection is presented to search for the

periodic solutions of the system governed by Equation (14). To recall, the two equations of motion for the two

degrees-of-freedom, Equations (14a) and (14b), are augmented by the non-smooth equality for one-dimensional

friction, Equation (14c).

Periodic solutions of period T = 2π/ω are sought in a weighted residual sense. Classically, all unknowns of

the problem are discretized by expanding them on an appropriate truncated basis of T -periodic functions with Nϕ
members, as

x1(t)≈ x1h(t)=

Nϕ∑

k=1

x1kϕk(t), x2(t)≈ x2h(t)=

Nϕ∑

k=1

x2kϕk(t), r(t)≈rh(t)=

Nϕ∑

k=1

rkϕk(t) (15)

where x1h(t), x2h(t) and rh(t) are the Nϕ-term series approximations of the unknowns and ϕk(t) is the kth basis function,

which can be viewed as a shape function of time. The 3Nϕ coefficients x1k, x2k and rk are the unknowns of the

discretized problem, and they can be regarded as the participation of the kth shape function ϕk in the approximate

solution.

Commonly, the Fourier functions used in the Harmonic Balance Method are chosen for the truncated basis

{ϕk}k=1,...,Nϕ . However, this is not a limitation of the formulation and other basis functions can be used, either smooth

ones or those featuring some level of non-smoothness, such as wavelets [65]. Depending on the smoothness of the

selected basis functions, time derivatives might be obtained either by pointwise differentiation in time or by expanding

them on a less smooth basis and relating them to the differentiated quantity in a weak sense.

The next step in the procedure is to substitute the expansions for the unknown approximate functions x1h, x2h, rh

and possibly their derivatives into the two equations of motion and the non-smooth friction equality condition. The

displacements are differentiated term-wise as

ẋ1(t) ≈ ẋ1h(t) =

Nϕ∑

k=1

x1kϕ̇k(t), ẋ2(t) ≈ ẋ2h(t) =

Nϕ∑

k=1

x2kϕ̇k(t), (16a)

Èx1(t) ≈ Èx1h(t) =

Nϕ∑

k=1

x1k
Èϕk(t), Èx2(t) ≈ Èx2h(t) =

Nϕ∑

k=1

x2k
Èϕk(t). (16b)

4Note that the notations Ψ1(x1, x2, r) and Ψ2(x1, x2, r) are a bit loose as the corresponding velocities and accelerations are also involved in the

expressions. However, this is sufficiently clear and unambiguous for the upcoming derivations.
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It is important to note that the friction condition does not feature any time derivatives of the tangential friction force r

(or of the normal force N, in the case it were not a constant). Hence the procedure does not require the differentiation

of these non-smooth functions, which is an important advantage. Substitution leads to the nonzero residuals

Ψ1(x1h, x2h, rh) = m1 Èx1h + (d1 + d2)ẋ1h − d2 ẋ2h + (k1 + k2)x1h − k2x2h − f1 (17a)

Ψ2(x1h, x2h, rh) = m2 Èx2h + d2 ẋ2h − d2 ẋ1h + k2x2h − k2x1h − f2 − rh (17b)

Ψr(ẋ2h, rh) = ẋ2h +min(0, ρ(rh + µN) − ẋ2h) +max(0, ρ(rh − µN) − ẋ2h) (17c)

where Ψ1(x1h, x2h, rh), Ψ2(x1h, x2h, rh) and Ψr(ẋ2h, rh) are the residuals of the two equations of motion and the friction

condition, respectively, for the approximation of order Nϕ. Recall that either Equation (2) or Equation (6) or any other

equivalent friction equality condition could be used for the expression of Ψr, including the regularized and approximate

laws of Section 3. Next, a Ritz-Galerkin projection is performed, by requiring the residuals to be orthogonal to the set

of shape functions {ϕk}k=1,...,Nϕ . This is written as

∫ T

0

ϕk(t)Ψ1(x1h(t), x2h(t), rh(t)) dt = 0 k = 1, . . . ,Nϕ (18a)

∫ T

0

ϕk(t)Ψ2(x1h(t), x2h(t), rh(t)) dt = 0 k = 1, . . . ,Nϕ (18b)

∫ T

0

ϕk(t)Ψr(ẋ2h(t), rh(t)) dt = 0 k = 1, . . . ,Nϕ. (18c)

Equation (18) consists of a nonlinear system of 3Nϕ algebraic equations with 3Nϕ unknowns. However, note that

Equations (18a) and (18b) govern the dynamics of masses 1 and 2, respectively, and are thus linear in x1h, x2h and

rh (or equivalently, in the coefficients (x1k, x2k, rk)), and that the nonlinearity of the system is solely in Equation (18c)

which is non-smooth in ẋ2 and r (or equivalently, in the coefficients (x2k, rk)).

The accuracy of the approximate solution is solely dictated by the selection of the basis functions ϕk and by the

number Nϕ of these functions. Classically, the solution of Equation (18) becomes more accurate as Nϕ increases,

since the residuals become smaller in a weak sense.

4.3 Fourier series approximation in time

The general weighted residual procedure presented above is applied to the two-degree-of-freedom system in Figure 6.

Here, the basis functions ϕk(t) are classically chosen to be the Fourier functions. The Fourier series expansions can

be simplified a bit, because in the common case of an external excitation which is harmonic, there are no contributions

from the even harmonics or from the constant terms due to the symmetry of the Coulomb friction nonlinearity. Thus,

an approximation with Nϕ Fourier terms, where Nϕ is even without loss of generality, reduces to an equal number of

the odd cosine and sine harmonics, each ranging from harmonic 1 to harmonic Nϕ − 1. The unknown functions x1h,

x2h and rh are thus expanded into truncated series of Fourier functions with Nϕ coefficients each, as

x1(t) ≈ x1h(t) =

Nϕ/2∑

k=1

[x12k−1
cos(2k − 1)ωt + x12k

sin(2k − 1)ωt], (19a)

x2(t) ≈ x2h(t) =

Nϕ/2∑

k=1

[x22k−1
cos(2k − 1)ωt + x22k

sin(2k − 1)ωt], (19b)

r(t) ≈ rh(t) =

Nϕ/2∑

k=1

[r2k−1 cos(2k − 1)ωt + r2k sin(2k − 1)ωt]. (19c)

For the sake of generality, the external periodic excitations on masses 1 and 2 can also be expanded as Fourier series

with odd harmonic terms as

f1(t) =

Nϕ/2∑

k=1

[ f12k−1
cos(2k − 1)ωt + f12k

sin(2k − 1)ωt], (20a)

f2(t) =

Nϕ/2∑

k=1

[ f22k−1
cos(2k − 1)ωt + f22k

sin(2k − 1)ωt]. (20b)
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although in the cases considered in this paper, f1(t) = f11
cosωt and f2(t) = 0. For convenience, the following vectors

of Fourier series coefficients are defined for the first and the second mass and the friction force: x1 = [x11
, . . . , x1Nϕ

]⊤,

x2 = [x21
, . . . , x2Nϕ

]⊤, and r = [r1, . . . , rNϕ ]
⊤. Similarly, for the external forces:

f1 = [ f12k−1
, f12k

]⊤k=1,...,Nϕ/2
f2 = [ f22k−1

, f22k
]⊤k=1,...,Nϕ/2

(21)

The Ritz-Galerkin projection is performed by substituting Equation (19) into Equation (14), multiplying in turn by

the Nϕ shape functions {cos(2k − 1)ωt}k=1,...,Nϕ/2 and {sin(2k − 1)ωt}k=1,...,Nϕ/2, and integrating over one period of the

motion [0, 2π/ω] as in Equation (18). The following system of coupled nonlinear equations is obtained:

A11x1 + A12x2 − f1 = 0 (22a)

A21x1 + A22x2 − r − f2 = 0 (22b)

gr(x2, r) = 0 (22c)

with A11 = (k1 + k2)I + (d1 + d2)D −m1Ω
2, A12 = −k2I − d2D = A21, A22 = k2I + d2D −m2Ω

2, I being the identity matrix

of appropriate size, and the block diagonal matrices

D=BDiagk=1,...,Nϕ/2

[

0 (2k − 1)ω

−(2k − 1)ω 0

]

, Ω=BDiagk=1,...,Nϕ/2

[

(2k − 1)ω 0

0 (2k − 1)ω

]

. (23)

Also, the components of gr defined in Equation (22c) read

gr2k−1
(x2, r) =

∫ T

0

Ψr(ẋ2h(t), rh(t)) cos(2k − 1)ωt dt = 0, k = 1, . . . ,Nϕ/2 (24a)

gr2k
(x2, r) =

∫ T

0

Ψr(ẋ2h(t), rh(t)) sin(2k − 1)ωt dt = 0, k = 1, . . . ,Nϕ/2. (24b)

where, in the right hand-side, the dependency on (x2, r) is implied from Equation (19). This formulation readily holds

for a periodic forces of period ω which are odd functions of time, including in the case forcing is applied at the friction

damper, i.e. f2 , 0. Equations (22a) and (22b) can be solved via substitution, eliminating x1 and expressing x2 as an

affine relationship with r, that is

x2(r) = (A22 − A21A−1
11 A12)−1(r + f2 − A21A−1

11 f1). (25)

Substituting x2(r) into Equation (22c), System (22) of dimension 3Nϕ reduces to Nϕ non-smooth equations

gr(x2(r), r) = 0 (26)

in only the unknown r. This reduced system of nonlinear equations can be solved using a non-smooth Newton or alike

solver. Here, the fsolve built-in command in MATLAB© is used, which is based on the dogleg trust region procedure.

The tolerance is set to 10−6. The integrals involving non-smooth terms in Equation (24) are numerically computed

using a classical quadrature scheme such as a simple Riemann sum for instance. The integral built-in command in

MATLAB© is used with an absolute tolerance of 10−6. Note that in general, the rate of convergence of the procedure

might depend on the parameter ρ, which has to be assigned a value in the solvers. For all results presented in this

paper, the normalization parameter ρ was taken equal to its default value of 1, as no convergence or computational

issues were found. Furthermore, a sensitivity study was carried out in the range ρ ∈ [10−3, 5], and no notable effect of

the value of ρ on the convergence rate was observed.

4.4 Piecewise Jacobian of the nonlinear terms

Nonlinear solvers require the calculation of the Jacobian of the nonlinear forces at each iteration, which can become

computationally intensive and slow convergence, especially for large numbers of harmonics. Computations can be

made considerably more efficient by calculating the Jacobian analytically. In the case of friction, the Jacobian can be

written as a piecewise linear analytical expression corresponding to the various states of the system, instead of being

approximated numerically via finite differences in the nonlinear solver.

The Jacobian of the non-smooth function g of the harmonic components of the friction force r in Equation (26) is

denoted as ∇rgr and from Equation (18c), its elements are:

(∇rgr)i j =
∂gr i

∂rj

=

∫ T

0

ϕi(t)
∂

∂rj

Ψr(ẋ2h(t), rh(t)) dt i, j = 1, . . . ,Nϕ (27)
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with Ψr defined in Equation (2). The chain rule leads to

∂Ψr

∂rj

=
∂Ψr

∂ẋ2

∂ẋ2

∂rj

+
∂Ψr

∂r

∂r

∂rj

(28)

and the piecewise terms are readily obtained by taking the partial derivatives of Ψr(ẋ2, r) in Equation (2) with respect

to ẋ2 and r. The weak derivatives of the min and max functions can be written in terms of the Heaviside step functions

as

d

dx
min(0, x) = 1 − H(x),

d

dx
max(0, x) = H(x) (29)

with H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0. This readily yields

∂Ψr

∂ẋ2

= 1 − (1 − H(ρ(r + µN) − ẋ2) − H(ρ(r − µN) − ẋ2) (30)

and

∂Ψr

∂r
= ρ(1 − H(ρ(r + µN) − ẋ2)) + ρH(ρ(r − µN) − ẋ2) (31)

both of which can be expressed in piecewise linear form as5

∂Ψr

∂ẋ2

=






0

1

0

and
∂Ψr

∂r
=






ρ if ρ(r(t) + µN) − ẋ2(t) > 0 and ρ(r(t) − µN) − ẋ2(t) > 0

0 if ρ(r(t) + µN) − ẋ2(t) > 0 and ρ(r(t) − µN) − ẋ2(t) < 0

ρ if ρ(r(t) + µN) − ẋ2(t) < 0 and ρ(r(t) − µN) − ẋ2(t) < 0.

(32)

Finally, ∂r/∂rj = ϕ j and ∂ẋ2/∂rj is calculated from the expansion of ẋ2 in Equation (16a) after substituting therein the

expression of x2(r) given in Equation (25). The Jacobian (27) is computed numerically with a quadrature scheme

where the time dependent conditions in Equation (32) are tested for every discrete time ti of the quadrature scheme.

The Jacobian is provided to the trust-region based nonlinear solver.

5 Results and discussion

Periodic responses for the system in Figure 6 are sought for the following values of the system parameters: m1 = m2 =

1, k1 = k2 = 1, and µ = 0.9. The damping constants are taken as d1 = d2 = 0.02, hence the viscous damping matrix is

proportional to the stiffness matrix. The system is forced harmonically only at the first degree-of-freedom, such that

f1 = 20 cosωt and f2 = 0. This set of parameters is considered in the rest of this section unless otherwise stated.

Associated linear systems without viscous damping can be considered in the limiting cases of sliding or sticking

over an entire period of the motion. In the linear case of no friction, µ = 0, the friction damper is always sliding and the

two free vibration undamped natural frequencies of the linear system are ω1 = (
√

5 − 1)/2 ≈ 0.618 for the in-phase

vibration mode and ω2 = (
√

5 + 1)/2 ≈ 1.618 for the out-of-phase mode. In the linear case of permanent sticking for

the mass m2, µ→ ∞, the associated linear system has a single degree-of-freedom and its free vibration undamped

natural frequency is ω1 =

√
2.

5.1 Frequency responses and typical periodic solutions

The frequency response curves of the system are depicted in Figure 7 for values of the normal load ranging from

N = 8 to 12, obtained by sequential continuation on the forcing frequency. Here the mean value of the total energy of

the system over one period of the motion, defined as the sum of the kinetic and potential energies integrated from 0

to T = 2π/ω and divided by T , is shown on a logarithmic scale. Responses are shown from ω = 0.1 to 0.8, a range

which encompasses the natural frequency ω1 = 0.618 of the first vibration mode of the associated "sliding" linear

undamped system. The resonance at the second vibration mode at ω2 = 1.618 is not considered here, because in

this frequency range the friction damper features a rather dull behavior of permanent sliding for the considered values

5The fact that the partial derivatives of Ψr are not defined everywhere, notably along the lines separating its three planes, see Figure 2(a), is not

an issue since their weak version only is considered in Equation (27). Also, in Equation (32), the conditions on the right hand-side apply to both

∂Ψr/∂ẋ2 and ∂Ψr/∂r.
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Fig. 7: Frequency response curves of the system for various values of N, for Nϕ = 60. The response of the linear system (µ = 0) is

indicated in red. The labels A, B, C, D, and E are used in later plots.

of the normal force N. In Figure 7, the frequency response of the associated linear, viscously damped system without

friction (i.e., for µ = 0) is also shown for comparison. The number of harmonics in the Ritz-Galerkin approximation is

Nϕ = 60, such that 30 odd harmonics ranging from the first to the 59th contribute to the response. This number of

harmonics was found to be sufficient to achieve accurate converged solutions.

One observes, as expected, that as the normal force N increases, the effects of friction become more pronounced

and the response amplitudes decrease correspondingly. For N = 8, 9 and 10, the frequency response features a

primary resonance close to the linear system’s first resonant frequency, ω1 = 0.618. As frequency decreases away

from the main peak, a succession of much smaller peaks can be seen in the vicinities of ω = 0.54, 0.30, 0.21, 0.16, 0.13

and 0.11 in Figure 7. These are believed to be super-harmonic resonances, similar to those previously observed and

studied in detail for a single-degree-of-freedom system with Coulomb friction [66, 17]. These small resonances occur

when one of the higher harmonics of the response, which arise due to the friction nonlinearity, drives the system at

or near one of its resonance frequencies. Super-harmonic resonances in friction systems are typically associated

with the apparition of additional sticking phases of the damper’s motion and the greater participation of select higher

harmonics of the response in the vicinity of these frequencies ± hence with a qualitative change in stick-slip behavior.

For the system at hand, both modes of vibration of the linearized frictionless system, namely at ω1 = 0.618 and

ω2 = 1.618, engender opportunities for super-harmonic resonances. For example, the small resonance around

ω = 0.54 seems to correspond to a 3:1 super-harmonic resonance of the second mode (Mode 2), the one near

ω = 0.30 to a 5:1 Mode 2 super-harmonic resonance, the one near ω = 0.21 to a 3:1 Mode 1 super-harmonic

resonance, and so forth. Examination of the modal participation and harmonic content of time responses at these

super-harmonic resonant frequencies confirms the presence of the relevant mode and harmonic. Note that the

super-harmonic resonances involve odd harmonics only, since the Fourier series expansion of the displacements

and friction force only include odd harmonics due to the symmetry of Coulomb’s law. Also observe the presence of

anti-resonances in the vicinity of some of the super-harmonic resonances, in most cases to the left of the peak but

occasionally to the right, for instance at ω = 0.299 for N = 10.5. Finally, observe that as the normal force increases,

the primary resonant frequency decreases slightly, with the main resonant peak becoming smaller and disappearing

for normal loads greater than 10.5. Correspondingly, the second mode’s 3:1super-harmonic resonant peak emerges

in the vicinity of ω = 0.56. It dwarfs the primary resonance peak for N = 10.5, and remains the only resonance at

ω = 0.562 for N = 11. For N = 12, resonances have all but nearly disappeared.

At the primary resonance, the friction damper is expected to be sliding back and forth during the entire period,

with sticking occurring instantaneously when the mass m2 changes direction, while richer stick-slip motions take

place at lower frequencies in the vicinity of the super-harmonic resonances. Representative time responses of the

157 | doi:10.25518/2684-6500.190 Mathias Legrand , Christophe Pierre

http://dx.doi.org/10.25518/2684-6500.190


Journal of Structural Dynamics, 2, (pp. 144-170) 2024

A compact, equality-based weighted residual formulation for periodic solutions of systems undergoing frictional occurrences

system are described in Figures 8 to 11 for several points on the frequency response curves, denoted in Figure 7

by A, B, C and D, respectively. Each figure shows the time histories over one cycle of motion of the displacement

and velocity of the two degrees-of-freedom and of the friction force. As well, the friction force is represented in terms

of the velocity of the second mass in order to verify whether Coulomb’s classical friction law of Figure 1 is captured

accurately by the approximate Ritz-Galerkin solution. In order to ensure that the solution is converged, Nϕ = 160

Fourier harmonics are included in the solution expansion (corresponding to 80 odd harmonics, each with 80 cosinus

and 80 sinus coefficients).

Figure 8 shows the system response at point A, corresponding to the primary resonant frequency for the smallest

value of normal load, N = 8. Both the first degree-of-freedom and the friction damper feature a harmonic-like
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Fig. 8: Response at point A in Figure 7, corresponding to the primary resonance condition, for N = 8, ω = 0.618, that is T = 10.17 s,

and Nϕ = 160. Friction damper degree-of-freedom [solid line] and first degree-of-freedom [dashed line] are shown.

oscillation, such that the damper undergoes one forward phase and one backward phase of sliding motion of equal

durations during one period, its velocity vanishing instantaneously twice during each period at the instants of time the

mass changes direction. The time history of the friction force r(t) confirms the sliding-only nature of the motion, as it

remains nearly constant during each forward and backward phase, undergoing a discontinuity from r = −µN = −7.2

to r = µN = 7.2 at the transition from forward to backward motion, and vice versa. In this case of slip-slip resonant

response, the square wave nature of the friction forceÐincluding the discontinuitiesÐ is very well captured by the

equivalent equality formulation of Coulomb’s friction and associated Ritz-Galerkin solution. Finally, the plot of the

friction force r in terms of the damper degree-of-freedom velocity ẋ2 in Figure 8 shows that Coulomb’s classical friction

law is accurately reproduced.

Notice, in the plots of the friction force versus time and versus ẋ2, the small oscillations just before and just after

each jump between the two sliding phases. This is an indication of the classical Gibbs phenomenon, which is known

to occur for Fourier series at points of discontinuity. In this case of resonant slip-slip motion, the oscillations are

exacerbated because the friction force is a square wave function of time, constituting a worst case. Note that taking

80 odd harmonics into account greatly reduces the region of Gibbs oscillations, and these could be further restricted

to a smaller neighborhood of the discontinuities by increasing Nϕ further. Also, the addition of different functions, such

as wavelets, in the series expansion for the solution might mitigate Gibbs oscillations [65].

Figure 9 shows the system response at point B, also for N = 8, at a frequency near the 5:1 Mode 2 super-harmonic

resonance. The time responses of the displacements and velocities and the friction force are richer than at the primary
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Fig. 9: Response at point B in Figure 7, corresponding to a 5:1 Mode 2 super-harmonic resonance condition, for N = 8, ω = 0.293,

that is T = 21.44 s, and Nϕ = 160. Friction damper degree-of-freedom [solid line] and first degree-of-freedom [dashed line] are

shown.

resonance. While the damper undergoes sliding during most of the period, there are two short sticking phases, which
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can be seen on the plot of r versus t. As time increases from zero to about 0.8 s, notice a short forward-sliding phase

during which r = −7.2. The friction force then undergoes a jump, after which it rapidly increases to reach r = 7.2 at

about t = 2.5 sÐa short phase during which the damper is sticking, such that x2 is constant and ẋ2 = 0, as can be

seen in the corresponding plots. Once r reaches its maximum value, a long sliding phase takes place for almost half

of the period until about t = 11.5 s, during which the damper slides in the backward direction. It is interesting to note

that at the beginning of this sliding phase, say approximately from t = 2.5 s to 5 s, the damper appears to be almost

sticking, such that its displacement x2 is nearly constant and its velocity ẋ2 nearly zero, while it is in fact slowly drifting

in the backward direction before more rapid sliding takes place.

Note the rich harmonic contents and intricate dynamics of the displacements and velocities of both degrees-of-

freedom during the period, which the equality-based friction formulation is able to capture with 160 odd harmonics

without any convergence issues. Also observe that in the r versus ẋ2 plot, Coulomb’s classical friction law is accurately

reproduced. Finally, note that the oscillations in r due to the Gibbs phenomenon are less significant than at the

primary resonance (point A), due to the fact that r undergoes smaller discontinuities during the period.

Next, results for a larger normal load N = 10.5 in the vicinity of the 5:1 Mode 2 super-harmonic resonance condition

are discussed. Figure 10 is for point C, at the anti-resonance frequency which is slightly smaller than the resonance

frequency, while Figure 11 is for point D, which is at that resonant frequency. These two cases illustrate periodic

solutions of the damper that are more intricate, with multiple stick-slip transitions.
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Fig. 10: Response at point C in Figure 7, corresponding to the anti-resonance associated with the 5:1 Mode 2 super-harmonic

resonance, for N = 10.5, ω = 0.299, that is T = 21.01 s, and Nϕ = 160. Friction damper degree-of-freedom [solid line] and first

degree-of-freedom [dashed line] are shown.

At the anti-resonance, it is seen in Figure 10 that two phases of sticking and sliding share an approximately equal

amount of time during one period. Namely, as time increases from zero, the damper slides forward during a short time

duration, after which a sticking phase takes place approximately from t = 2.5 s to 7.5 s, during which the friction force

smoothly increases after a small discontinuity at the transition from sliding to sticking. In each phase of the motion,

the solution method captures the response according to Coulomb’s law, as in the sticking phases |r| ≤ µN and x2 is

constant and ẋ2 = 0, while in the sliding phases |r| = µN. Also the residual Gibbs oscillations are very small in this

case, in agreement with the relatively small jumps in the friction force r at the slide-to-stick transitions.

At the super-harmonic resonant frequency, Figure 11 shows a qualitatively different response, with four sticking

and four sliding phases per cycle. As time increases from zero, the damper slides until about t = 2 s, after which the
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Fig. 11: Response at point D in Figure 7, corresponding to a 5:1 Mode 2 super-harmonic resonance condition, for N = 10.5,

ω = 0.308 that is T = 20.4 s, and Nϕ = 160. Friction damper degree-of-freedom [solid line] and first degree-of-freedom [dashed line]

are shown.

friction force jumps and then gradually increases, corresponding to a long phase of sticking until about t = 4.5 s. Note
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the constant value of x2 and zero value of ẋ2 during this phase. A sliding phase subsequently begins, but interestingly,

it abruptly ends around t = 5.2 s to yield a short sticking phase until t = 6.5 s, after which the damper begins sliding

again. Hence, in this case there are four sticking phases per cycle of the motion. Sharp variations of the friction force

between the sticking and sliding states can be seen in the graph of r versus t. Again, note that in each phase of

the motion, however short in duration, the solution method captures the response according to Coulomb’s law, as in

the sticking phases |r| ≤ µN and x2 is constant and ẋ2 = 0, while in the sliding phases |r| = µN. The residual Gibbs

oscillations are slightly larger in this case, due to the more pronounced jumps in the friction force.

In conclusion, the above results show that the equality-based formulation of friction is able to capture accurately

complex stick-slip damper motions, with no other approximation of Coulomb’s classical law than that introduced by the

finite number of Fourier harmonics included in the Ritz-Galerkin projection.

5.2 Convergence analysis

Since the only approximation in the procedure stems from the expansion of the unknown displacement and friction

force functions in finite series of T -periodic functions, it is important to assess convergence in terms of the number

of the basis functions. In Figure 7, it was found that increasing the number of harmonics beyond Nϕ = 60 led to no

visible difference in the frequency responses, hence convergence was deemed to be achieved, at least regarding the

system’s energy. In Figures 8 to 11, while 20 harmonics (i.e., 10 odd harmonics) were generally sufficient to obtain

converged displacements, accurate representation of the velocities and especially the friction force during sliding and

sticking phases and the transitions between them required additional harmonics. Therefore, to ensure convergence of

the solution, especially at the discontinuity points of the friction force, all these results were derived using Nϕ = 160

harmonics, that is, 80 odd harmonics. The nonlinear solver did not experience any convergence issues for such a

large number of harmonics.

In order to further explore convergence in terms of the number of harmonics, the case of a rich time history for the

friction force is considered, namely the response at point E in Figure 7. At this point, the friction force undergoes

four jumps from sliding to sticking during each period and additional sharp variations, making it a good candidate to

test convergence. Figure 12 depicts, for numbers of harmonics Nϕ in a doubling sequence from 10 to 160, the time

histories of the damper displacement, damper velocity, and friction force over one period of the motion at point E,

along with the variation of r as a function of ẋ2.

Both the amplitude and the general wave shape of the displacement x2 are seen to be well captured with as few

as 10 harmonics, though the accurate representation of the flat areas of the time history in the sticking phases (e.g.,
after t = 2 s) requires at least 40, if not 80 harmonics. Similarly, the amplitude and general wave shape of the damper

velocity ẋ2 are well approximated for Nϕ = 10, but capturing the zero velocity accurately in the four sticking phases

requires at least 80 harmonics.

The convergence analysis is more interesting for the friction force, since it features discontinuities and rapid

variations. While the amplitude of the friction force is reasonably approximated for as little as 10 harmonics, its

variation with time is not. Using less than 80 harmonics leads to poor approximations of friction force discontinuities

at the transitions from sliding to sticking, as well as to spurious oscillations and thus a non-constant friction force in

the sliding phases. Such oscillations are characteristic of Fourier series expansions of functions with discontinuities,

which converge in a mean square sense but not pointwise.

Finally, the plots of r versus ẋ2 in Figure 12 go hand in hand with the time histories of r(t) and demonstrate how

adding harmonics helps capture Coulomb’s classical friction law. For Nϕ = 40 or less, the variation of r in terms of ẋ2

features oscillations and hysteresis loops, and the discontinuity at ẋ2 = 0 is not well approximated. Convergence is

nearly achieved for Nϕ = 80, and an excellent representation of Coulomb’s law can be seen for Nϕ = 160.

Regarding the convergence of the Fourier series expansion of the friction force, the worst case corresponds to the

discontinuities at the transitions between sliding and sticking phases. At these jumps, the friction force varies like a

square wave, and thus one expects the mean square convergence in terms of the number of harmonics to be on the

order of 1/Nϕ.

In all cases considered, the nonlinear solver converged to the solution in a few iterations.

5.3 Comparison with time integration

In order to validate the equality-based friction formulation with attendant Ritz-Galerkin procedure, a time-domain

integration of the equations of motion (14) is directly performed. An implicit Euler integration scheme is selected,

which is known to handle phase transitions of non-smooth systems efficiently. To ensure the accuracy of the numerical

integration, the time step is chosen to be very small, h = 10−4, with approximately 2× 105 time steps per period. Again,
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Fig. 12: Convergence analysis in terms of number of harmonics at point E in Figure 7, at the 5:1 Mode-2 super-harmonic resonance

peak, for N = 10 and ω = 0.308.

the rich response at point E in Figure 7 is considered, which features significant higher harmonics content, friction

force discontinuities, and four sticking phases and eight transitions per cycle.
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Fig. 13: Comparison of frequency and time domain solutions. Equality-based Ritz-Galerkin method with Nϕ = 160 [black] and
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Velocities ẋ1 and ẋ2. [right] Friction force r.

161 | doi:10.25518/2684-6500.190 Mathias Legrand , Christophe Pierre

http://dx.doi.org/10.25518/2684-6500.190


Journal of Structural Dynamics, 2, (pp. 144-170) 2024

A compact, equality-based weighted residual formulation for periodic solutions of systems undergoing frictional occurrences

The frequency- and time-domain solutions for the displacement and velocity of the two degrees-of-freedom and

the friction force are shown in Figure 13. Observe that the two solutions are virtually undistinguishable in all cases.

In particular, the higher harmonics oscillations of the displacement and velocities are well captured, as so are the

constant displacement and zero velocity of the friction damper in the sticking phases of the motion. Both the jumps in

the friction force at the slip-to-stick transitions and the constant friction force in the sliding phases are also accurately

reproduced by both approaches.

Taken together, these results demonstrate the validity of the equality formulation of Coulomb’s friction and

the convergence of the weighted residual formulation with the Fourier basis functions. For a sufficient number of

harmonics, the stick-slip behavior of periodic responses and Coulomb’s friction law are accurately replicated, including

the transitions between sliding and sticking states, and these results are in excellent agreement with those of time

simulations.

Computational times for the equality-based weighted residual formulation are small. Frequency response curves in

Figure 7 are obtained by sequential continuation with 700 frequency points. Each point is computed in approximately

3.5 seconds for Nϕ = 40 in the nonlinear solver and the recursive quadrature scheme of MATLAB. Euler time

integrations, on the other hand, are slower. In order to give an estimate, the solution in Figure 13 was computed

by considering the time interval [0,2000]s, required for the periodic steady-sate to get established, for a CPU time

of approximately 15000s using the same nonlinear solver on the same personal computer (CPU Intel(R) Core(TM)

i7-2600 3.4 GHz). Also, while the computational cost of time integration might be manageable for the two-degree-of-

freedom system with one friction damper in Figure 6, it can become prohibitive compared to a frequency-domain

solution as the number of (linear) degrees-of-freedom increases, for example for a large-scale structure such as a

bladed disk. This is because frequency-domain methods lead to algebraic equations, the nonlinear part of which can

be expressed in terms of the linear degrees-of-freedom using a condensation technique, reducing the size of the

system of equations to the number of nonlinear degrees-of-freedom, which for non-smooth nonlinearities is typically

small. While condensation to the nonlinear degrees-of-freedom is possible in time-marching schemes, it is not

commonly implemented because of the very large size of the resulting algebraic systems. Reduced-order modeling

methods such as component mode synthesis can still be used to decrease the number of linear degrees-of-freedom,

but the resulting system of equation will, say for a bladed disk with friction dampers, be considerably larger than the

reduced set of frequency-domain nonlinear algebraic equations. This makes frequency-domain methods, such as the

equality-based friction formulation presented here, both efficient and effective at obtaining the periodic solutions of

non-smooth systems.

5.4 Analysis of the effect of damper mass

As mentioned in Section 1, in many studies the assumption of a damper with zero mass is made [19], which allows

one to circumvent the difficult problem of the multi-valuedness of the friction force for zero velocity in Coulomb’s

classical law of friction. In Figure 6, if m2 = 0 then the friction damper has no inertia, but it has flexibility since it is

connected to the first degree-of-freedom (or in general, to a multi-degree-of-freedom structure) through a stiffness

k2. It is also commonly assumed that d2 = 0, since otherwise the friction force cannot be written in terms of the

relative displacement from Equation (14b) as r = k2(x2 − x1) (which of course is not a limitation of the formulation in

this paper). This is commonly referred to as an "elastic-perfectly plastic" damper, as for m2 = 0, the friction damper

reduces to a spring of stiffness k2 in the stuck position and it is perfectly plastic during sliding. In absolute value the

friction force grows as k2|x1| during sticking since x2 is then constant, until it reaches µN and remains at that value

during sliding. Typically, the friction force exhibits a hysteresis loop in terms of the displacement of the neighboring

degree-of-freedom, x1. Furthermore, the friction force does not undergo jumps versus time, because for m2 = 0 in

Equation (14b), r must be continuous since x1 and x2 are continuous.

Essentially, the assumption of zero damper mass allows one to reformulate the equations of motion by expressing

the friction force as a piecewise linear function of the relative displacement, x2 − x1, rather than directly as a set-valued

function of the damper velocity ẋ2 per Coulomb’s law (1). As a result, the nonlinearity is made smoother and is

single-valued for sticking motions, which alleviates the problems associated with non-smooth systems.

While the massless damper assumption results in a more regular expression of the friction nonlinearity, it is

different from the Coulomb’s law regularizations analyzed in Section 2, such as arctangent, hyperbolic tangent, and

piecewise linear. With these approximations, the friction force is expressed as a regular function of the friction damper

velocity, while in the massless case, the friction force is a regular function of the relative displacement of the friction

damper. In fact, for a massless damper, Coulomb’s friction law is correctly accounted for, but indirectly so, and results

capture the typical discontinuity of r versus ẋ2.

It also needs pointing out that for a massless friction damper, the velocity can be discontinuous since there is
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Fig. 14: System periodic responses for various values of m2 and N = 6.5, ω = 0.4, and Nϕ = 160; friction damper degree-of-freedom

[solid line] and first degree-of-freedom [dashed line].

no inertia, which strictly speaking is not physically realistic. Indeed, friction in structural systems occurs between

components that have both stiffness and mass. This is a limitation of the elastic-perfectly plastic massless damper

model, and how much it affects the validity of the results should be assessed on a case by case basis. Also recall that

jumps in the friction force versus time cannot be captured when zero mass is assumed for the friction damper.

Since the equality-based formulation in Equation (14c) is valid for any mass of the friction damper including zero

(note that there is no explicit dependency on m2 in the friction equality), a parametric study of the effect of friction

damper mass on the periodic response was carried out in a representative case of resonance. Figure 14 shows the

system response as the mass of the friction damper decreases from m2 = 1 to m2 = 0, for N = 6.5 and ω = 0.4. All

other system parameters remain unchanged, except that d2 = 0 in the case m2 = 0 in order the reproduce the results

of the common massless damper assumption. Note that in this case the effect of viscous damping at the friction

damper degree-of freedom was found to be negligible. Several remarks are in order.

• As the damper mass decreases, the plot of the friction force r versus the displacement of the first degree-of-

freedom x1 shows the onset of a hysteresis loop, which for m2 = 0 takes the typical simple pattern found in the

literature [19], corroborating this well-known behavior. For m2 , 0, the friction force features jumps, both in terms

of time and in terms of x1. As explained above, such physical discontinuities cannot be captured if a massless

damper is assumed. For m2 = 1, the friction force jumps between −µN and +µN, while these discontinuities

become of smaller magnitude as m2 decreases, and vanish for m2 = 0. For the massless damper, the friction

force variation is regular, with two "smooth" sliding and sticking phases per cycle and a simple hysteresis loop,
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and the more intricate and discontinuous behaviors for m2 , 0 are not seen.

• For m2 = 1, the damper undergoes back and forth slip-slip motion during the period, with no sticking phase,

though there are two short time intervals of near sticking when the damper changes direction. For m2 = 0.5, two

short sticking phases per cycle appear, which as m2 decreases to 0.25 and 0.125 become four sticking phases

per cycle. The jumps in the friction force become correspondingly less prevalent as m2 decreases, and again

disappear for m2 = 0.

• The plots r versus x1 all show a hysteresis loop, which as m2 increases becomes less regular with more jumps,

such that for m2 = 1 the variation of r in terms of x1 is entirely discontinuous and the loop’s pattern is square.

Hence, the hysteresis loop is not a result of the massless damper assumption.

• Importantly, for m2 = 0 there are two jumps per cycle in the damper velocity, as the damper transitions from

sticking to sliding. These discontinuities, which are not physical, are of course not present in the cases for

m2 , 0.

• Finally, plots of r versus ẋ2, which are not shown here, would show that Coulomb’s friction law is reproduced in

all cases including for m2 = 0.

5.5 Analysis of the piecewise linear approximation

Here the equality-based formulation is applied to the piecewise linear approximation of Coulomb’s friction described in

Section 3.2. The system’s dynamics are governed by Equation (14a) and Equation (14b), together with the piecewise

linear expression of the friction force in terms of the velocity, described by Equation (12) and governed by the slope

1/δ in the approximated "sticking" phases [33]. Figure 15 shows the time histories of the displacements, velocities and

friction force and the corresponding friction law r versus ẋ2, for various values of δ, with a comparison to the exact

solution without regularization. The system parameters are taken at point E in Figure 7.

As δ→ 0, the slope 1/δ of the approximate friction law becomes infinite, tending to Coulomb’s classical friction.

While sticking is better approximated as δ decreases, such that |r| < µN over a range of velocity smaller than 2δ in

absolute value, no true sticking can occur for δ , 0 because the friction damper velocity vanishes only when r = 0. As

δ increases, the approximation of sticking becomes poorer and its range greater, and as a result, there is less sliding

(defined as |r| = µN) during one period. For example, for δ = 2, sliding takes place during two short phases only,

and both degree-of-freedom displacements are dominated by the first harmonic, while the velocities show relatively

small higher harmonic content. Also observe the more gradual variation of the friction force. As the slope 1/δ of the

approximate friction law increases, higher harmonics become more prevalent, and the displacements, velocities and

friction force vary more abruptly in terms of time. Sliding phases increase in duration, and for δ ≤ 0.5, there are four

sliding phases and four approximated sticking phases per cycle, such that the response is more complex than for

the smoother system for δ = 2. As δ decreases, convergence is first observed for x1 and x2 and then for ẋ1 and ẋ2

and r, which is expected. Results for δ = 0.5 and 0.25 are very similar, and in the latter case the regularized friction

law r versus ẋ2 approximates Coulomb’s classical friction law closely. Comparing the time histories in Figure 15

for δ = 0.25 and the solution without approximation shows that the displacements, velocities and friction force are

all well approximated. However, as expected, the regularized results show that in the sticking phases, the damper

displacement is not quite constant and the damper velocity not quite zero, while in the slip-to-stick transitions the

friction force jumps are not quite as sharp. Thus, piecewise linear regularization can yield good approximations of

periodic responses, but the equality-based formulation of Coulomb’s law captures true stick-slip behavior without

having to resort to approximate regularizations and without any additional numerical cost.

6 Key features and relationship with existing approaches

The primary advantages of the equality-based weighted residual formulation presented herein for non-smooth systems

with friction are its compactness, effectiveness, and efficiency. The equations of motion are simply augmented by the

friction conditions expressed as non-smooth equalities involving min and max functions. This system of governing

equations is cast in a weak form by approximating the unknown displacements and friction forces as truncated series

of basis functions, and the time variable is removed by a Ritz-Galerkin projection onto the basis functions, yielding

a nonlinear system of algebraic equations which are solved numerically using a Newton nonlinear solver. Since

the friction equalities are non-smooth, the integrals derived from them in the Ritz-Galerkin procedure cannot be
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Fig. 15: System periodic response for various values of the inverse slope parameter δ in the piecewise linear law in Equation (12),

at point E in Figure 7 with N = 10, ω = 0.308, and Nϕ = 160; friction degree-of-freedom [solid line] and first degree-of-freedom

[dashed line].

expressed analytically, hence they are evaluated numerically using a classical quadrature scheme. The computation

of these integrals involves, at each sampled instant of time, the evaluation of the min and max functions of the force

and velocity at the friction degree-of-freedom. Information about the sticking and sliding phases and the transitions

between them is thus implicitly embedded in a weak sense in the calculation of the integrals.

In contrast, existing harmonic balance-type techniques such as the AFT, HFT, and DLFT methods require a

dedicated and somewhat cumbersome treatment of the non-smooth forces, since these are written as complementarity

conditions and thus are not expressible or calculable in the frequency domain. At each iteration of the nonlinear

solver, an explicit transformation to the time domain is performed, where nonlinear forces are evaluated from the

system’s displacements and velocities and the states of the system are determined by performing tests to estimate the

stick-slip transitions, after which these quantities are transformed back to the frequency domain. In the DLFT method,

the passage to the time domain is particularly critical to the correction procedures for the nonlinear forces [23]. For

periodic solutions, these transformations are performed using direct and inverse discrete Fourier transforms.

It is interesting to note that in the equality-based weighted residual formulation, the evaluation of the time

integrals of the non-smooth functions corresponds to the time-domain tests required in the frequency-time domain

methods to determine the sticking and sliding states and their transition when calculating the nonlinear forces. In

the equality-based formulation, the system states and the transitions between them are implicitly determined in a

weak sense through the evaluation of the integrals. The handling of the non-smooth terms is straightforward and
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efficient, necessitating no dedicated treatment different from that of the equation of motions, except for the fact that

the non-smooth integrals must be computed numerically. No switching back to the time domain is necessary at each

iteration to calculate the nonlinear forces.

The calculation of the integrals of the nonlinear terms, Equations (24a) and (24b) using a Riemann quadrature

scheme bears resemblance with taking a Discrete Fourier Transform (DFT). The residue of the Coulomb’s equality

condition, Ψr(ẋ2h, rh), is itself calculated from the functions of time ẋ2h and rh, which can be viewed as the inverse

Discrete Fourier Transform (iDFT) of the vectors jωx2 and r (using, for simplicity, the complex exponential expression

of the Fourier Transform). Hence the process at each iteration of the nonlinear solver can be conceptually viewed as

follows: starting from the harmonic representation of the friction force r, (i) take its iDFT, (ii) express the Coulomb’s

equality functionΨr in the time domain, and (iii) take its DFT to obtain the harmonic representation of the residue, which

the algorithm seeks to drive to zero. Schematically, one seeks to solve the following system in the Nϕ unknowns r:

DFT(Ψr(iDFT( jωx2(r), IDFT(r)) = 0. (33)

It is interesting that this process is conceptually similar to that of the AFT and HFT methods [19, 21] in which, at each

iteration, an inverse DFT of the frequency-domain harmonic displacements and velocities is taken, the corresponding

nonlinear forces are calculated via time integration and tests to determine state transitions, the DFT of these is taken

to obtain the frequency-domain forces, and finally the updated frequency-domain displacements are solved for. The

equality-based formulation of friction, though, is highly compact, applies to any representation or approximation of the

Coulomb’s law level-set function Ψ. It only requires the numerical evaluation (by quadrature or by DFT) of the integral

of a non-smooth function, rather than either cumbersome time integrations in which the state of the system must

be determined through tests at each time step or the use of approximate friction laws or simplified friction damper

models.

Perhaps most importantly, the equality-based weighted residuals formulation is highly effective, at least in all cases

reported herein, as it produces converged and accurate solutions at a low computational cost and for large numbers

of harmonics. Remarkably, this is achieved without any smoothing, approximation or hypothesis regarding Coulomb’s

friction law. Existing frequency-time domain techniques also perform well in many cases, but they can suffer from

convergence problems, especially so the AFT and the HFT, unless some kind of smoothing of the friction nonlinearity

is de facto conducted. As covered in Section 1, in order to achieve numerical stability and produce a converged

solution, in most studies either the penalization of the friction forces by introducing a finite stiffness or dissipative

element or the regularization of the friction force is required. For example, the DLFT method, which is based on a

dynamic Lagrangian formulation, relies on penalizing the difference between the relative interface displacements

calculated in the frequency and the time domains, an algorithm which introduces artificial energy dissipation and is

dependent on a penalty coefficient which influences the rate of convergence. In contrast, an important feature of the

equality-based weighted residual formulation is that no approximations of penalization or regularization are made,

which goes toward its simplicity and accuracy, also eliminating questionable residual penetrations and the need to

select a penalty coefficient. In fact, its only approximation lies in the truncated nature of the basis of functions used in

the weak formulation, a feature common to all frequency-domain methods.

Some consequences of smoothing the nonlinear forces may not be fully understood. For example, in most studies

of turbomachinery, friction dampers are assumed to be massless. However, while dampers may have small mass, it

may not necessarily be negligible, questioning whether the assumption makes physical sense. As seen in Section 5.4,

for a massless damper the friction force is a continuous function of displacement and hence of time. This means that

back-and-forth slip-slip motions (i.e., with no sticking phase) are not accurately captured, since the friction force and

the acceleration are then discontinuous in time (the velocity being always continuous in time). As well, in Section 5.1

the responses which feature jumps in the friction force at the slip-to-stick transitions cannot be reproduced for a

massless friction damper. Of course, the massless assumption may be appropriate, but its validity should be assessed

on a case by case basis, for example through a parametric study as in Section 5.4. Regularizing the friction force has

a similar effect to assuming a massless damper, as it then depends continuously of the velocity, which is a continuous

function of time, hence friction force discontinuities cannot be captured. Thus regularization also prevents admissible

solutions from being modeled [35].

The equality-based weighted residuals formulation does not suffer from such limitations. It is general and allows,

in a natural way, for mass at frictional interfaces and for an exact Coulomb’s friction law. As shown, it also applies

naturally to the cases of a massless damper and regularized friction laws, if needed.

Another feature of the present approach is that it is not limited to Fourier functions for the truncated basis {ϕk}k=1,...,n

in the weighted residual procedure, as the formulation holds for general periodic functions. Functions such as

periodized Chebyshev polynomials or wavelets could be used alternatively, in order to better capture discontinuities in
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accelerations or friction forces. In contrast, the AFT and DLFT methods are naturally based on Fourier functions, and

while they could conceptually be generalized to other basis functions, this would require a significant redesign.

Finally, note that the present formulation allows for external forcing at the friction degree-of-freedom without any

simplifying assumption.

7 Conclusions

An equality-based weighted residuals formulation for periodic solutions of systems undergoing frictional occurrences

was presented. It is highly compact, essentially embedding the non-smooth constraints in the set of governing

equations such that they are handled no differently from the equations of motion, except for the numerical evaluation

of the integrals arising from the weak formulation. With the method, there is no time-domain integration of nonlinear

forces at each iteration and no cumbersome estimations of system states and the transitions between them. The

method is tremendously versatile, as in theory it can be applied to any (non-smooth) law formulated in terms of an

equality. Unlike existing methods, which require the cumbersome selection of smoothing parameters and are subject

to convergence problems, its accuracy is solely dictated by the family of basis functions {ϕk} in the Ritz-Galerkin

expansion and the number of these functions.

The equality-based weighted residuals formulation has the potential to be a powerful method for the analysis

of vibrating non-smooth systems. It is believed that equivalent equalities can be formulated for any non-smooth

system whose dynamics are governed by a complementarity formulation, opening the door to the application of the

equality-based weighted residuals formulation to a variety of nonlinearities, for example those with more sophisticated

friction laws, two-dimensional friction, multiple frictional interfaces, and combined contact and friction.
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