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bUniversité de Toulouse, ICA, CNRS, ISAE-Supaero, 31400 Toulouse, France

Abstract

The prospect of aeroelastic instability, leading to large-amplitude limit cycle oscillations, is of particular

concern for the highly flexible wings of solar high-altitude long-endurance (HALE) aircraft. Among the

different strategies of vibration control, passive mitigation through friction dampers stands out as a promising

solution in this context. While this concept has been proposed previously, related studies systematically use

simple two-degrees-of-freedom airfoil models. In this paper, a more realistic structural model involving a

three-dimensional nonlinear beam description of a full wing is considered. A friction damper is installed

at a specific location on the wing span, and the response to aerodynamic loads is investigated numerically.

Comparisons of critical speed and limit cycle amplitudes with and without the damper suggest improved

vibration mitigation with respect to a linear viscous damper.

Keywords: friction damper, flutter, geometric nonlinearities, highly flexible wing, HALE drone

1. Introduction

Solar high-altitude long-endurance (HALE) pseudo-satellites are an emerging trend which involves de-

ploying Unmanned Air Vechicles (UAV) in stratospheric flight. These are able to carry out missions typically

attributed to conventional satellites. However, these vehicles are subjected to a specific set of design con-

straints in order to achieve their intended purpose, which includes a very high energy efficiency and a light5

frame. The resulting structures involve flexible wings with high aspect ratios, particularly prone to dynamic

instabilities such as aeroelastic flutter. This phenomenon leads to limited flight domains and performances

of current solar HALE UAVs designs [1]. Therefore, a proper prediction and control of flutter is critical to
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guarantee safe and robust operation of solar HALE UAVs. Several computations tools are available for this

matter, for instance: NATASHA [2], UM/NAST [3], SharPy [4] and GEBTAero [5]. They all use unsteady10

potential theories (strip theory or lifting surface) as aerodynamic modeling.

Different solutions of active aeroelastic control have been investigated to prevent undesirable vibrations

and mitigate flutter effects [6]. Passive control is another strategy to limit detrimental large-amplitude Limit

Cycle Oscillations (LCOs) and postpone instability. Adding a nonlinear energy absorber has also been

considered theoretically [7, 8], and experimentally [9]. Friction damping is another vibration mitigation15

technique for wing [10], or fan blades [11]. Those studies addressed simplistic reduced models focused

on an airfoil section and a limited numbers of DOF (Degrees of Freedom); the main reason being that

the damper parameterization involves usually an analytical approach. Continuous and more realistic wing

models require specific attention both on the structural modeling and damper design fronts. The former,

owing to the high flexibility of solar HALE wings, must include geometrical nonlinearities to cope with20

large displacements and rotations, thereby enabling quantitative analyses of LCOs. In turn, this information

can be used to design effective dampers for fluttering wings whose vibration amplitudes must be kept small

past the critical speed. Moreover, in the particular context of HALE UAV’s required to operate at low energy

consumption, an efficient and carefully-designed passive control strategy is of highly desirable.

For a high-aspect-ratio wing, using a nonlinear beam model in place of a full three-dimensional finite25

element model is convenient. The latter would allow to run complex simulations on a realistic geometry, but

the treatment of distributed nonlinearities requires specialized reduction methods to be practical ([12] for

instance). A beam model benefits from an inherently smaller size and can be discretized straightforwardly

through the use of a Rayleigh-Ritz approach [13, 14]. Geometrically exact beam models with specific

rotation parameterization have been developed to deal with arbitrarily large displacements and rotations,30

e.g. [15] or [16], but for moderate cases the use of simplified models leads to reasonable accuracy.

The objective of the paper is to investigate the potential benefit of friction damping for flutter control of a

nonlinear flexible wing. The wing is represented mathematically by a geometrically approximate nonlinear

beam model, described in detail in Sect. 2 and validated in Sect. 3. Numerical investigations on the critical

velocity and LCOs amplitude function of the friction damper characteristics are presented in Sect. 4. Finally,35

discussion of results and perspectives for future work are the subject of Sect. 5.
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2. Modeling

In this section, the nonlinear equations of motion are obtained by using the following extended Euler-

Lagrange equations on a Rayleigh-Ritz discretization of the continuous dynamic variables:

d
dt

(
∂ (Ttot −Utot)

∂ q̇ j

)
+

∂D

∂ q̇ j
− ∂ (Ttot −Utot)

∂q j
− ∂Waero

∂q j
= 0 , ∀ j ∈ [1, ...,Nt ] . (1)

In (1), Nt is the total number of unknown generalized coordinates; Ttot and Utot are, respectively, the total40

kinetic and potential energies; Waero is the work developed by aerodynamic forces; and D is the dissipated

energy. The equation of motion obtained is discussed in Sect. 2.4.

2.1. Structural model

The wing model presented here is based on the work by [17]. Therein, the authors considered a pre-

twisted and pre-bent rotor blade, and developed a formulation in which the different blade displacements45

are nonlinearly coupled. Such an approach is similar to that of [18] and [14], among others. These models,

however, tend to discard important nonlinear stiffness terms arising from moderate-to-large local rotations,

and thus provide low accuracy in the case of very flexible wings. Consequently, an appropriate extension is

considered here, thus placing the proposed model between the ones of [18] and an exact formulation (see,

e.g., [15]) in terms of accuracy. An initially-straight beam is considered in this paper for simplicity.50

2.1.1. Beam kinematics

Let B0 =(O,x,y,z) be a global coordinate system at whose origin O is clamped a long, slender wing. The

x-axis is oriented along the undeformed wing’s elastic axis and the y-axis points towards the leading edge,

see Fig. 1. The wing’s deformed state is characterized by the displacements u(x, t), v(x, t) and w(x, t) of the

elastic axis, and the twist angle φ(x, t) about the (deformed) elastic axis x∗ (see Fig. 2). For conciseness,55

dependency of these variables on x and t will not be shown explicitly hereafter.

Finally, let define a local coordinate system Bd = (P′,ξ ,η ,ζ ) associated with the deformed configura-

tion. Its ξ -axis is tangential to the deformed elastic axis x∗ and its η-axis is parallel to the local chord. The

rotation from the B0-frame to the Bd-frame is expressed with the transformation matrix T(x, t) (given in

Appendix A). T can be computed as the result of three successive rotations about the Euler angles ψ , θ and60

φ̂ , shown in Fig. 3. Note that the twist angle φ , used as dynamic variable, is not the same as φ̂ [14].
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Figure 1: Wing model: initial and deformed states.

Figure 2: Local coordinate system Bd = (P′,ξ ,η ,ζ ). The axes x and x∗ are shown parallel in this figure but they should not be in a

three-dimensional deformation.

Figure 3: Euler angles defining the rotation matrix T from the B0-frame to the deformed BD-frame.
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Using these definitions, the position r0 of an arbitrary point on the wing in its undeformed configuration

is:

r0 (x,η ,ζ )

∣∣∣∣
B0

=


x

0

0


B0

+TT
0 (x)


0

η

ζ


Bd

=


x

η

ζ


B0

, (2)

where r0 is expressed in the global coordinate system. T0(x) corresponds to the rotation matrix evaluated

for u = v = w = φ = 0. •T denotes the transpose matrix.65

The position of the same material point after deformation, r, is then:

r(x,η ,ζ , t)
∣∣∣∣
B0

=


x+u

v

w


B0

+TT(x, t)


0

η

ζ


Bd

. (3)

The expression (3) neglects cross-sectional warping, which is justified in the case of a high-aspect-ratio wing

under no axial loading [19].

2.1.2. Energy derivations

Assuming a linearly elastic material, and the hypotheses of Euler-Bernoulli beam theory, the wing’s70

elastic potential energy is:

U =
1
2

∫ L

0

∫
A

(
Eε

2
xx +Gγ

2
xη +Gγ

2
xζ

)
dη dζ dx, (4)

where E and G are the material’s Young’s and shear modulus, respectively. A is the cross-section area and

L the wing length. Furthermore, using the definition of r0 (Eq. (2)) and r (Eq. (3)), the strain components(
εxx,γxη ,γxζ

)
may be expressed as functions of the local extension eξ and curvatures

(
κξ ,κη ,κζ

)
, as fol-

lows:75

εxx = eξ +ηκζ −ζ κη , (5a)

γxη = κξ ζ , (5b)

γxζ =−κξ η , (5c)

where quadratic terms in the extension and curvatures have been neglected by assuming small strains. By

definition, the axial extension is given by:

eξ =
√
(1+u′)2 + v′2 +w′2 −1. (6)
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On the other hand, an expression for the curvatures is found through Kirchoff’s kinetic analogy [20], which

implies: T′ ≡ ∂ (T)/∂x = DT where D is the so-called spin tensor, a skew-symmetric matrix defined by the

property: Dv =
[
κξ ,κη ,κζ

]T ∧v,∀v ∈ R3. It follows that D = T′TT, which provides a set of equations for80

the curvatures. With T detailed in Appendix A, it leads to:

κξ =−φ̂
′+ sin(θ)ψ ′, (7a)

κη =−θ
′ cos(φ̂)− cos(θ)sin(φ̂)ψ ′, (7b)

κζ = θ
′ sin(φ̂)− cos(θ)cos(φ̂)ψ ′, (7c)

where •′ = ∂ • /∂x. From geometrical considerations, one may express the derivatives and trigonometric

functions of Euler angles appearing in (7) purely in terms of the dynamic variables (u,v,w,φ) and their

derivatives (see Appendix A). Incorporating these definitions into Eq. 4 and performing integration over

the beam’s cross-section leads to the following expression for elastic potential energy:85

U =
1
2

∫ L

0

(
EAe2

ξ
+EIη κ

2
η +EIζ κ

2
ζ
+GJκ

2
ξ
+

−2EAdζ eξ κη +2EAdη eξ κζ −2EIηζ κη κζ

)
dx.

(8)

with the usual definitions for the coefficients:

EA =
∫

A
E dη dζ , EAdη =

∫
A

Eη dη dζ , EAdζ =
∫

A
Eζ dη dζ ,

EIη =
∫

A
Eζ

2 dη dζ , EIζ =
∫

A
Eη

2 dη dζ , EIηζ =
∫

A
Eηζ dη dζ ,

GJ =
∫

A
G
(
η

2 +ζ
2) dη dζ .

In Eq. (8), E and G do not need to be constant over a cross-section. Moreover, this equation is also valid

for a wing with varying cross-section, as these coefficients could be functions of x. Next, potential energy

is expanded as a Taylor series in order to obtain third-order accurate strains. The crucial difference between

the proposed and cited models is that, having expressed potential energy in the invariant form of Eq. (8)90

a consistent third-order approximation can be achieved by expanding curvatures to as high an order as

required, and only then truncating terms in the energy expression. For this, the ordering scheme proposed

by [17] and summarized in Table (1) is used.
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x/L O(1) u/L O(ε2)

v/L O(ε) w/L O(ε)

φ O(ε)

Table 1: Orders of magnitude, compared to a small and dimensionless parameter ε .

Ultimately, Eq. (7) is rewritten as:

κξ =−φ̂
′− v′′w′ ≡−φ

′, (9a)

κη = w′′
(

1+
w′2

2
− φ 2

2

)
− v′′

(
φ −

∫ x

0
v′′w′ dx

)
+O(ε4), (9b)

κζ = v′′
(
−1+ v′2 +

w′2

2
+

φ 2

2
+u′

)
−w′′

(
φ −

∫ x

0
v′′w′ dx

)
+ v′u′′+O(ε4), (9c)

which is valid for moderate rotations and torsion angles. The relationship between the Euler angle φ̂ and the95

twist angle φ is established in Eq. (9a). The third-order terms v′′v′2/2 and w′′w′2/2 in the above equations

are frequently omitted, as in [17], which leads to equations of motion lacking nonlinear bending stiffness

terms and hence unable to correctly represent beam motions in the large displacement scenario. Similarly,

the exact definition of eξ (see (6)) is expanded to yield:

eξ = u′+
1
2
(
v′2 +w′2)+O(ε4). (10)

Inserting Eqs. (9) and (10) into the potential energy, Eq. (8), leads to an expression solely in terms of the100

four dynamic variables (u,v,w,φ).

In addition, one might include gravitational potential energy through the term:

Ug =−
∫ L

0

∫
A

ρgw(x, t)dη dζ dx, (11)

where ρ is the material density and g the acceleration due to gravity. Once the total potential energy has

been computed, terms of order higher than O(ε4) are neglected.

The kinetic energy of the wing is straightforwardly computed with the relation:105

T =
1
2

∫ L

0

∫
A

ρ

(
∂r
∂ t

)
·
(

∂r
∂ t

)
dη dζ dx.

By substituting the value of r from Eq. (3) and expressing the Euler angles as a function of the dynamic

variables, the energy, with terms up to second order, becomes:

T =
1
2

∫ L

0

(
m
(
u̇2 + v̇2 + ẇ2)+mk2

t φ̇
2 +2mφ̇

(
eη ẇ− eζ v̇

))
dx, (12)
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where •̇= ∂ •/∂ t and

m =
∫

A
ρ dη dζ , k2

t =
1
m

∫
A

ρ
(
η

2 +ζ
2) dη dζ ,

eη =
1
m

∫
A

ρη dη dζ , eζ =
1
m

∫
A

ρζ dη dζ .

The kinetic energy (12) has been truncated at O(ε2) whereas terms up to order O(ε4) were kept in the

potential energy (8) because their orders of magnitude are such that T /U = O(ε2) (see, e.g., [18]). As110

before, the coefficients in (12) are allowed to vary along the beam’s span. Contrary to what is given in [17],

the kinetic energy (12) accounts for possible asymmetric cross-section with respect to the η-axis.

2.2. Aerodynamic forces

For the purposes of this paper, a simple linear quasi-steady model based on strip theory is considered for

the aerodynamic forces. Indeed, as seen in following sections, such a model is sufficient to induce flutter for115

certain configurations, and thus allows to assess the effectiveness of the friction-damper concept proposed

here.

The virtual work done by aerodynamic forces is defined as:

δWaero =
∫ L

0

(
δvFy +δwFz +δφMξ

)
dx, (13)

where Fy and Fz are the components of the aerodynamic forces per unit length expressed in the global frame,

and Mξ is the aerodynamic moment along the ξ -axis expressed at the airfoil’s elastic center, noted P′, located120

at a distance xA from its aerodynamic center, noted A. The work done by the axial aerodynamic force has

been neglected in (13).

The aerodynamic forces (Fy,Fz) and moment Mξ will be calculated next with respect to the lift force

L, drag force D, and aerodynamic moment M0 in A, illustrated in Fig. 4. At any given section along the

wing’s span, L and D are defined in the perpendicular and tangent directions, respectively, of UP′ , the linear125

airfoil velocity at P′ (see Fig. 4) relative to the airflow. Assuming small angles of attack, they are defined by

classical strip theory as:

D =
1
2

ρ∞c∥UM∥2Cd0, (14a)

L =
1
2

ρ∞c∥UM∥2 (Cl0 +Clα αeff) . (14b)

In Eq. (14), αeff is the effective angle of attack; ρ∞ is the air density; c is the airfoil chord length; and

Cl0, Clα and Cd0 are dimensionless aerodynamic coefficients. UM is the velocity of the three-quarter chord
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Figure 4: Aerodynamic forces and moment on an airfoil. Note that the airfoil plane (η ,ζ ) is not necessarily the same as the plane (y,z).

point, noted M in Fig. 4, relatively to the airflow [21]. Let assume that the wing is immersed in a steady130

airflow of speed −U∞ whose direction defines a steady angle of attack α0 between the airfoil profile and the

undeformed global y-axis, see Fig. 4. UM is then given by:

UM

∣∣∣∣
Bd

= UP′

∣∣∣∣
Bd

+


0

0(
xA − c

2

)
α̇


Bd

, (15)

where UP′ accounts for both the wing linear motion and the airflow speed, and is defined by:

UP′

∣∣∣∣
Bd

= T


u̇

v̇+U∞ cosα0

ẇ−U∞ sinα0


B0

≡


Uξ

Uη

Uζ


Bd

. (16)

In Eq. (15), α̇ corresponds to the airfoil angular velocity about the deformed elastic axis and is given by:

α̇ =− ˙̂
φ − v̇′w′+O(ε4) =−φ̇ +

∫ x

0

[
ẇ′v′′− v̇′w′′] dx+O(ε4) (17)

whose mathematical form closely resembles Eq. (9a) for κξ , as expected from Kirchoff’s kinetic analogy.135
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In Eq. (14), the effective angle of attack αeff is defined as the angle between UM and the chord-wise

η-axis direction. With the assumption of small αeff, Eqs. (15) and (16) give:

tan(αeff) =
−Uζ +( c

2 − xA)α̇

Uη

≈ αeff. (18)

With the same assumption and considering Uη >> (Uζ ,Uξ ), the quantity ∥UM∥2 can be approximated to

U2
η , which then simplifies Eq. (14) to:

D =
1
2

ρ∞cU2
ηCd0, (19a)

L =
1
2

ρ∞cUη

(
Cl0Uη +Clα(−Uζ +(

c
2
− xA)α̇)

)
. (19b)

The aerodynamic forces (Fy,Fz) expressed in the global frame B0 are obtained from D and L through a140

rotation of angle α about P′ followed by a rotation from the Bd-frame to the B0-frame characterized with

the T-matrix. This gives :
−

Fy

Fz


B0

= TT




1 0 0

0 cos(α) sin(α)

0 −sin(α) cos(α)




0

−D

L




Bd

. (20)

To simplify the expressions, the zero-lift moment is assumed to be null (M0 = 0). Thus, the total moment

Mξ in P′ only involves the moments generated by the drag and lift forces and by the centrifugal part of non-

circulatory lift, which is ρ∞Clα c2Uη α̇/8, through the moment arm −c/4 (see [21] for details). Hence:145

Mξ = xA

(
Dsin(α)+Lcos(α)

)
−ρ∞Clα

c3

32
Uη α̇. (21)

Finally, substituting Eq. (19) into Eqs. (20) and (21), making the assumption of cosα ≈ 1 and sinα ≈

−Uζ/Uη , and developing the T-matrix in Eqs. (15) and (20) as a function of the variables (u,v,w,φ) (see

Appendix A) give an expression of the aerodynamic forces Fy, Fz and moment Mξ solely in terms of

(u,v,w,φ), their time derivative and the airflow velocity U∞. Eqs. (20) and (21) are then substituted into (13)

to express the work done by aerodynamic forces solely as a function of the kinematic variables and U∞. The150

equation obtained is finally considered in the Euler-Lagrange equations (1) to create stiffness and damping

terms induced by aeroelastic effects. As for the structural model, nonlinear aeroelastic terms up to O(ε3)

are kept. The non-linearity introduced due to both large displacement and three-dimensional kinematics

amounts to treating lift and drag as follower forces rather than them having a fixed direction in space, which

is crucial in a large-displacement context.155

10



2.3. Friction damper

Let consider a damper attached to the wing at a location x= xD, as illustrated in Fig. 5. The technological

implementation of this device is assumed to only allow vertical displacements of the damper, noted zD(t),

along the global z-axis. Possible inclination of the damper system under wing large rotation is thus neglected.

The damper consists of a point mass mD connected to the wing by a linear stiffness kD and a sliding contact.

Figure 5: Schematic diagram of the tuned mass frictional damper.

160

The later is modeled by a smooth approximation of dry (Coulomb) friction such that the friction force ff is:

ff(t) = µN tanh
(

ẇ(xD, t)− żD(t)
ε

)
, (22)

where µN, regarded as a single coefficient, express the normal force at the contact interface multiplied by

the friction coefficient, and ε is a regularization parameter.

The potential, kinetic and dissipated energies associated with the damper system are then respectively

given by:165

Ud =
kD

2
(w(xD, t)− zD(t))

2 Td =
mD

2
ż2

D(t) Dd = (ẇ(xD, t)− żD(t)) ff(t)

These expressions are added to energies of the overall system when using the Euler-Lagrange equations (1).
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2.4. Discretization and equations of motion

Each continuous variable (u,v,w,φ) is approximated with the following Rayleigh-Ritz discretization:

f (x, t) =
N f

∑
j=1

ϕ f j(x)q f j(t) (23)

where f is a placeholder for any one of the variables (u,v,w,φ), q f j are the unknown generalized coordinates

and ϕ f j are associated shape functions. In order for the shape functions to be kinematically admissible, they170

are required to satisfy the geometric boundary conditions at x = 0:

ϕu j(0) = 0 ∀ j ∈ [1, ...,Nu]

ϕv j(0) = ϕ
′
v j(0) = 0 ∀ j ∈ [1, ...,Nv]

ϕw j(0) = ϕ
′
w j(0) = 0 ∀ j ∈ [1, ...,Nw]

ϕφ j(0) = 0 ∀ j ∈
[
1, ...,Nφ

]
.

A multitude of options are possible for the choice of shape functions. In this paper, a power series expansion

of the following form is used:

ϕ f j(x) =
( x

L

)a+ j
(24)

with a = 0 for ϕu j and ϕφ j, and a = 1 otherwise. Such functions have been successfully employed in

previous studies (see, e.g., [17] or [13]) and constitute a good alternative to linear eigenmodes, which are a175

popular choice in dynamics problems but are known to be sub-optimal in the present context [22]. In any

case, the number of shape functions required to achieve convergence – with regards to an appropriate metric

– must be studied carefully. Such a study is conducted in Sect. 3. Discretization using finite elements is also

a possible option and useful to easily couple the nonlinear beam with another structure (see, e.g., in [23]),

however it generally requires more degrees of freedom to obtain a similar accuracy on the low-order modes.180

The Nt = Nu + Nv + Nw + Nφ + 1 discrete equations of motion are finally obtained by replacing the

continuous variables (u,v,w,φ) by their expressions in (23) within the work and energy terms, computing

integrals over the wing span, and applying Eq. (1). This yields to the system of equations:

Mq̈+Cq̇+Kq+ fNL(q, q̇)+ faero (q, q̇,U∞) = fext, (25)

where all generalized coordinates are contained in a single vector q such that:

q(t) =
[
qT

u (t),q
T
v (t),q

T
w(t),q

T
φ (t),zD(t)

]T
.

12



In Eq. (25), M and K are respectively the generalized mass and stiffness matrices. Linear damping has been185

included into the model via the matrix C. Modal damping calculated on the underlying linear autonomous

system of (25) will be used in Section 4. The term fNL contains the nonlinear contributions stemming from

geometrical and frictional effects. Aeroelastic effects are grouped in vector faero function of airflow velocity

U∞. It contains, to third order in the generalized displacements, a non-zero constant term (solely ) for α0 ̸= 0

and linear, quadratic and cubic terms in (q, q̇). fext groups state-independent generalized forces, which are190

solely produced by gravity in this case (see Eq. (11)).

The model described above has been implemented as a MATLAB toolbox named HiFleW (for Highly

Flexible Wing), to which references are made throughout the remainder of this paper.

3. Model Validation

The aim of this section is to validate the HiFleW toolbox described previously by examining the response195

of the structure without the added damper in different typical loading scenarios. To this end, test cases were

chosen on the basis of two criteria: quantitative results available in the literature, and adequacy for direct

comparison to the proposed model 1 .

3.1. Static test case accounting for geometric nonlinear effects

An uniform, straight beam with constant (rectangular) cross-section is considered. Its dimension and200

material properties follow that of [24]: the beam length, width and thickness are respectively 40 cm, 25 mm

and 0.4 mm. The material’s Young’s modulus is 194.3 Gpa and its density is 7726.8 kg/m3. Ignoring

aerodynamic loading, the beam is first subjected to both its own weight and that of an additional 10 g point

mass added at its tip. The nonlinear static equilibrium equation, given by (25) with q̈ = q̇ = 0, is numerically

solved with a Newton-Raphson algorithm.205

Since a discretization approach is used, the deformed shape at equilibrium varies with the chosen type

and number of shape functions, until convergence is achieved. Let consider, for instance, the Chebyshev

polynomials proposed in [13], modified to satisfy the fixed boundary condition at x = 0. Fig. 6 shows the

evolution of the beam tip displacements with increasing number of shape functions N, with Nu = Nv = Nw =

Nφ = N, for both Chebyshev and power-series approximations (see (24)). The physical displacements have210

1This rules out, in particular, models which implement a more detailed aerodynamic description, e.g., unsteady effects, which are

out of scope for the present paper.
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been reconstructed from the generalized variables through Eq. (23). Despite the added richness of Chebyshev

polynomials, these results indicate that a power-series expansion has virtually the same convergence rate.

This implies that the latter could be used equivalently without sacrificing the solution quality, which is

convenient due to their ease of mathematical manipulation.
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Figure 6: Static deformation convergence for different shape function types: a) Chebyshev polynomials, b) power series.

Concerning the converged numerical values obtained, these highlight two noteworthy features: firstly,215

the static vertical displacement is ws(L) = −154.8 mm, which amounts to approximately 39% of the total

beam span; secondly, a non-zero axial displacement is present at the beam tip, although its amplitude is

small in comparison to the former: us(L) = −34.6 mm. These effects arise from the highly-flexible nature

of the chosen beam and from the nonlinear coupling terms in the equations of motion. Following the conver-

gence analysis shown in Fig. 6, power-series discretization with N = 6 will be used in the remaining of this220

paper. It should be noted that, while these numbers have been shown to be sufficient with respect to static

deformation, a dynamic analysis also requires that the chosen number of functions is enough to accurately

reconstruct the vibration modes of interest. This will be illustrated in Sect. 3.2.

In Fig. 7, the static deformation obtained by HiFleW is compared to a Nonlinear Finite Element (NLFE)225

computation using ABAQUS2. Two versions of the former are considered: both neglecting and including

2The NLFE model consists of a geometrically nonlinear beam meshed with 100 Euler-Bernoulli beam elements.
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the cubic terms in the curvature definitions, Eq. (7). The first corresponds to linearized rotations, while the

second takes into account large rotation effects.
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Figure 7: Static deformed shape comparison: HiFleW (linearized and large rotations) vs NLFE (ABAQUS).

Even though both versions of the nonlinear model tested in HiFleW capture the coupling behavior be-

tween axial and transverse displacements, the one with linearized rotations deviates drastically from the230

reference solution, in particular by overestimating vertical deflections. In fact, the tip deflection is equal

to the analytical prediction for linear cantilever beams. The main reason is that if the third-order terms are

neglected in the curvature expressions, there remain non-linear effects coupling different degrees of freedom

but not geometrical stiffening in pure bending, which is derived from terms such as v′′v2 and w′′w2 in the

potential energy expression.235

Nevertheless, a slight difference still persists between the HiFleW solution and the reference solution.

This could be attributed to the considerable deflection induced by the tip mass. In such cases, higher-order

terms should naturally be retained in the equations of motion to enhance accuracy. In order to quantify this

effect, and thus to determine the limitations of the present nonlinear structural model, the nonlinearity level

is next modified by varying the value of the added tip mass, as was done experimentally in [24]. In Fig. 8240

a), simulations with HiFleW are compared to NLFE and to the aforementioned experimental results. Fig. 8
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b) displays the relative difference between experimental and computational tip deflection at equilibrium.

As expected, the proposed model in HiFleW significantly outperforms the linear model but deviates from

the experimental solution as the maximum deflection increases. Nevertheless, the relative error remains

as low as 5% for deflections below 45% of beam span. This degree of accuracy is deemed satisfactory245

in the context of flexible wing studies, since such deflection levels would not be reached in practice. This

justifies the practical use of the relatively simple beam model presented here instead of a geometrically-exact

one [15].
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Figure 8: Comparison of different simulation methodologies: a) transverse tip displacement as a function of the added mass, b) relative

difference to experimental measurements.

3.2. Dynamic test case on a linear beam

In order to investigate flutter and mode coalescence, an accurate prediction of modal characteristics250

is important. Thus, in this section, the first few linear natural frequencies of the previous straight beam

structure are computed with HiFleW and compared to values obtained through well known formulas for

Euler-Bernoulli beams. This is done in Table 2 for the first four modes of each kinematic variable. It follows

that 6 shape functions for (u,v,w,φ ) in the Rayleigh-Ritz approximation are sufficient for a good approxi-

mation of the first three linear natural frequencies of each variable. The modes are here-above uncoupled255

due to the symmetry of the cross-section, but this need not be the case in general.
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Mode type Theo. HiFleW Mode type Theo. HiFleW

transverse

1.266×102 1.266×102

transverse

2.025 2.025

7.932×102 7.932×102 12.69 12.69

(v) 2.221×103 2.222×103 (w) 35.54 35.55

4.352×103 4.622×103 69.64 73.95

longitudinal

3.134×103 3.134×103

torsion

2.216×103 2.216×103

9.402 ×103 9.402 ×103 6.648×103 6.649×103

(u) 1.567×104 1.569×104 (φ ) 1.108×104 1.110×104

2.194×104 2.250×104 1.551×104 1.591×104

Table 2: Natural frequencies (Hz) of the rectangular beam compared with theory [25]. The frequencies are obtained with 6 shape

functions per kinematic variable.

As an illustration of coupled bending/torsion modes typical in wing structure, the Goland wing [26]

described in Table 3 is now adopted. The natural frequencies of the system without aerodynamic forces

are calculated with HiFleW and compared with the literature [27]. For the same geometric and material

properties3, the first three natural frequencies obtained with HiFleW are 49.331 rad/s, 99.202 rad/s and260

246,60 rad/s. These are strictly equal to the reported values.

L c m mk2
t EIζ GJ eη xA

m m kg/m kg.m N.m2 N.m2 m m

6.096 1.8288 35.71 8.64 9.77×106 0.99×106 -0.183 0.146

Table 3: Goland wing data.

3.3. Aeroelastic test case

Aerodynamic forces acting on the Goland wing are now accounted for. Local stability, function of the

incoming airspeed, is assessed by performing complex eigenvalue analysis of Eq. (25) linearized about the

static equilibrium state, which is simply q = 0 when weight is ignored. In this section, structural damping is265

also neglected.

3Those given in [27] are slightly different from those of Table 3 used in the flutter simulation of Section 3.3.
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Figure 9: Bifurcation diagram for varying U∞, flutter occurs at Ucr = 35.51 m/s as indicated by ( ) markers. Real parts of eigenvalues

are normalized by the absolute value of their corresponding imaginary part.

Fig. 9 shows the evolution of the system’s eigenvalues for U∞ ∈ [0,50]. 4 Clearly, an unstable mode

(associated to at least an eigenvalue having positive real part) exists for speeds beyond the critical value

Ucr = 35.51 m/s. The unstable mode corresponds, in this case, to a complex-conjugate eigenvalue pair, which

indicates a Hopf bifurcation leading to flutter. Furthermore, the LCO frequency in the immediate vicinity of270

the bifurcation is given by the imaginary part of the unstable mode, i.e.: fcr = 14.943 Hz. Comparison with

the literature and with simulations made with the GEBTAero code, in Table 4, shows a close correlation, thus

4As the imaginary parts increase rapidly from one eigenvalue to the next, only a close-up to the first six (out of the total 24)

eigenvalues is shown in Fig. 9 for clarity.
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validating the HiFleW toolbox for this application. It should be noted that the Goland wing is not particularly

flexible and thus a nonlinear structural model is not mandatory to obtain similar results. A structure more

akin to a solar HALE UAV wing is considered in the next section.275

Speed (m/s) Frequency (Hz)

HiFleW 35.51 14.943

GEBTAero 35.09 14.983

Haddadpour et al. [28] 33.52 14.801

Table 4: Goland wing flutter speed and frequency for quasi-steady aerodynamics.

4. Application - Flutter mitigation by friction

This section considers the three-dimensional aeroelastic response of the full nonlinear structure, as pre-

sented in Sect. 2, consisting of the beam and the friction damper, the latter of which introduces a further

source of nonlinearity into the system. The properties of the former, summarized in Table (5), are chosen to

match the well-known flexible wing of [29], with a root pitch angle α0 = 4◦ (such as in [30] for instance).280

This results in a nonlinear static deformation dependent on wind speed U∞. All along this section, refer-

ence is made to an alternative configuration in which linear viscous damping (of coefficient ξD) is used as a

dissipation mechanism in addition to, or rather than, frictional damping.

L c m mk2
t EIζ EIη GJ eη xA

m m kg/m kg.m N.m2 N.m2 N.m2 m m

16.0 1.0 0.75 0.1 2.0×104 4.0×106 1.0×104 0.0 0.25

Table 5: Patil wing data [29].

4.1. Friction damper parameters

The damper is required to be light relative to the total wing mass, in order to have a negligible effect285

over its static deflection. The damper-to-wing mass ratio is thus fixed to 1%. The damper stiffness is tuned

in such a way as to target the unstable flutter mode of the structure. Its frequency is an implicit function

of U∞, and it should ideally be adapted accordingly for optimal performance. For simplicity’s sake, the
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damper stiffness is kept constant and tuned to the frequency of the unstable mode at the critical speed (onset

of flutter) obtained in the damper’s absence. This particular frequency is approximately 39.57 rad/s for the290

wing described above and yields to kD = 188 N/m.

4.2. Mitigation performance

4.2.1. Critical speed

The critical flutter speed is found through eigenvalue analysis of the system linearized about a static

equilibrium defined by the state (q, q̇) = (q0,0) solution of Eq. (25). The friction force has no effect on the295

static equilibrium itself, but it affects its stability – and thus the flutter speed – through the state’s Jacobian

matrix. To evaluate the impact of the damper on this regard, the critical speeds are predicted for different

attachment points along the wing span, using the numerical value: µN = 0.5 N for friction coefficient.

Regarding the regularization parameter ε , it is worthwhile to emphasize that the hyperbolic tangent function

has a quasi-linear behavior on the interval: ẇ(xD, t)− żD(t) ∈ [−ε,ε], which implies that a high value of this300

parameter artificially introduces viscous damping into the system and modifies the critical speed. Hence,

while its specific value is irrelevant, ε must be chosen carefully in order to minimize this effect while also

providing sufficient smoothing to aid the numerical solvers. Following a convergence analysis -omitted here

for brevity-, the value ε = 1×10−4 is fixed in all that follows.

To assess the effectiveness of the friction damper, the same procedure is repeated for a viscous damper305

with ξD = 1.5 kg/s. These computations yield the results presented in Fig. (10). As a first observation, one

notes that the friction damper has a small but noticeable effect on the critical speed, which can be considered

beneficial since the instability threshold is delayed regardless of the chosen damper position. The same can

be said about the viscous damper, which shows an identical behavior for attachment positions below 30%

of the wing span. Beyond this threshold, the viscous damper delays the instability the furthest. It should be310

noticed however, that this Hopf bifurcation may be subcritical, implying the existence of periodic LCO for

speeds below Ucr. As such, a study of the LCO branches is crucial for determining the stabilizing value of

any damper.

4.2.2. LCO amplitude

With the Hopf bifurcation as a starting point, periodic LCO branches of Eq. (25) were computed numeri-315

cally through a pseudo arc-length continuation algorithm implementing the harmonic balance method5 (see,

5To achieve solution convergence, 5 harmonics were sufficient with no friction, and 15 harmonics were needed for µN = 1.5 N.
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Figure 10: Critical speed as a function of damper position.

e.g., [31]). As an example, Fig. (11) shows the LCO obtained for U∞ = 26 m/s in the absence of damper. The

response mainly involves torsion and transverse bending in a lesser extent, characteristic of flutter. Through

nonlinear coupling, the axial and lateral degrees of freedom also undergo periodic motion. The whole branch

of solutions can be seen as the ( ) curve in Fig. (12), where the subscript ’PP’ denotes peak-to-peak am-320

plitude. The bifurcation is subcritical, so there is an interval of U∞ below the critical speed where a stable

cycle and static equilibrium coexist. In practice, increasing speed past the critical point leads to jump to a

large-amplitude cycle, rather than a gradual increase. It is important to note that the large torsion angles

presented here are not the same as local angles of attack, which remain within the hypotheses introduced in

Sect. (2.2).325

Fig. (12) also groups results obtained with a friction damper, a viscous damper, and a combination of

both. Considering first the viscous damper alone, it can be seen that the critical speed is delayed, as expected

from Sect. 4.2.1. However, the bifurcation remains subcritical and the cycle amplitudes in the vicinity of

Ucr remain large. In contrast, the friction damper alone shows a dramatically different behavior: for µN =

0.5 N, while the bifurcation is still subcritical, the amplitude jump is reduced to approximately one-quarter330

magnitude, and amplitudes remain small over some U∞-range greater than Ucr. Moreover, the bi-stability
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Figure 11: Beam tip motions over one period of LCO at U∞ = 26 m/s (time τ is shown normalized by the oscillation period).

region for subcritical speeds is diminished. Nevertheless, a second amplitude jump appears in the LCO

curve (at U∞ ≈ 27.2 m/s). Increasing the value of µN to 1.5 N eliminates the second amplitude jump, but at

the cost of increasing the magnitude of the first one considerably; however, the resulting amplitudes remain

smaller when compared to the viscous-damper case. When both dissipation mechanisms work together, the335

resulting curve is a compromise between the two: only an initial, small-magnitude amplitude jump exists,

followed by a smooth but rapid increase of LCO amplitudes with airspeed.

Interestingly, regardless of the damper configuration employed, the amplitudes always tend to those of

the damper-less case for values of U∞ well beyond the critical speed. This can be explained by considering

that a damper is effective to the extent in which it can dissipate the energy which is provided by the main340

structure. Since the attachment is linear and tuned to a given frequency, effective energy transfer to the

damper can only occur in near internally-resonant conditions, i.e., if the LCO frequencies remain close to
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this value. As illustrated in Fig. 13, the energy dissipated by friction over one oscillation period attains a

maximum and then decreases with further increases in U∞, which correlates directly with a sudden change in

frequency away from the tuned value. This fact is, of course, a limitation to all tuned dampers, and could be345
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Figure 13: Evolution of LCO properties for varying U∞, given a friction damper at xD = 0.5L and µN = 0.5 N. a) Energy dissipated
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remedied through the use of a nonlinear attachment, but this study is beyond the scope of the present paper.

5. Discussion

In this paper, the concept of a friction-based damper to mitigate limit cycle oscillations induced by flutter

of flexible wings has been investigated. To this end, the HiFleW toolbox was developed, which incorporates

a nonlinear beam model which improves on previous non-exact propositions by including moderate-rotation350

effects. While the resulting aeroelastic description is greatly simplified (most notably in regards to airflow-

induced forces on the structure), it has proved sufficient to test the damper from a conceptual viewpoint,

and the results obtained suggest that such a solution could be a viable alternative. Indeed, its performance

with regard to limit cycle amplitude and bifurcation behavior is seen to be better than that of a linear viscous

damper of equivalent dissipation capacities. Two important aspects to take into consideration for an optimal355

performance are the damper’s attachment location on the wing and the damper’s stiffness. The former plays

a minor role on critical speed but also relates to the practical realization of such a device, while the second is

crucial as it dictates the range of frequencies around which the dissipation will be effective. For solar HALE

aircraft whose operation requires to elevate to high altitudes, decreasing speed might not be possible and
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thus the technological solution sought should be able to work on a range of speeds as large as possible.360

Several perspectives can be contemplated as follow-ups to the present study. In particular, the techno-

logical implementation of a friction damper and its experimental validation on a reduced-scale wing would

be quite interesting. To achieve this in practice, a number of possibilities exist, for instance: utilizing a

bearing-shaft assembly [32] or adapting the device proposed in [33] to work as a friction damper. In ad-

dition, the simple lumped-mass model of the damper as proposed here could be extended in a variety of365

ways: a particularly promising strategy could include a controller to vary the spring stiffness as required by

the circumstances, or to use an essentially nonlinear attachment. Regarding the mathematical model of the

wing, effects such as flow unsteadiness and rigid-body flight dynamics should certainly be considered for a

more realistic description of an aircraft in operation.
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Appendix A. Rotation matrix

The rotation sequence (z → y1 → x∗) is considered, as illustrated in Fig. 3. It yields to the total rotation

T, defined as a composition of the three consecutive rotations:

T =


cos(θ)cos(ψ) cos(θ)sin(ψ)

cos(ψ)sin(θ)sin(φ̂)− sin(ψ)cos(φ̂) sin(ψ)sin(θ)sin(φ̂)+ cos(ψ)cos(φ̂)

cos(ψ)sin(θ)cos(φ̂)+ sin(ψ)sin(φ̂) sin(ψ)sin(θ)cos(φ̂)− cos(ψ)sin(φ̂)

−sin(θ)

cos(θ)sin(φ̂)

cos(θ)cos(φ̂)

 (A.1)
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In turn, the trigonometric functions of angles ψ and θ can be expressed in terms of displacements as follows:375

cos(ψ) =
1+u′√

(1+u′)2 + v′2

sin(ψ) =
v′√

(1+u′)2 + v′2

cos(θ) =

√
(1+u′)2 + v′2

(1+u′)2 + v′2 +w′2

sin(θ) =
−w′√

(1+u′)2 + v′2 +w′2
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